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Design of the GraphBLAS API for C
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Abstract—The purpose of the GraphBLAS Forum is to stan-
dardize linear-algebraic building blocks for graph computations.
An important part of this standardization effort is to translate
the mathematical specification into an actual Application Pro-
gramming Interface (API) that (i) is faithful to the mathematics
and (ii) enables efficient implementations on modern hardware.
This paper documents the approach taken by the C language
specification subcommittee and presents the main concepts,
constructs, and objects within the GraphBLAS API. Use of
the API is illustrated by showing an implementation of the
betweenness centrality algorithm.

I. INTRODUCTION

Graphs are a fundamental abstraction in computer science.
They represent relationships among objects in a finite collec-
tion. The objects, or vertices, in a graph are connected by
edges, the relationships. This leads to the common view of a
graph as two sets: a set of vertices and a set of edges.

Graphs can also be represented as matrices. For example,
the adjacency matrix for a graph is constructed by labeling
rows and columns of the matrix by the vertices of the graph.
The elements of the matrix denote the edges in the graph with
matrix element A;; defining the edge from vertex 7 to vertex j.
Most vertices in a large graph, such as those arising in social
networks, are not connected to each other, so the matrices used
for graphs tend to be very sparse.

Many graph algorithms have been defined in the “language
of linear algebra” [1]. Mapping sparse linear algebra algo-
rithms onto modern architectures is well understood, and sev-
eral groups have built high performance graph libraries based
on sparse linear algebra [2], [3], [4], [5], [6]. A group of graph
algorithm researchers formed the GraphBLAS Forum [7]
to standardize the low-level building blocks used in these
graph algorithms. The Forum completed the mathematical
formalizations of GraphBLAS [8] and has undertaken the task
to define the binding of the C programming language onto
the mathematical definition of the GraphBLAS—the so-called
GraphBLAS C APL

This work has been undertaken by a subcommittee of the
GraphBLAS Forum, comprised of the authors of this paper.
The challenge in formulating the GraphBLAS C API was
to balance conflicting objectives: (i) simplicity and ease of
use, (ii) enabling high-performance implementations, and (iii)
adherence to the underlying mathematics. The C programming
language has been chosen as the first target by the Forum due
to its relatively smaller feature set and its better interoperability
with other high-performance languages such as Fortran and

C++. Since this is the first specification of GraphBLAS in
any language, our burden has largely been to define the
programming concepts for the first time. We believe our design
will largely carry over to future specs of the GraphBLAS in
other languages.

This paper summarizes the GraphBLAS C API and the
motivation behind our decisions. We begin by summarizing
the mathematical ideas behind the GraphBLAS and how those
ideas influenced our notation. We then explain data structures,
algebraic objects, and objects that control the semantics of the
functions in the GraphBLAS C API. We then define the core
operations in the GraphBLAS C API and the signatures for
a subset of the functions within the API. We then present a
betweenness centrality algorithm that uses the GraphBLAS C
APIL. We close with results and concluding remarks.

II. GRAPHBLAS MATH

Consider a graph represented as an n-by-n adjacency matrix
A, where A;; is the weight of the edge from vertex 7 to vertex
7, and a second k-by-n matrix B representing a subset (of size
k) of the vertices in the graph, such that Bj; is 1 if the jth
element of the subset is vertex ¢ (and all other elements of
B are 0). The traditional matrix product B x A over real
arithmetic of these two matrices returns the cost based on
the edge weights of reaching the set of vertices adjacent to
the vertices in B. This fundamental operation can be used to
construct a wide range of graph algorithms.

We extend the range of graph operations by keeping the
basic pattern of a matrix-matrix multiplication, but varying the
operators and the interpretation of the values in the matrices
(the domain). By carefully choosing operators and the domain,
we control the relation between matrix operations familiar in
linear algebra and graph operations, thereby enabling compos-
able graph algorithms.

This generalized matrix multiplication is performed on an
algebraic semiring. A semiring is an algebraic structure over
a domain D with two binary operators @ and ®. The addition
operator, €, is a commutative monoid with an identity element
0 (not necessarily the number 0) while the multiplication
operator, ®, is a commutative monoid with an identity element
1 (not necessarily the number 1). The additive identity is
also an annihilator for the multiplication operator (®), and
multiplication distributes over addition. The most common
semirings used in the graph algorithms community are shown
in Table L.



TABLE I: Common semirings used with graph algorithms.

Semiring operators domain 0 1
52 ®

Standard arithmetic + X R 0 1

max-plus algebras max + {—©cUR} —oco 0

min-max algebras min  max ooUR>g o0 0

Galois fields (e.g., GF2)  xor and  {0,1} ~ 0 1

Power set algebras U N P(z) %] U

It is often convenient to change the semiring applied to
a matrix. This means we must represent the matrix and the
semiring separately, and the two come together only when an
operation is performed. Mathematically, the ability to change
semirings when moving from one GraphBLAS operation to
the next impacts the meaning of the implied zero in a sparse
representation of the matrix. This element in real arithmetic
is the number zero (0), which is the identity of the addition
operator and the annihilator of the multiplication operator.
As the semiring changes, this implied zero changes to the
identity of the addition operator and the annihilator of the
multiplication operator for the new semiring. Nothing changes
in the stored matrix, but the implied values within the sparse
matrix change with respect to a particular operation.

This feature has significant impact on the definitions of
GraphBLAS operations. Consider matrix multiplication over
the domain S with semiring operators @ and ®:

C=A®.0B = AB.

Using index notation familiar in linear algebra

l
C(i,j) = P Ali, k) @ B(k, j)
k=1

for matrices with dimensions

A:Sle B :Slxn C :Smxn

The summation notation only works, however, if we redefine
the implied zero of the sparse matrices as we change the
semiring (to the corresponding additive identity). Depending
on the domains associated with the matrix elements and
the operations, this can lead to awkward definitions of the
operations involving the implied zeros. A cleaner approach
based on set notation avoids this problem. For example, we
can define the previous matrix multiplication as

C(i,j) = ) (A, k) @ B(, j)),

keind(A(i,:))nind(B(:,))

where ind(A(i,:)) is the set of the column indices of the
elements that are stored in row ¢ of matrix A, and ind(B(:, 5))
is the set of the row indices of the elements that are stored in
column j of matrix B.

