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Abstract—This paper presents a new methodology to de-
tect low-frequency oscillations in power grids by use of time-
synchronized data from phasor measurement units (PMUs).
Principal component analysis (PCA) is first applied to the massive
PMU data to extract the low-dimensional features, i.e., the
principal components (PCs). Then, based on persistent homology,
a cyclicity response function is proposed to detect low-frequency
oscillations through the use of PCs. Whenever the cyclicity
response exceeds a numerically robust threshold, a low-frequency
oscillation can be detected instantly. Such swift detection can
then be followed by modal analysis tools for more detailed
information about the oscillation. Numerical examples using real
data illustrate the effectiveness of the proposed methodology for
quick detection of oscillations during operations.

Index Terms—Persistent homology, phasor measurement unit,
principal component analysis, low-frequency oscillation, detec-
tion.

I. INTRODUCTION

ONE of the prime examples of improving grid monitoring
via synchrophasors is the monitoring and control of low-

frequency oscillations. Since the early 1960s, low-frequency
oscillations have led to many system-wide failures, such as
the 1996 Western Electricity Coordinating Council (WECC)
Blackout induced by a 0.25 Hz oscillation [1]. Traditional
approaches to detecting low-frequency oscillations require a
detailed dynamical representation of the system to conduct
modal analysis [2]–[5]. However, the increasing penetration
of distributed and variable resources poses difficulties in
obtaining an accurate dynamic model of the system.
Alternatively, one could obtain detailed information about

such oscillations through monitoring and analysis of online
measurement data such as from synchrophasors. Synchropha-
sors have shown great potential for improving wide-area
monitoring, protection and control (WAMPAC) [6]–[8] since
the 1980s: The time synchronization by the global positioning
system (GPS) enables the WAMPAC functionality, and the 30
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Hz (and higher) sampling rate further provides the potential for
analyzing low-frequency oscillations [9]–[11]. Fourier spectral
analysis has been applied to synchrophasor data to estimate the
eigenvalues for monitoring inter-area oscillation [12]. In [13],
an adaptive stochastic subspace identification algorithm is
proposed to estimate the mode and damping of low-frequency
oscillations via fast computation.
In addition to theoretical work, there are many PMU

applications for online oscillation detection: The PSGuard
wide-area monitoring and control system [14] is capable
of monitoring phase angle stability, voltage stability, and
oscillation, etc. The Mode Meter has been tested with field
measurement data [15] in WECC, and has been utilized as a
supplementary online oscillation monitoring tool. California
Independent System Operator (CAISO) has already started
since 2008 to utilize synchrophasor data in the control room
and to use a realtime dynamics monitoring system (RTDMS)
for WECC wide-area visualization and monitoring [16].
Although much progress has been made in data-driven mon-

itoring and control of low frequency oscillations, one of the big
remaining challenges in today’s practice is the early detection
of the oscillation starting point. Most existing approaches
iteratively perform PMU-data-driven modal analysis with a
moving window. However, such a scheme may increase not
only the computational burden by use of the ambient data, but
also the false alarm rate.
This paper directly addresses the issue of detecting the

starting point of an oscillation. The proposed method is purely
data-driven. First, principal component analysis (PCA) is ap-
plied to extract the low-dimensional features, PCs, from the
high-volume raw measurements. Then, a persistent-homology-
based cyclicity response function is proposed by using the
PCs for oscillation detection. A pre-defined threshold can be
determined through statistical offline training with historical
eventful PMU data. Cyclicity response can detect the transient
oscillatory behavior, and a value exceeding the threshold indi-
cates the occurrence of an oscillation. The detected occurrence
time can serve as a triggering signal for some existing modal
analysis tools.
This paper is organized as follows. Section II introduces the

PCA-based dimensionality reduction of synchrophasor data.
The persistent-homology-based cyclicity response is presented
in Section III for oscillation detection. The implementation
of the proposed methodology is provided in Section IV. In
Section V, numerical examples utilizing real PMU data are
presented to demonstrate the effectiveness of the proposed
methodology. Conclusions and possible future research direc-
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tions are summarized in Section VI.

