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ABSTRACT
The emerging connected-vehicle technology provides a new
dimension for developing more intelligent traffic control algo-
rithms for signalized intersections. An important challenge for
scheduling in networked transportation systems is the switch-
over delay caused by the guard time before any traffic signal
change. The switch-over delay can result in significant loss
of system capacity and hence needs to be accommodated in
the scheduling design. To tackle this challenge, we propose
a distributed online scheduling policy that extends the well-
known Max-Pressure policy to address switch-over delay by
introducing a bias factor favoring the current schedule. We
prove that the proposed policy is throughput-optimal with
switch-over delay. Furthermore, the proposed policy remains
optimal when there are both connected signalized intersec-
tions and conventional fixed-time ones in the system. With
connected-vehicle technology, the proposed policy can be easily
incorporated into the current transportation systems without
additional infrastructure. Through extensive simulation in VIS-
SIM, we show that our policy indeed outperforms the existing
popular policies.
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1 INTRODUCTION
Traffic congestion in urban area has been an increasingly se-
vere problem in all cities of different sizes. According to a
recent study [20], every driving commuter in the U.S. spends
on average 30 to 60 hours of extra time on the road each year.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
MobiHoc’17, Chennai, India
© 2017 ACM. 978-1-4503-4912-3/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3084041.3084065

Furthermore, about two thirds of the extra time is from road
congestion. For an urban transportation network which con-
sists of intersections as nodes, and roads between intersections
as edges, intersections are often the source of road congestion
as well as being accident-prone areas [14].

Recently, there has been considerable work in exploring
novel scheduling strategies for intersections from the perspec-
tive of networked transportation systems, which incorporate
emerging connected-vehicle technologies such as vehicle-to-
vehicle (V2V) communication and vehicle-to-infrastructure
(V2I) communication. With connected-vehicle technologies,
roadside infrastructure can obtain accurate and real-time infor-
mation about the number of vehicles waiting in each lane [24].
The scheduling problem in networked transportation systems
then becomes very similar to that in computer networks. Each
intersection corresponds to a router, each lane corresponds to
a queue, and each vehicle corresponds to a packet. Indeed,
there have been efforts to apply the well-known Max-Pressure
policy of computer networks [23] to networked transportation
systems [26].

Currently, most scheduling algorithms manage traffic flows
at intersections via traffic signals, whose color switches peri-
odically between red and green. Transition from the green
to red phase is not instantaneous, but requires a guard time
for safety, usually of about 3-8 seconds [12]. The throughput
during this transition phase is nearly zero. In addition, there is
also throughput loss when a new green phase starts or ends
because of acceleration or deceleration of vehicles. We capture
such capacity loss by introducing switch-over delay in this pa-
per. The switch-over delay needs to be explicitly addressed in
designing scheduling policies for intersections. Unfortunately,
most of the existing literature on scheduling intersections via
traffic signals ignores the effect of switch-over delay. In fact,
Ghavami et al. [7] demonstrate that, while dynamic signal
control policies such as the Max-Pressure policy outperforms
conventional fixed-time policies in general, the performance of
the dynamic signal control policies can be seriously affected by
capacity loss when switch-over delay is considered.

Furthermore, during the transition from a traditional trans-
portation system to a fully connected system, only some of the
intersections are equipped with sensors and V2I/V2V commu-
nication [13], while the rest relying on conventional fixed-time
control policies. In such partially-connected systems, any new
proposed policies will need to coexist well with conventional
ones.

This paper aims to address all the above challenges. We
propose a distributed scheduling policy for networked trans-
portation systems and formally prove that the proposed policy
is throughput-optimal even when there is switch-over delay.
The proposed policy accommodates the switch-over delay by



MobiHoc’17, July 10-14, 2017, Chennai, India Ping-Chun Hsieh, Xi Liu, Jian Jiao, I-Hong Hou, Yunlong Zhang, and P. R. Kumar

adding a bias factor favoring the current schedule. Moreover,
we introduce a superframe structure which achieves synchro-
nization among connected intersections and serves as a natural
structure for stability analysis. Our main contribution can be
summarized as follows:

• Switch-over delay is considered and a throughput-optimal
policy is proposed.

• The proposed policy is distributed with low implementation
complexity, and therefore scales well with network size.

• The proposed policy does not require any knowledge of
traffic demands.

• The policy continues to be throughput-optimal when there
are both connected-technology and fixed-time intersections
in the system. It therefore performs well even in partially-
connected transportation systems.

• The proposed policy is evaluated via realistic microscopic
simulation on a standard simulator for transportation re-
search.

While the paper focuses on networked transportation sys-
tems, the theoretical results are also applicable to many other
applications with switch-over delay, such as optical networks
[16], wireless networks with directional antennas [17], and
multi-threaded operating systems [6]. The rest of the paper is
organized as follows. Section 3 describes the model of inter-
sections and multi-hop transportation systems. The proposed
scheduling policy is illustrated and the proof of optimality is
provided in Section 5. Section 7 presents the simulation results.
Section 8 concludes the paper.

2 RELATED WORK
In current transportation systems, traffic signals are often adap-
tively controlled by proprietary traffic control suites, such as
SCATS [15] and SCOOT [21]. Following the fixed-time control
paradigm, these software suites require real-time traffic statis-
tics to optimize cycle splits and offsets in the timing plan for
given objective functions. However, traffic demand can change
rapidly with time, and it is difficult and costly to collect the
required statistics in a timely manner.

