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Abstract—For networked cyber-physical systems to prolifer-
ate, it is important to ensure that the resulting control system
is secure. We consider a physical plant, abstracted as a single-
input-single-output stochastic linear dynamical system, in which
a sensor node can exhibit malicious behavior. A malicious sensor
may report false or distorted sensor measurements. For such
compromised systems, we propose a technique which ensures
that malicious sensor nodes cannot introduce any significant
distortion without being detected. The crux of our technique
consists of the actuator node superimposing a random signal,
whose realization is unknown to the sensor, on the control
law-specified input. We show that in spite of a background
of process noise, the above method can detect the presence
of malicious nodes. Specifically, we establish that by injecting
an arbitrarily small amount of such random excitation into
the system, one can ensure that either the malicious sensor
is detected, or it is restricted to add distortion that is only
of zero-power to the noise entering the system. The proposed
technique is potentially usable in applications such as smart
grids, intelligent transportation, and process control.

Index Terms—Networked Cyber-Physical Systems, Secure
Control, Stochastic Systems.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are comprised of a tight
interplay between communication, computation and control.
Potential application areas include the smart grid, automated
transportation, and advanced manufacturing systems [1].
While they are poised to address some of the system-building
challenges of the coming century, a potential stumbling block
is their vulnerability to security breaches. Many recent in-
stances of such attacks reinforce this concern. A well-known
example is the Stuxnet worm [2], which provided malicious
control commands while simultaneously spoofing the sensor
measurements so as to appear normal in the control room.
Specifically, Stuxnet recorded the sensor measurements for
a few seconds before initiating an attack, and replayed them
in the control room during the attack [2]. Another example
is the Maroochy-Shire incident, in which an employee of a
sewage treatment plant is alleged to have issued malicious
commands to the control systems [3]. A third example is
the Davis-Besse nuclear power plant in Ohio, where the
Slammer worm affected some of the safety display systems
in the facility. Though the Slammer worm was not designed
to target the power plant, use of commodity IT software
made the computers in the power plant vulnerable to generic
cyber attacks [4]. The reader is referred to [5] for further
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instances of attacks on Industrial Control Systems (ICS). The
increasing deployment of commodity IT software in ICS to
achieve rapid scaling and easy implementation has increased
their vulnerability to cyber attacks.
Incidents such as the Maroochy-Shire attack, where the

system is compromised not as a result of an attack on the
cyber layer, but due to alleged malicious actions of authorized
personnel, bring out the fact that there are two aspects to
securing a cyber-physical system:
1) Securing the cyber layer, the underlying communica-

tion network.
2) Securing the physical layer, composed of sensors and

actuators interfacing with the physical world.
Fig. 1 shows such an abstraction of a networked CPS
consisting of interacting cyber and physical layers. At its
heart is a physical plant consisting of an actuator and a
sensor (the physical layer), exchanging information over
an underlying communication network composed of relays,
routers, switches, etc. (the cyber layer). Both layers need to
be secured if the overall system is to be secured.
Security of the cyber layer includes the traditional notions

of confidentiality, integrity, and availability of data. Confi-
dentiality requires that the data transmitted by one node to
another in the network is not known to any other node, even
though the packets may be routed through multiple nodes
in the system. Integrity requires that a packet received by
a node is not tampered with by any node in its route, so
that the data it receives is the data that was transmitted by
the node where the packet originated. Availability refers to
data being available when required. For example, availability
requires that a node not abstain from forwarding a packet that
it receives. Network and information security, which amounts
to security of the cyber layer, is a relatively mature field and
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can, in principle, be accomplished using techniques such as
cryptography, and those reported in [6], [7].
Relatively less is known when it comes to security of the

physical layer - the problem of secure control with malicious
Byzantine behavior. This paper addresses this particular prob-
lem. Specifically, we assume that the cyber layer is secured
using techniques such as [6] and [7], so that the complexities
of the underlying communication network in Fig. 1 can be
abstracted as bidirectional, secure, reliable, delay-guaranteed
bit pipes between the sensor and the actuator nodes. The
problem of securing the CPS then translates to securing the
physical layer.