In other words, the binary operation ® is applied to the
elements in the intersection of the two sets ind(A(7,:)) and
ind(B(:, j)), and the results of this operation are accumulated
using the @ operator. These notations are equivalent. By
defining pairwise operations over set intersections, however,

we avoid needing to define how the semiring’s additive identity
interacts with the matrix’s implied zeros.

In addition to matrix multiplication, the GraphBLAS math
specification defines a range of additional operations over
matrices and vectors. These are summarized in Table II.

TABLE II: A mathematical overview of the fundamental
GraphBLAS operations supported in this specification. A, B,
and C are GraphBLAS matrices; u, v, and w are GraphBLAS
vectors; ¢ and j are single indices; i and j are arrays of indices;
@ and ® are arbitrary element-wise operators; the element-
wise © operator is used for the optional accumulation with the
output GraphBLAS object where x ®= y implies x = x © y;
and F,() is a unary function. Although not shown here, the
input matrices A and B may be selected for transposition
prior to the operation, and masks can be used to control which
values are written to the output GraphBLAS object.

Operation name Mathematical description
mxm C 6= A®.®B
mxv w O= AD.QvV
vxm wl o= v . ® A
eWiseMult C 6= A®B

w O= u®v
eWiseAdd C 6= A®B

w O= udv
reduce (row) w 0= @;A())
apply C 0= Fyu(A)

w O= Fy(u)
transpose C o= AT
extract C o= A(,))

w O= u(i)
assign C(,j) o= A

w(i) 6= u

III. GRAPHBLAS OBJECTS

The GraphBLAS C API is built on objects exposed as
opaque data types. These objects include

o Collections: vectors and matrices.

o Algebraic objects: unary and binary operators, monoids,

and semirings.

o Control objects: descriptors and masks (both one- and

two-dimensional).

Functions that manipulate GraphBLAS objects are referred
to as methods. These methods define the interface to create or
destroy GraphBLAS objects, modify their contents, and copy
the contents of opaque objects into non-opaque objects (i.e.,
under direct observation and control of the programmer).

A. Collections

The state of a GraphBLAS application is largely captured
by collections of values, namely vectors and matrices. The
GraphBLAS collections are opaque objects accessible only
through the methods in the GraphBLAS C API. The use
of opaque data types gives the implementation the flexibility
needed to aggressively optimize for different systems.

A GraphBLAS vector v = (D, N, {(i,v;)}) is defined by

o The domain D, the data type for the vector elements.
e The size N > 0.



o A set of tuples (i,v;) where 0 <i < N and v; € D.

A particular value of 7 can appear only once in v. We define
nelem(v) = N and L(v) = {(¢,v;) }. The set L(v) is called
the content of vector v. For a vector v, v(7) is a reference to
v; if (i,v;) € L(v) and is undefined otherwise.

A GraphBLAS matrix A = (D,M,N,{(i,j,A;;)}) is
defined by

o The domain D, the data type for the matrix elements.

o The number of rows M > 0 and columns N > 0.

o A set of tuples L(A) = (4,4, A;;) where 0 < i < M,

0§j<N,andA,-j€D.

A particular pair of values 7,j can appear only once in A.
The set L(A) is called the confent of matrix A. We define
nrows(A) = M and ncols(A) = N. For a matrix A, A(i, j)
is a reference to A;; if (4,7, A;;) € L(A) and is undefined
otherwise. This points to an important and fundamental dif-
ference between the GraphBLAS and traditional sparse matrix
libraries for which elements that are not explicitly stored are
assumed to have the numerical value 0. As we will see in
Section III-B, by specifying these elements as undefined, we
avoid the complexity of interpreting implied values in the
sparse array definition differently as the semiring changes.

If A is a matrix and 0 < j < N, then

A7) = (D, M, {(i, Aij) = (4, 5, Aij) € L(A)})

is a vector called the j-th column of A. Correspondingly, if
A is a matrix and 0 < ¢ < M, then

A(i,:) = (D, N, {(J; Aij) : (i, Aij) € L(A)})

is a vector called the i-th row of A.

We define the transpose of a matrix in the traditional manner
where row and column indices are swapped. Consider a matrix
A = (D,M,N,{(3,7, Aij)}); the transpose of A is the matrix

AT = (D,N,M,{(j.i, Aij) : (i,5, Aij) € L(A)}).

B. Algebraic objects

The GraphBLAS differs from traditional sparse linear alge-
bra APIs in that the algebra associated with the data can be
varied to match the needs of an application. This provides
a great deal of flexibility in the domains for the elements
of GraphBLAS collections and the operators defined between
these elements.

We start with basic binary and unary operators. A Graph-
BLAS binary operator is defined as

Fy, = (D1,D5,D3,0®).
It has three domains—D+, D5, and Ds—and an operation
®: D1 x Dy — Ds.
A GraphBLAS unary operator is defined as
F, = (D1,Ds, f).

It has two domains, D; and Ds, and an operation f : Dy —
D,. GraphBLAS makes use of two fundamental algebraic
structures: monoids and semirings. A GraphBLAS monoid

M = <Dla®a0>

is defined by a single domain D;, an associative' operation

® : Dy x Dy — Dy, and an identity element 0 € D;. Let
F = (D1,D1,D;1,0) be a GraphBLAS binary operator, and
let O be the identity for ®. Then

M = (F,0) = (D1,®,0)

is the associated GraphBLAS monoid.
The algebraic structure at the core of the GraphBLAS is the
semiring. A GraphBLAS semiring

S = <D17D27D37®7®70>

is defined by three domains—2D;, D>, and Ds; an associative
additive operation

@ : D3 x D3 — Dg;
a multiplicative operation
®: D1 x Dy — Dg;

and an element 0 € D3, which is the identity for &. Let
F = (D1, D5, D3, ®) be a GraphBLAS binary operator, and
let M = (D3, ®,0) be a GraphBLAS monoid; then

S = <MaF> = <D17D27D37@a®70>

is a GraphBLAS semiring. Conversely, for a GraphBLAS
semiring S = (D1,D2,D3,®,®,0), there is always an
associated monoid M = (D3, ®,0) and an associated binary
operator F' = (D1, D3, D3, ®).

