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Abstract

In this paper we propose a Generalized Fiducial Inference inspired method for finding a robust
consensus of several independently derived collection of confidence distributions (CDs) for a quantity
of interest. The resulting fused CD is robust to the existence of potentially discrepant CDs in the
collection. The method uses computationally efficient fiducial model averaging to obtain a robust
consensus distribution without the need to eliminate discrepant CDs from the analysis. This work
is motivated by a commonly occurring problem in inter-laboratory trials, where different national
laboratories all measure the same unknown true value of a quantity and report their CDs. These
CDs need to be fused to obtain a consensus CD for the quantity of interest. When some of the CDs
appear to be discrepant, simply eliminating them from the analysis is often not an acceptable approach,
particularly so in view of the fact that the true value being measured is not known and a discrepant
result from a lab may be closer to the true value than the rest of the results. Additionally, eliminating
one or more labs from the analysis can lead to political complications since all labs are regarded as
equally competent. These considerations make the proposed method well suited for the task since no
laboratory is explicitly eliminated from consideration. We report results of three simulation experiments
showing that the proposed fiducial approach has better small sample properties than the currently used
naive approaches. Finally, we apply the proposed method to obtain consensus CDs for gauge block
calibration inter-laboratory trials and measurements of Newton’s constant of gravitation (G) by several
laboratories.

Keywords: Confidence distributions, generalized fiducial inference, model averaging, inter-laboratory
trials, key comparison experiments

∗Jan Hannig’s research was supported in part by the National Science Foundation under Grant No. 1016441 and
1512945.
†Xuhua Liu’s research was partly supported by the National Natural Science Foundation of China (Grant

No.11201478).

1



1 Introduction

Inter-laboratory trials are often conducted by leading metrology laboratories in the world to com-
pare each others’ capabilities for measuring various fundamental properties of substances. Such a
trial typically involves two or more participants each of whom measures the (nominally) same un-
known value (called measurand) and provides the result along with an assessment of the uncertainty
in the result. The results are meant to be the best estimates of the measurand the participating lab-
oratories are able to provide. Often the same or very similar protocols are used by the participating
laboratories. In some cases different subsets of participants use different methods for measuring the
same unknown quantity. This is particularly so when specific laboratories have special expertise
in particular measurement methods. The results from such experiments are used to gauge how
comparable the measurement capabilities are across the participating laboratories. In some cases
such experiments lead to the creation of certified reference materials (CRMs) and a consensus value
for the measurand is arrived at by combining the results from the participating laboratories. This
consensus value is used as the certified value for the CRM. The uncertainty associated with this
certified value is used to provide an interval estimate of the value for the CRM.

Key Comparisons

There is a particular class of inter-laboratory trials which takes on international significance. With
the signing of the Mutual Recognition Arrangement (MRA) CIPM (1999) in 1999, National Metrol-
ogy Institutes (NMI’s) and Regional Metrology Organizations (RMO’s) around the world have un-
dertaken the task of examining the degree of equivalence of their measurement standards. The
CIPM (Comité international des poids et mesures – The International Committee on Weights and
Measures), an entity whose principal task is to promote world-wide uniformity in units of measure-
ment, works with member countries on issues related to the creation of measurement standards and
comparisons of measurement capabilities of various national metrological laboratories (such as the
National Institute of Standards and Technology (NIST) in the U.S, the National Physical Labora-
tory (NPL) in Great Britain, and Physikalisch-Technische Bundesanstalt (PTB) in Germany), and
oversees the conduct of inter-laboratory experiments by participating NMIs to evaluate the rela-
tive measurement capabilities of each other and also to establish standard reference values (called
Key Comparison Reference Value(s) or KCRV) for many important fundamental measurements
and standards. The results obtained by the different laboratories are combined to arrive at the
consensus KCRV value. Such comparisons provide for the mutual recognition of calibration and
measurement certificates issued by NMIs and thereby to provide governments and other parties with
a secure technical foundation for wider agreements related to international trade, commerce and
regulatory affairs.

During any inter-laboratory trial it is generally the case that the results from one or a few
laboratories differ noticeably from the rest even though all participating laboratories are considered
to be more or less equally competent. It is natural to think that these apparently nonconforming
values should perhaps be excluded from the calculation of a consensus value. There are at least two
problems with this thinking. First, since the true value of the measurand is not known, one cannot
say, based on any objective evidence, that one result is more believable than another. Second,
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there are political overtones associated with leaving out measured results of a laboratory since all
participating laboratories are considered to be competent in their own right. Although discrepant
results are subjected to further scrutiny to make sure such discrepancies are not the result of
identifiable errors, when no errors are identified, each laboratory stands behind its result and the
associated statements of uncertainty. Hence the problem of arriving at a consensus value takes on
a greater level of significance when it comes to International Key Comparison Studies.

Gauge Blocks

A gauge block (Thalmann (2002)) is a length standard having flat and parallel opposing surfaces.
The cross-sectional shape is not very important, although the standard does give suggested dimen-
sions for rectangular, square and circular cross-sections. Gauge blocks have nominal lengths defined
in either the metric system (millimeters) or in the English system (1 inch = 25.4 mm). The length
of the gauge block is defined at standard reference conditions:

temperature = 20 ◦C (68 ◦F )
barometric pressure = 101,325 Pa (1 atmosphere)
water vapor pressure = 1,333 Pa (10 mm of mercury)
CO2 content of air = 0.03%.

The length of a gauge block is defined as the perpendicular distance from a gauging point on one
end of the block to an auxiliary true plane wrung to the other end of the block, as shown in Figure 1.