Differing from the fixed-time approach, scheduling design
based on real-time queue length information is attracting in-
creasing attention due to recent progress in connected-vehicle
technology. For example, adaptive control based on queue
length is proposed in [24], where the queue length is estimated
via probe vehicles with V2I and V2V communication. On the
other hand, inspired by results in computer networks [23],
Varaiya [26] and Wongpiromsarn et al. [27] propose a Max-
Pressure policy for signal control and formally prove that it is
throughput-optimal when the queue capacity is infinite and the
routing rates are known. To relax the assumption of infinite
queue capacity, Xiao et al. [28] present a variation of the Max-
Pressure policy that is throughput-optimal within a reduced
capacity region when the queue capacity is finite but large
enough. To relax the assumption on routing rates, Gregoire et
al. [8] also propose a back-pressure-based signal control policy
and prove that it is throughput-optimal with unknown routing
rates. Despite the above progress, none of these policies takes
the switch-over delay into account.

In the existing literature on the scheduling design for sys-
tems with switch-over delay, [1, 2, 4, 11] are the most relevant
to the scope of this paper. Armony and Bambos [1] study a
system of parallel queues with switch-over delay and propose
a family of dynamic cone policies and batch policies to achieve
optimal throughput. Subsequently, Hung and Chang [11]
present a generalized version of the dynamic cone policy to
reduce the complexity of the original cone policy. Chan [4] also
presents a Max-Weight type policy with hysteresis and prove
that it is throughput-optimal for a system of parallel queues
with deterministic service processes. Celik et al. [2] propose a
family of generalized Max-Weight policies and prove that any
policy satisfying the proposed criteria is throughput-optimal.
As an example in [2], the Variable Frame-Based Max-Weight
(VFMW) policy introduces a frame structure to avoid excessive
capacity loss due to switch-over delay. However, all the above
policies are designed specifically only for single-hop systems
and hence the optimality results may not carry over multi-hop
systems. In this paper, we regard VFMW as the reference policy
for comparison in the simulations. In Section 7, we show that
the VFMW policy, which is throughput-optimal for single-hop
systems, can actually perform poorly in multi-hop systems.

3 SYSTEM MODEL
We model a multi-hop transportation system by a directed
graph (V,L), where V denotes the set of intersections and L is
the set of directional links connecting the intersections. Each
link has a start node and an end node. In this paper, we use the
terms node and intersection interchangeably. For convenience,
we also include a common virtual source node �s as well as a
common virtual destination node �d in the directed graph. We
assume time is slotted. The links can be further divided into
three categories: internal links Lint, entry links Lentry, and exit
links Lexit. Each entry link has the same start node �s and an
end node � 2 V where � , �d. Similarly, each exit link has
the same end node �d and a start node � 2 V where � , �s.
Therefore, entry links and exit links together characterize the
boundary of a system. This model can also take garages into
account by modeling each garage as an entry link plus an exit
link.

Given two links i, j 2 L incident to the same intersection,
link i is called a downstream link of j (or equivalently, i is
an upstream link of j) if the end node of link i is the same
as the start node of link j. We use D(i ) and U (i ) to denote
the set of all the downstream and upstream links of each link
i, respectively. Without loss of generality, we suppose that
each link has at most Umax upstream links. Moreover, the link
pair (i, j ) forms a movement of vehicles. We denote M� to be
the set of movements of each intersection � 2 V and define
M := [� 2V M� . A collection of non-conflicting movements is
called an admissible phase of an intersection. Figure 1 shows a
standard intersection with eight movements and four admis-
sible phases. In this typical intersection, each link has two
upstream links and two downstream links. For ease of expla-
nation, we assume that vehicles can only go straight or turn
left, but cannot turn right, in this example. Each movement
(i, j ) has an associated queue Qi, j holding incoming vehicles.
In other words, we assume that there exists a separate queue
for each left-turn and through movement. We assume that



Throughput-Optimal Scheduling for Multi-Hop Networked Transportation Systems MobiHoc’17, July 10-14, 2017, Chennai, India

2

1

3 4

78

5

6

(a)

2

1

3 4

5

6

78

(b)

5

6

2

1

3 4

78

(c)

3 4

5

6

78

2

1

(d)

Figure 1: A typical intersection with eight movements and
4 admissible phases.

each queue has infinite capacity such that there is no overflow
or blockage at each intersection. Throughout this paper, we
use the three-tuple G = (V,L,M) to denote a transportation
system.

External vehicles enter the system only via entry links. For
any entry link i and its downstream link j 2 D(i ), let {Ai, j (t )}t �0
be an i.i.d. sequence of external arrivals at Qi, j with average
external arrival rate �i, j > 0, and Ai, j (t )  Amax at any time t .
For any non-entry link i and j 2 D(i ), we simply let Ai, j (t ) = 0
for all t and hence �i, j = 0. For ease of later discussion, we
also define �i := P

j 2D(i ) �i, j to be the total external arrival
rate through each link i. Similarly, let {Si, j (t )}t �0 be an i.i.d.
sequence of potential service rates of the movement (i, j ), with
average service rate µi, j , for each movement (i, j ) 2M. We as-
sume that Si, j (t )  Smax, for any movement (i, j ) and any time
t . Si, j (t ) captures the variation in the passage time required by
different vehicles. Since Si, j (t ) depends on instantaneous con-
ditions such as vehicle speed and driver behavior, it is difficult
for the traffic scheduler to obtain information about potential
service rates. Therefore, we presume that the traffic scheduler
only has the information of average service rate, which is often
called saturation flow in the transportation community. The
average service rate of a movement is roughly proportional to
the number of lanes of that movement [25].

In the multi-hop model, vehicles are routed in a probabilis-
tic manner. When a vehicle enters a link i, it joins a down-
stream link j 2 D(i ) independently with probability ri, j , withP

j 2D(i ) ri, j = 1. We assume that ri, j > 0, for all movements
(i, j ) 2 M. Let Ri, j (t ) denote the proportion of vehicles that
join Qi, j from among the vehicles entering link i at time t , with
0  Ri, j (t )  1. Since each vehicle chooses its route indepen-
dently, E[Ri, j (t )] = ri, j for any time t by the basic properties
of multinomial random variables. Note that the above model
of arrivals, service, and routing is similar to that of the classic
open Jackson network.

