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Abstract

Integrative analysis of disparate data blocks measured on a common set of experimen-

tal subjects is a major challenge in modern data analysis. This data structure naturally

motivates the simultaneous exploration of the joint and individual variation within each

data block resulting in new insights. For instance, there is a strong desire to integrate

the multiple genomic data sets in The Cancer Genome Atlas to characterize the com-

mon and also the unique aspects of cancer genetics and cell biology for each source. In

this paper we introduce Angle-Based Joint and Individual Variation Explained cap-

turing both joint and individual variation within each data block. This is a major

improvement over earlier approaches to this challenge in terms of a new conceptual

understanding, much better adaption to data heterogeneity and a fast linear algebra

computation. Important mathematical contributions are the use of score subspaces as

the principal descriptors of variation structure and the use of perturbation theory as the

guide for variation segmentation. This leads to an exploratory data analysis method

which is insensitive to the heterogeneity among data blocks and does not require sep-

arate normalization. An application to cancer data reveals different behaviors of each

type of signal in characterizing tumor subtypes. An application to a mortality data set

reveals interesting historical lessons.

Keywords: Data integration, Heterogeneity, Perturbation theory, Principal angle,

Singular value decomposition

1. Introduction

A major challenge in modern data analysis is data integration, combining diverse

information from disparate data sets measured on a common set of experimental sub-

jects. Simultaneous variation decomposition has been useful in many practical appli-

cations. For example, Kühnle (2011), Lock and Dunson (2013), Mo et al. (2013) per-5

formed integrative clustering on multiple sources to reveal novel and consistent cancer

subtypes based on understanding of joint and individual variation. The Cancer Genome
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Atlas (TCGA) (Network et al., 2012) provides a prototypical example for this problem.

TCGA contains disparate data types generated from high-throughput technologies. In-

tegration of these is fundamental for studying cancer on a molecular level. Other types10

of application include analysis of multi-source metabolomic data (Kuligowski et al.,

2015), extraction of commuting patterns in railway networks (Jere et al., 2014), recog-

nition of braincomputer interface (Zhang et al., 2015), etc.

A unified and insightful understanding of the set of data blocks is expected from

simultaneously exploring the joint variation representing the inter-block associations15

and the individual variation specific to each block. Lock et al. (2013) formulated this

challenge into a matrix decomposition problem. Each data block is decomposed into

three matrices modeling different types of variation, including a low-rank approxima-

tion of the joint variation across the blocks, low-rank approximations of the individual

variation for each data block, and residual noise. Definitions and constraints were pro-20

posed for the joint and individual variation together with a method named JIVE, see

https://genome.unc.edu/jive/ and O’Connell and Lock (2016) for Matlab

and R implementations of JIVE respectively.

JIVE was a promising framework for studying multiple data matrices. However,

the concepts of joint and individual variation were neither fully understood nor well25

defined. That led to problems in computation. The Lock et al. (2013) algorithm and

its implementation was iterative (thus slow) and had no guarantee of achieving a so-

lution that satisfied the definitions of JIVE. Another drawback of that approach was

a need for arbitrary normalization of the data sets which can be hard to choose in

some complicated contexts. The example in Figure B.12 in Appendix B shows this30

can be a serious issue. An important related algorithm named COBE was developed

by Zhou et al. (2016). COBE considers a JIVE type decomposition as a quadratic op-

timization problem with restrictions to ensure identifiability. While COBE removed

many of the shortcomings of the original JIVE, it was still iterative and often required

longer computation time than the Lock et al. (2013) algorithm. Neither Zhou et al.35

(2016) nor Lock et al. (2013) provided any theoretical basis for selection of a thresh-

olding parameter used for separation of the joint and individual components.

A novel solution, Angle-based Joint and Individual Variation Explained (AJIVE),

is proposed here for addressing this matrix decomposition problem. It provides an

efficient angle-based algorithm ensuring an identifiable decomposition and also an in-40

sightful new interpretation of extracted variation structure. The key insight is the use of

row spaces, i.e., a focus on scores, as the principal descriptor of the joint and individual

variation, assuming columns are the n data objects, e.g., vectors of measurements on

patients. This focuses the methodology on variation patterns across data objects, which

gives straightforward definitions of the components and thus provides identifiability.45

These variation patterns are captured by the score subspaces of Rn. Segmentation of

joint and individual variation is based on studying the relationship between these score

subspaces and using perturbation theory to quantify noise effects (Stewart and Sun,

1990).

The main idea of AJIVE is illustrated in the flowchart of Figure 1. AJIVE works50

in three steps. First we find a low rank approximation of each data block (shown as the

far left color blocks in the flowchart) using SVD with e.g. a threshold selected using a

scree plot. This is depicted (using blocks with colored dashed line boundaries) on the
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left side of Figure 1 with the black arrows signifying thresholded SVD. Next, in the

middle of the figure, SVD of the concatenated bases of row spaces from the first step55

(the gray blocks with colored boundaries) gives a joint row space (the gray box next to

the circle), using a mathematically rigorous threshold derived using perturbation the-

ory in Section 2.3. This SVD is a natural extension of Principal Angle Analysis, which

is also closely related to the multi-block extension of Canonical Correlation Analy-

sis (Nielsen, 2002) as well as to the flag means of the row spaces (Draper et al., 2014),60

see Section 5.2 for details. Finally, the joint and individual space approximations are

found using projection of the joint row space and its orthogonal complements on the

data blocks as shown as colored boundary gray squares on the right with the three joint

components at the top and the individual components at the bottom.

Using score subspaces to describe variation contained in a matrix not only empow-65

ers the interpretation of analysis but also improves understanding of the problem and

the efficiency of the algorithm. An identifiable decomposition can now be obtained

with all definitions and constraints satisfied even in situations when individual spaces

are somewhat correlated. Moreover, the need to select a tuning parameter used to dis-

tinguish joint and individual variation is eliminated based on theoretical justification70

using perturbation theory. A consequence is an algorithm which uses a fast built in

singular value decomposition to replace lengthy iterative algorithms. For the example

in Section 1.1, implemented in Matlab, the computational time of AJIVE (10.8 sec-

onds) is about 11 times faster than the old JIVE (121 seconds) and 39 times faster than

COBE (422 seconds). The computational advantages of AJIVE get even more pro-75

nounced on data sets with higher dimensionality and more complex heterogeneity such

as the TCGA data analyzed in Section 4.1. For a very successful application of AJIVE

on integrating fMRI imaging and behavioral data see Yu et al. (2017).

Other methods that aim to study joint variation patterns and/or individual varia-

tion patterns have also been developed. Westerhuis et al. (1998) discusses two types80

of methods. One main type extends traditional Principal Component Analysis (PCA),

including Consensus PCA and Hierarchical PCA first introduced by Wold et al. (1987,

1996). An overview of extended PCA methods is discussed in Smilde et al. (2003).