Figure 1: The length of a gauge block is the distance from the gauging point on the top surface to the plane of the
platen adjacent to the wrung gauge block.

Figure 2 shows a portion of the results from an international key comparison study (CCL-K1)
involving the measurement of the central length of steel gauge blocks (nominal length 8 mm) using
interferometry according to ISO 3650. Detailed results are available from the website of the Interna-
tional Bureau of Weights & Measures (BIPM). The URL for the website is http://kcdb.bipm.org/.
For instance, one can see, given the reported uncertainties, VNIIM (D.I. Mendeleev All-Russian In-
stitute for Metrology) appears to deviate the most from the rest of the measurements.
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Figure 2: Gauge Block Measurements by 11 National Metrological Laboratories. Nominal length is 8 mm. The
horizontal axis shows deviations (in nm) from the nominal value.

One of the issues that needs to be resolved is “how to treat this apparent outlier?” Alternatively,
how much weight should be given to this particular measurement if one were using a weighted
average approach to arrive at the KCRV?

The Key Comparison Study also considered gauge blocks of other nominal lengths besides the
8 mm gauge block. The estimates and uncertainties for the full set of steel gauge blocks for the 11
NMIs is given in Table 1. The entire array of issues related to this problem is more involved than
what we are able to present here.

Although the potential applications of Fiducial methods in this area has been investigated in the
literature (Iyer et al. (2004a,b)), a systematic and thorough treatment of Fiducial Methods robust
to potential outliers has not been carried out. In this paper we propose the use of generalized
fiducial model averaging approach applied to confidence distributions reported by the laboratories
to finding a consensus value robust to potentially discrepant laboratories.

When combining together information from the participating labs we use fusion learning tech-
niques (CD combination techniques) based on Generalized Fiducial Inference ideas of Hannig and
Xie (2012). This is described in Section 2. In particular, a novel, highly computationally efficient
algorithm for model averaging is presented in Section 2.3. We show good small sample properties
of the proposed method in Section 3. We demonstrate the new technique on the steel gauge block
data and measurements of Newton’s constant of gravitation (G) in Section 4. Section 5 concludes
with a summary.
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Nominal Lengths (in mm)
Lab 0.5 1.01 6 7 8 15 80 90 100

OFMET 17± 9 34± 9 52± 8 31± 8 −1± 8 16± 8 22± 11 -21 ± 12 -96 ± 13
NPL 20 ± 14 25.5 ± 14 54.5 ± 14 33.5 ± 14 1.5 ± 14 22.5 ± 15 38.5 ± 28 -14 ± 31 -140 ± 33
LNE 15 ± 10 25 ± 10 54 ± 10 35 ± 10 4 ± 10 20 ± 10 28 ± 14 -24 ± 15 -110 ± 16
NRC 29 ± 13 28 ± 13 36 ± 14 30 ± 14 2 ± 14 14 ± 14 9 ± 21 -37 ± 22 -126 ± 24
NIST 26 ± 8.9 42 ± 9 57 ± 9.4 34 ± 9.5 9 ± 9.6 30 ± 10.3 33 ± 16.1 -23 ± 17 -117 ± 17.9

CENAM 15 ± 7 20 ± 7 47 ± 7.1 26 ± 7.1 -3 ± 7.2 13 ± 7.4 21 ± 15.6 -19 ± 17.3 -119 ± 18.7
VNIIM * 60 ± 8 68 ± 8 25 ± 8 32 ± 8 36 ± 12 25 ± 14 -32 ± 15 - 104 ±
CSIRO 28 ± 9 46 ± 9 53 ± 9 37 ± 9 12 ± 9 51 ± 9 27 ± 14 -20 ± 15 -114 ± 16
NRLM 23.9 ± 8.6 17.7 ± 10.3 44.1 ± 10.3 27 ± 8.7 -2.2 ± 10.3 15.1 ± 10.9 47.3 ± 13.5 9.1 ± 14.3 -89.4 ± 16.3
KRISS 18.7 ± 13.1 20.3 ± 12.2 22.1 ± 13.6 12.8 ± 11 -24.2 ± 11 8.1 ± 13.2 30.4 ± 17 -18.4 ± 18.9 -104.3 ± 20.6
NIM 30 ± 5.4 48 ± 5.4 56 ± 5.5 42 ± 5.5 12 ± 5.5 28 ± 5.6 44 ± 8.9 18 ± 9.6 -90 ± 10.3

Table 1: CCL-K1 Measured results by 11 NMIs and combined standard uncertainties for steel gauge blocks for 9
different nominal lengths. The nominal lengths are in millimeters (mm). The values shown in the table are deviations
from the nominal values (in nm) plus or minus the combined standard uncertainty (also in nm)

2 Method

2.1 Confidence Distributions

A Confidence Distribution (CD) is a way to summarize information about a parameter contained
in the data. It is similar to Bayes posterior but is grounded in frequentist methodology. Heuristically
speaking, the CD function is obtained by stacking up one-sided confidence intervals of all levels.
Schweder and Hjort (2002); Singh et al. (2005) provide the following formal definition of a CD
function.
Definition 1. A function H(θ|y) on Θ× Y → [0, 1] is called a confidence distribution (CD) for a
parameter θ if it follows two requirements:

1. For each given Y ∈ Y , H(·|y) is a continuous cumulative distribution function on Θ;

2. At the true parameter value H(θ0|Y), as a function of the random Y (generated from the
distribution determined by the true parameter θ0), follows a uniform distribution U [0, 1], i.e.,
Pθ0 (H(θ0|Y) ≤ u) = u for all 0 < u < 1.