A UML diagram of the conceptual hierarchy of algebraic
objects in GraphBLAS algebra is shown in Figure 1. Note that
GraphBLAS semiring differs from the fundamental algebraic
semiring in that the GraphBLAS semiring (i) allows input from
different domains and can produce an output in a third domain
and (ii) does not require the definition of the multiplicative
identity.

C. Control objects

The GraphBLAS C API defines two opaque objects that
modify the semantics of GraphBLAS methods: masks and
descriptors.

A mask is either a one- or a two-dimensional construct.
One- and two-dimensional masks, described more formally
below, are similar to vectors and matrices, except that they
have structure (indices) but no values. Masks are used to
control which values from an operation are written to the
output object.

A one-dimensional mask m = (N, {i}) is defined by its
number of elements N > 0 and a set L(m) of indices {i}
where 0 < 7 < N. A particular value of 7 can appear at

't is expected that implementations will utilize IEEE-754 floating point
arithmetic, which is not strictly associative.



__o BinaryOp

operation(D1, D2) : D3

-

Monoid (conventional)

BinaryOp(D1, D1, D1)
identity_value: D1

Semiring (generalized)

times_operator(D1, D2, D3)
plus_monoid(D3, "0")

Fig. 1: Hierarchy of algebraic object classes in GraphBLAS.
GraphBLAS semirings consist of a conventional monoid with
one domain for the addition function, and a binary operator
with three domains for the multiplication function.

most once in m. We define nelem(m) = N. We define
the structure of a one-dimensional mask as the set L(m). A
two-dimensional mask M = (M, N,{(4,)}) is defined by its
number of rows M > 0, its number of columns N > 0, and
a set L(M) of tuples (7,5) where 0 < ¢ < M, 0<j < N.
A particular pair of values ¢, j can appear at most once in M.
The structure of a two-dimensional mask M is the set L(M).
We also define nrows(M) = M and ncols(M) = N.

Operations may be directed to use the structural comple-
ment of a mask. For a one-dimensional mask, m, this is
denoted as —m. For a two-dimensional mask, M, this is
denoted as =M. The structure of the complement of a one-
dimensional mask m is defined as

L(-m)={i:0<i<N,i¢L(m)},

which is the set of all possible indices that do not appear in m.
The structure of the complement of a two-dimensional mask
M is defined as

L(-M) = {(i,j) : 0<i < M,0<j <N, (i,j) ¢ L(M)},

the set of all possible indices that do not appear in M.

The second control object is the descriptor. Descriptors
modify the semantics of GraphBLAS methods by controlling
additional optional behaviors. In particular, descriptors specify
how other input arguments—vectors, matrices, and masks—
should be processed (modified) before the main operation of
a method is performed. It is also used to specify whether the
output argument should be cleared before assignment.

The descriptor is a lightweight object. It pairs a set of flags
representing the possible modifiers with each mask, vector,
or matrix argument of a GraphBLAS method. For example,
a descriptor may specify that a particular input matrix needs
to be transposed or that the structural complement of a mask
should be used.

For the descriptors, the arguments of a method are iden-
tified through the field names. The output parameter (typi-

cally the first parameter in a GraphBLAS method) is indi-
cated by the field name GrB_OUTP; the mask by the field
name GrB_MASK; and the input vectors and matrices by
GrB_INPO and GrB_INP1 (in the order they appear in the
signature of the method). A code example showing the creation
of a descriptor can be found on lines 14-18 of Figure 3.

IV. GRAPHBLAS EXECUTION MODEL

Algorithms are expressed as one or more sequences of
GraphBLAS method calls. The methods within a sequence
occur in the order they are encountered in the program
(the Program Order). A new sequence begins with the first
GraphBLAS method call and terminates with a call to the
GrB_wait() method. New sequences can begin following ter-
mination of a prior sequence, hence sequences within a single
thread are contiguous and do not overlap. A multithreaded
program may have a distinct sequence per thread, but those
sequences must not share objects unless the shared objects are
read-only.

Each method in a sequence and the inputs to the method
uniquely and unambiguously define the output GraphBLAS
objects. A GraphBLAS program executes in one of two modes:
blocking or nonblocking.

e blocking: Each method in a sequence completes the
GraphBLAS operation before proceeding to the next
statement in program order. Output GraphBLAS objects
are completely computed and stored in memory before
each method returns.

o nonblocking: Methods may return after input arguments
have been verified. Methods that manipulate only opaque
objects may defer their execution. Methods that input
non-scalar, non-opaque objects or output non-opaque
objects may not defer their execution. When a method
is deferred, values associated with the method’s output
GraphBLAS objects are not completely computed until
(1) the sequence is terminated or (2) a GraphBLAS
method that copies values from a GraphBLAS object
into a non-opaque object returns. At that point, the
GraphBLAS object is said to be complete (i.e., values
associated with that object are completely computed and
stored in memory).

In a mathematically well-defined sequence with input ob-
jects that are numerically well-conditioned, the results from
blocking and nonblocking modes should be identical except
for effects due to round-off errors associated with floating
point arithmetic.

Blocking mode forces an implementation to carry out pre-
cisely the GraphBLAS operations defined by the methods and
to store output objects to memory between method calls. This
mode is valuable for debugging or when an external tool needs
to evaluate the state of memory during a sequence.

