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ABSTRACT
R. A. Fisher, the father of modern statistics, proposed the idea of fiducial inference during the first half of the
20th century. While his proposal led to interesting methods for quantifying uncertainty, other prominent
statisticians of the time did not accept Fisher’s approach as it became apparent that some of Fisher’s bold
claims about theproperties of fiducial distributiondidnot hold up formulti-parameter problems. Beginning
around the year 2000, the authors and collaborators started to reinvestigate the idea of fiducial inference
and discovered that Fisher’s approach, when properly generalized, would open doors to solvemany impor-
tant anddifficult inferenceproblems. They termed their generalizationof Fisher’s idea asgeneralizedfiducial
inference (GFI). Themain ideaofGFI is to carefully transfer randomness from thedata to theparameter space
using an inverse of a data-generating equationwithout the use of Bayes’theorem. The resulting generalized
fiducial distribution (GFD) can then be used for inference. After more than a decade of investigations, the
authors and collaborators have developed a unifying theory for GFI, and provided GFI solutions to many
challenging practical problems in different fields of science and industry. Overall, they have demonstrated
that GFI is a valid, useful, and promising approach for conducting statistical inference. The goal of this article
is to deliver a timely and concise introduction to GFI, to present some of the latest results, as well as to list
some related open research problems. It is authors’ hope that their contributions to GFI will stimulate the
growth and usage of this exciting approach for statistical inference. Supplementarymaterials for this article
are available online.

1. Introduction

The origin of fiducial inference can be traced back to R. A. Fisher
(1922, 1925, 1930, 1933, 1935) who introduced the concept of
a fiducial distribution for a parameter, and proposed the use
of this fiducial distribution, in place of the Bayesian posterior
distribution, for interval estimation of the parameter. In simple
situations, especially in one parameter families of distributions,
Fisher’s fiducial intervals turned out to coincide with classical
confidence intervals. For multi-parameter families of distribu-
tions, the fiducial approach led to confidence sets whose fre-
quentist coverage probabilities were close to the claimed confi-
dence levels but theywere not exact in the repeated sampling fre-
quentist sense. Fisher’s proposal led tomajor discussions among
the prominent statisticians of themid-20th century (e.g., Jeffreys
1940; Stevens 1950; Tukey 1957; Lindley 1958; Fraser 1961a,b,
1966, 1968; Dempster 1966, 1968). Many of these discussions
focused on the nonexactness of the confidence sets and also
nonuniqueness of fiducial distributions. The latter part of the
20th century has seen only a handful of publications (Dawid,
Stone, and Zidek 1973; Wilkinson 1977; Dawid and Stone 1982;
Barnard 1995; Salome 1998) as the fiducial approach fell into
disfavor and became a topic of historical interest only.

Since the mid-2000s, there has been a revival of interest
in modern modifications of fiducial inference. This increase
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of interest demonstrated itself in both the number of different
approaches to the problem and the number of researchers work-
ing on these problems, and is leading to an increasing number of
publications in premier journals. The common thread for these
approaches is a definition of inferentially meaningful probabil-
ity statements about subsets of the parameter space without the
need for subjective prior information.

These modern approaches include Dempster–Shafer theory
(Dempster 2008; Edlefsen, Liu, and Dempster 2009) and recent
(since 2010) related approach called inferential models (Mar-
tin, Zhang, and Liu 2010; Zhang and Liu 2011; Martin and Liu
2013, 2015a,c), which aims at provably conservative and effi-
cient inference. While their philosophical approach to infer-
ence is different from ours, the resulting solutions are often
mathematically closely related to the fiducial solutions presented
here. Interested readers can learn about the inferential models
approach to inference from the book byMartin and Liu (2015b).
A somewhat different approach termed confidence distributions
looks at the problem of obtaining an inferentially meaningful
distribution on the parameter space from a purely frequentist
point of view (Xie and Singh 2013). One of the main contribu-
tions of this approach is fusion learning: its ability to combine
information from disparate sources with deep implications for
meta analysis (Schweder and Hjort 2002; Singh, Xie, and Straw-
derman 2005; Xie, Singh, and Strawderman 2011; Hannig and
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Xie 2012; Xie et al. 2013). Another related approach is based on
higher order likelihood expansions and implied data-dependent
priors (Fraser 2004, 2011; Fraser, Reid, and Wong 2005; Fraser
and Naderi 2008; Fraser, Fraser, and Staicu 2009; Fraser et al.
2010). Objective Bayesian inference, which aims at finding
nonsubjective model-based priors, is also part of this effort.
Examples of recent breakthroughs related to reference prior and
model selection are Bayarri et al. (2012), Berger (1992), Berger
and Sun (2008), Berger, Bernardo, and Sun (2009), and Berger,
Bernardo, and Sun (2012). Objective Bayesian inference is a
very well-developed field but there is room for fiducial infer-
ence for many reasons. It often provides a good alternative both
in terms of performance and ease of use, and the generalized
fiducial distribution is never improper. Moreover, generalized
fiducial inference and its various cousins are rapidly evolving
and have the potential for uncovering deep and fundamental
insights behind statistical inference. Finally, there are several
other recent fiducial related works including Wang (2000), Xu
and Li (2006), Veronese and Melilli (2015), and Taraldsen and
Lindqvist (2013) who show how fiducial distributions naturally
arise within a decision theoretical framework.

Arguably, generalized fiducial inference (GFI) has been on
the forefront of the modern fiducial revival. It is motivated by
the work of Tsui andWeerahandi (1989, 1991) andWeerahandi
(1993, 1994, 1995) on generalized confidence intervals and the
work of Chiang (2001) on the surrogate variable method for
obtaining confidence intervals for variance components. The
main spark came from the realization that there was a connec-
tion between these new procedures and fiducial inference. This
realization evolved through a series of works (Iyer, Wang, and
Mathew 2004; Patterson, Hannig, and Iyer 2004; Hannig, Iyer,
and Patterson 2006b; Hannig 2009).

GFI defines a data-dependent measure on the parameter
space by carefully using an inverse of a deterministic data-
generating equation without the use of Bayes’ theorem. The
resulting generalized fiducial distribution (GFD) is a data-
dependent distribution on the parameter space. GFD can be
viewed as a distribution estimator (as opposed to a point or
interval estimator) of the unknown parameter of interest. The
resulting GFDwhen used to define approximate confidence sets
is often shown in simulations to have very desirable proper-
ties, for example, conservative coverages but shorter expected
lengths than competing procedures (E, Hannig, and Iyer 2008).

The strengths and limitations of the generalized fiducial
approach are becoming better understood, see, especially,
Hannig (2009, 2013). In particular, the asymptotic exactness
of fiducial confidence sets, under fairly general conditions,
was established in Hannig (2013), Hannig, Iyer, and Patterson
(2006b), and Sonderegger and Hannig (2014). Higher order
asymptotics of GFI was studied in Majumder and Hannig
(2015). GFI has also been extended to prediction problems in
Wang, Hannig, and Iyer (2012a). Model selection was intro-
duced into the GFI paradigm in Hannig and Lee (2009). This
idea was then further explored in classical setting in Wandler
andHannig (2011) and in the ultra high-dimensional regression
in Lai, Hannig, and Lee (2015).

GFI has been proven useful in many practical applications.
Earlier examples include bioequivalence (McNally, Iyer, and
Mathew 2003; Hannig et al. 2006a), problems of metrology

(Hannig, Wang, and Iyer 2003; Wang and Iyer 2005, 2006a,b;
Hannig, Iyer, and Wang 2007; Wang, Hannig, and Iyer 2012b),
and interlaboratory experiments and international key compari-
son experiments (Iyer,Wang, andMathew2004). It has also been
applied to derive confidence procedures in many important sta-
tistical problems, such as variance components (E, Hannig, and
Iyer 2008; Cisewski and Hannig 2012), maximum mean of a
multivariate normal distribution (Wandler and Hannig 2011),
multiple comparisons (Wandler and Hannig 2012a), extreme
value estimation (Wandler and Hannig 2012b), mixture of nor-
mal andCauchy distributions (Glagovskiy 2006), wavelet regres-
sion (Hannig and Lee 2009), and logistic regression and binary
response models (Liu and Hannig 2016).

One main goal of this article is to deliver a concise introduc-
tion to GFI. Our intention is to provide a single location where
the various developments of the last decade can be found. As a
second goal of this article, some original work and refined results
on GFI are also presented. Specifically, they are Definition 1 and
Theorems 1, 3, and 4.