Abdi et al. (2013) discuss a multiple block extension of PCA called multiple factor

analysis. This type of method computes the block scores, block loadings, global load-85

ings and global scores.

The other main type of method is extensions of Partial Least Squares (PLS) (Wold,

1985) or Canonical Correlation Analysis (CCA) (Hotelling, 1936) that seek associated

patterns between the two data blocks by maximizing covariance/correlation. For ex-

ample, Wold et al. (1996) introduced multi-block PLS and hierarchical PLS (HPLS)90

and Trygg and Wold (2003) proposed O2-PLS to better reconstruct joint signals by

removing structured individual variation. A multi-block extension can be found in

Löfstedt et al. (2013).

Yang and Michailidis (2015) provide a very nice integrative joint and individual

component analysis based on non-negative matrix factorization. Ray et al. (2014) do95

integrative analysis using factorial models in the Bayesian setting. Schouteden et al.

(2013, 2014) propose a method called DISCO-SCA that is a low-rank approximation

with rotation to sparsity of the concatenated data matrices.

A connection between extended PCA and extended PLS methods is discussed
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Figure 1: Flow chart demonstrating the main steps of AJIVE. First low rank approximation of each data

block is obtained on the right. Then in the middle joint structure between the low rank approximations is

extracted using SVD of the stacked row basis matrices. Finally, on the right, the joint components (upper)

are obtained by projection of each data block onto the joint basis (middle) and the individual components

(lower) come from orthonormal basis subtraction.
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in Hanafi et al. (2011). Both types of methods provide an integrative analysis by taking100

the inter-block associations into account. These papers recommend use of normaliza-

tion to address potential scale heterogeneity, including normalizing by the Frobenius

norm, or the largest singular value of each data block etc. However, there are no consis-

tent criteria for normalization and some of these methods have convergence problems.

An important point is that none of these approaches provide simultaneous decomposi-105

tion highlighting joint and individual modes of variation with the goal of contrasting

these to reveal new insights.

1.1. Toy Example

We give a toy example to provide a clear view of multiple challenges brought

by potentially very disparate data blocks. This toy example has two data blocks, X110

(100 × 100) and Y (10000 × 100), with patterns corresponding to joint and individ-

ual structures. Such data set sizes are reasonable in modern genetic studies, as seen

in Section 4.1. Figure 2 shows colormap views of these matrices, with the value of

each matrix entry colored according to the color bar at the bottom of each subplot. The

data has been simulated so expected row means are 0. Therefore mean centering is not115

necessary in this case. A careful look at the color bar scalings shows the values are al-

most 4 orders of magnitude larger for the top matrices. Each column of these matrices

is regarded as a common data object and each row is considered as one feature. The

number of features is also very different as labeled in the y-axis. Each of the two raw

data matrices, X and Y in the left panel of Figure 2, is the sum of joint, individual and120

noise components shown in the other panels.

The joint variation for both blocks, second column of panels, presents a contrast

between the left and right halves of the data matrix, thus having the same rank one

score subspace. If for example the left half columns were male and right half were

female, this joint variation component can be interpreted as a contrast of gender groups125

which exists in both data blocks for those features where color appears.

The X individual variation, third column of panels, partitions the columns into two

other groups of size 50 that are arranged so the row space is orthogonal to that of the

joint score subspace. The individual signal for Y contains two variation components,

each driven by half of the features. The first component, displayed in the first 5000130

rows, partitions the columns into three groups. The other component is driven by the

bottom half of the features and partitions the columns into two groups, both with row

spaces orthogonal to the joint. Note that these two individual score subspaces for X
and Y are different but not orthogonal. The smallest angle between the individual

subspaces is 48°.135

This example presents several challenging aspects, which also appear in real data

sets such as TCGA, as studied in Section 4.1. One is that the values of the features are

orders of magnitude different between X and Y . There are two standard approaches

to handle this, both having drawbacks. Feature by feature normalization loses infor-

mation in X because Y has so many more features. Total power normalization tends140

to underweight the signal in Y because each feature then receives too little weight.

Another important challenge is that because the individual spaces are not orthogonal,

the individual signals are correlated. Correctly handling this is a major improvement

of AJIVE over earlier methods.
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The noise matrices, the right panels of Figure 2, are standard Gaussian random145

matrices (scaled by 5000 for X) which generates a noisy context for both data blocks

and thus a challenge for analysis, as shown in the left panels of Figure 2.

× × × ×

Figure 2: Data blocks X (top) and Y (bottom) in the toy example. The left panels present the observed data

matrices which are a sum of the signal and noise matrices depicted in the remaining panels. Scale is indicated

by color bars at the bottom of each sub-plot. These structures are challenging to capture using conventional

methods due to very different orders of magnitude and numbers of features.

Simply concatenating X and Y on columns and performing a singular value de-

composition on this concatenated matrix completely fails to give a meaningful joint

analysis. PLS and CCA might be used to address the magnitude difference in this ex-150

ample and capture the signal components. However, they target common relationships

between two data matrices and therefore are not able to simultaneously extract and dis-

tinguish the two types of variation. Moreover, because of its sensitivity to the strength

of the signal PLS misclassifies correlated individual components as joint components.

The original JIVE of Lock et al. (2013) also fails on this toy example. Details on all of155

these can be found in Appendix B.

The left panel of Figure 3 shows the AJIVE approximation of each data block

which well captures the signal variations within both X and Y . What’s more, our

method correctly distinguishes the types of variation showing its robustness against

heterogeneity across data blocks and correlation between individual data blocks. The160

approximations of both joint and individual signal are depicted in the remaining panels.

The rest of this paper is organized as follows. Section 2 describes the population

model and mathematical details of the estimation approach. Results of application to

a TCGA breast cancer data set and a mortality data set are presented in Section 4.

Relationships between the proposed AJIVE and other methods from an optimization165

point of view are discussed in Section 5.
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Figure 3: AJIVE approximation of the data blocks X and Y in the toy example are shown in the first column,

with the joint and individual signal matrices depicted in the remaining columns. Both quite diverse types

of variations are well captured for each data block by AJIVE, in contrast to other usual methods as seen in

Appendix B.

2. Proposed Method

In this section the details of the new proposed AJIVE are discussed. The popu-

lation model is proposed in Sections 2.1 and 2.2. The theoretical foundations based

on matrix perturbation theory from linear algebra (Stewart and Sun, 1990) are given170

in Section 2.3. These theoretical results motivate our estimation approach which is

proposed in Section 2.4.

2.1. Population Model - Signal

Matrices {Xk, k = 1, . . . ,K} (dk × n) are a set of data blocks for study, e.g. the

colored blocks on the left of Figure 1. The columns are regarded as data objects, one175

vector of measurements for each experimental subject, while rows are considered as

features. All Xk therefore have the same number of columns and perhaps a different

number of rows.