The function H(θ0|Y) is a conservative CD if condition 2 is replaced by Pθ0 (H(θ0|Y) ≤ u) ≤ u,
for all 0 < u < 1/2 and Pθ0 (H(θ0|Y) ≤ u) ≥ u, for all 1/2 < u < 1.

The function H(θ|y) is an asymptotic CD (aCD), if condition 2 is true only asymptotically (as
sample size goes to infinity) and the continuity requirement in condition 1 is dropped.

In general, fiducial distribution, objective Bayes posterior distribution, inversion of one sided
confidence intervals are all examples of CDs or aCDs. To demonstrate the idea of a CD on a simple
example, consider a sample of size n from a N(θ, σ2) distribution with sample mean x̄ and sample
standard deviation s. The data is summarized as y = (x̄, s2) and the corresponding CD is the
location-scale t distribution with distribution function

H(θ|y) = F t
n−1

(
θ − x̄
s/
√
n

)
,
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where F t
n−1 is the distribution function of the Student’s T distribution with n−1 degrees of freedom.

A useful graphical tool for visualizing a confidence distribution is a confidence curve (Birnbaum,
1961). For a given confidence distribution H(θ|y), a corresponding confidence curve is defined as
CV (θ) = 2|H(θ|y)−0.5|. On a plot of CV (θ) versus θ, each sub-level set {θ : CV (θ) ≤ α} is α-level
confidence set, 0 < α < 1. Thus, a confidence curve is a graphical device that shows confidence
intervals of all levels; see, e.g. Birnbaum (1961); Bender et al. (2005). The minimum of a confidence
curve is the median of the confidence distribution. It provides a point estimator which is typically
median unbiased (Birnbaum, 1961). Figure 3 shows an example of a confidence curve.
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Figure 3: Confidence curve for the mean of the normal distribution based on a sample of size 8.
The lowest point is the median of the CD that can be used as a point estimator and the interval
between the two points where the dotted line intersects the CD is the 95% confidence interval.

2.2 Fiducial inspired Confidence Distribution Fusion

Suppose there are K labs and lab i measures the object ni times, i = 1, . . . , K, and reports
the mean, Xi, of these ni measurements. We assume that the data generating equation for these
measurements is

Xi = µ+Bi +
σAi√
ni
Zi, i = 1, . . . , K (1)

Here µ is the true value of the measurand, ni
−1/2σAi

Zi are measurement errors (called type A
error)assumed to have N(0, σ2

Ai
/ni) distribution and Bi are lab specific unknown systematic errors

(called type B errors). The Bi cannot be measured directly. However it is assumed that each lab has
some prior information available to asses its size. This prior information often differs significantly
from lab to lab, so modeling it as a random effect with a common distribution across labs is not
appropriate. For example, see Table 7 in Thalmann (2002).

Typically, Bi is modeled as a random variable with zero mean and known standard deviation

6



σBi
often referred to as type-B uncertainty. Hence, the variance of Xi, denoted as σ2

Ci
, is given by

σ2
Ci

= σ2
Bi

+
σ2
Ai

ni
.

The inferences for µ are performed separately by each lab and reported as the triple yi =
(xi, ui, di) where xi is the realized value of Xi, ui is an estimate of σCi

and di is an effective degrees
of freedom associated with ui. The quantity ui is called the combined standard uncertainty (GUM,
1995). The value of di is generally determined using the Satterthwaite (1946) approximation for a
linear combination of independent χ2 random variables.

In particular, the estimate of the combined variance σ2
Ci

is

u2
i = σ2

Bi
+
s2
i

ni

where si is the sample standard deviation of the ni observations from lab i whose mean is xi. It
is assumed that diu

2
i /σ

2
Ci

is distributed (approximately) as a χ2 random variable with di degrees of
freedom. Since we assume that the type B error has a known variance, the corresponding type B
degrees of freedom dB =∞ and Satterthwaite (1946) approximation provides the following formula
for effective degrees of freedom

di = (ni − 1)
u4
i

s4
i /n

2
i

. (2)

The labs therefore report what is essentially a conservative Confidence Distribution given by the
location-scale t distribution with distribution function

Hi(µi | yi) = F t
bdic

(
µi − xi
ui

)
, (3)

where bdic is the floor of di; largest integer smaller than di. We take these lab reported CDs and
their type A degrees of freedom dAi

= ni − 1 as a starting point for our model averaging. Trying
to improve the lab reported CDs goes beyond the scope of this work and will be subject of future
work.

Because the labs are measuring the same quantity, it is reasonable to assume that most, if not
all, of the labs are actually providing unbiased estimates of µ. However, it is not uncommon for a
handful of labs to provide discrepant results. This may be the consequence of incorrect adjustments
by the labs to account for systematic errors or incorrect specification of σBi

. Our goal is to provide
a combined confidence distribution for the common value µ that is robust to discrepant results. We
first derive a combined CD assuming that all labs measure the same µi = µ. Then, in the next
section, we will address the issue of discrepant labs using a model selection approach.

Hannig and Xie (2012) provide a simple formula based on Dempster’s rule of recombination
(Dempster, 2008; Shafer, 1976) and generalized fiducial distribution (Hannig et al., 2016). The
density of the combined CD for µ is

h(µ | y) =

∑K
i=1

∂
∂µ
Hi(µ | yi)

∏
j 6=iDyj

Hj(µ | yj)∫∞
−∞
∑K

i=1
∂
∂µ
Hi(µ̄ | yi)

∏
j 6=iDyj

Hj(µ̄ | yj) dµ̄
(4)
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where Dyj
Hj(θ|yj) = ‖∇yj

Hj(θ|yj)‖2 is the Euclidean norm of the gradient of the Hj(θ|yj) com-
puted with respect to the observed measurements yj.