Nonblocking mode gives an implementation flexibility to
choose an execution strategy that might reduce the time
required to execute the methods in a sequence. Methods may
be placed into a queue and deferred. They can be chained
together and fused (e.g., replacing a chained pair of matrix



products with a matrix triple product). Lazy evaluation, greedy
evaluation, and asynchronous execution are all valid as long
as the final result agrees with the mathematical definition
provided by the sequence of GraphBLAS method calls.

A conforming implementation of the GraphBLAS C API
running in nonblocking mode may choose to execute “as if”
in blocking mode. Furthermore, a sequence in nonblocking
mode where every GraphBLAS operation is followed by a call
to GrB_wait() is equivalent to the same sequence in blocking
mode without the calls to GrB_wait().

The mode is defined in the GraphBLAS C API when the
context of the library invocation is defined. This occurs once
before any GraphBLAS methods are called with a call to the
GrB_init() function. After all GraphBLAS methods are com-
plete, the context is terminated with a call to GrB_finalize().
The context can be set only once in the execution of a
program (i.e., after GrB_finalize() is called, a subsequent call
to GrB_init() is not allowed).

V. ERROR MODEL

GraphBLAS methods return a value of type GrB_Info to
provide information about the execution of a method avail-
able at the time the method returns. The specification of
each method lists the allowed return values. Errors fall into
two classes: API errors and execution errors. An API error
means a GraphBLAS method was called with parameters that
violate the rules for that method. Execution errors indicate
that something went wrong during the execution of a legal
GraphBLAS method invocation. Their occurrence may depend
on specifics of the executing environment. This does not
mean that environment errors are the fault of the GraphBLAS
implementation. For example, a memory leak is a program
error, but it may manifest itself in different points of program
execution (or not at all) depending on the platform, problem
size, or what else is running at that time.

When a GraphBLAS method is called, the arguments are
evaluated for any API errors. If any API errors are found, the
method returns without making any changes to the method’s
arguments and with a return value corresponding to the ap-
propriate API error. If API errors are not found, the method
can proceed to carry out the computation associated with the
method.

In blocking mode the computation for each method proceeds
after testing for any API errors. When the method is finished,
it returns the value GrB_SUCCESS if the computation com-
pleted without errors. If an execution error was found, the
method returns a value to indicate the appropriate execution
error.

In nonblocking mode, we distinguish between methods that
may defer execution (i.e., methods that only read and write
opaque objects) and methods that may not defer execution
(i.e., methods that read input arrays or methods that force
completion of a GraphBLAS object). If the methods allow
deferred execution, API errors are tested when the method is
called. If no API errors are found, the method may return at
this point with the value of GrB_SUCCESS. Since execution

in nonblocking mode may be deferred, the only information
guaranteed to be available when a method returns pertains
to the API test, and the return value may not provide any
information about the status of the computation.

When the sequence is terminated by a call to GrB_wait()
a value of GrB_SUCCESS is returned if no execution errors
were encountered in the execution of the sequence. Other
return values from GrB_wait() indicate an error occurred
during execution of the sequence. Additional information may
be available by a call to GrB_error(), which returns a pointer
to a null terminated string containing any additional error
information that might be available.

Methods in nonblocking mode that do not allow deferred ex-
ecution carry out the computation associated with the method
after tests for API errors. When these methods—such as
methods to extract values from an opaque object into a non-
opaque object—force completion of a GraphBLAS object, the
return value is GrB_SUCCESS if no execution errors were
generated by any of the methods involved in defining the
mathematical value of the completed GraphBLAS object. If
execution errors were encountered, a return value indicates
that an error condition was encountered and, as with the call
to GrB_wait(), additional information may be provided by a
call to GrB_error().

VI. THE GRAPHBLAS C API

Definition of the full GraphBLAS C API is beyond the
scope of this paper. Instead, we focus on those parts of the
API that are needed to understand the betweenness centrality
example in Section VII.

We begin with data types used for the objects in the
example. These are listed in Table III. Except for the types
that map directly onto C language basic types (GrB_lInfo,
GrB_Index, and GrB_Type), these data types define han-
dles to opaque objects manipulated by GraphBLAS methods.
Objects corresponding to algebraic structures (GrB_Monoid

TABLE III: GraphBLAS data types.

Data type Description

GrB_Info Return value from any GraphBLAS method
GrB_Index Vector and matrix indices

GrB_Type Type identifier

GrB_Descriptor  Opaque GraphBLAS descriptor object
GrB_Monoid Opaque GraphBLAS monoid object
GrB_Semiring Opaque GraphBLAS semiring object
GrB_Matrix Opaque GraphBLAS matrix object
GrB_Vector Opaque GraphBLAS vector object

and GrB_Semiring) are constructed from lower-level opera-
tors. The GraphBLAS C API provides a mechanism for creat-
ing user-defined operators, but for this paper we consider only
the predefined operators used in the example (summarized in
Table IV). A number of constant literal values are used in the
GraphBLAS methods to choose among options or to define
return values. The most commonly used GraphBLAS literals
are listed in Table V.

We illustrate the principles behind the GraphBLAS C API
with a single example: the GrB_mxm() operation, shown in



TABLE IV: Some predefined GraphBLAS operators.

Operator Description

GrB_TIMES_INT32 Binary operation, returns product of two 32-
bit integer values

Binary operation, returns sum of two 32-bit
integer values

Binary operation, returns sum of two 32-bit
floating-point values

Binary operation, returns product of two 32-
bit floating-point values

Unary operation, returns multiplicative inverse
of the input 32-bit floating-point value

Unary operation, returns input boolean value

GrB_PLUS_INT32
GrB_PLUS_FP32
GrB_TIMES_FP32
GrB_MINV_FP32

GrB_IDENTITY_BOOL

TABLE V: GraphBLAS literals used in Section VII.

Literal Description

GrB_OUTP Descriptor field for the output argument.

GrB_MASK Descriptor field for the mask.

GrB_INPO Descriptor field for the first input argument.

GrB_INP1 Descriptor field for the second input argument.

GrB_SCMP Descriptor value to indicate use of the structural
complement of the mask.