Each Xk is modeled as low rank true underlying signals Ak perturbed by additive

noise matrices Ek. Each low rank signal Ak is the sum of two matrices containing joint

and individual variation, denoted as Jk and Ik respectively for each block

⎡
⎢⎢⎢⎣
X1

X2

...

XK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
A1

A2

...

AK

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
E1

E2

...

EK

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
J1
J2
...

JK

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
I1
I2
...

IK

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
E1

E2

...

EK

⎤
⎥⎥⎥⎦ . (1)

Our approach focuses on the vectors in the row space of our matrices. In this context

these vectors are often called score vectors and the row space of the matrix is often

7



called score subspace(⊂ R
n). Therefore, the row spaces of the matrices capturing

joint variation, i.e., joint matrices, are defined as sharing a common score subspace

denoted as row(J)
row(Jk) = row(J), k = 1, . . . ,K.

The individual matrices are individual in the sense that the intersection of their score

subspaces is the zero vector space, i.e.

K⋂
k=1

row(Ik) = {�0}, k = 1, . . . ,K.

This means that there is no non-trivial common row pattern in every individual score

subspaces across blocks.180

To ensure an identifiable variation decomposition we assume row(J) ⊂ row(Ak),
which also implies row(Ik) ⊂ row(Ak), for k = 1, . . . ,K . Orthogonality between the

score subspaces of matrices containing joint and individual variation is also assumed.

In particular, row(J) ⊥ row(Ik), k = 1, . . . ,K . Note that orthogonality between

individual matrices {Ik, k = 1, . . . ,K} is not assumed as it is not required for the185

model to be uniquely determined.

Under these assumptions, the model is identifiable in the sense:

Lemma 2.1. Given a set of matrices {Ak, k = 1, . . . ,K}, there are unique sets of

matrices {Jk, k = 1, . . . ,K}, and {Ik, k = 1, . . . ,K} so that:

1. Ak = Jk + Ik , k = 1, . . . ,K190

2. row(Jk) = row(J) ⊂ row(Ak), k = 1, . . . ,K

3. row(J) ⊥ row(Ik), k = 1, . . . ,K

4.
K⋂

k=1

row(Ik) = {�0}.

The proof is provided in Appendix A. This model has enhanced the matrix de-

composition idea proposed in Lock et al. (2013) by providing a clearer mathematical195

framework and precise understanding of the different types of variation. In particu-

lar, Lock et al. (2013) imposed rank constraints on the joint matrices i.e. rank(Jk)
are the same for all data blocks but did not clearly stipulate the need of a common

score space. An unnecessary orthogonality among individual matrices was further sug-

gested, although not explicitly enforced in the estimation, for ensuring a well defined200

decomposition.

2.2. Population Model - Noise

The additive noise matrices are assumed to follow an isotropic error model where

the energy of projection is invariant to direction in both row and column spaces. Impor-

tant examples include the multivariate standard normal distribution and the multivariate205

student t–distribution (Kotz and Nadarajah, 2004). The singular values of each noise

matrix are assumed to be smaller than the smallest singular values of each signal to

give identifiability.
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The assumption on the noise distribution here is less strong than the classical i.i.d.

Gaussian random matrix, and only comes into play when determining the number of210

joint components. The estimation approach given in Section 2.3 reconstructs each

signal matrix based on SVD and bootstrap-like resampling and thus is relatively insen-

sitive to the error distribution.

2.3. Theoretical Foundations

The main challenge is segmentation of the joint and individual variation in the215

presence of noise which individually perturbs each signal. Let {Ãk, k = 1, . . . ,K}
be noisy approximations of {Ak, k = 1, . . . ,K} respectively. The subspaces of joint

variation within the approximations Ãk, while expected to be similar, are no longer ex-

actly the same due to noise. If some subspaces of {Ãk, k = 1, . . . ,K} are very close,

they can be considered as estimates of the common score subspace under different per-220

turbations. Application of the results of the Generalized sin θ Theorem (Wedin, 1972)

is proposed to decide when a set of subspaces are close enough to be regarded as esti-

mates of the joint score space. Based on this theorem, the number of joint components

can be determined resulting in an appropriate segmentation.

Take the approximation Ãk of Ak as an example of perturbation of the score space225

of each matrix. For consistency with the Generalized sin θ Theorem, we use the fol-

lowing pseudometric as a notion of distance between theoretical and perturbed sub-

spaces. Let Qk, Q̃k be the l dimensional score subspaces of Rn respectively for the

matrix Ak and its approximation Ãk. The corresponding symmetric projection ma-

trices are PQk
and PQ̃k

. The distance between the two subspaces is defined as the230

difference of the projection matrices under the operator L2 norm, i.e., ρ(Qk, Q̃k) =
‖PQk

− PQ̃k
‖ (Stewart and Sun, 1990).

An insightful understanding of this pseudometric ρ(Qk, Q̃k) comes from a princi-

pal angle analysis (Jordan, 1875; Hotelling, 1936) of the subspaces Qk and Q̃k. De-

note the principal angles between Qk and Q̃k as Θ(Qk, Q̃k) = {θk,1, . . . , θk,l} with235

θk,1 ≥ θk,2 . . . ≥ θk,l. The pseudometric ρ(Qk, Q̃k) is equal to the sine of the maxi-

mal principal angle, i.e., sin θk,1. This suggests that the largest principal angle between

two subspaces can indicate their closeness, i.e. distance. Under a slight perturbation,

the largest principal angle between Qk, a theoretical subspace, and Q̃k, its perturbed

subspace, is expected to be small.240

The pseudometric ρ(Qk, Q̃k) can be also written as

ρ(Qk, Q̃k) = ‖(I − PQk
)PQ̃k

‖ = ‖(I − PQ̃k
)PQk

‖

which brings another useful understanding of this definition. It measures the rel-

ative deviation of the signal variation from the theoretical subspace. Accordingly,

the similarity/closeness between the subspaces and its perturbation can be written as

‖PQk
PQ̃k

‖ and is equal to the cosine of the maximal principal angle defined above,

i.e. cos θk,1. Hence, sin2 θk,1 indicates the percentage of signal deviation and cos2 θk,1245

tells the percentage of remaining signal in the theoretical subspace.

The generalized sin θ theorem provides a bound for the distance between a sub-

space and its perturbation, e.g., the subspaces Qk and Q̃k. This bound quantifies how
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the theoretical subspace Qk is affected by noise. In particular, the following is an

adaptation of the the generalized sin θ theorem to our setup:250

Theorem 2.2 (Wedin, 1972). For k = 1, · · · ,K , signal matrix Ak is perturbed by

additive noise Ek . Let θk,1 be the largest principal angle for the subspace of signal Ak

and its approximation Ãk. Denote the SVD of Ãk as ŨkΣ̃kṼ
T
k . The distance between

the subspaces of Ak and Ãk, ρ(Qk, Q̃k) i.e. sines of θk,1, is bounded

ρ(Qk, Q̃k) = sin θk,1 ≤ max(‖EkṼk‖, ‖ET
k Ũk‖)

σmin(Σ̃k)
, (2)

where σmin(Σ̃k) is the smallest singular value of Ãk.