From equation (3) we have ∂
∂µ
Hi(µ | yi) = tbdjc

(
µ−xj
uj

)
, where tbdjc(s) is the density of a Student’s

T distribution with bdjc degrees of freedom. When calculating Dyj
Hj(µ|yj) we follow Hannig and

Xie (2012) and interpret the gradient as a vector of partial derivatives with respect to each of the
observations (measurements) rather than just the sufficient statistics. Thus

∇yj
Hj(θ|yj) = tbdjc

(
µ− xj
uj

)(
− 1

uj
∇yj

xj −
µ− xj
u2
j

∇yj
uj

)
,

with

∇yj
xj =

1

nj
1nj

, ∇yj
uj =

1

2njuj
∇yj

s2
j and ∇yj

s2
j =

2

nj − 1
(xj − xj1nj

).

Here xj denotes the vector of observations used to calculate the lab mean xj and 1nj
is a vector of

1s. The Euclidean norm of the gradient is then easily computed and using (2) simplified to

Dyj
Hj(µ|yj) = tbdjc

(
µ− xj
uj

)
1

n
1/2
j uj

(
1 +

(µ− xj)2

((nj − 1)dj)1/2u2
j

)1/2

. (5)

To numerically compute the confidence interval based on the combined generalized fiducial
distribution (4) we can use the following importance sampling algorithm (Robert and Casella,
2004, Section 3.3).

1. Generate Ri,l, a sample of size m from each of the generalized fiducial distribution Hi(µ|yi),
using Ri,l = xi − uiTi,l where Ti,l, l = 1, . . . ,m are independent Student’s T random variables
with di degrees of freedom.

2. For eachRi,l, i = 1, . . . K, l = 1 . . . ,m, compute unnormalized weightsWi,l =
∏

j 6=iDxHj(Ri,l|yj)
using (5).

3. Compute the importance sampling estimate of the distribution function of (4) by

Ĥ(µ | y) =

∑K
i=1m

−1
∑m

l=1Wi,lI[Ri,l,∞)(µ)∑K
i=1m

−1
∑m

l=1 Wi,l

, (6)

where the indicator I[Ri,j ,∞)(µ) = 1 if Ri,j ≤ µ and I[Ri,j ,∞)(µ) = 0 otherwise. To form

approximate confidence intervals use the appropriate quantiles of Ĥ(µ)

Finally notice that the normalizing constant in (6) is an estimate of the normalizing constant in
(4).

8



2.3 Model Selection

Let us now consider the situation where most of the labs are measuring the same correct value µ
while each remaining lab is measuring some incorrect value. We are interested in making inferences
about the true value µ without making any a priori assumptions about which labs are correct.
There are 2K − 1 possible such models ranging from only a single lab measuring the true value to
all the labs measuring the correct value.

Hannig and Lee (2009) have introduced model selection into the generalized fiducial paradigm.
Their results have been used for a multivariate normal model by Wandler and Hannig (2011, 2012).
The idea is to include the various models as a parameter in the setup of the problem and has been
formalized in Theorem 3.1 of Hannig et al. (2016) where a formula for fiducial probability of each
model is described.

Evaluating the fiducial probability for all models might be prohibitive in terms of computational
cost even for moderate values of K. One could build an MCMC chain that could estimate these
probabilities as has been done in Hannig and Lee (2009). In this paper we take a different route.
Instead of estimating the fiducial probability of each model, we propose an extremely efficient
algorithm that directly calculates the fiducial model averaged distribution for the common µ without
explicitly estimating any of the model probabilities. Our idea is based on a simple mathematical
observation. However, to our knowledge, this is the first time this computational trick has been
used for model averaging.

In our situation we consider as a model i ⊂ {1, . . . , K}, with i ∈ i if lab i was measuring µ and
s /∈ i if lab s measured some value other than µ. For a fixed model i, the joint fiducial density of
the common mean µ and the discrepant means µs, s /∈ i is equal to

hi(µ, µs, s /∈ i|y) = hi(y)−1

(∑
i∈i

∂

∂µ
Hi(µ | yi)

∏
j∈i, j 6=i

Dyj
Hj(µ | yj)

)∏
s/∈i

∂

∂µ
Hs(µs | ys).

Notice that
∫∞
−∞

∂
∂µ
Hs(µs | ys) dµs = 1 and therefore marginal density for the common parameter

µ and model i is

hi(µ|y) = hi(y)−1

(∑
i∈i

∂

∂µ
Hi(µ | yi)

∏
j∈i, j 6=i

Dyj
Hj(µ | yj)

)
(7)

where the normalizing constant is

hi(y) =

∫ ∞
−∞

∑
i∈i

∂

∂µ
Hi(µ̄ | yi)

∏
j∈i, j 6=i

Dyj
Hj(µ̄ | yj) dµ̄. (8)

Theorem 3.1 of Hannig et al. (2016) gives a generalized fiducial probability of each model as

h(i|y) =
qK−|i|+1hi(y)∑

j∈2{1,...,K} qK−|j|+1hj(y)
,
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where q is a penalty term to be specified below. The model averaged combined CD density for µ
obtained by weighing models by their fiducial probabilities is given by

h(µ | y) =
∑

j∈2{1,...,K}

hj(µ|y)h(j|y) =

∑
j∈2{1,...,K} qK−|j|+1hj(µ|y)hj(y)∑

j∈2{1,...,K} qK−|j|+1hj(y)
. (9)