II. THE MODEL

We model the physical plant as a single-input-single-output
stochastic linear dynamical system. While most real-world
systems do not conform to properties of linearity or time-
invariance, the class of LTI systems serves as a natural
starting point for the development of any new theory, which
in this case is a theory of security. This is because they
are simple enough for analytical tractability, and yet retain
appropriate features so that insights gained by analyzing them
carry over to more general classes of systems.
Consider a single-input-single-output stochastic linear dy-

namical system described by an ARMAX model of the form

y[t] = �
mX

i=1

aiy[t� i] +
nX

i=1

biu[t� i] +
pX

i=0

ciw[t� i], (1)

where y[t] 2 R denotes the output of the system at time t,
u[t] 2 R denotes the input applied to the system at time t, and
{w} is a sequence of independent and identically distributed
Gaussian random variables with zero mean and variance �2

w.
Without loss of generality, one can assume c0 = 1. We also
assume that b1 6= 0.

A sensor measures the outputs y[t] and is supposed to
convey them truthfully over the network to an actuator that
is then supposed to implement a general history-dependent
control law g = (g1, g2, . . . , gt, . . .), so that it applies the
input ug[t] = gt(y[0], y[1], . . . , y[t]) to the plant.

However, the sensor may be malicious and not report
the true measurements, which can cause problems as the
following example illustrates.
Example: Consider the system y[t] = 0.9y[t�1]+u[t�1]+
w[t]. A minimum variance control law [8] u[t] = �0.9y[t] is
designed to be applied. If it were faithfully implemented, it
would result in y[t] = w[t] which has the minimum variance
var(y[t]) = �2

w for all t, and the input sequence u[t] =
�0.9w[t] for all t.

Suppose now that the sensor is malicious. It generates a
random sequence z[t] that is i.i.d., N(0,�2

w), and indepen-
dent of {w[t]} and y[0]. It then falsely reports z[t] as the
measurement that it made at time t. The actuator, which is not
malicious, relies on this reported measurement of the output,
and applies the input u[t] = �0.9z[t]. From the actuator’s
point of view, the joint distribution (z, u) of its reported

output and its own input , (z,�0.9z), is exactly the same
as the joint distribution (w,�0.9w) that would have resulted
if the sensor were not malicious, and so it has no reason to
suspect that the sensor has lied since it has absolutely no
other information to rely on. However, due to the malicious
behavior of the sensor, the actual output of the system that
results is y[t] = 0.9y[t� 1]� 0.9z[t� 1] +w[t]. This results
in an asymptotic variance of 181

19 �2
w, which is a significant

deterioration of performance.
In this paper we will show how the actuator can defend

against such a scenario where the sensor may be malicious.
We denote by z[t] the measurement reported by the sensor at
time t. Since the sensor is malicious, z[t] may not be equal to
y[t]. While the history-dependent control law g = (g0, g1, ...)
is meant to be applied on the actual measurements, the
fact that the measurements received by the actuator may
be falsely reported implies that the control law is applied
on the reported measurements which may or may not be
the actual measurements. Therefore, ug[t] = gt(zt), where
zt := (z[0], z[1], ..., z[t]).
Our goal in this paper is to restrict the set of actions

that the malicious sensor can engage in if it aims to be
undetected. Towards this end, we pursue the technique of
dynamic watermarking of signals, which ensures that if the
malicious nodes wish to remain undetected, they are confined
to adding a distortion to the noise entering the system that
has only zero power. The results are equally applicable to
fault detection where sensors may have failed or degraded
rather than have been subverted.

III. PRIOR WORK

Early efforts in security of cyber-physical systems iden-
tified key features that render it different from the problem
of network security or information security. One is that a
cyber-physical system may not lend itself to periodic patching
and security updates, routinely done in IT security, since
the presence of a physical plant in the loop may restrict
controllers and sensors from going offline [5]. Also, the
traditional notion of information security, of which data
availability is a defining feature, does not put constraints on
how soon after a data request the data should be available to
an authorized party. However, the presence of a dynamical
system in the loop imposes deadlines for each data packet
[5]. Traditional solutions for IT security are not designed
to handle such constraints. A mathematical model for the
evolution of a system under attack could aid in a theoretical
study of secure control. Towards this, [5] proposes models
for two specific types of attacks, viz., deception and Denial-
of-Service (DoS) attacks. Some definitions of security for
cyber-physical systems are presented in [9]. Specifically, it
is proposed that a cyber-physical system is secure if it its op-
erational goals are maintained or at least, undergo a graceful
degradation when attacked [9]. Related works in IT security
and classical control are also identified that can potentially
aid in addressing security of CPS. The problem of optimal
control against DoS attacks is examined in [10] where the
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adversary may jam a packet randomly and independently of
other packets with some probability.
Conditions for the detection and identification of attacks