This bound measures how far the perturbed space can be away from the theoretical

one. The deviation is bounded by the maximal value of noise energy on the column

and row spaces and also the smallest signal singular values. This is consistent with

the intuition that a deviation distance, i.e., a largest principal angle, is small when the255

signal is strong and perturbations are weak.

Notice that the bound in Theorem 2.2 is applicable but cannot be directly used for

data analysis since the error matrices Ek are not observable. As the error matrices are

assumed to be isotropic, we propose to re-sample noisy directions from the residuals

of the low rank approximations. The operator L2 norm of the error related terms in260

Theorem 2.2 can thus be estimated by projecting the observed data onto the subspace

spanned by re-sampled directions. This re-sampling based method can also provide

prediction intervals for these perturbation bounds. More details of estimating the per-

turbation bound will be discussed next.

2.4. Estimation Approach265

A three-step algorithm as illustrated in Figure 1 is outlined below. This algorithm

uses SVD in each step. As a basic illustration for each step we use the toy example

described in Section 1. Details for each step appear in the following subsections.

Step 1: Signal Space Initial Extraction: Even though the signal components

{Ak, k = 1, . . . ,K} are low rank, the data matrices {Xk, k = 1, . . . ,K} are usually270

of full rank due to presence of noise. SVD works as a signal extraction device in

this step, keeping components with singular values greater than selected thresholds

individually for each data block.

When selecting these thresholds, one needs to be aware of a bias/variance like trade-

off. Setting the threshold too high will provide an accurate estimation of the parts of275

the joint space that are included in the low rank approximation. The downside is that

significant portions of the joint signal might be thresholded out. This could be viewed

as a low variance high bias situation. If the threshold is set low than it is likely that the

joint signal is included in all of the blocks. However, the precision of the segmentation

in the next step can deteriorate to the point that most of the joint space selected is driven280

by noise. This can be viewed as the low bias high variance situation.

Most off the shelf automatic procedures for low rank matrix approximation have

as their stated goal signal reconstruction and prediction which based on our experience
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lead to thresholds that are too small. This is sensible as adding a little bit more noise

usually helps prediction but it has bad effects on signal segmentation. We therefore285

recommend taking a multi-scale perspective and trying several threshold choices, for

example, by manually finding several relatively big jumps in a scree plot. Figure 4

shows the scree plots of each data block for the toy example in Section 1. The left

scree plot for X suggests a selection of rank as 2 and the right one for Y suggests rank

3, since in both cases those components stand out while the rest of the singular values290

decay slowly showing no clear jump.

×

Figure 4: Scree plots for the toy data sets X (left) and Y (right). Both plots display the singular values

associated with a component in descending order versus the index of the component. The components with

singular values above the dashed red threshold line are regarded as the initial signal components in the first

step of AJIVE.

Let {r̃k, k = 1, . . . ,K} be the initial estimates of the signal ranks {rk, k =
1, . . . ,K}. In the toy example r̃1 = 2 (for X) and r̃2 = 3 (for Y ). Each data block

has a low rank approximation, Ãk (represented in Figure 1 as the boxes with dashed

colored boundaries on the left), which is the initial estimate of the signal matrix Ak,

k = 1, . . . ,K . The estimate is decomposed as

Ãk = ŨkΣ̃kṼ
T
k , (3)

where Ũk contains the left singular vectors that correspond to the largest r̃k singular

values respectively for each data block. The initial estimate of the signal score space,

denoted as row(Ãk), is spanned by the right singular vectors in Ṽk (shown as gray

boxes with colored boundaries on the left).295

Step 2A: Score Space Segmentation of Two Data Blocks: For a clear introduc-

tion to the basic idea of score space segmentation, the two-block special case (K = 2)

is first studied. The goal is to use the low rank approximations Ãk from equation (3) to

obtain estimates of the common joint and individual score subspaces. Due to the pres-

ence of noise, the components of row(Ãk), k = 1, 2, corresponding to the underlying300

joint space, no longer are the same, but should have a relatively small angle. Similarly,

the components corresponding to the underlying individual spaces are expected to have
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a relatively large angle. This motivates the use of principal angle analysis to separate

the joint from the individual components. The following Lemma 2.3 provides a bound

on the largest allowable principal angle of the joint part of the initial estimated spaces.305

Lemma 2.3. Let φ be the largest principal angle between two subspaces that are each

a perturbation of the common row space within row(Ã1) and row(Ã2). That angle is

bounded by

sinφ ≤ sin(θ1,1 + θ2,1) (4)

in which θ1,1 and θ2,1 are the angles given in Theorem 2.2.

The proof is provided in Appendix A. As mentioned in Section 2.3, the perturbation

bounds of each θk,1 require the estimation of terms ‖EkṼk‖, ‖ET
k Ũk‖ for k = 1, 2.

These terms are the measurements of energies of noise matrices projected onto the sig-

nal column and row spaces. Since an isotropic error model is assumed, the distribution310

of energy of the noise matrices in arbitrary directions are supposed to be equal. Thus,

if we sample directions orthogonal to the estimated signal and use the observe data

Xk instead of Ek, this should provide a good estimator of the distribution of the un-

observed terms ‖EkṼk‖, ‖ET
k Ũk‖. To this end, denote Ṽ ⊥

k (n × (min(dk, n) − r̃k))

and Ũ⊥
k (dk × (min(dk, n) − r̃k)) as the respective orthonormal bases of the row and315

column subspaces of the residual matrices from the low rank approximations in equa-

tion (3) and resample non-zero column vectors from the matrices Ṽ ⊥
k and Ũ⊥

k . Notice

that these matrices are not full rank.

Take the term ‖EkṼk‖ as an example for illustration. Given the r̃k number of col-

umn vectors resampled without replacement from Ṽ ⊥
k , denoted as V �, the observed320

data block Xk is projected onto the subspace spanned by V �, written as XkV
�. The

distribution of the operator L2 norm ‖XkV
�‖ approximates the distribution of the un-

known ‖EkṼk‖. Thus we resample 1000 of ‖XkV
�‖ and use the quantiles to provide

both a point estimate and a simulated prediction interval for ‖EkṼk‖. This can be

similarly applied to ‖ET
k Ũk‖ for k = 1, 2, resulting in a prediction interval for the325

perturbation bound. Typically the median is chosen as the estimate of the angle bound

for exploratory analysis. This will result in 50% confidence that all joint components

are included. For certain cases where finding most of the joint components is desired,

the 95th percentile of these estimated terms can be used to derive a conservative angle

threshold, resulting in at least 95% confidence of finding all joint components that were330

included in Step 1.