The sum above is over 2K − 1 summands which could be prohibitively large even for medium
values of K. Instead of implementing (9) using an MCMC we instead insert the formulas from (7)
and (8) into (9), rearrange the terms and combine them into a product. After some algebra we get
the following computationally friendly version of the model averaged combined CD density

h(µ | y) =

∑K
i=1

∂
∂µ
Hi(µ | yi)

∏
j 6=i
(
1 + q−1Dyj

Hj(µ | yj)
)∫∞

−∞
∑K

i=1
∂
∂µ
Hi(µ̄ | yi)

∏
j 6=i
(
1 + q−1Dyj

Hj(µ̄ | yj)
)
dµ̄
. (10)

Notice that the numerator of (10) can be computed in K2 operations; it is a sum of K terms that
each are a product of K numbers.

Based on (10) we propose the following importance sampling algorithm that is usable for prac-
tical computations:

1. Generate Ri,l, a sample of size m from each of the generalized fiducial distribution Hi(µ|yi),
using Ri,l = xi − uiTi,l where Ti,l, l = 1, . . . ,m are independent Student’s T random variables
with di degrees of freedom.

2. For each Ri,l, i = 1, . . . K, l = 1 . . . ,m, compute unnormalized weights

W̃i,l =
∏
j 6=i

[
1 +Dyj

Hj(Ri,l|yj) q−1
]
,

where Dyj
Hj is given in (5) and q is in (11).

3. Compute the importance sampling estimate of the distribution function of (10) by

Ĥ(µ | y) =

∑K
i=1

∑M
l=1 W̃i,lI[Ri,l,∞)(µ)∑K
i=1

∑M
j=1 W̃i,l

.

To form approximate confidence intervals use the appropriate quantiles of Ĥ(µ|y).

The penalty term q is required to offset the propensity of the generalized fiducial distribution to
select models with larger number of parameters. Selection of the right penalty is somewhat of an art
very similar to selection a prior probability to each model. It is our experience that using Minimum
Description Length principle (Lee, 2001) and adjusting the MDL penalty by a multiplicative term to
make the procedure scale invariant often leads to good repeating sampling performance, see Hannig
et al. (2016); Wandler and Hannig (2011). Therefore, we propose to use the following penalty

q = MSE

(
K∑
i=1

u−2
i

)−1/2( K∑
i=1

ni

)−1/2

(11)
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where the type A mean square error MSE = K−1
∑K

i=1 niu
2
i

√
(ni − 1)/di.

Remark 1. The combined confidence distribution in (10) treats all the labs equally. However in
some situations we want to combine results that are similar to a preferred reference lab. This is
achieved by making sure that this lab is included in all the models considered. If the preferred lab
is lab r, this exhibits itself in (10) and the corresponding part of the importance sampling algorithm
by replacing “1+” in the formula with “I{j 6=r}+”.

3 Simulation Study

To demonstrate the small sample performance of our algorithm proposed in Section 2.3, we con-
ducted a simulation study consisting of measurements from 7 labs generated from each of three
different scenarios listed below.

• Scenario 0 : All 7 labs provide unbiased estimates of the true value. We take µi = 45, i =
1, . . . , 7 for concreteness.

• Scenario 1 : Six labs provide unbiased estimates of the true value µi = 45, i = 1, . . . , 6
and while one lab provides a biased estimate whose expectation is µ7 = 48. This mimics
the situation where one lab may incorrectly estimate the lab bias Bk and/or the standard
deviation of lab bias σBk

.

• Scenario 2 : Two clusters of labs. Labs in one cluster of size 4 make measurements with
expected value equal to 45 (that is µi = 45, i = 1, . . . , 4) and labs in the other cluster of size
3 make measurements with expected value equal to 48 (that is, µi = 48, i = 5, . . . , 7). This
setting simulates the situation where labs use fundamentally different methods for measure-
ment and it is impossible to know which of the labs, if any, are providing unbiased estimates
of the true value µ. Thus, there is no answer to which value is the truth.

For each scenario, we assume each lab makes the same number of measurements ni and thus same
type A degrees of freedom dAi

= ni− 1. Two values ni = 5, 15 are used in the simulation study. To
model the heterogeneity among the labs, different standard deviations of type A error and type B
error, σAi

and σBi
respectively, are generated from a Gamma distribution for each lab, i.e.

σAi
∼ Γ

(
ni,

1

ni

)
, σBi

∼ Γ

(
ni,

R

ni

)
in which R is the ratio of the mean of σBi

’s over the mean of σAi
’s. Four different ratios are

considered (R = 0, 1/3, 1, 2) for generating the data sets. Note that R = 0 implies type B error is
not present. For each collection of σBi

’s, the type B errors Bi are independently simulated, one per
lab, from normal distributions N(0, σ2

Bi
).

One hundred parameter sets of {σAi
, σBi

, Bi, i = 1, · · · , 7} are simulated for each combination
of ni and R. For each fixed parameter set, 1000 repetitions of the laboratory measurements, type A
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and combined standard errors are generated using

Xi = µi +Bi +
σAi√
ni
Zi, si = σAi

√
Wi

(ni − 1)
, ui =

√
s2
i

ni
+ σ2

Bi
,

where Zi ∼ N(0, 1) and Wi ∼ χ2
ni−1 are independent. The true parameter values µi, i = 1, · · · , 7

are set based on different scenarios.
Notice that the fact that the value of type B error Bi is fixed within each of the 1000 repetitions

leads to a behavior of the empirical coverage that is different from our usual experience. When R is
close to 0 (type B error is negligible) the empirical coverage computed based on the 1000 repetitions
should be close to the stated value for each of the 100 parameter sets. On the other hand, when R is
large (type B error dominates) the empirical coverage will be close to either 100% or 0% depending
on the value of Bi sampled. This is because the differences between the 1000 datasets are negligible
compared to the fixed value of Bi. Thus for R large, one should also evaluate whether the average
of empirical coverages computed across the 100 parameter sets is at or above the nominal coverage
value.