The rest of this article is organized as follows. Start-
ing from Fisher’s fiducial argument, Section 2 provides a
complete description of GFI, including some new results.
The issue of model selection within the GFI framework
is discussed in Section 3. Section 4 concerns the use of
GFI for discrete and discretized data, and Section 5 offers
some practical advice on how to handle common compu-
tational challenges when applying GFI. Lastly, Section 5.1
provides some concluding remarks while technical details
are relegated to the online appendix. The following web-
site http://anson.ucdavis.edu/∼tcmlee/GFiducial.html contains
computer code for many of the methods in this review.

2. The Switching Principle: Fisher’s “Fiducial
Argument”Extended

The idea underlying GFI is motivated by our understanding of
Fisher’s fiducial argument. GFI begins with expressing the rela-
tionship between the data,Y , and the parameters, θ, as

Y = G(U , θ), (1)

where G(·, ·) is a deterministic function termed the data-
generating equation, and U is the random component of this
data-generating equation whose distribution is independent of
parameters and completely known.

The dataY are assumed to be created by generating a random
variable U and plugging it into the data-generating Equation
(1). For example, a single observation fromN(μ, 1) distribution
can be written as Y = μ+U , where θ = μ and U is N(0, 1)
random variable.

For simplicity, this subsection only considers the simple case
where the data-generating Equation (1) can be inverted and the
inverseQy(u) = θ exists for any observed y and for any arbitrary
u. Fisher’s fiducial argument leads one to define the fiducial dis-
tribution for θ as the distribution ofQy(U �)whereU � is an inde-
pendent copy ofU . Equivalently, a sample from the fiducial dis-
tribution of θ can be obtained by generating U �

i , i = 1, . . . ,N
and using θ�i = Qy(U �

i ). Estimates and confidence intervals for
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1348 J. HANNIG ET AL.

θ can be obtained based on this sample. In the N(μ, 1) exam-
ple, Qy(u) = y − u and the fiducial distribution is therefore the
distribution of y −U � ∼ N(y, 1).

Example 1. Consider the mean and sample variance Y =
(Ȳ , S2) computed from n independent N(μ, σ 2) random vari-
ables, where μ and σ 2 are parameters to be estimated. A natural
data-generating equation forY is

Ȳ = μ+ σU1 and S2 = σ 2U2,

where U1,U2 are independent with U1 ∼ N(0, n−1) and U2 ∼
Gamma((n − 1)/2, (n − 1)/2).

The inverse Qy(u) = (ȳ − s u1/
√
u2, s2/u2). Consequently,

for any observed value ȳ and s, and an independent copy of
U , denoted as U �, the distribution of μ� = ȳ − sU �

1 /
√
U �
2 is

the marginal fiducial distribution of μ. The equal tailed set of
95% fiducial probability is (ȳ − ts/

√
n, ȳ + ts/

√
n) where t is

the 0.025 critical value of the t-distribution with n − 1 degrees
of freedom, which is the classical 95% confidence interval forμ.

Remark 1. Generalized fiducial distribution is a data-dependent
measure on the parameter space. It is mathematically very simi-
lar to Bayesian posteriors and can be used in practice in a similar
fashion. For example, the median (or mean) of the GFD can be
used as a point estimator. More importantly, certain sets of fidu-
cial probability 1 − α can be used as approximate (1 − α)100%
confidence sets, see Theorem 3. A nested collection of such
approximate confidence sets at all confidence levels can also be
inverted for a use as an approximate p-value (Hannig 2009; Xie
and Singh 2013).

A useful graphical tool for visualizingGFDs is the confidence
curve of Birnbaum (1961). If R(θ |x) is the distribution (or sur-
vival) function of a marginal fiducial distribution, the confi-
dence curve is defined as CV(θ ) = 2|R(θ |x)− 0.5|. On a plot
of CV(θ ) versus θ , a line across the height (y-axis) of α, for any
0 < α < 1, intersects with the confidence curve at two points,
and these two points correspond (on x-axis) to an α level, equal
tailed, two-sided confidence interval for θ . Thus, a confidence
curve is a graphical device that shows confidence intervals of all
levels. The minimum of a confidence curve is the median of the
fiducial distribution which is the recommended point estimator.
Figure 1 shows an example of a confidence curve for a dataset
generated fromU (θ, θ2) distribution of Example 4.

Remark 2. We have made a conscious choice to eschew philo-
sophical controversies throughout the development of GFI.
However, we find it inevitable to make at least some philosoph-
ical comments at this point:

1. The idea behind GFD is very similar to the idea behind
the likelihood function: what is the chance of observing
my data if any given parameter was true. The added value
of GFD is that it provides likelihood function with an
appropriate Jacobian obtaining a proper probability dis-
tribution on the parameter space, see (4) below.

2. GFD does not presume that the parameter is random.
Instead it should be viewed as a distribution estimator
(rather than a point or interval estimator) of the fixed
true parameter. To validate this distribution estimator in
a specific example, we then typically demonstrate good

small sample performance by simulation and prove good
large sample properties by asymptotic theorems.

3. From a Bayesian point of view, Bayes’ theorem updates
the distribution of U after the data are observed. How-
ever, when no prior information is present, changing
the distribution of U only by restricting it to the set
“there is at least one θ solving the equation y = G(U , θ)”
seems to us as a reasonable choice (see the next section).
Arguably, this so-called “continuing to regard” assump-
tion has been behind most of the philosophical contro-
versies surrounding fiducial inference in the past.

2.1. A Refined Definition of Generalized Fiducial
Distribution

The inverse to Equation (1) does not exist for two possible rea-
sons. Either, there is more than one θ for some value of y and
u, or there is no θ satisfying y = G(u, θ). The first situation can
be dealt with by using the mechanics of Dempster–Shafer calcu-
lus (Dempster 2008). A more practical solution is to select one
of the several solutions using a possibly randommechanism. In
Section 4, we will review theoretical results that showed that the
uncertainty due to multiple solutions has, in many parametric
problems, only a second-order effect on statistical inference.

For the second situation, Hannig (2009) suggested removing
the values of u for which there is no solution from the sample
space and then renormalizing the probabilities, that is, using
the distribution of U conditional on the event Uy = {u : y =
G(u, θ), for some θ}. The rationale for this choice is that we
know that the observed data y were generated using some fixed
unknown θ0 and u0, that is, y = G(θ0, u0). The values of u for
which y = G(·, u) does not have a solution could not be the
true u0 hence only the values of u for which there is a solution
should be considered in the definition of the generalized fiducial
distribution (an exception to this suggestion is in cases where
the parameter space is in some way constrained. In this case, it
is often beneficial to extend the parameter space, perform the
inversion in the extended space, and then project to the bound-
ary of the constrained parameter space. A good example of such
a situation is the variance componentmodel where variances are
constrained to be greater than or equal to zero (E, Hannig, and
Iyer 2009; Cisewski andHannig 2012)). However,Uy, the set of u
for which the solution exists, has probability zero formost prob-
lems involving absolutely continuous random variables. Condi-
tioning on such a set of probability zero will therefore lead to
nonuniqueness due to the Borel paradox (Casella and Berger
2002, sec. 4.9.3).

Hannig (2013) proposed an attractive interpretation of the
conditional distribution by limit of discretizations. Here, we
generalize this approach slightly. Throughout this manuscript,
U � denotes an independent copy ofU and θ� denotes a random
variable taking values in the parameter space �.

To define GFD, we need to interpret the ill-defined condi-
tional distribution of U � | U � ∈ Uy. To do that we “fatten up”
the manifold Uy by ε so that the enlarged set Uy,ε = {u : ‖y −
G(u, θ)‖ ≤ ε, for some θ} has positive probability and the con-
ditional distribution of U � | U � ∈ Uy,ε is well defined. Finally,
the fattening needs to be done in a consistent way so that the
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limit of conditional distributions as ε → 0 is well defined. This
leads to the following definition:

Definition 1. A probability measure on the parameter space �

is called a generalized fiducial distribution (GFD) if it can be
obtained as a weak limit:

lim
ε→0

[
arg min

θ�
‖y − G(U �, θ�)‖

∣∣∣ min
θ�

‖y − G(U �, θ�)‖ ≤ ε

]
.

(2)

If there are multiple minimizers arg minθ� ‖y − G(U �, θ�)‖,
one selects one of them (potentially at random). Notice that the
conditioning in (2) is modifying the distribution of U � to only
consider values for which an approximate inverse to G exists.

Remark 3. Definition 1 illuminates the relationship between
GFD and Approximate Bayesian Computations (ABC; Beau-
mont, Zhang, and Balding 2002). In an idealized ABC, one gen-
erates first an observation θ∗ from the prior, then generates a
new sample using a data-generating equation y� = G(U �, θ�)

and compares the generated data with the observed data y. If the
observed and generated datasets are close (e.g., ‖y − y�‖ ≤ ε),
the generated θ� is accepted, otherwise it is rejected and the pro-
cedure is repeated. If themeasure of closeness is a norm, it is easy
to see that when ε → 0 the weak limit of the ABC distribution
is the posterior distribution.