To investigate the validity of this approximation to Theorem 2.2 we performed

a small scale simulation study based on the example of Section 1.1. We generated

10,000 independent copies of the data sets X (100 × 100, true signal rank 2) and Y
(1000× 100, true signal rank 3). Then for several low rank approximations (columns335

of Table 1) we calculated the estimate of the angle between the true signal and the low

rank approximation using the approximation above. Table 1 reports the percentage of

the times the corresponding quantile of the resampled estimate is bigger than the true

angle for the matrix X . We see that the performance for the square matrix X is sat-

isfactory as the empirical percentages are close to the nominal values. Corresponding340

empirical percentages for the high dimensional low sample size data set Y are all 100

%, and thus are not shown. This is caused by the fact that Wedin’s bound can be very
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Table 1: Coverages of the prediction intervals of the true angle between signal and low rank approximation

for X . Rows are nominal levels. Columns are ranks of approximation (where 2 is the correct rank). The

simulation shows good performance for the square matrix X .

1 2 3

50% 91.9% 63.6% 100.0%

90% 100.0% 89.6% 100.0%

95% 100.0% 93.7% 100.0%

99% 100.0% 98.0% 100.0%

conservative if the matrix is far from square. We also compared the estimated angle

between the perturbed joint spaces in X and Y with the actual angle. As expected

the estimate remains conservative with all of the 10000 estimates being larger than the345

true angle. Recent work of Cai and Zhang (2016) may provide a potential approach for

improvement.

One of the ways of computing the principal angles between row(Ã1) and row(Ã2)
is to perform SVD on a concatenation of their right singular vector matrices (Miao and Ben-Israel,

1992), i.e.,

M �

[
Ṽ T
1

Ṽ T
2

]
= UMΣMV T

M , (5)

where the singular values, on the diagonal of ΣM , determine the principal angles,

Φ(row(Ã1), row(Ã2)) = {φ1, . . . , φl} as

φi = arccos((σM,i)
2 − 1), i = 1, . . . ,min(r̃1, r̃2). (6)

Given a left singular vector UM,i denoted as �u, a pair of principal vectors {�pi, �qi}
in each subspace can be constructed by projecting Ṽ1 and Ṽ2 onto the vector �u. Denote

�u as the concatenation of [�u1; �u2]. Note that the length of �u1 is equal to the number of350

columns of Ṽ1 and similarly for the other part. The principal vectors in each subspace

can be written as �pi = Ṽ1�u1 and �qi = Ṽ2�u2 respectively. The angle between the pair

of principal vectors θi is equal to the principal angle computed from the singular value

corresponding to �u.

As discussed in Section 5.2 the vector �vi, the corresponding right singular vector of355

VM , points in the same direction as the sum of principal vector pairs of each subspace.

When the principal angle φi is smaller than the perturbation boundφ, this right singular

vector is taken as an estimate of the theoretical joint direction.

This SVD decomposition can be understood as a tool that sorts pairs of directions

within the two subspaces in increasing order of the angle between each pair. When the360

corresponding principal angle is smaller than the perturbation bound φ, the pair of prin-

cipal vectors can be considered as noisy versions of the same joint direction. Assume

there are r̃J principal angles smaller than the bound φ. The first r̃J singular vectors �vi
are used as the natural orthonormal basis of the estimated joint score subspace.

The left panel of Figure 5 depicts the principal angles of the concatenated right365

singular vector matrices for the toy example in Section 1.1. Since the initial estimates
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of rx and ry are 2 and 3, there are only two potential components for joint variation.

The associated principal angles between the initially estimated signal row spaces are

labeled next to the first two components as 10.99° and 47.11°. The estimated bound

on the principal angle in Lemma 2.3 based on 50% prediction is 31.29° for this toy370

example, shown as the central red dashed line. The 5% and 95% one-sided prediction

intervals of the angle bound are [0, 30.00] and [0, 32.92] degrees, shown as green

dashed lines. Each provides a respective 5% and 95% chance for including all the joint

components. This provides a clear indication that the number of joint components

should be r̃J = 1. The corresponding first right singular vector of M will be taken as375

the joint score vector.

Step 2B: Score Space Segmentation of Multiple Data Blocks: To generalize the

above idea to more than two blocks, the key is to focus more on singular values than

on angles in the equation (6). In other words, instead of finding an upper bound on an

angle, we will focus on a lower bound on the remaining energy as expressed by the sum380

of the squared singular values. Hence, an analogous SVD will be used for studying the

closeness of multiple initial signal score subspace estimates.

For the vertical concatenation of right singular vector matrices

M � (Ṽ1, · · · , ṼK)T = UMΣMV T
M . (7)

SVD sorts the directions within these K subspaces in increasing order of amount of

deviation from the theoretical joint direction. The squared singular value σ2
M,i indicates

the total amount of variation explained in the common direction V T
M,i in the score385

subspace of Rn. A large value of σ2
M,i (close to K) suggests that there is a set of basis

vectors within each subspace that are close to each other and thus are potential noisy

versions of a common joint score vector. A threshold on singular values is needed to

segment the joint components. This is done in Lemma 2.4.

Lemma 2.4. Let θk be the bound on the principal angles between the theoretical sub-

space row(Ak) and its perturbation row(Ãk) for K data blocks from Theorem 2.2. The

squared singular values (σ2
M,i) corresponding to the estimates of joint components sat-

isfy

σ2
M,i ≥ K −

K∑
k=1

sin2 θk ≥ K −
K∑

k=1

(max(‖EkṼk‖, ‖ET
k Ũk‖)

σmin(Σ̃k)

)2
. (8)

The proof is provided in Appendix A. This lower bound is independent of the vari-390

ation magnitudes. This property makes AJIVE insensitive to scale heterogeneity across

each block when extracting joint variation information.

As above, the terms ‖EkṼk‖, ‖ET
k Ũk‖ are resampled to derive a point estimate

and prediction interval for the threshold. As for the two-block case, if there were r̃J
singular values selected, the first r̃J right singular vectors are used as the basis of the395

estimate of row(J).
The right panel of Figure 5 depicts the first 2 singular values of the vertical con-

catenated matrix M for the toy example. This is an analysis of the same data, but

performed on the scale of squared singular values instead of principal angles. The as-

sociated squared singular values are labeled next to these two component as 1.98 and400
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1.68. The estimated threshold, targeting median prediction, is 1.85 for the toy example.

This threshold together with its 5% and 95% one sided prediction intervals, [1.86, +∞]
and [1.84, +∞] respectively, strongly suggest that the number of joint components r̃J
should be 1.

Figure 5: Left panel: Principal angles between the initial estimates of signal row spaces. The bound for the

largest angle is 31.29 degree, suggesting the existence of one joint component. To indicate the uncertainty,

the 5% and 95% one-sided prediction intervals of the angle threshold are also shown. Right panel: Squared

singular values plot of the vertical concatenated matrix M for the toy example. Both thresholds correctly

capture the underlying structure of this toy example with the selection of one joint component.