We compared the proposed method to two classical methods that are most commonly used for
calculating a consensus value in metrology (GUM, 1995; Rukhin, 2009): the arithmetic mean and
the variance weighted mean. The arithmetic mean x̄A and its estimated standard error are

x̄A =

∑K
i=1 xi
K

, σ̂x̄A =

√∑K
i=1 u

2
i

K
.

The weighted mean x̄W and its estimated standard error are

x̄W =

∑K
i=1 wixi∑K
i=1wi

, σ̂x̄W =

(
K∑
i=1

wi

)−1/2

, where wi = u−2
i .

Details for each scenario are discussed in Section 3.1, Section 3.2 and Section 3.3, respectively.

3.1 Scenario 0

The expected values for the measurements by the 7 labs are all equal to µi = 45, i = 1, . . . , 7. For
illustration, Figure 4 provides an example of the fiducial distribution of the consensus value for one
of the datasets generated for type A degrees of freedom dAi

= 4 and R = 0. The blue curves in
the left panel are kernel density estimates, i.e. smoothed histograms, of the fiducial samples for
each lab. It can be seen that the expected result for each lab deviates slightly from the true value
of 45 with different amounts of dispersion. The top black kernel density estimator shows that the
center of the consensus value distribution is around the true value 45. The top black confidence
curve in the right panel depicts the median estimate as 44.9 and 95% fiducial confidence interval as
[44.4, 45.4] which successfully covers the truth.
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42 43 44 45 46 47 48

Kernel Density Estimator

42 43 44 45 46 47 48

Median =44.884; 95% Confidence Interval: (44.413,45.413)

Figure 4: Fiducial estimate of one simulated data with σAi
, σBi

, Bi generated under Scenario 0 with
dAi

= 4 and R = 0. The top left black curve shows the kernel density estimate for the consensus
value with mode around 45. The top right black curve shows that the confidence curve covers the
true value 45 at 95% confidence level.

For each of the 100 parameter sets, we compute the coverage and lengths of the 95% confidence
intervals based on the 1000 simulated data sets. Box-plots shown in Figure 5 summarize the results
for the 100 parameter sets under different ratios R and type A degrees of freedom dAi

= ni−1. The
blue boxes display the coverages for fiducial method, while the green and yellow boxes, respectively,
show the coverages of arithmetic mean and weighted mean. Results are grouped by ratios for
dAi

= 4 (left) and dAi
= 14 (right). The average coverages are given underneath each box. When

only type A error is present (R = 0), the coverage of fiducial estimates and arithmetic mean are
around 95%, while the weighted mean has a much lower coverage, especially when dAi

= 4 (with
median coverage being around 80%). When type B error exists and increases (larger R), all three
methods tend to get 100% coverage. However, the arithmetic mean and the weighted mean are less
robust in the sense that they might get 0 coverage for certain parameter sets.

Additionally, we compute the average length of 95% confidence intervals of 1000 simulated data
sets for comparing the three methods. As before, Figure 6 displays the box-plots of fiducial method
(blue), arithmetic mean (green) and weighted mean (yellow) for different choices of type A degrees
of freedom and R. The confidence intervals gets wider with an increase in the ratio R and gets
shorter when the degree of freedom increases for all three methods. In general, the fiducial intervals
are wider than the others which is consistent with the coverage comparison in Figure 5.

3.2 Scenario 1

In this scenario, we try to mimic the consensus value estimation with a single apparently discrepant
lab, i.e. µi = 45, i = 1, . . . , 6 and µ7 = 48. Again, Figure 7 provides an illustration of the GFD of
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Figure 5: Coverage Comparison for Scenario 0 grouped by ratios R for dAi
= 4 (left) and dAi

= 14
(right). For each of the ratios are the boxplots are ordered left to right: fiducial method (the blue
boxes), arithmetic (green boxes) and weighted mean (yellow boxes). The average of the coverages
for each boxplot is indicated by a bold dot.

Figure 6: 95% CI length comparison, under Scenario 0, for dAi
= 4 (left) and dAi

= 14 (right) with
different ratios R. For each R the boxplots are in the following order: fiducial method (blue), arith-
metic mean (green), weighted mean (yellow). The average of lengths in each boxplot is indicated
by a bold dot. The CI gets wider with the increase in the ratio and gets narrower with the increase
in degree of freedom for all three methods.
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the consensus value for one simulated data set with dAi
= 4and R = 0. The bottom blue curves in

both panels indicates the presence of a discrepant lab. The black curves on the top show that the
consensus value estimate from the fiducial approach is around 45 and appears to be uninfluenced by
the apparently discrepant lab. The 95% confidence interval is [44.40, 45.18] which covers the true
value of the six non-discrepant labs. It can be seen that the fiducial consensus estimate is robust
against an outlier measurement from the apparently discrepant lab.

42 43 44 45 46 47 48 49 50

Kernel Density Estimator

42 43 44 45 46 47 48 49 50

Median =44.986; 95% Confidence Interval: (44.57,45.543)

Figure 7: One simulated data with σAi
and σBi

generated under Scenario 1 with dAi
= 4 and R = 0.