On the other hand, when defining GFD one generates U �,
finds a best-fitting θ� = arg minθ� ‖y − G(U �, θ�)‖, computes
y� = G(U �, θ�), again accepts θ� if ‖y − y�‖ ≤ ε, and rejects
otherwise.

In either approach, an artificial dataset y� = G(U �, θ�) is
generated and compared to the observed data. The main differ-
ence is that the Bayes posterior simulates the parameter θ� from
the prior while GFD uses the best-fitting parameter.

Remark 4. The GFD defined in (2) is not unique as it depends
on both the data-generating Equation (1), the norm used in (2)
and the minimizer θ� chosen. LetU � be an independent copy of
U and let for any measurable set A, V [A] be a rule selecting a

possibly random element of the closure of the set Ā. When the
probability P(∃θ�, y = G(U �, θ�)) > 0 then the limit (2) is the
conditional distribution

V [{θ� : y = G(U �, θ�)}] | {∃θ�, y = G(U �, θ�)}.
This is an older definition of GFD that can be found in Hannig
(2009, 2013).

The next subsection offers a useful computational formula
for evaluating (2).

2.2. A User Friendly Formula for Generalized Fiducial
Distribution

WhileDefinition (2) for GFD is conceptually appealing and very
general, it is not immediately clear how to compute the limit in
many practical situations. In a less general setup using the l∞
norm, Hannig (2013) derived a closed form of the limit in (2)
applicable to many practical situations. Here, we provide a gen-
eralization of this result, which is applicable in most situations
where the data follow a continuous distribution.

Assume that the parameter θ ∈ � ⊂ R
p is p-dimensional,

the data x ∈ R
n are n dimensional. The following theorem pro-

vides a useful computational formula.

Theorem 1. Suppose Assumptions A.1 to A.3 stated in Appendix
A. Then the limiting distribution in (2) has a density

r(θ|y) = f (y, θ)J(y, θ)∫
�

f (y, θ′)J(y, θ′) dθ′ , (3)

where f (y, θ) is the likelihood and the function

J(y, θ) = D

(
d
dθ

G(u, θ)
∣∣∣∣
u=G−1(y,θ)

)
. (4)

If (i) n = p then D(A) = | detA|. Otherwise the function D(A)
depends on the norm used; (ii) the l∞ norm gives D(A) =∑

i=(i1,...,ip) |det(A)i|; (iii) under an additional Assumption A.4
the l2 norm gives D(A) = (detA
A)1/2.

Figure . Confidence curve of a GFD for parameter θ based on sample of size  from U(θ, θ2) with θ = 100. The minimum and maximum values of the sample used
to generate the GFD are . and ., respectively. The interval between the two points where the dotted line intersects the confidence curve (98.49, 105.92) is the
approximate % confidence interval. Theminimumof the confidence curve is themedian of the generalized fiducial distribution. Its value of . provides a natural point
estimator.
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In (ii) the sum spans over
(n
p

)
of p-tuples of indexes i = (1 ≤

i1 < · · · < ip ≤ n). For any n × pmatrix A, the submatrix (A)i
is the p× pmatrix containing the rows i = (i1, . . . , ip) of A.

There is a slight abuse of notation in (3) as r(θ|y) is not a
conditional density in the usual sense. Instead, we are using this
notation to remind the reader that the fiducial density depends
on the fixed observed data.

Cases (i) and (ii) are a simple consequence of results in Han-
nig (2013). The formula in (iii) was independently proposed in
Fraser et al. (2010) based on arguments related to tangent expo-
nential families without being recognized as a fiducial distribu-
tion. The proof is in Appendix A. The ease of use of (4) will be
demonstrated on several examples in the next subsection. The
rest of this subsection discusses the effects of various transfor-
mations.

Remark 5. Just like posterior computed using Jeffreys’ prior,
GFD is invariant under smooth reparameterizations.

This assertion has been shown for smooth transformation by
chain rule in Hannig (2013). However, this property is general
and follows directly from (2), since for an appropriate selection
of minimizers and any one-to-one function θ = φ(η)

φ

(
arg min

η�
‖y − G(U �, φ(η�))‖

)
= arg min

θ�
‖y − G(U �, θ�)‖.

Remark 6. GFD could change with transformations of the data-
generating equation.

Assume that the observed dataset has been transformed
with a one-to-one smooth transformation Z = T (Y ). Using
the chain rule, we see that the GFD based on this new data-
generating equation and with observed data z = T (y) is the
density (3) with the Jacobian function (4) simplified to

JT (z, θ) = D

(
d
dy

T (y) · d
dθ

G(u, θ)
∣∣∣∣
u=G−1(y,θ)

)
. (5)

Notice that for simplicity we write y instead of T−1(z) in (5).
For completeness, we recall the well-known fact that the like-

lihood based on z = T (y) satisfies

fT (z|θ) = f (y|θ)
∣∣∣∣det

(
dT
dy

)∣∣∣∣
−1

. (6)

The second term in the right-hand side of (6) is a constant and
does not affect the GFD with the exception of model selection
considerations in Section 3.

As can be seen from the above calculation, GFD will usually
change with transformation of the data. An important exception
is when the number of observations and number of parameters
are equal, that is, n = p. Indeed, by careful evaluation of (4),
(5), and (6), we see that for z = T (y) we have J(y, θ) fY (y|θ) =
JT (z, θ) fT (z|θ) and the GFD is unchanged.

Example 2. Consider the following important transformation.
Let Z = (S,A)
 be one-to-one smooth transformation, where
S is a p-dimensional statistic and A is an ancillary statistic. Let
s = S(y) and a = A(y) be the observed values. Since dA/d� =
0, the function D in (5) is the absolute value of the determinant

of the p× p nonzero submatrix:

J(z, θ) =
∣∣∣∣∣det

(
d
dθ

S(G(u, θ))
∣∣∣∣
u=G−1(y,θ)

)∣∣∣∣∣ . (7)

Next, denote the solution of the equation s = S(G(u, θ)) by
Qs(u) = θ. A straightforward calculation shows that the fiducial
density (3) with (7) is the conditional distribution of Qs(U �) |
A(U �) = a, the GFD based on S conditional on the observed
ancillary A = a, see Birnbaum (1962) and Iyer and Patterson
(2002).

2.3. Two Examples

In this section, we will consider two examples, linear regression
anduniformdistribution. In the first case, theGFD is the same as
Bayes posterior with respect to the independence Jeffreys’ prior
while in the second theGFD is not a Bayes posterior with respect
to any prior (that is not data dependent).

Example 3 (Linear Regression). Express linear regression using
the data-generating equation

Y = G(U , θ) = Xβ + σU ,

whereY is the dependent variables, X is the design matrix, θ =
(β, σ ) are the unknown parameters, andU is a random vector
with known density f (u) independent of any parameters.

To compute GFD, simply notice that d
dθ
G(U , θ) =

(X,U ), U = σ−1(y − Xβ). From here the Jacobian in
(4) using the l∞ norm simplifies to

J∞(y, θ) = σ−1
∑

i=(i1,...,ip)
1≤i1<···<ip≤n

|det (X,Y )i|

and the density of GFD is

r(β, σ |y) ∝ σ−n−1 f (σ−1(Y − Xβ)).

This coincides with the Bayesian solution using the indepen-
dence Jeffreys’ prior (Yang and Berger 1997).

The J function has a more compact form when using the
l2 norm. In particular by Cauchy–Binet formula, we see that
det((X, y − Xβ)
(X, y − Xβ)) is invariant in β . By selecting
β = (X
X )−1X
y, we immediately obtain

J2(y, θ) = σ−1| det(X
X )| 1
2 RSS

1
2 ,

where RSS is the residual sum of squares. As the two Jacobian
functions differ only by a constant, the GFD is unchanged.

As a special case, the GFD for the location-scale model X =
1, the l∞ Jacobian is J∞(y, θ) = σ−1∑

i< j |Yi −Yj| while the l2
Jacobian becomes J2(y, θ) = σ−1nσ̂n, where σ̂n is themaximum
likelihood estimator of σ .
Example 4 (Uniform U {a(θ )− b(θ ), a(θ )+ b(θ )}). As a sec-
ond example, we will study a very irregular model. The refer-
ence prior for this model is complicated and has been obtained
as Theorem 8 in Berger, Bernardo, and Sun (2009).