II. DIMENSIONALITY REDUCTION OF PMU DATA
With the increasing deployment of PMUs with high sam-

pling rate in the power grid, the resulting large amount of PMU
data raises new challenges to online applications in terms of
the processing and computational burden.
In the proposed detection methodology, PCA is applied

to the raw PMU measurements to reduce the dimensionality.
PCA, as a linear dimensionality reduction technique, is attrac-
tive [17], [18] for its fast computational feature. Mathemati-
cally, PCA aims at finding a low-dimensional embedding from
a high-dimensional space by preserving the most variance.
A measurement matrix is defined as Ye :=

[y(1), . . . , y(N)] ∈ Rn×N , which includes a total number
of N measurements. Each measurement has n samples
constituting a time history, i.e., y(i) := [y(i)1 , . . . , y

(i)
n ]T ,

i = 1, . . . , N .
One can apply PCA on Ye to extract the PCs as PCi =

(Ye(t)− µ)ui, where PCi is the ith PC, and the ui’s, i =
1, . . . , N are the orthonormal eigenvectors for the covariance
matrix of Ye corresponding to the nonnegative eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λN . Let µ = E [Ye].

III. LOW-FREQUENCY OSCILLATION DETECTION BASED
ON CYCLICITY RESPONSE

In this section, we describe cyclicity response, which is
used to detect the oscillatory behavior of the power grid. The
oscillation detection procedure takes the PCs as inputs, and
calculates the corresponding cyclicity responses as outputs.
Cyclicity response is based on:
1. Takens’ delay embedding theorem [19], which implies

that a mapping g : X → R2 from the phase space [20] of an
oscillatory system to R2 contains a cyclic structure, and
2. Persistent homology [21], which quantifies the cyclic

structure of a point cloud.
In the context of the application considered here, X repre-

sents the phase space of the power grid, and the mapping g
represents the projection of PMU measurements onto the two
significant principal components, which yields a scatter plot.
The premise here is that when the power grid shifts into an
oscillatory condition, the projection of the PMU measurements
will start to behave cyclically (either circularly or elliptically),
which can be detected using persistent homology computation
as described in Section III-B.

A. Delay Embedding Theorem
Consider a discrete-time dynamical system f : X → X ,

which has a strange attractor [22] . Then for sufficiently large
k, and for any generic function g : X → Rk, the delay
embedding theorem states that the map

G(x) =
(

g(x), g (φ(x)) , g
(

φ2(x)
)

, . . . , g
(

φk−1(x)
))

(1)

is an embedding. The dimension k is determined by the
structure of the attractor. For an attractor with dimension d,
k > 2d is usually sufficient. Readers may refer to [19], [23]
for a formal treatment of the delay embedding theorem.
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Fig. 1. Bus frequency profile and scatter plot during a ringdown oscillation.

We model the power grid as a discrete-time dynamical sys-
tem f , where the time points are determined by the sampling
rate of the PMUs. When the power grid is in an oscillatory
state, the phase of the system exhibits cyclic behavior, and by
the delay embedding theorem, so does the mapping g. Fig.
1 illustrates this phenomenon in the power grid. Fig. 1(b)
shows the scatter plot when the power grid is not undergoing
oscillations, while Fig. 1(c) shows the case of an oscillation.
PC1 and PC2 are the first two PCs from PCA, and the
reason for using only the first two PCs is demonstrated in
[17]. The task then is to distinguish between these two cases
automatically, which is what we aim to accomplish using
persistent homology computation.