GrB_TRAN Descriptor value to indicate use of the transpose of

the corresponding input matrix.

Descriptor value to indicate that the output object
should be replaced by the result of the method.
All of an object’s indices in order.

Null value used to indicate when a parameter is not
provided and a default behavior should be used.
Return value indicating that a method has returned
without encountering an error condition.

GrB_REPLACE

GrB_ALL
GrB_NULL

GrB_SUCCESS

GrB_BOOL Identifier for boolean type.
GrB_INT32 Identifier for 32-bit integer type.
GrB_FP32 Identifier for 32-bit floating point type.

Figure 2. GrB_mxm() takes three input matrices A, B, and
C; computes a matrix product of A and B; and either copies
the result into the matrix C or accumulates the product into
the matrix C. Based on the arguments and the descriptor, the
semantics of GrB_mxm() can vary considerably. The function
of the descriptor is consistent across all methods, hence its use
for GrB_mxm() is applicable to all methods.

The semantics of GraphBLAS methods associated with the

operations from Table II follow a similar pattern:

1) The internal matrices and mask used in the computation
are formed from the input parameters. Their domains and
dimensions are tested for consistency.

2) The indicated computations are carried out using the
internal matrices and producing an internal result.

3) The internal result is written into the output matrix,
possibly under control of a mask.

In the case of the GrB_mxm operation, internal matrices A,
B, C, and mask Mask are formed from the corresponding
arguments according to the descriptor. Depending on the
values in the descriptor fields GrB_INPO and GrB_INP1, A
and/or B may be the transpose of the corresponding argument.
The descriptor field GrB_MASK may also indicate that the
structural complement of the mask should be used. If the
domains and sizes of the objects are mathematically consistent,
the indicated operation is carried out. This produces an internal
matrix T equal to the product of matrices A and B. (We

emphasize that an implementation of the GraphBLAS is not
required to materialize the matrix T').

If an optional binary accumulator function accum is pro-
vided, it is used to combine the elements of matrix C and the
internal matrix T. This forms a new internal matrix Z.

At this point the elements of Mask are used as a write mask
to select which elements of Z are used to form the final output
result. Basically, the elements of the boolean write mask that
exist and are true correspond to the elements of the output
matrix that might be replaced by the corresponding elements
of Z. Two options are supported:

o Replace mode: If the descriptor field GrB_OUTP is set to
GrB_REPLACE, the values in the C matrix are deleted
before masked elements of Z are stored in C. In essence
the computed matrix Z replaces the original matrix C.

o Merge mode: Otherwise, the elements from the computa-
tion selected by the write mask are written into the output
C matrix without changing elements that do not overlap
with the mask.

The basic pattern used for GrB_mxm() is used for most
of the GraphBLAS operations. For example, the mathematical
operations in Table II from GrB_mxm to GrB_reduce use
descriptors to modify input matrices or vectors, and write
masks. We can’t list all methods in the GraphBLAS API, but
for the methods used in the example from Section VII we list
method names and descriptions in Table VI

TABLE VI: Methods used in the example in section VII.

Method Name

Description

GrB_Monoid_new
GrB_Semiring_new
GrB_Vector_new
GrB_Matrix_new

GrB_Matrix_nrows
GrB_Matrix_nvals

GrB_Descriptor_new
GrB_Descriptor_set

GrB_Matrix_build
GrB_mxm

GrB_eWiseMult
GrB_eWiseAdd
GrB_extract
GrB_assign

GrB_apply
GrB_reduce

Creates a new monoid with specified domain,
operator, and identity element.

Creates a new semiring with specified domain,
monoid, and operators.

Creates a new vector with specified domain
and size.

Creates a new matrix with specified domain
and dimensions.

Retrieves the number of rows in a matrix.
Retrieves the number of stored elements (tu-
ples) in a matrix.

Creates a new (empty) descriptor.

Sets the content (details of an operation) for
a field of an existing descriptor.

Copies elements from tuples into a matrix.
Performs matrix multiplication over a semir-
ing.

Performs an element-wise multiplication on
the elements of two matrices.

Performs an element-wise addition on the el-
ements of two matrices.

Extracts a subgraph from an input matrix and
copies them into an output matrix.

Assigns an input scalar value to each element
of a specified subgraph.

Applies a unary operator to matrix elements.
Reduces across matrix rows into a vector.

VII. EXAMPLE: BETWEENNESS CENTRALITY

Betweenness centrality (BC) is a popular metric to assess
the centrality of vertices in a graph. It is based on shortest
paths where the BC score of a vertex v is the normalized ratio



a) Signature:

GrB_Info

b) Parameters:
C

Mask

Fig. 2: The GrB_mxm() function signature, parameters, and return values.

GrB_mxm (GrB_Matrix *C,
const GrB_Matrix Mask,
const GrB_BinaryOp accum,
const GrB_Semiring op,
const GrB_Matrix A,
const GrB_Matrix B,
const GrB_Descriptor desc) ;

(INOUT) An existing GraphBLAS matrix. On input, the matrix provides values that may be accumulated with the result of the matrix
product. On output, the matrix holds the results of this operation.

(IN) A “write” mask that controls which results from this operation are stored into the output matrix C (optional). If no mask is
desired, GrB_NULL is specified. The mask dimensions must match those of the matrix C, and the domain of the Mask matrix must

be of type bool or any “built-in” GraphBLAS type.
accum

(IN) A binary operator for accumulating entries with an existing C entries. Use GrB_NULL for assignment rather than accumulation.

op (IN) Semiring used in the matrix-matrix multiply: op = (D1, D2, D3, ®, ®, 0).
A (IN) The GraphBLAS matrix holding the values for the left-hand matrix in the multiplication.
B (IN) The GraphBLAS matrix holding the values for the right-hand matrix in the multiplication.

desc

(IN) Operation descriptor (optional). If a default descriptor is desired, GrB_NULL should be used. Valid fields are as follows:

Argument  Field Value Description

C GrB_OUTP  GrB_REPLACE  Output matrix C is cleared before result is stored.
Mask GrB_MASK GrB_SCMP Use the structural complement of Mask.