Express the observed data using the following data-
generating equation

Yi = a(θ )+ b(θ )Ui, Ui iidU (−1, 1).
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Simple computations give d
dθG(u, θ ) = a′(θ )+ b′(θ )U with

U = b−1(θ )(Y − a(θ )). If a′(θ ) > |b′(θ )|, (4) simplifies to

J1(y, θ ) =
n∑

i=1

∣∣a′(θ )+ {log b(θ )}′{yi − a(θ )}∣∣
= n[a′(θ )− a(θ ){log b(θ )}′ + ȳn{log b(θ )}′]. (8)

We used a′(θ ) > |b′(θ )| only to show that the terms inside the
absolute values below are all positive. However, we remark that
under this assumption both a(θ )− b(θ ) and a(θ )+ b(θ ) are
strictly increasing, continuous functions of θ .

With the above, the GFD is then

r(θ |y) ∝ a′(θ )− a(θ ){log b(θ )}′ + ȳn{log b(θ )}′
b(θ )n

×I{a(θ )−b(θ )<y(1) & a(θ )+b(θ )>y(n)}. (9)

As an alternative fiducial solution, consider a transformation
to the minimal sufficient and ancillary inspired by of the Exam-
ple 2. Z = {h1(Y(1)), h2(Y(n)), (Y −Y(1))/(Y(n) −Y(1))}
.
We selected the transformations hi so that their inverse
h−1
1 (θ ) = EY(1) = a(θ )− b(θ )(n − 1)/(n + 1) and h−1

2 (θ ) =
EY(n) = a(θ )+ b(θ )(n − 1)/(n + 1). There are only two
nonzero terms in (5) and consequently

J2(y, θ ) = (w1 + w2)

[
a′(θ )− a(θ ){log b(θ )}′

+w1y(1) + w2y(n)
w1 + w2

{log b(θ )}′
]
, (10)

where w1 = h′
1(y(1)) and w2 = h′

2(y(n)).

We performed a simulation study for the particular case of
U (θ, θ2); a(θ ) = θ, b(θ ) = θ 2 − θ . For this model, the likeli-
hood is f (y|θ ) = {θ (θ − 1)}−nI

(y1/2
(n) ,y(1) )

(θ ) and the Jacobians
are

J1(y, θ ) = n
ȳ(2θ − 1)− θ 2

θ (θ − 1)
and

J2(y, θ ) = (w1y(1) + w2y(n))(2θ − 1)− (w1 + w2)θ
2

θ (θ − 1)
,

where

w1 = 1 + n√
n2 + 4(1 + n)y(1)

, w2 = 1 + n√
1 + 4n(1 + n)y(n)

.

An example of confidence curve for a GFD based on (10) is in
Figure 1.

We compared the performance of the two fiducial distribu-
tions to the Bayesian posteriors with the reference prior π(θ ) =
(2θ−1)
θ (θ−1) e

ψ( 2θ
2θ−1 ) (Berger, Bernardo, and Sun 2009) (ψ(x) is the

digamma function defined by ψ(z) = d
dz log(�(z)) for z > 0)

and flat prior π(θ ) = 1.
For all the combinations of n = 1, 2, 3, 4, 5, 10, 20, 100, 250

and θ = 1.5, 2, 5, 10, 25, 50, 100, 250 we analyzed 16,000 inde-
pendent datasets. Based on this we found the empirical coverage
of the 2.5%, 5%, 50%, 95%, 97.5% upper confidence bounds.
The results are summarized in Figure 2. We observed that the
simple GFD (denoted by F1 in the figures), the alternative
GFD based on minimal sufficient statistics (F2) and the refer-
ence prior Bayes posterior (BR) maintain stated coverage for all
parameter settings. However, the flat prior Bayes posterior (B1)
does not have a satisfactory coverage, with the worst departures
from stated coverage observed for small n and large θ .

Figure . Boxplots of empirical coverages of the 2.5%, 5%, 50%, 95%, 97.5% upper confidence bounds for the simple GFD (F), GFD based onminimal sufficient statistics
(F), reference Bayes (BR), and flat prior Bayes (B) for all  parameter settings. The broken lines provide bounds on randomfluctuations of the empirical coverages showing
that F, F, and BR maintain stated coverage while B does not.
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1352 J. HANNIG ET AL.

Figure . Boxplots of log10(MAD) of GFDbased onminimal sufficient statistics (F), reference Bayes (BR), and flat prior Bayesminus the log10(MAD) of the simple fiducial
(F) averaged over , simulated datasets. Each  parameter combinations provide one data point for the boxplots. Positive valuesmean that GFD F concentrates closer
to the truth; consequently, F is the best in this metric.

For each dataset, we have also measured the mean absolute
deviation from the true parameter (MAD) of each of the GFD
and posteriors, that is, MAD = ∫ |θ − θ0|r(θ |y)dθ . To aid in
comparison, we compute the difference of the log10(MAD) of
F2, BR, and B1 minus the log10(MAD) of F1 on each dataset. A
positive (resp., negative) value of the difference signifies that the
posterior is concentrated further from (resp., closer to) the truth
than the simple fiducial. These relative MADs are then averaged
across the 16,000 simulated datasets for all the parameter set-
tings and reported in Figure 3. We observe that F2 is better than
F1, which is better than BR though the absolute value of the dif-
ference is relatively small. B1 is not competitive.

2.4. Theoretical Results

This section discusses asymptotic properties for GFI. We hope
that the material included here will be useful for the study of
GFD in future practical problems.

First, we present a Bernstein–von Mises theorem for GFD,
which provides theoretical guarantees of asymptotic normality
and asymptotic efficiency. It also guarantees in conjunction with
Theorem 3 that appropriate sets of fiducial probability 1 − α

are indeed approximate 1 − α confidence sets. An early ver-
sion of this theorem can be found in Hannig (2009). Here, we
will state a more general result due to Sonderegger and Hannig
(2014).

Assume that we are given a random sample of independent
observations Y1, . . . ,Yn with data-generating equation Yi =
G(θ,Ui), with Ui iid U (0, 1). This data-generating equation
leads to the Jacobian function (4) that is aU -statistic. This real-
ization makes the GFD amenable to theoretical study.

Asymptotic normality of statistical estimators usually relies
on a set of technical assumptions and GFD is no exception. To

succinctly state the theorem, we denote the rescaled density of
GFD by r∗(s|y) = n−1/2r(n−1/2s + θ̂|y), where θ̂ is the consis-
tent maximum likelihood estimator (MLE).

Theorem 2 (Sonderegger and Hannig 2014). Under Assump-
tions B.1 to B.4 in Appendix B∫

Rp

∣∣∣∣r∗ (s|y)−
√
det |I (θ0)|√

2π
e−sT I(θ0)s/2

∣∣∣∣ ds Pθ0→ 0.

One application of GFD is to take sets of 1 − α fiducial prob-
ability and use them as approximate confidence intervals. Next
we state conditions under which this is valid.
Assumption 1. Let us consider a sequence of datasets Y n gener-
ated using fixed parameters θn ∈ �n with corresponding data-
dependent measures (such data-dependent measures can be, for
example, GFD s, Bayes posteriors, or confidence distributions)
on the parameter space Rn,Y n . We will assume that these con-
verge to a limiting fiducial model in the following way:

1. There is a sequence of measurable functions tn of Yn so
that tn(Yn) converges in distribution to some random
variable T .

2.
(a) The T from Part 1 can be decomposed into

T = (T 1,T 2) and there is a limiting data-generating
equation T 1 = H1(V 1, ξ),T 2 = H2(V 2), where
V = (V 1,V 2) has a fully known distribution inde-
pendent of the parameter ξ ∈ �. The distribution
of T is obtained from the limiting data-generating
equation using ξ0.

(b) The equation H1 is one-to-one if viewed as a func-
tion (possibly implicit) for any combination of ξ, v1,
t1, where one is held fixed, one taken as a depen-
dent, and one taken as an independent variable. The
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equation H2 is one to one. Consequently, the lim-
iting GFD defined by (2) is the conditional distri-
bution Qt1 (V �

1) | H2(V �
2) = t2, where Qt1 (v1) = ξ

is the solution of t1 = H1(v1, ξ). Denote this con-
ditional measure by Rt .

(c) For any open setC ⊂ � and limiting data t , the lim-
iting fiducial probability of the boundary Rt (∂C) =
0.

3. There are homeomorphic injective mappings 
n from
�n into � so that
(a) 
n(θn,0) = ξ0;
(b) For any sequence of data tn(yn) → t, the trans-

formed fiducial distribution measures converge
weakly Rn,yn


−1
n

W−→ Rt .