The kernel density estimates (left) indicate an apparently discrepant measurement from the last
lab. The black kernel density estimate and confidence curves for the consensus value demonstrate
the robustness of our proposed method against discrepant measurements.

We similarly compute the coverage of the 95% confidence interval for the true value µ = 45.
Box-plots for different choices of type A degrees of freedom and R are shown in Figure 8. The
fiducial method stays robust against the discrepant lab measurement and obtains similar coverages
as Scenario 0. Both arithmetic mean and weighted mean are adversly influenced by the discrepant
lab. When dAi

= 4, the coverages are only around 40% with no type B error or a small ratio
of type B error. Differing from Scenario 0, the coverages get worse with an increase in degree of
freedom since the evidence of the outlier lab gets stronger. The median coverages even drop to near
0 when R = 0 and dAi

= 14. When type B error dominates, both arithmetic and weighted mean
are unstable with the average coverage still well bellow the target 95%.

3.3 Scenario 2

We consider two clusters of labs in this scenario for simulating the situation where labs might use
different measuring methods. Recall that the true value of 4 labs is equal to 45 and the true value
of the other 3 labs is equal to 48. In this situation, it is not clear which of the two, 45 or 48, should
be the consensus value. This is illustrated in Figure 9 where GFD of the consensus value for two
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Figure 8: Coverage Comparison for Scenario 1: For each ratio R the methods are in the following
order: fiducial estimate (blue), arithmetic mean (green), weighted mean (yellow). The average of
the coverages for each boxplot are indicated by a bold dot. Fiducial estimate is robust against the
apparent discrepancy of one of the labs, while the other methods are strongly influenced, especially
in the case without type B error (R = 0).

simulated data sets generated with dAi
= 4 and R = 0 are shown. The first four blue curves are

centered around 45 representing the first cluster and the last three blue curves are centered around
48 from the second cluster. In the first row, the top black density estimate curve suggests that the
estimate of the consensus value is about 45 which is dominated by the cluster whose true value is
45. A small peak can be seen around 48 indicating the impact from the other cluster. Besides, the
black confidence curve shows the 95% confidence interval is [44.6, 47.9] which stretches towards the
true value of the other cluster of labs. The second row shows an example of a situation where the
value of 48 dominates. One of the labs in the second cluster has much smaller uncertainty compared
with the other labs. This is enough to move the mode of the fiducial distribution of the consensus
value to 48. The confidence curve suggests the 95% confidence interval is [44.6, 48.4], successfully
covering both true values.

The assessment of coverage is tricky in the current situation since there is no single correct value.
We evaluate two different coverage probabilities – (a) probability that at least one of the two values
(45 or 48) will be covered, and (b) the probability of covering both 45 and 48. Results are shown in
Figure 10 and Figure 11. The fiducial confidence intervals (blue boxes) cover at least one of the two
values nearly 100% of the time under the different parameter settings. However, both arithmetic
mean and weighted mean fail to capture any of the true values when ratio R = 0 and R = 1/3.

When it comes to simultaneous coverage of both values, 75% of the fiducial confidence intervals
have a coverage around or above 60% for R = 0 and R = 1/3. This should not be surprising
because our method was designed to capture the most dominant value, not both values. The other
two methods are unable to simultaneously cover both of the true values for any of the cases.
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42 43 44 45 46 47 48 49 50

Kernel Density Estimator

42 43 44 45 46 47 48 49 50

Median =45.06; 95% Confidence Interval: (44.587,47.947)

42 43 44 45 46 47 48 49 50

Kernel Density Estimator

42 43 44 45 46 47 48 49 50

Median =48.006; 95% Confidence Interval: (44.561,48.358)

Figure 9: Two simulated data sets with σAi
and σBi

generated under Scenario 2 with dAi
= 4 and

R = 0. The first example shows that the first cluster with 4 labs dominate the consensus value
estimation. The second example contains one lab with low estimated uncertainty in the cluster
with true value being 48. Therefore, the consensus estimate is shifted towards 48.
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Figure 10: Coverage Comparison (At Least One Cluster) for Scenario 2 for different ratios and
degrees of freedom. For each ratio R the methods are in the following order: fiducial estimate
(blue), arithmetic mean (green), weighted mean (yellow). The average of the coverages for each
boxplot is indicated by a bold dot. Notice that fiducial estimate is reliable at capturing at least one
cluster while the other two methods are not.

Figure 11: Coverage Comparison (Both Clusters) for Scenario 2 for different ratios and degrees
of freedom. For each ratio R the methods are in the following order: fiducial estimate (blue),
arithmetic mean (green), weighted mean (yellow). The average of the coverages for each boxplot is
indicated by a bold dot. We see that even though the fiducial estimate is only designed to capture
the dominant cluster it often captures both. The two methods almost never capture both clusters.
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3.4 Discussion of Simulation Results

Below is a brief summary of some main observations from the simulation study.
• In Scenario 0 and Scenario 1 the fiducial intervals cover the true µ with confidence level

greater than or equal to the nominal value of 95%. For Scenario 2 the coverage probability for
covering at least one of the two cluster means is greater than or equal to the nominal value.

• For arithmetic mean and weighted mean approaches, the coverage is nowhere near nominal
in most situations examined. For scenarios 1 and 2 the coverage is particularly bad. These
methods are unsuitable for situations when there may be discrepant labs.

• Although the arithmetic mean and the weighted mean provide 95% confidence intervals of
shorter expected length this is meaningless since their coverages are highly inadequate.