A GrB_INPO GrB_TRAN Use transpose of A for operation.

B GrB_INP1 GrB_TRAN Use transpose of B for operation.

c) Return Values:

GrB_SUCCESS

GrB_PANIC
GrB_INVALID_OBJECT
GrB_OUT_OF_MEMORY
GrB_UNINITIALIZED_OBJECT
GrB_NULL_POINTER
GrB_DIMENSION_MISMATCH
GrB_DOMAIN_MISMATCH

Unknown internal error.

Blocking mode: operation completed successfully. Nonblocking mode: input argument consistency tests passed.

At least one of the argument objects is in an invalid state — caused by a previous execution error.
Not enough memory available. for operation.

One or more of the GraphBLAS objects has not been initialized.

The output matrix pointer is NULL.

Matrix dimensions are incompatible.

The domains of the matrices are incompatible with the accumulator, semiring, or mask domains.

of the number of shortest paths between any pair of vertices
that go through v to the total number of shortest paths in the
graph. Equation 1 formally defines BC where o denotes the
number of shortest paths from vertex s to vertex ¢, and o4 (v)
is the number of such paths passing through vertex v:
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The BC score is efficiently computed using Brandes’ algo-
rithm [9], which runs in O(mn) time on unweighted graphs
and avoids the expensive explicit all-pairs shortest paths
computation. For each starting vertex s, Brandes’ algorithm
computes the BC contributions from the shortest paths starting
at s that pass through every other vertex.

We implemented a batched version of Brandes’ algo-
rithm [2], [10], [11] using the GraphBLAS C API where
BC contributions from multiple source vertices are computed
simultaneously. Figure 3 shows the subroutine, BC_update,
that computes BC contributions from a subset of source
vertices. Compared to previous work, the flexibility offered
by the GraphBLAS API (i.e., the masks, accumulators, and
descriptors) reduces the number of function calls in the main
loops and the number of intermediate objects.

At a high level, the BC_update function performs two
sweeps over the graph. The forward sweep performs multi-
ple simultaneous breadth-first search traversals (one for each

source vertex) and keeps track of the number of independent
shortest paths that reach every vertex from the source. This
is performed by the do-while loop starting at line 39. The
backward sweep rolls back and tallies the BC contributions
to every vertex. This is performed by the for loop starting at
line 69.

The remainder of this section describes the GraphBLAS
implementation in detail. For the sake of brevity and clarity,
the examination of GrB_Info return codes and handling of
any errors are omitted.

A. Signature

In line 1, a single header file, GraphBLAS.h defines
all GraphBLAS collections, algebraic objects, and method
signatures. The BC_update expects the following parameters
(line 3):

delta an uninitialized vector that will hold the computed

BC contributions to each vertex on return. It is ini-
tialized to n 32-bit floating point elements (line 7).
A an n X n integer adjacency matrix representing an
unweighted, directed graph where the presence of
an edge is indicated by a stored 1.
s an array of source vertex indices (the batch).
nsver the number of source vertices in s

Although not required, this function returns the same type of
status code as found in all GraphBLAS methods.



B. BFS Phase Objects

During the forward sweep, the algorithm performs
nsver simultaneous BFS traversals. In this implementa-
tion it uses 32-bit integer (GrB_INT32 domain) arithmetic
and relies on GraphBLAS’s predefined binary operators,
GrB_PLUS_INT32 and GrB_TIMES_INT32, to declare an
addition monoid (Int32Add on line 9) and the arithmetic
semiring (Int 32AddMul on line 11). If the application needs
to process larger graphs, this code should be modified to use
64-bit integer arithmetic and 64-bit indices. A descriptor is
used for this phase (starting on line 14) to transpose the first
input matrix, structurally complement the mask (if provided),
and “replace” the values in the output vector.

The columns of the numsp matrix keep track of the number
of independent shortest paths that reach every other vertex
from the corresponding source vertices. The dimensions are
nxnsver where each column corresponds to a different
source vertex. This matrix is initialized so a single element
in each column, corresponding to its source vertex, is set to
one. Mathematically,

numsp(s;,i) = 1, for 0 < ¢ < nsver. (2)

This is accomplished in lines 20-29 wusing the
GrB_Matrix_build operation. The row index array
for this operation comes from the s parameter while the
column indices are created in the i_nsver array — one for
each source vertex. An array of size nsver is filled with
ones in ones. The call to GrB_Matrix_build specifies
the integer addition operator, GrB_PLUS_INT32, in case
there are any duplicate entries.

The columns of the frontier matrix contain the current
frontiers for the traversals from each source vertex. Integers
are stored that correspond to how many shortest paths reached
a given vertex during that step. In lines 31-33, this nxnsver
matrix is initialized. Each column of this matrix is initialized
to the out vertices of the corresponding source vertex. This is
done using the GraphBLAS extract operation on the graph
matrix A. The descriptor transposes A, such that the use of the
s array specified for the column indices selects each row of
A corresponding to the source vertices. The use of GrB_ALL
specified for all n row indices ensures that all out neighbors
of the selected source vertices are included. The numsp
matrix is specified as the mask, which is complemented by the
descriptor, and has the effect of removing the source vertices
themselves from each frontier (it will remove these elements
only if source vertices have edges that point to themselves).
Since the front ier matrix is already empty, the descriptor’s
GrB_REPLACE parameter has no effect.

The final data structures needed for the BFS phase are a
set of matrices that store the current frontier at each step of
the BFS phase. This is stored in an array of matrices called
sigmas. A set of n of these matrices is dynamically allocated
at line 36. Note that the number of these matrices is bounded
by the diameter of the graph whose upper bound is the number
of vertices in the graph.