Theorem 3. Suppose Assumption 1 holds. Fix a desired cover-
age 0 < α < 1. For any observed data yn, select an open set
Cn(yn) satisfying: (i) Rn,yn (Cn(yn)) = α; (ii) tn(yn) → t implies

n(Cn(yn)) → C(t ); (iii) the set Vt2 = {(v1, v2) : Qt1 (v1) ∈
C(t ) and t2 = H2(v2)} is invariant in t1.

Then the setsCn(yn) are α asymptotic confidence sets.

The theorem provides a condition on how various sets of a
fixed fiducial probability need to be linked together across dif-
ferent observed datasets to make up a valid confidence set. To
understand the key Condition (iii) notice that it assumes the
setsC(t ) are obtained by de-pivoting a common set Vt2 . In par-
ticular if the limiting data-generating equation T 1 = H1(V 1, ξ)

has group structure, Condition (iii) is equivalent to assuming the
setsC(t ) are group invariant in t1. The conditions on the limit-
ing data-generating equation were partially inspired by results
for Inferential Models of Martin and Liu (2015a). The proof
of Theorem 3 is in Appendix C. Also, this corollary follows
immediately:

Corollary 1. Any model that satisfies the assumptions of Theo-
rem 2 satisfies Assumption 1. In particular, for any fixed interior
point θ0 ∈ �0 the limiting data-generating equation T = ξ +
V where the random vector V ∼ N(0, I(θ0)−1). The transfor-
mations are tn(yn) = n1/2(θ̂n − θ0), 
n(θ) = n1/2(θ − θ0) and
ξ0 = 0. Any collection of sets Cn(yn) that in the limit becomes
location invariant will form asymptotic confidence intervals.

Most of the theoretical results for GFI in the literature
were derived in regular statistical problems and are covered by
Corollary 1. Notice that in the regular case the limiting data-
generating equation has no ancillary part. The next example
shows that the ancillary part in Theorem 3 is needed in some
nonregular cases.

Example 5 (Example 4 continued). Recall that Yi = a(θ )+
b(θ )Ui, i = 1, . . . , n, whereUi are iidU (−1, 1).We assume that
a′(θ ) > |b′(θ )| for θ ∈ � so that the GFD Rn,yn has a density
given by (9). Fix an interior point θ0 ∈ �0. To verify conditions
of Theorem 3, we need to define the limiting data-generating
equation, and the transformations tn and 
n. We start with the
limiting data-generating process:

T1 = ξ +V1, T2 = V2,

where V1 = (E1 − E2)/2, V2 = (E1 + E2)/2 with E1,E2 are
independent, E1 ∼ exp[{a′(θ0)− b′(θ0)}/{2b(θ0)}] and E2 ∼
exp[{a′(θ0)+ b′(θ0)}/{2b(θ0)}]. The density of the limiting
GFD is therefore proportional to

r(ξ |t ) ∝ e−ξ {log b(θ0)}′I(T1−T2,T1+T2 )(ξ ).

The fact that Assumption 1, Part 2 is satisfied follows
immediately.

Next, define the transformations

tn(y) = n
(
1/2 −1/2
1/2 1/2

)
·

⎛
⎜⎜⎝

y(1) − (a(θ0)− b(θ0))
a′(θ0)− b′(θ0)

a(θ0)+ b(θ0)− y(n)
a′(θ0)+ b′(θ0)

⎞
⎟⎟⎠,


n(θ ) = n(θ − θ0).

Simple calculations show that Assumption 1, Part 1 and 3 are
satisfied with ξ0 = 0.

Finally, notice that any collection of sets of fiducial probabil-
ity α that in the limit becomes location invariant in t1 (such as
one sided or equal tailed intervals) are asymptotic α confidence
intervals.

2.5. Practical Use of GFI

From a practical point of view, GFI is used in a way similar
to the use of a posterior computed using a default (objective)
prior, such as probability matching, reference, or flat prior. The
main technical difference is that the objective prior is replaced
by a data-dependent Jacobian (4). This data dependence can in
some examples lead to the existence of second-order matching
GFD even when only first-order matching is available with the
nondata-dependent priors (Majumder andHannig 2015). Some
argued (Welch and Peers 1963; Martin and Walker 2014) that
data-dependent priors are essential in achieving superior fre-
quentist properties in complex statistical problems.

First, we suggest using a set of fiducial probability 1 − α and
of a good shape (such as one sided or equal tailed) as an approx-
imate 1 − α confidence interval, see Theorem 3. Next, the mean
or median of the GFD can be used for point estimation.

GFDs can also be used for predicting future observations.
This is done by plugging in a random variable having the
GFD (2) for the parameter into the data-generating equation
for the new observations. This approach produces a predic-
tive distribution that accommodates in a natural way both the
uncertainty in the parameter estimation and the randomness
of the future data. More details are in Wang, Hannig, and Iyer
(2012a).

GFDs are rarely available in closed form. Therefore, we often
need to use aMarkovChainMonteCarlo (MCMC)method such
as a Metropolis–Hastings or Gibbs sampler to obtain a sample
from the GFD. While the basic issues facing implementation of
the MCMC procedures are similar for both Bayesian and gener-
alized fiducial problems, there are specific challenges related to
generalized fiducial procedures.Wediscuss some computational
issues in Section 5.
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3. Model Selection in GFI

Hannig and Lee (2009) introducedmodel selection into the GFI
paradigm in the context of wavelet regression. The presenta-
tion here is reexpressed using definition (2). There are twomain
ingredients needed for an effective fiducial model selection. The
first is to include themodel as one of the parameters and the sec-
ond is to include penalization in the data-generating equation.

Consider a finite collection of models M. The data-
generating equation is

Y = G(M, θM,U ), M ∈ M, θM ∈ �M, (11)

whereY is the observations,M is the model considered, θM are
the parameters associatedwithmodelM, andU is a randomvec-
tor of fully known distribution independent of any parameters.

Denote the number of parameters in the model M by |M|.
Similar to MLE, an important issue needing to be solved is that
GFI tends to favor models with more parameters over ones with
fewer parameters. Therefore, an outside penalty accounting for
our preference toward parsimony needs to be incorporated in
the model. See Appendix D for more details.

In Hannig and Lee (2009), a novel way of adding a penalty
into the GFI framework is proposed. In particular, for each
modelM they proposed augmenting the data-generating Equa-
tion (11) by

0 = Pk, k = 1, . . . ,min(|M|, n), (12)

where Pk are iid continuous random variables with fP(0) = q
independent ofU , and q is a constant determined by the penalty.
(Based on ideas from theminimum description length principle
Hannig and Lee (2009) recommended using q = n−1/2 as the
default penalty.) Notice that the number of additional equations
is the same as the number of unknown parameters in themodel.

For the augmented data-generating equation, we have the fol-
lowing theorem. This theorem has never been published before
but it does implicitly appear in Hannig and Lee (2009) and Lai,
Hannig, and Lee (2015). For completeness, we provide a proof
in Appendix D.

Theorem 4. Let us suppose the identifiability Assumption D.1 in
Appendix D holds and that each of the models satisfy assump-
tions of Theorem 1 (in particular |M| ≤ n). Then the marginal
generalized fiducial probability of modelM is

r(M|y) = q|M| ∫
�M

fM(y, θM )JM(y, θM ) dθM∑
M′∈M q|M′| ∫

�M′ fM′ (y, θM′ )JM′ (y, θM′ ) dθM′
, (13)

where fM(y, θM ) is the likelihood and JM(y, θM ) is the Jacobian
function computed using (4) for each fixed modelM.

Remark 7. The quantity r(M|y) can be used for inference
in the usual way. For example, fiducial factor: the ratio
r(M1|y)/r(M2|y), can be used in the same way as a Bayes fac-
tor. As discussed in Berger and Pericchi (2001), one of the issues
with the use of improper priors in Bayesian model selection is
the presence of arbitrary scaling constant. While this is not a
problem when a single model is considered, because the arbi-
trary constant cancels, it becomes a problem for model selec-
tion. An advantage of GFD is that the Jacobian function (4)

comes with a scaling constant attached to it. In fact, the fidu-
cial factors are closely related to the intrinsic factors of Berger
and Pericchi (1996, 2001). This can be seen from the fact that
for the minimal training sample (n = |M|), we usually have∫
�M

fM(y, θM )JM(y, θM ) dθM = 1.
Similarly, the quantity r(M|y) can also be used for fiducial

model averaging much akin to the Bayesian model averaging
(Hoeting et al. 1999).

We illustrate the use of this model selection on two exam-
ples, wavelet regression (Hannig and Lee 2009) and ultra high-
dimensional regression (Lai, Hannig, and Lee 2015).