4 Data examples

4.1 Steel Gauge Blocks

In order to establish the metrological equivalence of national measurement standards and of cali-
bration certificates issued by national metrology institutes a set of key comparisons are chosen and
organized by the Consultative Committees of the CIPM or by the regional metrology organizations
in collaboration with the Consultative Committees (Thalmann, 2002). In September 1997, the
Consultative Committee for Length, CCL, decided upon a key comparison on gauge block mea-
surements by interferometry, named CCL-K1, starting in spring 1998, with the Swiss Federal Office
of Metrology (OFMET) as the pilot laboratory. The results of this international comparison con-
tribute to the mutual recognition arrangement (MRA) between the national metrology institutes
of the Metre Convention.

Ten gauge blocks of steel and 10 gauge blocks of tungsten carbide, of varying nominal lengths,
were circulated to 11 different NMIs. For the purpose of illustration we considered one particular
set of gauge block measurements corresponding to the nominal value of 8 mm. The results along
with their associated uncertainties are shown in Figure 2 and Table 1. What is actually reported
by each participating lab is the deviation (in nm) of the measured length from the nominal value.

The published reports Thalmann (2002) did not clearly spell out the degrees of freedom. In order
to apply the proposed method we selected the effective degrees of freedom di = 60, corresponding
to the degrees of freedom needed to get a critical value of 2 which is the typical multiplier used
in the metrology literature for constructing confidence intervals. The type B to type A standard
error ratio is typically around 1.5 in these problems and (2) gives the corresponding type A degrees
of freedom as dAi

= ni − 1 = 5. Figure 12 presents the estimates of kernel density curve (left)
and confidence curves (right). The 95% confidence interval is [−31.6, 37.3] nm with the median
estimate being 4.08 nm. The consensus value estimate mainly picks up the measurements of the
labs with mode around 0. The confidence interval takes the uncertainty caused by two discrepant
labs into consideration.
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Median =4.0777; 95% Confidence Interval: (-31.617,37.285)

Figure 12: Results of CCL data sets with effective degrees of freedom equal to 60 and type A degrees
of freedom equal to 5.

The arithmetic mean −0.2±3.5 nm and the weighted mean 0.1±3.2 nm are given in Thalmann
(2002) as the reference values. These results exclude the values of VNIIM and NIM based on
the decision of the CCL Working Group Dimensional Metrology (WGDM). Hence their confidence
intervals are narrower as VNIIM is the one most different from the others.

4.2 Newton’s Constant of Gravitation, G

Newton’s constant of gravitation G is a key constant that is needed for much fundamental research
in physics. Many advanced scientific labs measure G and report a value and an uncertainty. The
data set contains the values from 11 labs shown in Table 2. See Mohr et al. (2012) for details.

It turns out that the confidence interval for G from some labs exclude values from other labs,
so there is some inconsistency. This is perhaps due to severe underestimation by some or all the
labs of uncertainties in their results. The community seeks a consensus value that uses all available
information. We applied the proposed method and obtained an estimate depicted in Figure 13
computed using the default degrees of freedom values of di = 60 and dAi

= 5.
The blue curves show that two labs, with small uncertainties, perhaps coincidently, have nearly

the same mode around 6.674 × 10−11m3kg−1s−2. Besides, there are several labs whose results are
near this value with varying levels of uncertainties. The consensus estimate is therefore pulled
towards this number with 95% confidence interval being [6.6740, 6.6743]× 10−11m3kg−1s−2.

The value of G given by Mohr et al. (2012) is 6.67384 × 10−11m3kg−1s−2. The uncertainty is
0.00080 × 10−11m3kg−1s−2 which is the standard error of the weighted mean of the 11 values in
Table 2 multiplied by the factor of 14. This multiplication factor 14 is chosen ad hoc in order to
cover all the 11 values of G as none of them has an apparent issue besides the disagreement.
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ui: Combined
Organization Xi: Result Standard Uncertainty
NIST-82 6.67248 0.00043
TR&D-96 6.6729 0.00050
LANL-97 6.67398 0.00070
UWash-00 6.674255 0.000092
BIPM-01 6.67559 0.00027
UWup-02 6.67422 0.00098
MSL-03 6.67387 0.00027
HUST-05 6.67228 0.00087
UZur-06 6.67425 0.00012
HUST-09 6.67349 0.00018
JILA-10 6.67234 0.00014

Table 2: Summary of the results of measurements of the Newton’s constant of gravitation G. The units are
10−11m3kg−1s−2.

6.67 6.671 6.672 6.673 6.674 6.675 6.676 6.677

Median =6.6741; 95% Confidence Interval: (6.674,6.6743)

Figure 13: Results of Big-G data sets with effective degrees of freedom equal to 60 and type A
degrees of freedom equal to 5.

5 Summary

Many methods have been proposed for obtaining a consensus from inter-laboratory trials. See Rukhin
(2009) for a discussion. However, these methods do not adequately address robustness issues when
addressing the discrepancy among inter-laboratory results. In this paper we introduce a new method
based on generalized fiducial inference to obtain a robust consensus. The proposed new automatic
and computationally efficient fiducial model averaging algorithm achieves a self-weighting capabil-
ity, without the need to eliminate discrepant CDs. The three simulation experiments show that
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our proposed method has better small sample properties than the commonly used methods, e.g.,
the arithmetic mean and weighted mean. Applications to gauge block calibration inter-laboratory
trials and measurements of Newton’s constant of gravitation (G) also display the robustness of our
method since the reference value given in the reports either comes from the elimination of discrepant
laboratory values or from the multiplication of the uncertainty by an arbitrary factor.
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