For each intersection, based on its scheduling policy, at each
time slot exactly one of the admissible phases is chosen to have
the right of way. Let Ii, j (t ) be the indicator function denoting
whether Qi, j is scheduled at the corresponding intersection
at time t . Therefore, for each intersection � 2 V, we can use
a |M� |-dimensional binary vector to represent the scheduled
phase of the intersection. Let I� be the collection of the sched-
ule vectors of all the admissible phases at the intersection �.
Then, under a scheduling policy, each intersection� determines
I� (t ) 2 I� at each time t .

In order to guarantee absolute safety, non-zero time delay
is inserted for an intersection to switch the right of way from
the current admissible phase to the next. Such lost service

time during traffic signal change is modeled as a switch-over
delay, during which all the movements at the intersection are
prohibited and hence the throughput is zero. For simplicity,
we assume that the switch-over delay is TS slot(s) for all the
intersections. For each intersection, the time slots between any
two consecutive switch-over events are further grouped into a
frame. The frame sizes indicate how frequently an intersection
switches between admissible phases. An intersection is said to
be active if it is not in switch-over. Let Xi, j (t ) be the indicator
function that the movement (i, j ) is active in time slot t . Then,
for any t � 0 and for any movement (i, j ) 2 M with link
i 2 Lentry, the queue length is updated by

Qi, j (t+1) = Qi, j (t )�
⇣
Si, j (t )Ii, j (t )Xi, j (t )^Qi, j (t )

⌘
+Ai, j (t ), (1)

where (x ^ �) := min{x ,�}. Note that the second term on the
right-hand side of (1) represents the number of vehicles that
actually leave Qi, j in time slot t and the third term is the
external arrivals at Qi, j in time slot t . On the other hand, for
any movement (i, j ) 2M with link i < Lentry, we have

Qi, j (t + 1) = Qi, j (t ) �
⇣
Si, j (t )Ii, j (t )Xi, j (t ) ^Qi, j (t )

⌘
(2)

+
X

m:(m,i )2M

✓
Sm,i (t )Im,i (t )Xm,i (t ) ^Qm,i (t )

◆
Ri, j (t ). (3)

Note that (3) represents the total number of vehicles coming
from the upstream links of i in time slot t .

In this paper, each intersection is either a fixed-time intersec-
tion or a connected intersection. A fixed-time intersection simply
follows the weighted round-robin policy with the weights deter-
mined a priori according to long-term average traffic demands.
In contrast, a connected intersection dynamically makes sched-
uling decisions based on real-time information obtained via
connected-vehicle technology, such as queue length. We use
VF and VC to denote the set of fixed-time intersections and
connected intersections, respectively.

For simplicity of notation, we use boldface fonts for vectors
and matrices throughout the paper. For example, � = (�i )i 2L
denotes the per-link external arrival rate vector, and Q(t ) =
(Qi, j (t ))(i, j )2M the queue length vector of all the queues in
the system.

4 CAPACITY REGION
To study throughput-optimality, we first need to characterize
the capacity region of a multi-hop transportation system.

Definition 4.1. A multi-hop transportation system is strongly
stable under a scheduling policy � if

lim sup
T!1

1
T

T�1X

�=0

X

(i, j )2M
E
f
Qi, j (� )

g
< 1. (4)

When so, we say that the policy � stabilizes the system.

Next, we define the feasible external arrival rate vectors:

Definition 4.2. Given a multi-hop transportation system G,
an external arrival rate vector � = (�i )i 2L is feasible if there
exists a scheduling policy under which the system is strongly
stable with �.

We can define the capacity region as follows:
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Definition 4.3. The capacity region is defined as the closure
of the set of all feasible external arrival rate vectors �.

To explicitly characterize the capacity region, we first obtain
the effective arrival rate, which includes both external arrivals
as well as arrivals from upstream links of each link, and then
characterize the capacity region. Let �⇤i be the effective arrival
rate of link i. According to our model, we have �⇤i = �i for
all i 2 Lentry. For any link j 2 L \Lentry, the effective arrival
rate is determined by �⇤j =

P
i :j 2D(i ) �

⇤
i ri, j . Let �

⇤ = (�⇤i )i 2L be
the effective arrival rate vector, and R = (ri, j )i, j 2L the routing
probability matrix. Then, we can write the system of traffic
equations in matrix form:

�⇤ = � + R|�⇤, (5)

where R| is the transpose of the routing probability matrix.
Note that (5) is similar to the system of traffic equations of an
open Jackson network. Let 1 be an |L|⇥ |L| identity matrix. It is
easy to verify that (5) has as a unique solution �⇤ = (1�R|)�1�,
where (1 � R|) is invertible (Section 2.1 in [5]).

For each fixed-time intersection �, let �� 2 (0, 1) be the
average fraction of time in which the intersection � is in switch-
over. Let Λ be the set of all the external arrival rate vectors
� for which the following conditions hold: (i) For each fixed-
time intersection �, there exists � > 0 and a vector �� =
(�i, j )(i, j )2M� in the convex hull of I� such that the effective
arrival rates satisfy

�� µi, j�i, j > �⇤i ri, j + �, 8(i, j ) 2M� , (6)

i.e. there is at least a small service margin for every movement
at �. (ii) For each connected intersection � 2 VC there exists
� > 0 and a vector �v = (�i, j )(i, j )2M� in the convex hull of
I� such that

µi, j�i, j > �⇤i ri, j + �, 8(i, j ) 2M� . (7)

Let Λ denote the closure of Λ. The following provides a suffi-
cient condition for feasibility of an arrival rate vector.