3.1. Wavelet Regression

Suppose n-observed equispaced data points {xi}ni=1 satisfy the
following model

Xi = gi + εi,

where g = (g1, . . . , gn)
 is the true unknown regression func-
tion and εi’s are independent standard normal random variables
with mean 0 and variance σ 2, and n = 2J+1 is an integer power
of 2.

Most wavelet regression methods consist of three steps. The
first step is to apply a forward wavelet transform to the data
y and obtain the empirical wavelet coefficients y = Hx. Here,
H is the discrete wavelet transform matrix. The second step is
to apply a shrinkage operation to y to obtain an estimate d̂ for
the true wavelet coefficients d = Hg. Lastly, the regression esti-
mate ĝ = (ĝ1, . . . , ĝn)
 for g is computed via the inverse discrete
wavelet transform: ĝ = H
d̂. The second step ofwavelet shrink-
age is important because it is the stepwhere statistical estimation
is performed. Hannig and Lee (2009) used GFI to perform the
second step. Apparently this is the first published work where
Fisher’s fiducial idea is applied to a nonparametric problem.

Due to the orthonormality of the discrete wavelet transform
matrix H , a model for the empirical wavelet coefficients is Y =
d + σU with U being a n-dimensional vector of independent
N(0, 1) random variables. The assumption of sparsity implies
that many of the entries in the vector d are zero. This allows us
to cast this as a model selection problem, where the model M
is the list of nonzero entries. The data-generating Equation (11)
becomes

Yk =
{
dk + σUk, k ∈ M,
σUk, k ∈ M�.

Notice that θM = {σ 2, dk k ∈ M}. As discussed above, we aug-
ment the data-generating equations by (12) with q = n−1/2.

It follows fromTheorem 4 that the GFD has generalized den-
sity proportional to

r(σ 2, d,M) ∝ (σ−2)
n
2 +1

∑
j∈M� |y j|

n − |M|

× exp

[
−|M| log n

2
−
{∑

k∈M(dk − yk)2 +∑
i∈M� y2i

}
2σ 2

]

×
∏
i∈M�

δ0(di), (14)
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where δ0(s) is theDirac function, that is,
∫
A δ0(s) ds = 1 if 0 ∈ A

and 0 otherwise. The term 1/(n − |M|) is an additional normal-
ization term introduced to account for the number of the ele-
ments in the sum above it.

The normalizing constant in (14) cannot be computed in a
closed form so a sample from r(σ 2, d, I) will have to be sim-
ulated using MCMC techniques. Note that the GFD is defined
in the wavelet domain. Hannig and Lee (2009) used the inverse
wavelet transform to define a GFD on the function domain.

Additionally, Hannig and Lee (2009) also assumed that M
satisfies a tree condition (Lee 2002). This condition states that if
a coefficient is thresholded, all its descendants have to be thresh-
olded too; the exact formulation is in Hannig and Lee (2009).
This constraint greatly reduces the search space and allows for
both efficient calculations and clean theoretical results. In the
article, they reported a simulation study showing small sample
performance superior to the alternativemethods considered and
proved an asymptotic theorem guaranteeing asymptotic consis-
tency of the fiducial model selection.

3.2. Ultra High-Dimensional Regression

Lai, Hannig, and Lee (2015) extended the ideas of fiducial model
selection to the ultra high-dimensional regression setting. The
most natural data-generating equation for this model is

Y = G(M,βM, σ
2,Z) = XMβM + σZ,

where Y represents the observations, M is the model consid-
ered (collection of parameters that are nonzero), XM is the
design matrix for model M, βM ∈ R

|M| and σ > 0 are param-
eters, and Z is a vector of iid standard normal random variables.
For computational expediency, they suggested using a sufficient-
ancillary transformation that yields the same Jacobian function
as the l2 Jacobian discussed in Section 2.3. The Jacobian function
used is

JM(y, θM ) = σ−1| det(X ′
MXM )| 1

2 RSS
1
2
M.

The standard Minimum Description Length (MDL) penalty
n−|M|/2 was not designed to handle ultra high-dimensional
problems. Inspired by the ExtendedBayesian InformationCrite-
rion (EBIC) penalty of Chen and Chen (2008), Lai, Hannig, and
Lee (2015) proposed extending the penalty by modifying (12)
to

0 = B|M|, 0 = Pk, k = 1, . . . , |M|,
where |M| is the dimension ofM, Bm is a Bernoulli(1 − rm) ran-
dom variable that penalizes for the number of models that have
the same sizem; and Pi are iid continuous random variables with
fP(0) = q independent of Bm that penalize for the size of mod-
els. Following the recommendation of Hannig and Lee (2009),
we select q = n−1/2. Additionally, we select rm = ( p

m

)−γ , where p
is the number of parameters in the fullmodel. The second choice
is to penalize for the fact that there is a large number of models
that all have the same size. The most natural choice is γ = 1
for which rm is the probability of randomly selecting a modelM
from all models of size m. However, to match the EBIC penalty
of Chen and Chen (2008), we allow for other choices of γ .

We assume that for any size m, the residual vectors {I −
XM(X


MXM )
−1X


M}y/RSSM are distinct for all the models M ∈
M′ of sizem, so that the identifiability Assumption D.1 is satis-
fied. Theorem 4 implies

r(M|y) ∝ Rγ (M)

= �

(
n − |M|

2

)
(πRSSM )−

n−|M|−1
2 n− |M|+1

2

(
p

|M|
)−γ

. (15)

Similar to the tree constraint of the previous subsection, Lai,
Hannig, and Lee (2015) additionally reduced the number of
models by constructing a class of candidate models, denoted as
M′. This M′ should satisfy the following two properties: the
number of models inM′ is small and it contains the true model
and models that have nonnegligible values of rγ (M). To con-
structM′, they first apply the sure independence screening (SIS)
procedure of Fan and Lv (2008) and then apply LASSO and/or
SCAD to those p′ predictors that survived SIS, and take all those
models that lie on the solution path asM′. Note that construct-
ingM′ in this way will ensure the true model is captured inM′

with high probability (Fan and Lv 2008).
Lai, Hannig, and Lee (2015) showed good properties of the

GFI solution both by simulation and theoretical considerations.
In particular, they proved a consistency theoremprovided under
the following conditions.

Let M be any model, M0 be the true model, and HM be the
projection matrix of XM , that is, HM = XM(X


MXM )
−1X


M .
Define �M = ||μ − HMμ||2, where μ = E(Y ) = XM0βM0

.
Throughout this subsection, we assume the following identifia-
bility condition holds:

lim
n→∞min

{
�M

|M0| log p : M0 �⊂ M, |M| ≤ k|M0|
}

= ∞ (16)

for some fixed k > 1. Condition (16) is closely related to the
sparse Riesz condition (Zhang and Huang 2008).

Let M be the collection of models such that M =
{M : |M| ≤ k|M0|} for some fixed k. The restriction |M| ≤
k|M0| is imposed because in practice we only consider models
with size comparable with the true model.

If p is large, a variable screening procedure to reduce the size
is still needed. This variable screening procedure should result
in a class of candidate modelsM′, which satisfies

P(M0 ∈ M′) → 1 and log(m′
j) = o( j log n), (17)

whereM′
j contains all models inM′ that are of size j, andm′

j is
the number of models in M′

j. The first condition in (17) guar-
antees the model class contains the true model, at least asymp-
totically. The second condition in (17) ensures that the size of
the model class is not too large. The authors report small sample
performance preferable to competingmethods as determined by
simulation study and prove asymptotic consistency of the fidu-
cial model selection algorithm.

4. GFI for Discrete and Interval Data

Most of thematerial presented in Sections 2 and 3was developed
for exactly observed continuous distributions. This section dis-
cusses discrete and discretized observations.
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1356 J. HANNIG ET AL.

When the observations are discrete then there is no prob-
lem with the Borel paradox and the limiting distribution in (2)
can be easily computed; see Remark 4. In particular, if we define
Qy(u) = {θ : y = G(u, θ)} the GFD is the conditional distribu-
tion

V [Qy(U �)] | {Qy(U �) �= ∅}, (18)

whereV [A] selects a (possibly random) element of the closure of
the set Ā andU � is an independent copy ofU . If A = (a, b) is a
finite interval, then we recommend a rule that selects one of the
endpoints a or b at random independent ofU � (Hannig 2009).
This selectionmaximizes the variance of the GFD, has been also
called “half correction” (Efron 1998; Schweder and Hjort 2002;
Hannig and Xie 2012) and is closely related to the well-known
continuity correction used in normal approximations.

4.1. Some CommonDiscrete Distributions

In this subsection, we compute the GFDs for parameters of sev-
eral popular discrete distributions.