Step 3: Final Decomposition: Based on the estimate of the joint row space, ma-405

trices containing joint variation in each data block can be reconstructed by projecting

Xk onto this estimated space. Define the matrix ṼJ as [�vM,1, . . . , �vM,r̃J ], where �vM,i

is the ith column in the matrix VM . To ensure that all components continue to satisfy

the identifiability constraints from Section 2.2, we check that, for all the blocks, each

‖Xk�vM,i‖ is also above the corresponding threshold used in Step 1. If the constraint is410

not satisfied for any block, that component is removed from ṼJ . A real example of this

happens in Section 4.1. An important point is that this removal can happen even when

there is a common joint structure in all but a few blocks.

Denote V̂J as the matrix ṼJ after the removal and r̂J as the final joint rank. The

projection matrix onto the final estimated joint row space row(Ĵ) is PJ = V̂J , repre-

sented as the red rectangle in Figure 1. The estimates of joint variation matrices in each

block are

Ĵk = XkPJ , k = 1, . . . ,K.

The row space of joint structure is orthogonal to the row spaces of each individual

structure. Therefore, the original data blocks are projected to the orthogonal space of

row(Ĵ). The projection matrix onto the orthogonal space of row(Ĵ) is P⊥
J = I − PJ

and the projections of each data block are denoted as X⊥
k respectively for each block

i.e.

X⊥
k = XkP

⊥
J .

These projections are represented as the circled minus signs in Figure 1.

Finally we threshold this projection by performing SVD on {X⊥
k , k = 1, . . . ,K}.415

The components with singular values larger than the first thresholds from Section 2.4
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are kept as the individual components, denoted as {Î⊥k , k = 1, . . . ,K}. The remaining

components of each SVD are regarded as an estimate of the noise matrices.

By taking a direct sum of the estimated row spaces of each type of variation, de-

noted by ⊕, the estimated signal row spaces are

row(Âk) = row(Ĵ)⊕ row(Îk)

with rank r̂k = r̂J + r̂Ik respectively for k = 1, . . . ,K .

Due to this adjustment of directions of the joint components, these final estimates420

of signal row spaces may be different from those obtained in the initial signal extraction

step. Note that even the estimates of rank r̂k might also differ from the initial estimates

r̃k.

3. Post AJIVE Data Representation

Given the variation decompositions of each data block, as shown on the right side

of Figure 1, several types of post AJIVE representations are available for exploring

the joint and individual variation patterns. The estimates of the colored joint matrices

within each data block are represented by SVD

Ĵk = Ûk
J Σ̂

k
J V̂

kT
J , k = 1, . . . ,K (9)

in which V̂ k
J are the n× r̂J joint score matrices. Note that the singular values Σ̂k

J can425

be completely different across k, since they are driven by the score variation pattern

and can reflect very different amounts of variation between the blocks. The loading

matrices Ûk
J (dk × r̂J ) respectively specify distinct r̂J -dimension loading subspaces of

R
dk for each block k.

There are three important matrix representations of the information in the JIVE430

joint output (i.e. the three boxes on the upper right, with colored dashed boundaries),

with differing uses in post AJIVE analyses.

1. Full Matrix Representation. For applications where the original features are the

main focus (such as finding driving genes) the full matrix representations Ĵk
(dk × n), k = 1, . . . ,K are most useful. Thus the JIVE output is the product of435

all three blocks in each dashed box. Examples are shown in Figure 3.

2. Block Specific Score (BSS). For applications where the relationships between

subjects are the main focus (such as discrimination between subtypes) large com-

putational gains are available by using the much lower dimensional representa-

tions Σ̂k
J V̂

kT
J (r̂J×n). In this case the JIVE output is the product of the right two440

blocks in each dashed box. This results in no loss of information when rotation

invariant methods are used.

3. Common Normalized Score (CNS). When it is desirable to study the compo-

nent of joint behavior that is separate from the within block variation (such as

evaluating the relationship between data objects), the analysis should focus on445

a common basis of row(Ĵ), namely V̂ T
J (r̂J × n) from Section 2.4. Hence, the

JIVE output is only the block shown with gray interior.
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The relationship between BSS and CNS is analogous to that of the traditional co-

variance (i.e PLS) and correlation (i.e CCA) modes of analysis.

Furthermore, different representations provide different views of the loadings. The450

full matrix representation and BSS naturally obtain the information from the loading

matrix Ûk
J . CNS gives a different representation of the loadings. Given the common

basis of row(Ĵ), one can perform regression for Ĵk on each score vector in V̂J , from

which the standardized coefficient vector can be taken as the CNS loading. By doing

this, there is no guarantee of orthogonality between CNS loading vectors. However,455

the loadings are linked across blocks by their common scores. Therefore, in this CNS

case, the standardized regression coefficients are recommended for use instead of the

classical loadings.

The individual variation within blocks can be similarly analyzed resulting in both

BSS and CNS analyses for the individual components as indicated in the lower right

two blocks in Figure 1. When original features are important, the full matrix

Îk = Ûk
I Σ̂

k
I V̂

kT
I , k = 1, . . . ,K

with dimension dk × n are available. Otherwise large computational savings are avail-

able from the BSS version Σ̂k
I V̂

kT
I (r̂Ik × n), k = 1, . . . ,K . For studying scale free460

behaviors, use the Individual Normalized Score (INS) V̂ kT
I (r̂Ik × n). For individual

components, the matrix Ûk
I can be taken as loadings for all three representations as the

INS matrices cannot be the same.

4. Data Analysis

In this section, we apply AJIVE to two real data sets, TCGA breast cancer in Sec-465

tions 4.1 and Spanish mortality in Section 4.2.

4.1. TCGA Data

A prominent goal of modern cancer research, of which The Cancer Genome At-

las (Network et al., 2012) is a major resource, is the combination of biological insights

from multiple types of measurements made on common subjects.470

TCGA provides prototypical data sets for the application of AJIVE. Here we study

the 616 breast cancer tumor samples from Ciriello et al. (2015), which had a com-

mon measurement set. For each tumor sample, there are measurements of 16615 gene

expression features (GE), 24174 copy number variations features (CN), 187 reverse

phase protein array features (RPPA) and 18256 mutation features (Mutation). These475

data sources have very different dimensions and scalings.

The tumor samples are classified into four molecular subtypes: Basal-like, HER2,

Luminal A and Luminal B. An integrative analysis targets the association among the

features of these four disparate data sources that jointly quantify the differences be-

tween tumor subtypes. In addition, identification of driving features for each source480

and subtype is obtained from studying loadings.