THEOREM 1. For a multi-hop transportation system
with switch-over delay, an external arrival rate vector � =
(�i )i 2L is feasible if � 2 Λ.

PROOF. This can be proved by finding an appropriate fixed-
time policy for each connected intersection. By Theorem 1 in
[26], we know that given any � 2 Λ, there exists a fixed-time
policy for each connected intersection such that the whole
system is strongly stable. Hence, � is feasible if � 2 Λ. ⇤

Next, we provide a necessary condition for feasibility.

THEOREM 2. For a multi-hop transportation system
with switch-over delay, if � < Λ, then there exists no policy
under which the system is strongly stable.

PROOF. This is a direct result of Theorem 1 in [26]. ⇤

The capacity region can be characterized as follows:

THEOREM 3. Given a multi-hop transportation system
G with switch-over delay, the capacity region of G is Λ.

In this paper, we focus on the interior of the capacity region
and define throughput-optimality as follows:

Definition 4.4. Given a multi-hop transportation system G,
a scheduling policy � is said to be throughput-optimal if the
system is strongly stable under � for any external arrival rate
vector � 2 Λ.

5 SCHEDULING FOR THROUGHPUT
OPTIMALITY

In this section, we introduce our scheduling policy for con-
nected intersections and prove that it is throughput-optimal
under switch-over delay.

5.1 A Throughput-Optimal Scheduling Policy
To begin with, we define pressure as follows:

Definition 5.1. For any time t , the pressure of a movement
(i, j ) 2M is defined as the difference between the queue length
of (i, j ) and the weighted average of the queue lengths of (j,k )
for every k 2 D(j ), i.e.

Wi, j (t ) := Qi, j (t ) �
X

k :k 2D(j )
r j,kQ j,k (t ). (8)

In addition, for any intersection �, the pressure of any admissi-
ble phase I� = (Ii, j ) 2 I� is defined as

P
i, j 2M� µi, j Ii, jWi, j (t ).

We also introduce a useful definition:

Definition 5.2. A scheduling policy � is said to be max-
pressure-at-switch-over if � always schedules the phase with
the maximum pressure at each switch-over event.

Now, we formally present the Biased Max-Pressure (B-MP)
scheduling policy in Algorithm 1. In B-MP, frames are further
grouped into consecutive superframes. At the beginning of a
superframe, the duration of the superframe is calculated by
(9). Whenever a connected intersection switches, it always
switches to a phase with the maximum pressure, and therefore
B-MP is max-pressure-at-switch-over. Under B-MP, a connected
intersection will only switch under two conditions: (i) at the
beginning of each superframe, or (ii) when conditions (10)
and (11) specified below are satisfied. From conditions (10)-
(11), B-MP only makes a switch when the maximum pressure
is larger than the pressure of the current phase by a certain
portion. Condition (10) can be interpreted as adding a bias
factor favoring the pressure of the current phase, and hence
the name B-MP. This bias for the current phase is to prevent
the traffic signal from significant capacity loss due to frequent
switch-overs.

Moreover, within a superframe, each connected intersec-
tion under B-MP can make scheduling decisions independently
based on only the local queue length information. Therefore,
B-MP is fully distributed within each superframe and the co-
ordination among the connected intersections is minimal. We
use tk to denote the beginning of the k-th superframe, with
t0 := 0. Let Tk := tk+1 � tk be the length of the k-th super-
frame. Let M�

k be the number of switch-over events in the
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k-th superframe, for each connected intersection �. Since each
superframe may contain a different number of frames at dif-
ferent connected intersections, we use t�k,l to denote the time
of the l-th switch-over at intersection � in the k-th superframe,
setting t�k,0 := tk .

Algorithm 1 Biased Max-Pressure Policy (B-MP)

1: Fix � 2 (0, 1). At time t = tk , set the length of the k-th
superframe as:

Tk :=
✓ X

(i, j )2M
Qi, j (tk )

◆�
, (9)

and begin the next superframe at tk+1 := tk +Tk .
2: Find the phase with the largest pressure at current time t ,

I⇤� (t ) 2 argmaxI2I�
X

(i, j )2M�

µi, j Ii, jWi, j (t ).

Ties are broken arbitrarily.
3: If I⇤� (t ) , I⇤� (t � 1), initiate switch-over over the next TS

slots, and then apply the new schedule I⇤� (t ) for one slot.
Else, directly apply I⇤� (t ) for one slot.

4: For any t 2 [t�k,l , t
�
k,l+1) in the rest of the k-th superframe,

find the phase I⇤� (t ) that has the largest pressure. If the
intersection is not in switch-over at time t , the intersection
makes a switch if the following condition is satisfied:

✓
1 + B� (t

�
k,l )

◆  X

(i, j )2M�

µi, j I
⇤
i, j (t � 1)Wi, j (t )

!+
(10)

<

 X

(i, j )2M�

µi, j I
⇤
i, j (t )Wi, j (t )

!+
, (11)

where x+ is a shorthand formax{x , 0}, and B� (·) is the “bias
function” defined as

B� (t ) := �TSmin
8><>:1,

 " X

(i, j )2M�

Wi, j (t )

#+!�� 9>=>; (12)

with � 2 (0, 1) and � > 0. Else, stay at the current phase.
5: Repeat Step 3 and 4 until the end of the k-th superframe.
6: At t = tk+1, go back to step 1 and repeat the above proce-

dure for the next superframe.