Example 6. Let X be a random variable with distribution func-
tion F(y|θ ). Assume there is Y so that Pθ (Y ∈ Y ) = 1 for all
θ , and for each fixed y ∈ Y the distribution function is either a
nonincreasing function of θ , spanning the whole interval (0, 1),
or a constant equal to 1. Similarly, the left limit F (y−|θ ) is also
either a nonincreasing function of θ spanning the whole interval
(0, 1), or a constant equal to 0.

Define the near inverse F−(a|θ ) = inf{y : F(y|θ ) ≥ a}. It is
well known (Casella and Berger 2002) that if U ∼ U(0,1), Y =
F−(U |θ ) has the correct distribution andwe use this association
as a data-generating equation.

Next, it follows that both Q+
y (u) = sup{θ : F(y|θ ) = u} and

Q−
y (u) = inf{θ : F(y−|θ ) = u} exist and satisfy F(y|Q+

y (u)) =
u and F(y−|Q−

y (u)) = u. Consequently ifU � is an independent
copy ofU

P(Q+
y (u) ≤ t ) = 1 − F(y|t ) and P(Q−

y (u) ≤ t ) = 1 − F(y−|t ).
Finally, notice that for all u ∈ (0, 1) the function F−(u|θ ) is
nondecreasing in θ and the closure of the inverse image Q̄y(u) =
{Q−

y (u),Q+
y (u)}. Since the condition in (18) has probability 1,

there is no conditioning and the half corrected GFD has distri-
bution function

R(θ |y) = 1 − F(y|θ )+ F(y−|θ )
2

.

If either of the distribution function is constant, we interpret it
as a point mass at the appropriate boundary of the parameter
space.

Analogous argument shows that if the distribution function
and its left limit were increasing in θ than the half correctedGFD
would have distribution function

R(θ |y) = F (y|θ )+ F (y−|θ )
2

.

Using this result, we provide a list of the half corrected GFDs
for three well-known discrete distributions. Here, we under-
stand Beta(0, n + 1) and Beta(x + 1, 0) as the degenerate dis-
tributions (Diracmeasure) on 0 and 1, respectively. Similarly, we

understand �(0, 1) as the degenerate distribution (Dirac mea-
sure) on 0.

� X ∼ Binomial(n, p)with n known. GFD is the 50–50mix-
ture of Beta(x + 1, n − x) and Beta(x, n − x + 1) distri-
butions, see Hannig (2009).

� X ∼ Poisson(λ). GFD is the 50–50 mixture of
Gamma(x + 1, 1) and Gamma(x, 1) distributions, see
Dempster (2008).

� X ∼Negative Binomial(r, p)with r known.GFD is the 50–
50 mixture of Beta(r, x − r + 1) and Beta(r, x − r) distri-
butions, see Hannig (2014).

Example 7. Next we consider Y ∼ Multinomial(n, p1, . . . , pk),
where n is known and pi ≥ 0,

∑k
i=1 pi = 1 are unknown.

When the categories of themultinomial have a natural order-
ing, Hannig (2009) suggested to write Y = ∑n

i=1 X i, ql =∑l
i=1 pi

and model each Xi through the data-generating equation

X i = (
I(0,q1 )(Ui), I[q1,q2 )(Ui), . . . , I[qk−1,1)(Ui)

)

, i = 1, . . . , n,

where U1, . . .Un are iid U(0, 1) random variables. Denote the
first quadrant Q = {q : 0 ≤ q1 ≤ . . . qk−1 ≤ 1}. Hannig (2009)
showed that the GFD (18) for q is given by

V [{q� ∈ Q : U �

(
∑i

j=1 y j )
≤ q�i ≤ U �

(1+∑i
j=1 y j )

, i = 1 . . . , k − 1}],

where yi is the ith component of the observed y andU �
( j) is the

jth order statistics ofU �
1 , . . . ,U �

n , which is an independent copy
of U . The GFD for p is then obtained by a simple transforma-
tion. Hannig (2009) showed good asymptotic and small sample
properties of this GFD.

A drawback of the solution above is its dependency on the
ordering of the categories. Lawrence et al. (2009) provided a
solution that does not rely on a potentially arbitrary ordering of
the categories. Their approach starts from analyzing each coor-
dinate ofY individually.

As can be seen in Example 6, the fiducial inversion of each
coordinate when ignoring the others gives a relationship Ui ≤
pi ≤ 1whereUi ∼Beta(yi, 1) are independent. Additionally, the
fact that

∑k
i=1 pi = 1 imposes a condition

∑k
i=1Ui ≤ 1. Con-

sider the following random vector with its distribution taken as
the conditional distribution

(W �
0 ,W

�
1 , . . . ,W

�
k ) ∼ (1 −U1 − · · · −Uk,

U1, . . . ,Uk) | {U1 + · · · +Uk ≤ 1}.
A straightforward calculation shows that the vector W fol-
lows Dirichlet(1, y1, . . . , yk) distribution. Writing Qy(w) =
{p : wi ≤ pi, i = 1, . . . , k} the GFD isV [Qy(W �)].

Denote by ei, i = 1, . . . k the coordinate unit vectors in
R

k. Notice that the set Qy(w) is a simplex with vertexes
{(w1, . . . ,wk)+ eiw0, i = 1, . . . , k}. The selection ruleV anal-
ogous to the half correction selects each vertex with equal prob-
ability and the GFD is an equal probability (1/k) mixture of
Dirichlet(Y1 + 1,Y2, . . . ,Yk), ..., Dirichlet(Y1,Y2, . . . ,Yk + 1).

4.2. Median Lethal Dose (LD50)

Consider an experiment involving k dose levels x1, x2, . . . , xk.
Each dose level xi is administered to ni subjects with yi positive
responses, i = 1, 2, . . . , k. Assume that the relationship between
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dose level xi and the probability pi of a positive response can be
represented by the logistic-linear model, given by

logit(pi) = β1xi + β0 = β1(xi − μ),

where μ = −β0/β1 represents the median lethal dose (LD50)
and logit(pi) = log{pi/(1 − pi)}. The parameter of interest
LD50 is frequently of interest in many applied fields. Examples
include ameasure toxicity of a compound in a species in quantal
bioassay experiments andmeasure of difficulty in item response
models.

There are three classical methods for estimating LD50: the
delta method, Fieller’s method, and the likelihood ratio method.
If the dose–response curve is steep relative to the spread of doses,
then there may be no dose groups, or at most one dose group,
with observedmortalities strictly between 0% and 100%. In such
cases, the maximum likelihood estimator of β1 is not calcula-
ble and the Delta method and Fieller’s method fail to provide a
confidence set. Furthermore, when the standard Wald test does
not reject the null hypothesisβ1 = 0, Fieller’s confidence sets are
either the entire real line or unions of disjoint intervals. Likewise,
if the null hypothesis could not be rejected by the likelihood ratio
test, the likelihood ratio confidence sets are either the entire real
line or unions of disjoint intervals.

E, Hannig, and Iyer (2009) proposed a generalized fiducial
solution that does not suffer from these issues. They based their
inference on the following data-generating equation: LetYi j, i =
1, . . . , k, j = 1, . . . , ni denote the jth subject’s response to the
dose level xi. SinceYi j follows a Bernoulli distribution with suc-
cess probability pi = antilogit(β0 + β1xi):

Yi j = I(0,antilogit(β0+β1xi))(Ui j), j = 1, . . . , ni, i = 1, . . . , k.

Here (β0, β1) are unknown parameters andUi j are independent
standard uniform random variables.

The GFD is well-defined using (18) and E, Hannig, and Iyer
(2009) proposed to use a Gibbs sampler to implement it. They
performed a thorough simulation study showing that the gener-
alized fiducial method compares favorably to the classical meth-
ods in terms of coverage and median length of the confidence
interval for LD(50). Moreover, the generalized fiducial method
performed well even in the situation when the classical methods
fail. They also proved that the fiducial CIs give asymptotically
correct coverage, and that the effect of discretization is negligi-
ble in the limit.

4.3. Discretized Observations

In practice, most datasets are rounded off in some manner, say,
by a measuring instrument or by storage on a computer. Mathe-
matically speaking, we do not know the exact realized valueY =
y. Instead we only observe an occurrence of an event {Y ∈ Ay},
for some multivariate interval Ay = [a, b) containing y and sat-
isfying Pθ0 (Y � ∈ Ay) > 0, whereY � = G(U �, θ0) is an indepen-
dent copy ofY .

For example, if the exact value of the random vector Y was
y = (π, e, 1.28) and due to instrument precision all the values
were rounded to one decimal place, our observation would be
the event Ay = [3.1, 3.2)× [2.7, 2.8)× [1.2, 1.3).