C. BFS Phase (Forward Sweep)

The BFS phase of the computation begins with the do-
loop on line 39. The first step initializes the nxnsver
sigmas [d] matrix (line 40) and sets it to the current frontier
(line 41). The apply operation is used for the assignment
and by using the unary operator, GrB_IDENTITY_BOOL,
casts the integers in the frontier to booleans. On line 42, the
path counts for the current frontier are accumulated using the
eWiseAdd operation to perform an element-wise addition of
the numsp and frontier matrices. The result is stored in
numsp.

The GrB_mxm call on line 43 forms the next frontier in one
step by both expanding the current frontier (i.e., discovering
the 1-hop neighbors of the set of vertices in the current
frontier) and pruning the vertices that have already been
discovered. The former is achieved by setting the descriptor,
desc_tsr, to use the transpose of the adjacency matrix. The
latter is achieved by setting the descriptor to use the structural
complement of the mask and by passing the numsp matrix as
the mask parameter. The implicit cast of numsp to Boolean
allows GrB_mxm to interpret numsp as the set of previously
discovered vertices. Note that the descriptor is also set to
GrB_REPLACE to ensure that the frontier is overwritten with
new values.

The loop ends by computing the number of values in the
new frontier using the matrix method, GrB_Matrix_nvals.
If the result (stored in nvals) is zero, there are no vertices
in the frontier and the forward sweep is completed.

D. Tally Phase Objects

The BC contributions are calculated during the tallying
phase that performs a backwards sweep using the previously
stored BFS trees. An arithmetic semiring with a floating-
point domain is used for this computation. In this example,
we choose 32-bit float-point types and declare the necessary
monoids and semiring (starting at line 48) based on Graph-
BLAS’s predefined binary operators.

Starting on line 55, the element-wise inverse of numsp is
computed using the apply operation along with the prede-
fined multiplicative inverse unary function defined for 32-bit
floating point, GrB_MINV_FP32. Then, the bcu variable that
holds the per-source BC contributions is initialized to all ones
in order to avoid issues with the treatment of implied zeros
(starting at line 59). This fill is accomplished with a variant
of the assign operation that allows the same value to be
assigned to a subgraph, and that specifies GrB_ALL for both
row and column indices. Last, a descriptor object, desc_r,
needed by the Tally Phase is initialized starting on line 63. The
only parameter needed in this phase is “replace” semantics
when using a mask.

E. Tally Phase (Backward Sweep)

After the initialization of a temporary workspace matrix w,
the Tally Phase begins on line 69. On line 70, the contributions
of each “end” vertex to its predecessors are divided by the
number of shortest paths that reach them. This is accomplished



with an eWiseMult operation where the sigma [i] matrix
is used to ensure that only paths identified in the BFS phase are
assigned to the result. The GrB_mxm call on line 73 discovers
predecessors (as opposed to successors in the forward sweep)
by its use of the descriptor desc_r (defined in line 63) that
uses the adjacency matrix (as opposed to its transpose). The
algorithm assures that the BC contributions are transferred
only to direct parents on the BFS tree by passing the previous
level of BFS tree (sigma[i—-1]) as a mask to GrB_mxm.
Last, the elements of the w matrix are scaled by the number of
shortest paths with the eWiseMult operation on line 74, and
this result is accumulated into the BC update matrix, bcu. This
loop terminates when the original source vertices are reached
and the columns of bcu contain the BC updates for each
source vertex, respectively.

F. Computing BC Updates

To compute the BC updates for all vertices in this batch,
the elements in each row of bcu are accumulated using the
reduce operation on line 78. This result is biased because
bcu began the loop filled with ones; hence all entries in this
matrix are greater than the actual update by one. As a result, all
elements of the reduction need to be adjusted by the number
of source vertices. This is accomplished by accumulating the
reduction result (in line 78) with the output vector, delta,
that was filled with —nsver on line 77).

The remainder of the subroutine frees resources allocated in
this computation. Note that GrB_free_all is a convenience
macro (not part of GraphBLAS C API) that expands to
GrB_free for each of its parameters.

VIII. RESULTS

The BC code in Figure 3 was tested using the GraphBLAS
Template Library (GBTL)[12]. This C++ library is function-
ally equivalent to the the GraphBLAS C API with similar
signatures. The latest development snapshot, including the
working BC implementation, is available [13].

Work is in progress to integrate the GraphBLAS C API with
Gunrock [14], a highly optimized backend for execution on
GPU backends. Another project [15] implemented a variation
of the GraphBLAS C API using standard C99. Efforts are
underway to add a GraphBLAS C interface to GPI [4]. Last,
a GraphBLAS library in Chapel is under development [16].

IX. CONCLUSION

The GraphBLAS forum started its work on standard build-
ing blocks for graphs in the language of linear algebra in
2013 [17]. A few years later, we released the mathematical
definition of the GraphBLAS [8]. In this paper, we report on
the first effort to define a language binding to the GraphBLAS;
the GraphBLAS C APL

With the specification complete, work is now underway to
create reference implementations of the API. After reference
implementations are complete and we validate the core Graph-
BLAS C API, work will shift to optimizing GraphBLAS C
libraries and benchmarking against more established frame-
works for graph algorithms.
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Fig. 3: C function using GraphBLAS primitives that computes the BC-metric updates delta, given Boolean n x n adjacency
matrix A, a set of source vertices s, and the number of source vertices (i.e., the length of s) nsver.