5.2 Proof of Throughput-Optimality
To study system stability, we consider the queue length update
over one superframe. Define ∆Qi, j (tk ) := Qi, j (tk+1) �Qi, j (tk ).
By (1), for any movement (i, j ) with link i 2 Lentry, we have

∆Qi, j (tk ) (13)

= �
tk+1�1X

t=tk

✓
Si, j (t )Ii, j (t )Xi, j (t ) ^Qi, j (t )

◆
+

tk+1�1X

t=tk
Ai, j (t ), (14)

where (x ^ �) := min{x ,�}. Note that the first term of (14) rep-
resents the number of vehicles that actually leave Qi, j during
the k-th superframe, and the second term is the total number
of external arrivals at Qi, j in the k-th superframe. On the other

hand, by (2) and (3), for any movement (i, j ) 2M with link
i < Lentry, we have

∆Qi, j (tk ) = �
tk+1�1X

t=tk

✓
Si, j (t )Ii, j (t )Xi, j (t ) ^Qi, j (t )

◆
(15)

+

tk+1�1X

t=tk

X

m:(m,i )2M

✓
Sm,i (t )Im,i (t )Xm,i (t ) ^Qm,i (t )

◆
Ri, j (t ).

(16)

Note that (16) represents the total number of vehicles coming
from the upstream links of i during the k-th superframe.

To study the throughput performance, we analyze the Lya-
punov drift over one superframe (see [18] for more details on
multi-slot drift analysis). Define a Lyapunov function

L(Q(t )) := Q(t )|Q(t ) =
X

(i, j )2M
Qi, j (t )

2, (17)

where Q(t )| is the transpose of the queue length vector. De-
fine the Lyapunov drift over the k-th superframe as ∆L(tk ) :=
L(Q(tk+1)) � L(Q(tk )). Then, we have

∆L(tk ) = 2Q(tk )
|∆Q(tk ) + ∆Q|∆Q(tk ), (18)

where ∆Q(tk ) := Q(tk+1) � Q(tk ). Given Q(tk ), the size of the
k-th superframe is known and therefore the conditional drift
over the k-th superframe is well-defined. Note that it is actually
not straightforward to calculate the conditional drift over one
superframe for the following reasons:
• For any intersection, there could be multiple frames, and

hence multiple phases are scheduled in a stochastic sequence
in one superframe.

• Different intersections could possibly have totally different
frame sizes in the same superframe.

• Given the queue length information at the beginning of a
superframe, it is still not clear when switch-over will be
triggered and which phase will be scheduled at each inter-
section, since the arrival and service processes are stochastic.

Despite the above challenges, the conditional drift over one
superframe can still be upper bounded for the max-pressure-
at-switch-over policies.

LEMMA 1. Given any � 2 Λ, under any max-pressure-
at-switch-over policy with superframe structure, the condi-
tional drift over one superframe is upper bounded as

E
f
∆L(tk )

��� Q(tk )
g
 �2�Tk

X

(i, j )2M
Wi, j (tk )

+ (19)

+C1
X

� 2VC

E
f
M�

k
��� Q(tk )

g  X

(i, j )2M�

Wi, j (tk )
+

!
(20)

+C2
X

� 2VF

X

(i, j )2M�

Wi, j (tk )
+ +C3T 2

k +C4Tk (21)

where C1, C2, C3 and C4 are finite positive constants and
x+ := max{x , 0}.

PROOF. With the max-pressure-at-switch-over property, we
are able to quantify the pressure of the scheduled phases at
any t 2 [tk , tk+1) even if the scheduling decision of each frame
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is not known. The complete proof is provided in the Appendix
A of [10]. ⇤

REMARK 1. Note that (19) represents the negative drift re-
quired for system stability. Also note that (20) and the first
term of (21) represent the loss of service due to switch-over at
connected intersections and fixed-time intersections, respectively.
The second and third terms of (21) stand for the service loss due
to possible emptiness of the scheduled queues.

REMARK 2. Note that in (20) the service loss due to switch-
over is basically a direct sum of the service loss contributed by
each connected intersection. In other words, the performances
of any two connected intersections are completely decoupled.
Due to this feature, Lemma 1 still holds if different connected
intersections follow different max-pressure-at-switch-over policies
with superframe structure.

To show that B-MP is throughput-optimal, we introduce a
sufficient condition for strong stability in the following lemma.

LEMMA 2. For any max-pressure-at-switch-over schedul-
ing policy with superframe determined by (9), if there exist
some constants B0 > 0, �0 > 0 such that the conditional
drift satisfies

E
f
∆L(tk )

��� Q(tk )
g
 B0 � �0

 X

(i, j )2M
Qi, j (tk )

!1+�
, (22)

then we have

lim sup
T!1

1
T

T�1X

t=0

X

(i, j )2M
E
f
Qi, j (t )

g
< 1. (23)

PROOF. Define H (tk ) :=
PTk�1
t=0

P
(i, j )2MQi, j (tk + t ). Then,

we have

H (tk ) 
Tk�1X

t=0

X

i 2Lentry, j 2D(i )

✓
Qi, j (tk ) +

Tk�1X

s=0
Ai, j (tk + s )

◆

+

Tk�1X

t=0

X

i 2Lint, j 2D(i )
Qi, j (tk ).

After taking conditional expectation of H (tk ), we have

E
f
H (tk )

��� Q(tk )
g

(24)

 T 2
k

 X

i 2Lentry, j 2D(i )
�⇤i ri, j

!
+Tk

 X

(i, j )2M
Qi, j (tk )

!
(25)

 B1

 X

(i, j )2M
Qi, j (tk )

!1+�
(26)

where B1 = 1 + P
i 2Lentry �

⇤
i ri, j is a positive constant indepen-

dent of Q(tk ). Then, by (22),

E
f
∆L(tk )

��� Q(tk )
g
 B0 �

�0
B1

E
f
H (tk )

��� Q(tk )
g
. (27)

By summing (27) over all the superframes, we have
X

k�0
E
f
∆L(tk )

��� Q(tk )
g


X

k�0

✓
B0 �

�0
B1

E
f
H (tk )

��� Q(tk )
g◆
. (28)

Given a finite initial condition Q(0), we have L(0) < 1 andP
k�0 E

f
∆L(tk )

��� Q(tk )
g
� �L(0). Hence, we conclude that

lim sup
T!1

PT�1
t=0 E

fP
(i, j )2MQi, j (t )

g
T


B1

⇣
B0 + L(0)

⌘

�0
< 1.