B. Persistent Homology and Cyclicity Response
We now provide a brief introduction to persistent homology.

The purpose here is to provide the reader an intuition for
what the tool computes. A formal introduction to the theory is
beyond the scope of this article, and we refer the reader to [21]
for a thorough exposition. Persistent homology may be viewed
as a generalization of traditional hierarchical clustering to
other topological features. We first briefly describe hierarchical
clustering, followed by how this is paralleled by persistent
homology to cyclic structures.
1) Hierarchical Clustering: Given a point cloud, hierarchi-

cal clustering is a traditional tool for obtaining a multi-scale
summary of how the points are clustered. Fig. 2 illustrates
single linkage clustering where the output, either a “dendro-
gram” or a “barcode” as described below, provides a multi-
scale summary of the clustering. The algorithm is as follows:
for each value ϵ, draw an edge between any two points (vi, vj),
where the distance between the two points d (vi, vj) ≤ ϵ.
The vertices corresponding to connected components in the
resulting graph are the clusters. One can then follow how these
connected components merge as we increase the value of ϵ.
This pattern in which the connected components merge can
be described by either a dendrogram (as in Fig. 2(b)) or by
a barcode (as in Fig. 2(c)). Each vertical line segment along
the x-axis in Fig. 2(b) corresponds to a connected component,
and these segments are joined when the connected components
merge as ϵ increases along the y-axis. Equivalently, we may
view the points as connected components “born” at ϵ = 0, and
whenever two components merge together, we may say one
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of the connected components has “died” at that ϵ value. This
birth-death pattern is represented in a “barcode” in Fig. 2(c),
where each bar represents the birth and death of a connected
component, and the birth and death points can be read from
the x-axis. For example, for the point cloud in Fig. 2(a), it is
apparent from the output that there are two clusters.
2) Persistent Homology: We now describe how to general-

ize the above hierarchical clustering to cyclic structures. For
this purpose, we use the example of the point cloud shown in
Fig. 3(a). In the case of clustering described above, we have
followed the “birth” and “death” of the connected components
in the graph. Here, we instead follow the birth and death of
cycles.
As in the case of clustering, we increase the value of ϵ,

and for each ϵ value we add all the edges in the Delaunay
triangulation [24] whose lengths are less than or equal to ϵ.
At ϵ1, we see the birth of two cycles shown in red lines

in Fig. 3(b): c1 and c2. We will consider a cycle “dead” if it
gets “filled in” by 3-sided triangles, i.e., when it bounds a set
of 3-sided triangles. We see that c1 dies at ϵ2, and c2 dies at
ϵ3, resulting in the barcode shown in Fig. 3(e). It is straight-
forward to infer from the barcode that the point cloud exhibits
two cyclic structures, one of which is larger than the other.
Given a point cloud, the cyclicity response is defined as the

length of the largest bar in the barcode. As evidenced in the
above example, the longest bar represents the biggest cyclic
structure in the point cloud, and we see a cyclic structure
when the system is undergoing oscillations. For the sake of
concreteness, we now provide some algebraic background
which gives rise to these bars.
For a triangulation Kϵ, as in Figure 3, one can define an

abstract vector space H1(Kϵ), called the first homology space,
where the basis elements are equivalence classes of cycles in
Kϵ. All cycles which bound triangles are considered to be
equivalent to 0. For example, the equivalence class of [c1] ̸= 0
in Kϵ1 , whereas [c1] = 0 in Kϵ2 . Also, since ϵ2 is the smallest
value for which [c1] = 0, we say that [c1] persists in the
interval [ϵ1, ϵ2), and this is represented as a bar from ϵ1 to ϵ2 in
the output. More generally, the homology which persists in the
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Fig. 2. Demonstration of hierarchical clustering.
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Fig. 3. Demonstration of the computation of persistent homology.

interval [a, b) is given by Img
(

H1(Ka)
i∗−→ H1(Kb)

)

, where
i∗ is the map induced by the inclusion i : Ka → Kb. In other
words, the number of bars in any interval [a, b) in the barcode
is equal to the dimension of Img

(

H1(Ka)
i∗−→ H1(Kb)

)

.
From a data analysis perspective, each bar of interval [a, b)

in the barcode corresponds to a cyclic structure which is
present in the triangulations corresponding to thresholds in
that interval. The length of the longest bar corresponds to the
largest cyclic structure present in the point cloud, which is the
basis of cyclicity response.
For further technical details behind the computation of the

barcode, we refer readers to [21].