by different classes of algorithms are presented in [11].
Here, attack detection refers to the knowledge of just the
presence of an attack, whereas attack identification refers to
the knowledge of the identity of malicious actuators/sensors
in the system. Using techniques from compressed sensing,
an approach for state estimation for cyber-physical systems
when a subset of actuators and sensors are adversarial is
presented in [12], [13]. Several studies have also been carried
out on stealthy attacks [14]–[16]. A technique for filtering
measurements from faulty sensors is presented in [17], which
exploits spatial correlation of the sensed signal to identify
outliers. Though not presented in the context of a feedback
control system, the ideas presented in [17] could be employed
in cyber-physical systems as well.
The aforementioned techniques can be classified as “pas-

sive defense mechanisms,” allowing for the adversarial nodes
to carry out certain attacks, and then designing mechanisms
to operate the system in the presence of such attacks. This is
by and large the approach that has dominated the literature
thus far. In this paper, we pursue an alternate paradigm for
securing cyber-physical systems, an “active defense.” The
technique presented in [18], [19] is the first to our knowledge
that looked at this possibility, with the controller commanding
the actuator to inject a random signal along with the control
signal at each time in order to secure the system against
replay attack. Subsequently, [20]–[22] extends this technique
to adversaries employing more intelligent attacks.
In this paper, we examine the general approach of “dy-

namic watermarking,” for arbitrary attack strategies, with the
adversary not being aware of the specific realization of the
random excitation. The honest nodes which excite the system
with a random excitation check for the consistency of all the
reported measurements. In contrast to [18]–[22] that carry out
the test of only one residual, effectively the Test 2 described
below, our method tests two residuals (Test 1 and Test 2
below). It is then shown that no attack by the adversarial
nodes can remain undetected if it does anything other than
add a zero-power signal to the noise already entering the
system. To the best of our knowledge, this is the first result
to show the resilience of a defense mechanism to arbitrary
attack models.
In digital information security, a digital watermark is a

code that is embedded in an electronic document in such a
way that it cannot be removed without destroying the contents
of the document. This technique for secure control can be
recognized as having parallels with digital watermarking.
Specifically, it relies on the fact that the sensor cannot
separate the actuator’s private excitation from the process
noise. There is also the added feature in this scheme that
the watermark is not revealed to other parties and only the
imprinter of the watermark can detect whether it is present
or has been tampered with. This provides the desired type of
security, as we establish in the subsequent sections. Further
extensions of this approach to more general control systems

are elaborated in [23].

IV. DYNAMIC WATERMARKING: FIRST-ORDER SYSTEMS

To introduce the concept, we begin by considering the case
of a first-order stochastic linear dynamical system from [23]:

y[t+ 1] = ay[t] + bu[t] + w[t], (2)

where y[t] 2 R is the output of the system at time t,
u[t] 2 R is the input to the system at time t, a, b 2 R
are known parameters, and w[t] ⇠ N (0,�2

w) is a sequence
of independent and identically distributed (i.i.d.) Gaussian
random variables.
In order to secure the control system, we consider the

technique of “dynamic watermarking.” The actuator node su-
perimposes on the control law-specified input ug[t] a random
variable e[t] which it draws from a particular distribution
Pe(e), independent of the reported measurements z[t] up to
time t, and of all past values e[t � 1], e[t � 2], ...e[0]. The
distribution Pe is made public, i.e., every node in the system
knows the distribution from which the the random sequence
{e} is drawn. However, the honest actuators are required
to hold private and not report the actual realization of the
random sequence {e[t]} to any other node in the system.
Malicious nodes, being Byzantine, can do what they please,
as in [6]. For this reason, the sequence {e} is termed the
actuator node’s private excitation. The net input applied to
the system, therefore, is given by

u[t] = ug[t] + e[t], (3)

A high-level intuition for why private excitation aids and
may even be somehow necessary for securing the control
system, is as follows. Consider the case where the sensor
is malicious and the actuator is not. In the absence of
private excitation, the system evolves according to (2), which,
incorporating the control law, reduces to

y[t+ 1] = ay[t] + bgt(z
t) + w[t]. (4)