⇤
Next, since Lemma 1 involves both queue length and pres-

sure, we provide a useful inequality between total queue length
and total pressure as follows.

LEMMA 3. For any queue length vector Q = (Qi, j ) and
its corresponding pressure vector W = (Wi, j ), there exists a
constant � > 0 such that

X

(i, j )2M
Wi, j

+ � �

 X

(i, j )2M
Qi, j

!
. (29)

PROOF. We provide a sketch of the proof. We first construct
a new system by adding several dummy links and dummy
movements to the original system and show that the new sys-
tem is strongly connected, and that the corresponding routing
matrix is invertible. By applying the Perron-Frobenius Theorem
to the routing matrix, we obtain a strictly positive eigenvector
with a positive eigenvalue. Based on the eigenvector proper-
ties, we show that there must exist a constant � > 0 such that
the inequality (29) holds. The complete proof is provided in
Appendix C of [10]. ⇤

Note that B-MP is a max-pressure-at-switch-over policy and
therefore Lemma 1 holds under the B-MP policy. To character-
ize the number of switch-over events in one superframe under
the B-MP policy, we provide an upper bound on the size of
each frame as follows.

LEMMA 4. Under the B-MP policy, there exists a constant
C5 > 0 such that for every sample path, the length of each
frame is lower bounded as

T�k,l � C5B� (t�k,l )
✓ X

(i, j )2M�

Wi, j (t
�
k,l )

+
◆
. (30)

PROOF. The proof is provided in Appendix D of [10]. ⇤

With Lemma 4, we are ready to provide a lower bound on
the number of switch-over events in one superframe under
B-MP.

LEMMA 5. For any k � 0, given Q(tk ), for any intersec-
tion � under the B-MP policy with bias function defined by
(12), we have for every sample path,

M�
k

✓ X

(i, j )2M�

Wi, j (tk )
+
◆
= o

 ✓ X

(i, j )2M
Qi, j (tk )

◆1+� !
.

(31)

PROOF. The proof is provided in Appendix E of [10]. ⇤

We are ready to show that B-MP is throughput-optimal.
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THEOREM 4. The B-MP policy is throughput-optimal
for any � 2 (0, 1), � 2 (0, 1).

PROOF. Since B-MP is a max-pressure-at-switch-over policy
with superframe structure, Lemma 1 holds under B-MP. There-
fore, by Lemma 3 and the fact thatWi, j (t )+  Qi, j (t ) for any
movement (i, j ) and any time t , we have

E
f
∆L(tk )

��� Q(tk )
g
 �2��0Tk

X

(i, j )2M
Qi, j (tk ) (32)

+C1
X

� 2VC
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g ✓ X

(i, j )2M�

Wi, j (tk )
+
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(33)

+C2
X

� 2VF

X

(i, j )2M�

Qi, j (tk ) +C3T 2
k +C4Tk . (34)

By Lemma 5 and the choice ofTk , we knowTk
P

(i, j )2MQi, j (tk )
is the dominating term in (32)-(34). Therefore, there exists a
constant B > 0 such that

E
f
∆L(tk )

��� Q(tk )
g
 B � ��0

 X

(i, j )2M
Qi, j (tk )

!1+�
. (35)

By Lemma 2, we know that the system is strongly stable under
the B-MP policy for any external arrival rate � 2 Λ. Hence, the
B-MP policy is throughput-optimal. ⇤

REMARK 3. By Theorem 4, B-MP can achieve throughput-
optimality for any choice of � between 0 and 1. The choice of �
can indeed affect the average delay performance, and is a topic
that is not addressed in this paper.

REMARK 4. The parameter � determines the superframe size
for coordination among the intersections. To minimize the coor-
dination overhead, it is recommended that � be close to 1.

6 EXTENSIONS OF BIASED MAX-PRESSURE
POLICY

6.1 Weighted Queue Length
The concept of pressure can be further generalized by using
“weighted queue lengths”:

Definition 6.1. Let qi, j > 0 be the predetermined weight
factor of movement (i, j ). For each movement (i, j ), we define
the “weighted queue length” as Q̂i, j (t ) := qi, jQi, j (t ), for all t .
Then, the generalized pressure is defined as

Ŵi, j (t ) := Q̂i, j (t ) �
X

k :k 2D(j )
r j,kQ̂ j,k (t ). (36)

If one substitutes Ŵi, j (t ) for Wi, j (t ), the B-MP policy con-
tinue to remain throughput-optimal:

THEOREM 5. The B-MP policy using the generalized
pressure in Definition 6.1 is still throughput-optimal for
any � 2 (0, 1), any � 2 (0, 1).

PROOF. This can be proved by considering the drift of a
Lyapunov function: L̂(Q(t )) =

P
(i, j )2M qi, jQi, j (t )2. The rest of

the proof is similar to that of Theorem 4 and hence omitted
due to space limitation. ⇤

One important usage of weighted queue lengths is to design
a capacity-aware version of the B-MP policy that mitigates
the queue overflow effect due to finite queue capacity. Queue
overflow often occurs when the system operates under over-
saturated traffic (even if only for a short period of time). The
overflow effect can lead to significant service loss as well as se-
vere delay. Given the information about queue capacity, we can
choose qi, j appropriately for each movement (i, j ) to reduce the
chance of queue overflow. For example, choosing qi, j inversely
proportional to the queue capacity of Qi, j is suggested in [9].
In Section 7, we provide an example of applying weighted
queue length in simulation.