In the first step of AJIVE we selected low rank approximations of dimensions 11
(GE), 6 (CN), 8 (RPPA) and 12 (Mutation). This gave us the most interpretable and
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insightful analysis resulting in one joint component. After selection of the threshold in

step 1, it took AJIVE 400 seconds (6.7 minutes) to finish steps 2 and 3.485

In the second AJIVE step, the one sided 95% prediction interval suggested selection

of two joint components. However, the third step indicated dropping one joint compo-

nent, because the norm of the projection of the mutation data on that direction, i.e. the

second CNS, is below the threshold from Step 1. This result of one joint component

was consistent with the expectation of cancer researchers, who believe the mutation490

component has only one interesting mode of variation. A careful study of all such pro-

jections shows that the other data types, i.e. GE, CN and RPPA, do have a common

second joint component as discussed at the end of this section. The association between

the CNS and genetic subtype differences is visualized in the left panel of Figure 6. The

dots are a jitter plot of the patients, using colors and symbols to distinguish the sub-495

types (Blue for Basal-like, cyan for HER2, red for Luminal A and magenta for Luminal

B). Each symbol is a data point whose horizontal coordinate is the value and vertical

coordinate is the height based on data ordering. The curves are Gaussian kernel density

estimates i.e. smoothed histograms, which show the distribution of the subtypes.

Figure 6: Left: Kernel density estimates of the CNS among GE, CN, RPPA and mutation. The clear separa-

tion between Luminal A versus the other subtypes indicates that these four data blocks share a very strong

Luminal A property captured in this joint variation component; Right: The CNS from applying AJIVE to the

individual matrices of GE, CN, and RPPA. The clear separation indicates that these contain a joint variation

component that is consistent with the subtype difference between Basal versus the others.

The clear separation among density estimates suggest that this joint variation com-500

ponent is strongly connected with the subtype difference between Luminal A versus the

other subtypes. To quantify this subtype difference, a test is performed using the CNS

of this joint component evaluated by the DiProPerm hypothesis test (Wei et al., 2015)

based on 100 permutations. Strength of the evidence is usually measured by permuta-

tion p-values. However, in this context empirical p-values are frequently zero. Thus a505

more interpretable measure of strength of the evidence is the DiProPerm z-score. This

is 29.32 for this CNS. An area under the receiver operating characteristic (ROC) curve

(AUC) (Hanley and McNeil, 1982) of 0.915, is also obtained to reflect the classifica-

tion accuracy. These numbers confirm the strong Luminal A property shared by these

four data types.510
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A further understanding can be obtained by identifying the feature set of each data

type which jointly works with the others in characterizing the Luminal A property. By

studying the loading coefficients, important mutation features TP53,TTN and PIK3CA

are identified which are well known features from previous studies. Similarly the dom-

inants of GATA3 in RPPA is well known, and is connected with the large GATA3515

mutation loading. A less well known result of this analysis is the genes appearing

with large GE loadings. Many of these are not dominant in earlier studies, which had

focused on subgroup separation, instead of joint behavior.

As noted in the discussion of Step 2 above, all four data types have only one sig-

nificant joint component. However, the individual components for all of GE, CN and520

RPPA seem to have 3-way joint components. This is investigated by performing a

second AJIVE analysis. In particular, we apply the second and third step to the 3 in-

dividual variation matrices from the initial analysis. Notice that all individual matrices

are low rank and thus the first step is not necessary. The AJIVE analysis results in one

joint variation component which is displayed in the right panel of Figure 6. This joint525

variation component clearly shows the differences among Basal, HER2 and Luminal

subtypes. In particular, a subtype difference between Basal-like versus the others is

quantified using the DiProPerm z-score (29.82) and the AUC (0.998). Considering the

fact that the AUC of the classification between Basal-like versus the others using all the

original separate GE features is 0.999, this single joint component contains almost all530

the variation information for separating Basal-like from the others. This hierarchical

application of AJIVE reveals an important joint component that is specific to GE, CN

and RPPA but not to Mutation.

We repeated the analysis using a higher number of individual components, select-

ing 11 (GE), 16 (CN), 33 (RPPA) and 29 (Mutation) in step 1. We found two joint535

components with the first joint component similar to the 4-way joint component and

the second joint component similar to the 3-way joint component discussed above. The

running time of steps 2 and 3 increased to around 10 minutes.

4.2. Spanish Mortality Data

A quite different data set from the Human Mortality Database is studied here, which540

consists of both Spanish males and females. For each gender data block, there is a ma-

trix of mortality, defined as the number of people who died divided by the total, for

a given age group and year. Because mortality varies by several orders of magnitude,

the log10 of the mortality is studied here. Each row represents an age group from 0

to 95, and each column represents a year between 1908 and 2002. In order to asso-545

ciate the historical events with the variations of mortality, columns (i.e. mortality as

a function of age) are considered as the common set of data objects of each gender

block. Marron and Alonso (2014) performed analysis on the male block and showed

interesting interpretations related to Spanish history. Here we are looking for a deeper

analysis which integrates both males and females by exploring joint and individual550

variation patterns.

AJIVE is applied to the two gender blocks centered by subtracting the mean of

each age group. The most interesting AJIVE analysis comes from 3 male and 3 female

components. The resulting AJIVE gives 2 joint components and 1 of each individual

component. Since the loading matrices provide important information on the effect of555
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different age groups, BSS analysis together with loading matrices is most informative

here.

Figure 7 shows a view of the first joint components for the males (left) and females

(right) that is very different from the heat map views used in Section 1.1. While these

components are matrices, additional insights come from plotting the rows of the matri-560

ces as curves over year (top) and the columns as curves over age (bottom). The curves

over year (top) are colored using a heat color scheme, indexing age (black = 0 through

red = 40 to yellow = 95 as shown in the vertical color bar on the bottom left). The

curves over age (bottom) are colored using a rainbow color scheme (magenta = 1908

through green = 1960 to red = 2002, shown in the horizontal color bar in the top) and565

use the vertical axis as domain with horizontal axis as range to highlight the fact that

these are column vectors. Additional visual cues to the matrix structure are the hor-

izontal rainbow color bar in the top panel, showing that year indexes columns of the

data matrix and the vertical heat color bar (bottom) showing that age indexes rows of

the component matrix. Because this is a single component, i.e. a rank one approxima-570

tion of the data, each curve is a multiple of a single eigenvector. The corresponding

coefficients are shown on the right. In conventional PCA/SVD terminology, the upper

BSS coefficients are called loadings, and are in fact the entries of the left eigenvectors

(colored using the heat color scale on the bottom). Similarly, the lower coefficients are

called scores and are the entries of the right eigenvectors, colored using the rainbow575

bar shown in the top.

The scores plots together with the rows as curves plots in Figure 7 indicate a dra-

matic improvement in mortality over time for both males and females. The scores plots

are bimodal indicating rapid overall improvement in mortality around the 1950s. This

is also visible as the steepest part in the rows as curves plot. Thus the first mode of580

joint variation is driven by overall improvement in mortality. In addition to the over-

all improvement, the rows as curves and scores plots also show the major mortality

events, the global flu pandemic of 1918 and the Spanish Civil war in the late 1930s.