A malicious sensor, in this case, can “simulate” a linear
dynamical system, and report its simulated measurements to
the actuator. That is, it reports z[t] generated as follows:

z[t+ 1] = az[t] + bgt(z
t) + w0[t], (5)

where w0[t] ⇠ N (0,�2
w) is a sequence of i.i.d. random

variables drawn by the sensor, having no relationship to the
actual noise sequence w[t], i.e., independent of the physical
system. Hence, a malicious sensor need not even observe the
output to report measurements, and an honest actuator will
never be able to tell the difference between the outputs of
the virtual system and that of the real one since w0[t], being
drawn from the same distribution as w[t], could have been
the actual process noise that affected the system. Therefore,
no detection algorithm can expose the maliciousness of the
sensor.
On the other hand, in the presence of private excitation e[t]

with e[t] ⇠ N (0,�2
e) in (3), the system evolves according to

y[t+ 1] = ay[t] + bug[t] + be[t] + w[t]. (6)
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The output of the system contains a component of e[t], which
is known only to the actuator. Hence, the actuator can check if
the measurement reported by the sensor has some correlation
with its private excitation. In what follows, we prove rigor-
ously that by subjecting the reported measurements to certain
tests which essentially check for appropriate correlations with
the private excitation, one can constrain the distortion that
the sensor can introduce to have zero power on average, if it
hopes to remain undetected.
We now design tests that the actuator can perform to check

if the sensor is malicious or not. We require the tests to satisfy
the following properties:
1) An honest actuator passes the tests almost surely.
2) The tests are implementable by the actuator, based only

on the information available to the actuator, viz., e[t]
and z[t], and not on information such as y[t] which
may not be available to the actuator.

One can verify that the following two tests satisfy the above
constraints. They are specified as asymptotic properties to
be checked, but can be converted into finite time tests using
standard statistical analysis, as described in [23]:
1) Test 1: Check if

lim
T!1

1

T

TX

k=1

(z[k]�az[k�1]�bug[k�1])e[k�1] = b�2
e .

(7)
2) Test 2: Check if

lim
T!1

1

T

TX

k=1

(z[k]� az[k � 1]

� bug[k � 1]� be[k � 1])2 = �2
w.
(8)

The following theorem proves that subjecting the reported
measurements to the above tests ensures that the malicious
sensor cannot introduce any distortion of non-zero power
without being exposed.

Theorem 1. Define v[t] := z[t] � az[t � 1] � bug[t � 1] �
be[t � 1] � w[t � 1], so that v ⌘ 0 for an honest sensor. If
the sensor satisfies the above tests (7) and (8), then

lim
T!1

1

T

TX

k=1

v2[k] = 0. (9)

Proof. Since {z} satisfies (7), we have,

lim
T!1

1

T

TX

k=1

(v[k] + be[k � 1] + w[k � 1])e[k � 1] = b�2
e .

(10)

Since e[k] and w[k] are uncorrelated, the above becomes

lim
T!1

1

T

TX

k=1

e[k � 1]v[k] = 0. (11)

Since the reported sequence also satisfies (8), we have

lim
T!1

1

T

TX

k=1

v2[k] + 2v[k]w[k � 1] + w2[k � 1] = �2
w.

Since limT!1
1
T

PT
k=1 w

2[k � 1] = E{w2[k � 1]} = �2
w,

we have

lim
T!1

1

T

TX

k=1

v2[k] + lim
T!1

1

T

TX

k=1

2v[k]w[k � 1] = 0. (12)

Equation (11) implies that the sequence {v} added by the
sensor must be empirically uncorrelated with the actuator’s
private noise sequence {e}. In what follows, we show that if
v[k] is empirically uncorrelated with e[k�1], then it must also
be uncorrelated with w[k � 1]. Intuitively, since the sensor
can observe only the sum be[k � 1] +w[k � 1] at each time
k, and cannot perfectly separate e[k � 1] from w[k � 1], it
may be conjectured that if v[k] is uncorrelated with e[k� 1]
it must also be uncorrelated with w[k� 1]. However, it turns
out that this entails a more complex proof since the roles of e
and w are not symmetric because the former is known to the
actuator but the latter is not. The rest of the proof is devoted
to establishing this rigorously since the claim follows readily
from it, by substituting this in (12).
Define the ��algebra Sk := �(yk+1, zk+1, ek�1), and