6.2 Estimated Queue Length With Bounded
Error

In networked transportation systems, it might be difficult
or expensive to obtain precisely accurate queue length in-
formation, due to latency in communication, or random er-
rors in sensor detection. Let Q†

i, j (t ) and W †
i, j (t ) be the esti-

mated queue length and the corresponding pressure, respec-
tively. If the estimation error of queue length is always upper
bounded, then the B-MP is still throughput-optimal with the
estimated queue length. We still consider the Lyapunov func-
tion L(Q(t )) =

P
(i, j )2MQi, j (t )2 and the corresponding drift

conditioned on Q†
i, j (tk ). Then, we have the following upper

bound on the conditional drift:

LEMMA 6. Given any � 2 Λ, under the B-MP policy
using estimated queue length (Q†

i, j (t )), if there exists a

constant B > 0 such that ���Qi, j (t ) �Q†
i, j (t )

���  B for all (i, j )
and all t , the conditional drift over one superframe is upper
bounded as:

E
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��� Q† (tk )
g
 �2�Tk

X
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W †

i, j (tk )
+

(37)
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X

� 2VC
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g  X

(i, j )2M�

W †
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(38)

+C†
2

X

� 2VF

X

(i, j )2M�

W †
i, j (tk )

+ +C†
3T

2
k +C†

4Tk (39)

where C†
1 , C

†
2 , C

†
3 and C†

4 are finite positive constants.

PROOF. The proof is similar to that of Lemma 1. The main
differences are: (i) Since the drift is now conditioned on
Q† (tk ) instead of Q(tk ), the estimation error introduces an
extra term in E


Q(tk )

|∆Q(tk ) | Q† (tk )
�
. Due to the bound-

edness of estimation error, this extra term is at most of the
same order as Tk . (ii) For connected intersections, B-MP using
Q† (tk ) makes scheduling decisions based on W† (tk ). There-
fore, B-MP is max-pressure-at-switch-over in terms of W† (tk )
instead of W(tk ). Since Qi, j (t ) �Q†

i, j (t ) 2 [�B,B], we also have

Wi, j (t ) �W †
i, j (t ) 2 [�2B, 2B], for all (i, j ) and all t . As a result,

the bounded error in pressure only affects the coefficients of
the existing terms in the original drift expression. The complete
proof is provided in Appendix F of [10]. ⇤
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Now, we are ready to prove that B-MP is throughput-optimal
with estimated queue lengths.

THEOREM 6. If there exists a constant B > 0 such that���Qi, j (t ) �Q†
i, j (t )

���  B for all (i, j ) and all t , then B-MP
is still throughput-optimal using estimated queue lengths
(Q†

i, j (t )).

PROOF. First, we haveQi, j (t )�Q†
i, j (t ) 2 [�B,B] andWi, j (t )�

W †
i, j (t ) 2 [�2B, 2B], for all (i, j ) and all t , Also, Lemma 3 holds

regardless of the scheduling policy. Therefore, we can rewrite
the upper bound in Lemma 6 as
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2
k +C‡

4Tk , (42)

where C‡
1 , C

‡
2 , C

‡
3 , C

‡
4 are finite positive constants. Further-

more, with a slight modification of the proof we know that
Lemma 4 and Lemma 5 still hold when W(tk ) is replaced by
W† (tk ) under B-MP. By the same argument as that in the proof
of Theorem 4, we know that �2�Tk

P
(i, j )2MQ†

i, j (tk ) is the
dominating term in (40)-(42). Therefore, there must exist a
constant B† > 0 such that

E
f
∆L(tk )

��� Q† (tk )
g
 B† � ��0

 X

(i, j )2M
Q†
i, j (tk )

!1+�
. (43)

By a similar procedure as in Lemma 2, we know that (43)
is also a sufficient condition for strong stability. Hence, we
conclude that B-MP remains throughput-optimal when the
error in queue lengths is bounded. ⇤

From Theorem 4, we know that B-MP is also robust to
estimation error in queue length information.

6.3 Limitations on Green Period
Conventionally, the timing plan of traffic signals includes a
minimum green time to accommodate the vehicle startup delay.
Under the B-MP policy, the minimum green time can be easily
incorporated by introducing a minimum frame sizeTG,min > TS .
Then, (30) in Lemma 4 would become

T�k,l � max
8><>:TG,min,C5B� (t�k,l )

✓ X

(i, j )2M�

Wi, j (t
�
k,l )

+
◆9>=>;. (44)

With a slight modification of the proof of Lemma 5, the B-MP
policy with a minimum frame size still remains throughput-
optimal. On the other hand, a maximum green time is some-
times applied in the actuated version of fixed-time policy to
avoid excessive delays of minor roads. While this can also
be included in B-MP by introducing a maximum frame size
TG,max, setting a maximum frame size can result in loss of sys-
tem throughput since the fraction of time spent on switch-over
would always be greater than or equal to TS

TG,max
.

7 SIMULATIONS
We evaluate the proposed policy in VISSIM [19], which is a
standard microscopic traffic simulator for transportation sys-
tems. In addition to the built-in features for conventional
traffic signal control, VISSIM also provides programming in-
tegration with MATLAB to support user-customizable traffic
control algorithms.

We consider a system of six signalized intersections as shown
in Figure 2. In total, there are 10 entry links (4 major entries
from the East and the West along with 6 minor entries from
the North and the South) and 10 exit links. The number of
lanes of each through-traffic link and left-turn link are 3 and 1,
respectively.

Figure 2: System topology in VISSIM.