IV. IMPLEMENTATION OF ALGORITHM
In this section, we propose an algorithm to detect low-

frequency oscillations in power grids. The flowchart is pre-
sented in Fig. 4. We will not address the issue of data quality.
The algorithm can be described as follows:
Offline Learning
(1) Use historically eventful PMU data, including both

oscillations and other non-oscillatory events, to form Yoff
e .

(2) For each collected event, perform PCA on Yoff
e to

extract the PCs.
(3) Calculate the cyclicity response function using the

current PCs.
(4) Based on statistical analysis on all historical events,

calculate the detection threshold.
Online Monitoring
1) Form Ye with real-time PMU measurements, and per-

form PCA on Ye to extract the PCs.
2) Calculate the cyclicity response using the current PCs.
3) If the resulting cyclicity response has a value exceeding

the threshold at time t, then an oscillation is detected. (The
time t can serve as the triggering time point of existing modal
analysis tools, such as [9], [15]). Otherwise, return to Step 1,
update Ye and repeat.

V. NUMERICAL EXAMPLES
This section illustrates the use of the proposed methodology

in detecting oscillations from other types of events. The detec-
tion accuracy is discussed first, with the detection capability
shown next using real PMU data [25].

Fig. 4. Implementation of the algorithm.
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A. Oscillation Detection Accuracy
Real eventful PMU data from the Western and Texas Inter-

connection are processed, and 30 events are selected, including
oscillation, unit tripping, switching events, etc. A threshold of
2 is determined based on the statistical analysis of these events.
With such a threshold, the apparent error of oscillation

detection is 13.33%, including a mis-detection rate of 10%,
and a false-alarm rate of 3%.

B. Cyclicity Response for Oscillation Detection
Fig. 5 demonstrates the voltage magnitude profile and

corresponding cyclicity response for a sustained oscillation.
From Fig. 5(b), the cyclicity response is seen to be able to
detect the sustained oscillation around the same time as it
occurs. So we see that with the cyclicity response one does
not need lengthy buffering of data for oscillation detection.
Fig. 6 illustrates the voltage magnitude profile (Fig. 6(a.1))

and corresponding cyclicity responses (Fig. 6(b.1)) for several
ringdown oscillations. The second oscillation is highlighted in
Figs. 6(a.2) and 6(b.2). As can be observed, with the threshold
of 2, the cyclicity response is able to detect the starting time
of the ringdown oscillation around 0.17s earlier than if only
using the voltage magnitude profile in Fig. 6(a.2).
Figs. 7 and 8 demonstrate two non-oscillatory events: unit

tripping and switching events. From the corresponding cyclic-
ity responses in Figs. 7(b) and 8(b), it can be observed that
during the two non-oscillatory events, the cyclicity responses
are below the threshold. Therefore, no oscillation is detected.
Through Figs. 5-8, the capability to detect low-frequency

oscillations by use of the proposed algorithm is demonstrated.

VI. CONCLUDING REMARKS

We have proposed a new data-driven methodology to detec-
tion of low-frequency oscillations. PCA is first applied on raw
PMU measurements to extract PCs. Then, oscillation detection
is achieved by use of the persistent-homology-based cyclicity
response on the PCs. Tests based on real PMU data suggest
the effectiveness of the proposed algorithm for quick detection
of such oscillations.
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Fig. 5. Detection of a sustained oscillation.

Our future work includes testing the robustness of the
proposed algorithm by use of more real-world examples, and
using the results for training. Considering the availability of
more eventful data in the future, we expect that the detec-
tion threshold can be subsequently refined to achieve higher
accuracy of oscillation detection.
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Fig. 6. Detection of ringdown oscillations.
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Fig. 7. Profile and cyclicity response of a unit tripping event.
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