bw[k] := E[w[k]
��Sk]. Since the sequence of observations is

i.i.d. Gaussian, the conditional mean estimate of w[k] based
on observing be[k] + w[k] is [8]

bw[k] = �2
w

b2�2
e + �2

w

(be[k] + w[k]) = �(be[k] + w[k]),

where � := �2
w

b2�2
e+�2

w
< 1. This can be written as

bw[k] = ↵e[k] + �w[k], (13)

where ↵ := b�. Let ew[k] := w[k]� bw[k]. Then, ew[k�1] is a
martingale difference sequence with respect to the filtration
{Sk}. This is because ew[k � 1] 2 Sk and E[ ew[k]

��Sk] = 0.
Also, we have v[k] = z[t] � az[t � 1] � (y[t] � ay[t � 1]).
Therefore, v[k] 2 Sk�1. The Martingale Stability Theorem
(MST) [24] applies, and we have

TX

k=1

v[k] ew[k � 1] = o(
TX

k=1

v2[k]) +O(1). (14)

Hence,

TX

k=1

v[k]w[k � 1] =
TX

k=1

v[k]( bw[k � 1] + ew[k � 1])

=
TX

k=1

v[k] bw[k � 1] + o(
TX

k=1

v2[k]) +O(1).

Substituting for the estimate from (13) in the above equation
yields,

TX

k=1

v[k]w[k � 1] = ↵

TX

k=1

v[k]e[k � 1] + �

TX

k=1

v[k]w[k � 1]

+o(
TX

k=1

v2[k]) +O(1).
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Simplifying,
TX

k=1

v[k]w[k � 1] =
↵

1� �

TX

k=1

v[k]e[k � 1]

+o(
TX

k=1

v2[k]) +O(1).

From (11), we have
PT

k=1 v[t]e[t�1] = o(T ). It follows that
TX

k=1

v[k]w[k � 1] = o(
TX

k=1

v2[k]) + o(T ) +O(1). (15)

So,
TX

k=1

v2[k] +
TX

k=1

2v[k]w[k � 1] = (1 + o(1))(
TX

k=1

v2[k])

+O(1)

Dividing the above equation by T , taking the limit as T !
1, and invoking (12) completes the proof.

Remark 1: The only uncertainties in the system are the
initial state of the system y[0] and the noise realization
{w[1], w[2], w[3], · · · }. Since the actuator can compute z[t+
1]�az[t]�bgt(zt)�be[t], which will be equal to the process
noise if the sensor reports measurements truthfully, the sensor
reporting the sequence {z} is equivalent to it reporting the
sequence of process noise. From the definition of v[t], we
have

z[t+ 1]� az[t]� bgt(z
t)� be[t] = w[t] + v[t+ 1].

Note that the above can be computed by the actuator. i.e.,
it can compute the sequence {w + v}. Hence, the above
theorem essentially states that a malicious sensor cannot
distort the noise realization {w[1], w[2], w[3], · · · } beyond
adding a zero-power sequence to it. As shown in [23], this
leads to preservation of stability and performance for stable
systems:

Theorem 2. Suppose |a| < 1, i.e., the system is stable.
(i) Define the distortion d[t] := z[t]� y[t]. Then,

lim
T!1

1

T

T�1X

k=0

d2[k] = 0.

(ii) If the malicious sensor is to remain undetected, the
mean-square performance of y[t] is the same as the
reported mean-square performance z[t] that the actuator
believes it is:

lim
T!1

1

T

T�1X

k=0

y2[k] = lim
T!1

1

T

T�1X

k=0

z2[k].

(iii) Suppose the control law is u(t) = fy(t) with |a +
bf | < 1. The malicious sensor cannot compromise the
performance of the system if it is to remain undetected,
i.e., the mean-square performance of the system is

lim
T!1

1

T

T�1X

k=0

y2[k] =
�2
w + b2�2

e

1� |a+ bf |2 .