Conforming to the official statistics [25], the saturation
flow of each link is set to be 1900 vehicles per hour per lane.
Vehicles enter the system from the entry links and are routed
towards an exit link in a probabilistic manner. We set the
routing probabilities to be 0.2 and 0.8 for left-turn movement
and through movement, respectively. We use �E, �W, �N, and
�S to denote the arrival rates of the entry links coming from
the East, West, North, and South, respectively. We use the
default driver behavior and lane-change model provided in
VISSIM. The speed limit of each vehicle is 40 miles per hour.
Each intersection has four admissible phases as described in
Figure 1. Throughout the simulation, we choose the slot time
to be 1 second which is sufficient for updating the scheduling
decisions. The switch-over delay is set to be 5 seconds, which
includes an amber period of 3 seconds and an all-red period
of 2 seconds. An important feature of our VISSIM simulation
is that we consider the effect of finite buffer size. When a link
is fully occupied by vehicles, VISSIM will prohibit the entry of
new vehicles, either from the external or from upstream links,
and hence lower the throughput.

We compare the B-MP policy against the conventional fixed-
time policy, Max-Pressure (MP) policy, and the Variable Frame-
Based Max-Weight (VFMW) policy. For the fixed-time policy,
the timing plan is calculated by Synchro [22], which is a widely-
used optimization tool for timing plan design in transportation
research. Throughout the simulation, we assume that the
fixed-time policy has perfect knowledge of the average traffic
statistics of each link, and is therefore able to optimize the
timing plan accordingly. For VFMW, we choose the frame size
to be TS +

⇣P
(i, j )2M� Qi, j (tk )

⌘0.9
as suggested in [3]. For the

B-MP policy, we choose � = 0.01 and � = 0.99 as discussed in
Section 5.2. To mitigate possible queue overflow due to finite
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queue capacity, we use weighted queue lengths with qi, j = 3
for through-traffic queues and qi, j = 1 for left-turn queues,
as discussed in Section 6.1. First, we consider the following
arrival traffic pattern:
Scenario 1: �E = �W = �̄ and �N = �S = 0.5 · �̄ (veh/hr).

Under this traffic pattern, the maximum achievable �̄ is
about 2600 veh/hr according to the traffic equations given
by (5). The total simulation time is 1800 seconds. Figure 3
shows the total number of vehicles in the system with �̄ = 2400
under the four policies. We observe that B-MP indeed achieves
the smallest total queue length while the total queue length is
much larger under the other three policies.
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Figure 3: Total queue length of the system under the four
policies with �̄ = 2400.

Next, we measure the performance with �̄ between 1200
and 2800. Figures 4(a) and 4(b) show the system throughput
and average delay for different arrival rates. Note that the
average delay here is defined as the difference between the
actual travel time and the travel time without any stoppages
at the intersections. In Figure 4(a), we see that under B-MP
the throughput grows linearly with the arrival rate for �̄ up to
2600. At �̄ = 2800, the throughput under B-MP gets saturated
simply because the arrival rate is already beyond the capacity
region. Concerning the fixed-time policy, it can support �̄ only
up to 2200 due to the capacity loss resulting from the switch-
over delay. Both MP and VFMW suffer from severe capacity
loss due to frequent switching of traffic signals. In Figure 4(b),
the B-MP still achieves the smallest delay for every �̄. For
the heavy traffic condition with �̄ = 2600, compared to the
fixed-time policy with perfect knowledge of traffic statistics,
B-MP reduces the average delay by more than 40% without
any arrival rate information. For VFMW, we only show the
average delay for �̄ below 1800 because it performs much more
poorly than the other three policies for �̄ above 2000.

Next, we consider time-varying arrival rates.
Scenario 2:
• 0 s to 1200 s: (�W, �E, �N, �S) = (2000, 2000, 1000, 1000).
• 1201 s to 2400 s: (�W, �E, �N, �S) = (2500, 1500, 1500, 500).
• 2401 s to 3600 s: (�W, �E, �N, �S) = (1500, 2500, 500, 1500).

Note that the total arrival rate of the whole system remains
the same under the above traffic pattern. Figure 5 shows the
total queue length under the three policies. Here we omit the
VFMW policy simply because it has a much larger total queue
length. Again, B-MP still achieves the smallest total queue
length at any time. It is notable that the total queue length

under B-MP does not change much under the time-varying
pattern. In contrast, the fixed-time policy suffers from much
more congestion during the period 1200 s to 3600 s. This is
because the fixed-time policy optimizes its timing plan based
on the average arrival rates and thus fails to accommodate
traffic dynamics. Similar to Figure 3, MP still performs quite
poorly due to the service loss incurred by the switch-over delay.
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(a) System throughput
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Figure 4: Delay and throughput performance under the
four policies for different arrival rates.
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Figure 5: Total queue length under time-varying traffic.

Last, we consider a partially-connected system where three
of the intersections are connected under a user-customized
policy (B-MP, MP, or VFMW) and the rest are fixed-time in-
tersections as usual. Figures 6(a) and 6(b) show the average
delay and system throughput of the partially-connected system
for different arrival rates. Compared to the pure fixed-time
system, even partial inclusion of the B-MP policy still provides
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improvement in both throughput and average delay. Also, B-
MP still outperforms the other two policies by a large margin in
the partially-connected system. Through the above simulation,
we see that B-MP indeed provides significant improvement
over the other three popular policies.
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(a) System throughput
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Figure 6: Delay and throughput performance under the
four policies in the partially-connected system.

8 CONCLUSION
In this paper, we study the scheduling problem for networked
transportation systems with switch-over delay. We propose a
distributed scheduling policy that is throughput-optimal with
switch-over delay without requiring knowledge of traffic de-
mands. Moreover, the proposed policy still remains optimal
when there are both fixed-time intersections and connected
intersections in the overall system. Hence, the proposed policy
can still perform well in partially-connected systems. Simula-
tion results show that the proposed policy indeed outperforms
the other current policies.
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