Since Pθ0 (Y � ∈ Ay) > 0, the arguments in Remark 4 still
apply and the formula (18) remains valid with Qy(u) = {θ :
G(u, θ) ∈ Āy}, where Āy is the closure of Ay.

Hannig (2013) proved fiducial Bernstein–von Mises theo-
rem for discretized data. He assumed that we observed dis-
cretized iid observations with a distribution function F (y|θ).
He set F−(a|θ) = inf{y : F (y|θ) ≥ a} and assumed the data-
generating equation

Yi = F−(Ui | θ), i = 1, . . . , n,

whereYi are randomvariables, θ ∈ � is a p-dimensional param-
eter,Ui are iidU (0, 1).

We restate the main theorem in Hannig (2013) in the lan-
guage of this review article:

Theorem 5 (Hannig 2013). Suppose Assumption E.1 in
Appendix E holds. Then the GFD defined by (18) has the same
asymptotically normal distribution and satisfies Assumption 1
regardless the choice of V [· ]. Consequently, any collection of
sets Cn(yn) that in the limit becomes location invariant will
form asymptotically correct confidence intervals.

4.4. LinearMixedModels

Despite the long history of inference procedures for normal lin-
ear mixed models, a well-performing, unified inference method
is lacking. Analysis of variance (ANOVA)-based methods offer,
what tends to be, model-specific solutions. Bayesian methods
allow for solutions to very complex models, but determining an
appropriate prior distribution can be confusing.

Cisewski and Hannig (2012) proposed the use of GFI for
discretized linear mixed models that avoids the issues men-
tioned above. They started with the following data-generating
equation:

Y = Xβ +
r∑

i=1

σi

li∑
j=1

V i, jUi, j,

where X is a known n × p fixed-effects design matrix, β is the
p× 1 vector of fixed effects, V i, j is the n × 1 design vector for
level j of random effect i, li is the number of levels per random
effect i, σ 2

i is the variance of random effect i, and the Ui, j are
independent and identically distributed standard normal ran-
dom variables.

To compute the GFD in (18), Cisewski and Hannig (2012)
designed a computationally efficient modification of sequential
Monte Carlo (SMC) algorithm (Doucet, De Freitas, and Gordon
2001; Del Moral, Doucet, and Jasra 2006; Douc and Moulines
2008). The fiducial implementation includes a custom design
resampling and modification step that greatly improves the effi-
ciency of the SMC algorithm for this model.

Cisewski and Hannig (2012) performed a thorough simu-
lation study showing that the proposed method yields confi-
dence interval estimation for all parameters of balanced and
unbalanced normal linear mixed models. The fiducial intervals
were as good as or better than the best tailor made ANOVA-
based solutions for the simulation scenarios covered. In addi-
tion, for the models considered by Cisewski and Hannig (2012)
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and for the prior selected based on recommendations in the lit-
erature, the Bayesian interval lengths were not generally com-
petitive with the other methods used in the study.

The authors point out that even though more variation
was incorporated into the data for the generalized fiducial
method due to the use of discretized data, the generalized fidu-
cial method tended to maintain stated coverage (or be con-
servative) while having average interval lengths comparable or
shorter than other methods even though the competing meth-
ods assumed the data are observed exactly.

5. Computational Issues

This section presents some computational challenges involved
when applying GFI in practice and some possible solutions to
solve these challenges.

For any given model, we recall that the GFD is defined as the
weak limit in (2) and under fairly general conditions, the weak
limit has a density r(θ|y) given in (3). This density can often be
used directly to form estimates and asymptotic confidence inter-
vals for themodel parameters, in a similarmanner as the density
of the posterior distribution in the Bayesian paradigm. Standard
sampling techniques such as MCMC, importance sampling, or
sequentialMonte Carlo have been successfully implemented, for
example, Hannig et al. (2006a), Hannig (2009), Hannig and Lee
(2009),Wandler andHannig (2012b), and Cisewski andHannig
(2012).

The exact form of generalized fiducial density could be hard
to compute. For this reason, Hannig, Lai, and Lee (2014) pre-
sented a computationally tractable solution for conducting gen-
eralized fiducial inference without knowing the exact closed
form of the generalized fiducial distribution.

5.1. Evaluating the Generalized Fiducial Density via
Subsampling

In some situations, even the denominator of the density r(θ|y)
becomes too complicated to evaluate directly, particularly so
when the l∞ norm is used in (2). In such situations, the function
D(·) in (4) is a sum over all possible tuples of length p, that is,
D(A) = ∑

i=(i1,...,ip) |det(A)i|. If we have n observations, there
are in total

(n
p

)
number of possible tuples. If the sum cannot be

simplified analytically, one is obliged to compute all
(n
p

)
terms.

Such computations can become prohibitively expensive even for
moderate n and p. Appropriate approximations are required to
evaluate the density efficiently.

If the observations are iid and l∞ norm is used,
D( d

dθ
G(u, θ)|u=G−1(y,θ)) is a U -statistic. Given the strong

dependency of the terms in D(·), it seems possible to use much
less than

(n
p

)
terms for approximation without loss of accuracy.

Blom (1976) showed that incomplete U -statistic based on
random selection of K subsamples behaves very similar to the
complete U -statistic when n and K are large. On the basis of
this result, Hannig (2009), and its follow-up articles, we suggest
to replace D(·) by

D̂(A; IK ) =
∑
i∈IK

|det(A)i| ,

where IK is a random selection of K different p-tuples. Numeri-
cal simulations confirm that this approximation is very promis-
ing for a wide range of applications. In practice, a common
choice of K would be in the order of hundreds. One may want
to choose K keeping in mind that a small K may fail to yield a
good enough approximation. On the other hand, a large value
of K would cause too much computations and it may be not
favorable.

In most algorithms such as an MCMC sampler, the density
is repeatedly evaluated for different values of θ. We recommend
to keep the same choice of IK for different values of θ to gain
stability of the algorithm.

The above discussion also applies to the generalized fiducial
density (13) when model selection is involved.

6. Concluding Remarks and Open Problems

Aftermany years of investigations, the authors and collaborators
have demonstrated that GFI is a useful and promising approach
for conducting statistical inference. GFI has been validated by
asymptotic theory and by simulation in numerous small sample
problems. In this article, we have summarized the latest theoret-
ical and methodological developments and applications of GFI.
To conclude, we list some open and important research prob-
lems about GFI.

1. As mentioned earlier, the choice of data-generating
equation G in (1) is not unique for many problems.
Based on our practical experience gained from simula-
tions, GFD-based intervals are usually conservative and
often quite short as compared to competing methods
for small sample sizes. This property is not well under-
stood as traditional asymptotic tools (including higher
order asymptotics) do not explain it. Understanding this
nonasymptotic phenomenon will likely help both with
deeper understanding of GFI and the optimal choice of
G. Although our numerical experience suggests that dif-
ferent choices ofG only lead to small differences in prac-
tical performances, it would still be important to develop
an objective method for choosing G.

2. As an interesting alternative, one could modify the GFD
definition (2) by adding a penalty term p(·) on θ to
encourage sparse solutions:

lim
ε→0

[
arg min

θ�
‖y − G(U �, θ�)‖

+ p(θ�)
∣∣∣ ‖y − G(U �, θ�)‖ ≤ ε

]
. (19)

For example, in the context of linear regression with an
l1 penalty p(·), just as the lasso (Tibshirani 1996) and
Dantzig selector (Candes andTao 2007) do, (19) will lead
to sparse solutions. We stress that while obtaining sparse
point estimators through a minimization problem has
become a standard technique, (19) produces sparse dis-
tributions on the parameter space also as a result of opti-
mization. This is different from sparse posterior distri-
butions obtained as a result of sparsity priors. The hope
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is that this approach will lead to computationally effi-
cient ways of quantifying uncertainty in model selection
procedures.

3. One possible way to gain a deeper philosophical under-
standing of GFI is to find a general set of conditions
under which GFI is in some sense an optimal data-
dependent distribution on the parameter space (assum-
ing such a set exists). The work of Taraldsen and
Lindqvist (2013) that provides an initial result on a con-
nection between decision theory and fiducial inference
would be a good starting point.

4. It would be interesting to investigate the performance of
GFI when the data-generating equation is misspecified.
For example, what would happen to the empirical confi-
dence interval coverages ifN(0, 1) is used as the random
component when the truth is in fact t with 3 degrees of
freedom?

Lastly, we hope that our contributions to GFI will stimu-
late the growth, usage, and interest of this exciting approach
for statistical inference in various research and application
communities.

SupplementaryMaterials

The online supplementary materials contain the appendices for the article,
and code for many of the methods in this review.
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