V. DYNAMIC WATERMARKING: GENERAL ARMAX
SYSTEMS

In this section, we extend the results to the more general
class of ARMAX systems with colored noise, which are
of considerable interest in process control [25]. In the case
of an ARMAX system, the actuator’s private excitation is
generated in such a way that its output spectrum matches
that of the colored process noise. This constitutes a form of
an Internal Model Principle [26] for dynamic watermarking,
and is a phenomenon that does not emerge in the analysis of
first-order systems. Moreover, the watermarking mechanism
and the results for first-order systems can be recovered as a
special case of those for ARMAX systems.
Consider a system governed by (1). The system can

equivalently be expressed in the z�domain as

A(z�1)y[t] = B(z�1)u[t] + C(z�1)w[t], (16)

where A(z�1) := 1 +
Pm

i=1 aiz
�i, B(z�1) :=

Pn
i=1 biz

�i,
and C(z�1) := 1 +

Pp
i=1 ciz

�i. We assume both B(z�1)
and C(z�1) to be strictly minimum phase.
For ARMAX systems as described above, we do not

directly superimpose the private excitation {e} on the
control law-specified input. Rather, we filter it through
B�1(z�1)C(z�1) before applying it to the input:

u[t] = ug[t] +B�1(z)C(z)e[t]. (17)

This yields

y[t] = �
mX

i=1

aiy[t� i] +
nX

i=1

biu
g[t� i]

+n[t] +
pX

i=1

cin[t� i], (18)

where n[t] := e[t] + w[t].
We now develop tests that the actuator should perform to

check for the maliciousness of the sensor. The basic idea
behind the tests is to check if the prediction-error has the
right statistics. The actuator constructs the prediction-error
{ey[k]} as follows.

ey[k] = 0 8k 2 {�1,�2, ...,�p}, (19)

byk|k�1 =
mX

i=1

aiz[k � i] +
nX

i=1

biu
g[k � i]

+
pX

i=1

ci[z[k � i]� byk�i|k�i�1], (20)

ey[k] = z[k]� byk|k�1. (21)

For an honest sensor, i.e., if z[t] ⌘ y[t], the prediction
error sequence ey[t] satisfies C(z�1)(ey[t]� w[t]� e[t]) ⌘ 0,
and since C(z�1) is strictly minimum phase, it follows that
limt!1(ey[t] � w[t] � e[t]) = 0. Thus for such an honest
sensor it will turn out that 1

T

PT
t=1 ey2[t] = �2

w + �2
e . Based

on this, the actuator performs the following tests. Note that
they satisfy the properties that an honest sensor passes the
tests, and that they are implementable by the actuator.
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1) Test 1: Check if

lim
T!1

1

T

TX

k=1

ey2[k] = �2
e + �2

w. (22)

2) Test 2: Check if

lim
T!1

1

T

TX

k=1

(ey[k]� e[k])2 = �2
w. (23)

The following theorem proves that the above tests suffice
to constrain a malicious sensor to adding a distortion that has
only zero power.

Theorem 3. Define v[t] := z[t] +
Pm

i=1 aiz[t � i] �Pn
i=1 biu

g[t�i]�n[t]�
Pp

i=1 cin[t�i]. If the sensor satisfies
(22) and (23), then,

lim
T!1

1

T

TX

k=1

v2[k] = 0. (24)

Proof. For ease of exposition, we suppose that the initial
conditions n[�p], n[�p + 1], ..., n[�1] are known and are
equal to zero. The proof carries over even if this is not the
case.
The prediction can be rewritten as

Cbyk|k�1 = (1�A)z[k] +Bug[k] + (C � 1)z[k]. (25)

Rearranging, we get

Az[k] = Bug[k] + Cey[k]. (26)

Substituting for A(z�1)z[k] � B(z�1)ug[k] = v[k] +
C(z�1)n[k], we obtain

v[k] + C(z�1)n[k] = C(z�1)ey[k].

Defining v̄[k] := C�1(z�1)v[k], we get

ey[k] = n[k] + v̄[k], (27)

where v̄[k] is the result of filtering the distortion sequence
{v[k]} with C�1(z�1). Now, since the reported sequence of
measurements satisfies (22), substituting (27) in (22) gives

lim
T!1

1

T

TX

k=1

n2[k] + v̄2[k] + 2n[k]v̄[k] = �2
e + �2

w. (28)

However, since limT!1
1
T

PT
k=1 n

2[k] =
limT!1

1
T

PT
k=1 w

2[k] + e2[k] + 2w[k]e[k] = �2
e + �2

w,
where the last equality follows from the fact that {e} and
{w} are uncorrelated, the above equation reduces to

lim
T!1

1

T

TX

k=1

v̄2[k] + 2n[k]v̄[k] = 0. (29)

Also, since the reported sequence of measurements satisfy
(23), we have

lim
T!1

1

T

TX

k=1

(v̄[k] + w[k])2 = �2
w.