#include “GraphBLAS.h” // in addition to other required C headers

GrB_Info BC_update(GrB_Vector xdelta, GrB_Matrix A, GrB_Index *s, GrB_Index nsver) // Compute BC metric

{

GrB_Index n;
GrB_Matrix_nrows(&n, A); // n = # of vertices in graph
GrB_Vector_new (delta ,GrB_FP32,n); // Vector<float> delta(n)
GrB_Monoid Int32Add; // Monoid <int32_t,+,0>
GrB_Monoid_new(&Int32Add , GrB_INT32,GrB_PLUS_INT32,0);
GrB_Semiring Int32AddMul; // Semiring <int32_t,int32_t,int32_t,+,%,0>
GrB_Semiring_new(&Int32AddMul , Int32Add , GrB_TIMES_INT32);
GrB_Descriptor desc_tsr; // Descriptor for BFS phase mxm
GrB_Descriptor_new(&desc_tsr);
GrB_Descriptor_set(desc_tsr ,GrB_INPO,GrB_TRAN); // transpose of the adjacency matrix
GrB_Descriptor_set(desc_tsr ,GrB_MASK, GrB_SCMP ) ; // structural complement of the mask
GrB_Descriptor_set(desc_tsr ,GrB_OUTP,GrB_REPLACE); // clear output before result is stored in it.
GrB_Index xi_nsver = malloc(sizeof (GrB_Index)*nsver); // index and value arrays needed to build numsp
int32_t kones = malloc(sizeof (int32_t)*xnsver);
for (int i=0; i<nsver; ++i) {

i_nsver[i] = i;

ones[i] = 1;
}
GrB_Matrix numsp; // Its nonzero structure holds all vertices that have
GrB_Matrix_new(&numsp, GrB_INT32, n, nsver); // been discovered and stores number of shortest paths so far.

GrB_Matrix_build(&numsp ,GrB_NULL,GrB_NULL, s ,i_nsver ,ones ,nsver ,GrB_PLUS_INT32 ,GrB_NULL); // numsp[s[i],i]=1, i=[0,nsver)
free (i_nsver); free(ones); //

GrB_Matrix frontier; // Holds the current frontier where values are path counts.

GrB_Matrix_new(&frontier , GrB_INT32, n, nsver); // Initialized to out vertices of each source node in s.

GrB_extract(&frontier ,numsp,GrB_NULL,A,GrB_ALL,n,s,nsver ,desc_tsr); //

// The memory for an entry in sigmas is only allocated within the do—while loop if needed

GrB_Matrix *sigmas = malloc(sizeof (GrB_Matrix)=n); // n is an upper bound on diameter

int32_t d = 0; // BFS level number

int32_t nvals = 0; // nvals == 0 when BFS phase is complete

do { // The BFS phase (forward sweep)
GrB_Matrix_new (&(sigmas[d]), GrB_BOOL, n, nsver); // sigmas[d](:,s) = d"th level frontier from source vertex s
GrB_apply(&(sigmas[d]),GrB_NULL, GrB_NULL, GrB_IDENTITY_BOOL, frontier ,GrB_NULL); // sigmas[d](:,:) = (Boolean) frontier
GrB_eWiseAdd(&numsp ,GrB_NULL, GrB_NULL, Int32Add , numsp, frontier ,GrB_NULL); // numsp += frontier (accum path counts)
GrB_mxm(& frontier ,numsp,GrB_NULL, Int32AddMul ,A, frontier ,desc_tsr); // f<!numsp> = A’ +.x f (update frontier)
GrB_Matrix_nvals(&nvals , frontier ); // number of nodes in frontier at this level
d++;

} while (nvals);

GrB_Monoid FP32Add; // Monoid <float ,+,0.0>
GrB_Monoid_new(&FP32Add, GrB_FP32,GrB_PLUS_FP32,0.0f);

GrB_Monoid FP32Mul; // Monoid <float ,*,1.0>
GrB_Monoid_new(&FP32Mul , GrB_FP32 , GrB_TIMES_FP32,1.0f);

GrB_Semiring FP32AddMul; // Semiring <float , float , float ,+,%,0.0>
GrB_Semiring_new (&FP32AddMul , FP32Add , GrB_TIMES_FP32);

GrB_Matrix nspinv; // inverse of the number of shortest paths
GrB_Matrix_new(&nspinv ,GrB_FP32 ,n, nsver);

GrB_apply(&nspinv ,GrB_NULL, GrB_NULL, GrB_MINV_FP32 , numsp ,GrB_NULL ) ; // nspinv = 1./numsp
GrB_Matrix bcu; // BC updates for each starting vertex in s

GrB_Matrix_new(&bcu ,GrB_FP32 ,n, nsver);
GrB_assign(&bcu ,GrB_NULL,GrB_NULL,1.0f ,GrB_ALL,n, GrB_ALL,nsver ,GrB_NULL); // filled with 1 to avoid sparsity issues

GrB_Descriptor desc_r; // Descriptor for 1st ewisemult in tally
GrB_Descriptor_new(&desc_r);
GrB_Descriptor_set(desc_r ,GrB_OUTP, GrB_REPLACE ) ; // clear output before result is stored in it.
GrB_Matrix w; // temporary workspace matrix
GrB_Matrix_new(&w, GrB_FP32 ,n, nsver);
for (int i=d—1; i>0; i—) { // Tally phase (backward sweep)

GrB_eWiseMult(&w, sigmas [i],GrB_NULL, FP32Mul , bcu , nspinv ,desc_r); // w<sigmas[i]>=(]1 ./ nsp).*bcu

// add contributions by successors and mask with that BFS level’s frontier
GrB_mxm(&w, sigmas [i —1],GrB_NULL, FP32AddMul ,A,w, desc_r); // w<sigmas[i—I]> = (A +.x w)
GrB_eWiseMult(&bcu ,GrB_NULL, GrB_PLUS_FP32 , FP32Mul ,w,numsp ,GrB_NULL); // bcu += w .% numsp

// subtract "nsver” from every entry in delta (1 extra value per bcu element crept in)
GrB_assign(delta ,GrB_NULL,GrB_NULL, —(float)nsver ,GrB_ALL,n,GrB_NULL); // fill with —nsver
GrB_reduce(delta ,GrB_NULL, GrB_PLUS_FP32,GrB_PLUS_FP32,bcu ,GrB_NULL); // add all updates to —nsver

for(int i=0; i<d; i++) { GrB_free(sigmas[i]); } free(sigmas);

GrB_free_all (frontier ,numsp, nspinv ,w,bcu,desc_tsr ,desc_r); // macro that expands GrB_free() for each parameter
GrB_free_all (Int32AddMul , Int32Add , FP32AddMul , FP32Add , FP32Mul ) ;

return GrB_SUCCESS;