Using limT!1
1
T

PT
k=1 w

2[k] = �2
w, the above simplifies to

lim
T!1

1

T

TX

k=1

v̄2[k] + 2v̄[k]w[k] = 0. (30)

Substituting above into (29) and noting that n[t] = e[t]+w[t],
one arrives at

lim
T!1

1

T

TX

k=1

v̄[k]e[k] = 0. (31)

Thus, the filtered distortion {v̄} behaves analogously to
the way the distortion sequence {v} did for the first-order
system (compare (30) with (12) and (31) with (11)). Hence,
following the same sequence of arguments of the proof for
Theorem 1, one arrives at

lim
T!1

1

T

TX

k=1

v̄2[k] = 0. (32)

Finally, since v[t] = [C(z�1)]v̄[t], it follows that
limT!1

1
T

PT
k=1 v

2[k] = 0.

VI. STATISTICAL TESTS

While the tests presented in the previous sections are of an
asymptotic nature, as discussed in [23], they can be converted
in a straightforward manner into detection thresholds on finite
time behavior and thereby implemented to detect malicious
activities in finite duration with the usual trade-off between
detection and false alarm rates. One such test suitable for
the problem at hand is based on the sequential probability
ratio test (SPRT) [27], and is described in detail in [23].
Test statistics corresponding to (22) and (23) are formed
by computing empirical variances using a moving-average
window of length l. Even though the empirical variance
can be computed using all past measurements, a moving-
average filter is desirable since the adversary may distort
measurements in a bursty fashion. The test statistics thus
computed can be compared against predetermined thresholds
to identify a malicious sensor.

VII. SIMULATION RESULTS

We now illustrate the above methodology on a second-
order ARMAX system with colored noise. Consider a system
of the form (1), with the following parameters: a0 = 0.7,
a1 = 0.2, b0 = c0 = 1, b1 = 0.5, c1 = 0.3, and �2

w = 1. The
actuator injects private excitation of variance �2

e = 1.
In our simulation, the actuator implements tests (23) and

(22) over a finite duration by computing the sample variances
over a finite window of 500 most recent samples.
The system is assumed to operate under normal conditions

up to time epoch 4500, at which time the adversary initiates
the attack. The adversary implements the attack described by
(5) in Section-IV. Note that this attack can never be detected
by the actuator in the absence of dynamic watermarking,
since the actual sequence reported by the sensor could well
have been the result of the process noise affecting the system.
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Fig. 2. Variance of Prediction-Error.

Fig. 2 plots the results of the actuator’s Test 2 in the
presence of dynamic watermarking. Until the time when
the adversary initiates the attack, the sample variance (23)
remains at 1, which is the nominal variance of the prediction
error (since �2

w = 1). However, once the attack is initiated,
the Test-2 statistic increases steadily. Desirable trade-off
between detection and false alarm rates can be obtained by
setting appropriate detection thresholds.

VIII. CONCLUSION

In this paper, we have developed provably secure mech-
anisms for active defense of networked cyber-physical sys-
tems. A two-layer approach for securing networked CPS is
presented, viz., securing the cyber layer and securing the
physical layer. For the security of the physical layer, the
method of dynamic watermarking has been presented for
ARMAX systems which are of interest in process control.
By employing dynamic watermarking, malicious nodes in the
system that wish to avoid detection are confined to adding
distortion that can only have zero power to the process noise.
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[25] K. J. Åstrom, Introduction to Stochastic Control. New York: Aca-
demic Press, 1970, 1970.

[26] B. A. Francis and W. M. Wonham, “The Internal Model Principle of
Control Theory,” Automatica, vol. 12, no. 5, pp. 457–465, 1976.

[27] A. Wald, “Sequential Tests of Statistical Hypotheses,” The Annals of
Mathematical Statistics, vol. 16, no. 2, pp. 117–186, 1945.

289