The loading plots together with the columns as curves plots present the different im-

pacts of this common variation on different age groups for males and females. The585

loadings plot for males suggests the improvement in mortality is gradually increasing

from older towards younger age groups. In contrast, the female block has a bimodal

kernel density estimate of the loadings. This shows that females of child bearing age

have received large benefits from improving health care. This effect is similarly visible

from comparing the female versus male columns as curves.590

The second BSS components of joint variation within each gender are similarly

visualized in Figure 8. This common variation reflects the contrast between the years

around 1950 and the years around 1980 which can be told from the curves in the left

top and the colors in the right bottom subplots in both male and female panels. In the

scores plots, the green circles, seen on the left end, represent the years around 1950595

when automobile penetration started. And the orange to red circles on the right end

correspond to recent years, and much improved car and road safety. The upper left

loadings plot of males shows that these automobile events had a stronger influence on

the 20-45 males in terms of both larger values and a second peak in the kernel density

estimate. Although this contrast can also be seen in the loadings plot of females, it is600

not as strong as for the male block. The JC2 loadings plots show an interesting outlier,
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Figure 7: The first BSS joint components of male (left panel) and female (right panel) contain the common

modes of variation caused by the overall improvement across different age groups, as can be seen from the

scores plots in the right bottom of each panel. The dramatic decrease happened around the 1950s shown in

the columns plots. The degree of decrease varies over age groups.

the babies of age zero. We speculate this shows an improvement in post-natal care that

coincidently happened around the same time.

Figure 8: The second joint components of male (left) and female (right) contain the common modes of

variation driven by the increase in fatalities caused by automobile penetration and later improvement due to

safety improvements. This can be seen from the scores plots in the right bottom. The loadings plots show

that this automobile event exerted a significantly stronger impact on the 20-45 males.

Another interesting result comes from the studying first individual components

(IC1) of males and females, shown in Figure 9. In the scores plot of males (left),605

the blue circles stand out from the rest, corresponding to the years of the Spanish civil

war when a significant spike can be seen in the rows as curves plot. Young to middle

age groups are affected more than the others which can be found in the loadings plot

and columns as curves plot. This year variation pattern, however, cannot be detected

in the individual variation component of females. The columns as curves plot on the610

lower left suggest some type of 5-year age rounding effect, which is seen to occur

mostly during the earlier years as indicated both in the rows as curves plot and the col-

ors of the peaks in the columns as curves plot. Note that the plot scales show that the

21



individual female effects are much smaller in magnitude than the male effects.

Figure 9: The individual component of male (left) contains the variation driven by the Spanish civil war

which can be seen from the blue circles on the right end of the right bottom plot. The Spanish civil war

mainly affected the young to middle age males.

5. Optimization perspective615

In this section we will investigate how AJIVE compares to PLS, CCA and COBE

using the optimization problems that each method is based on. Recall that Xk, k =
1, . . .K are (dk × n) data matrices, with SVD decompositions Xk = UXk

ΣXk
V T
Xk

,

where ΣXk
contains no zeros on its diagonal. To be compatible with AJIVE, we will

consider these three algorithms in a non-standard configuration using row spaces. In

Section 5.1 and 5.2, we assume that the matrices Xk are row centered. We will also

use the following notation: for �a1 ∈ R
d1 ,�a2 ∈ R

d2

〈�a1X1,�a2X2〉 = Cov(�a1X1,�a2X2) =
√
Var(�a1X1)Var(�a2X2)Corr(�a1X1,�a2X2).

5.1. Partial Least Squares

The PLS finds linear combinations of rows of X1 and X2 maximizing their sam-

ple covariance. More precisely, the PLS identifies a set of pairs of principal vectors,

indexed by i, obtained sequentially from the following maximization problems:

{�a(i)1 ,�a
(i)
2 } = argmax

�a1∈R
d1 ,�a2∈R

d2

〈�a1X1,�a2X2〉

subject to the constraints: ‖�a1‖ = 1, ‖�a2‖ = 1,

〈�a1X1,�a
(j)
1 X1〉 = 0, 〈�a2X2,�a

(j)
2 X2〉 = 0, j = 1, · · · , i− 1.

(10)

Unlike AJIVE, the directions from PLS are influenced by both variance within data

blocks and correlation between the data blocks. In particular, if the signal strength of

the individual structure is sufficiently large it might be mistakenly classified as a joint

structure by being found ahead of the real joint structure. This phenomenon can be620

seen in the analysis of the toy example of Section 1.1 in Appendix B.
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5.2. Canonical Correlation Analysis/ Principal Angle Analysis

Similar to PLS, the CCA finds linear combinations of rows of X1 and X2 maxi-

mizing their sample correlation. In particular, CCA identifies a set of pairs of canonical

vectors obtained sequentially from the optimization problem:

{�a(i)1 ,�a
(i)
2 } = argmax

�a1∈R
d1 ,�a2∈R

d2

〈�a1X1,�a2X2〉

subject to the constraints: ‖�a1X1‖ = 1, ‖�a2X2‖ = 1

〈�a1X1,�a
(j)
1 X1〉 = 0, 〈�a2X2,�a

(j)
2 X2〉 = 0, j = 1, · · · , i− 1.

(11)

This form makes the relationship between (10) and (11) clear and is equivalent to the

usual formulation of optimizing the correlation.

There is an important relationship between CCA and PAA (Björck and Golub, 1973),

i.e., if ρi = 〈�a(i)1 X1,�a
(i)
2 X2〉 is the ith canonical correlation, ρi = cos(θi), where θi is

the ith principal angle between row spaces of X1 and X2. The principal vector pairs

{�x1,i, �x2,i} = {�a(i)1 X1,�a
(i)
2 X2} are often obtained through SVD of V T

X1
VX2

. In par-

ticular, let �uX1,i, �uX2,i be the ith left and right singular vectors of V T
X1

VX2
. Then, the

ith pair of principal vectors are

�x1,i = �uT
X1,i

V T
X1

, �x2,i = �uT
X2,i

V T
X2

.

An issue with CCA of high-dimensional data is related to the fact that CCA is625

interested in the canonical vectors �ai rather than the principal vectors �xi. In partic-

ular, when d1 > n, d2 > n, the values of �ai in (11) are not identifiable due to the

singularity of X1X
T
1 and X2X

T
2 . Several approaches have been taken to solve this

problem. One approach is to use the Moore-Penrose pseudo inverse to replace the in-

verse of X1X
T
1 and X2X

T
2 . A second approach is to add a ridge penalty on X1X

T
1 and630

X2X
T
2 (Vinod, 1976). A third approach called penalized CCA is to add penalty func-

tions on {�a(i)1 ,�a
(i)
2 }, such as an �1 penalty (Parkhomenko et al., 2007; Lê Cao et al.,

2009), an elastic net (Waaijenborg et al., 2008) or a fused lasso (Witten et al., 2009).

Another approach called diagonal penalized CCA is to replace X1X
T
1 and X2X

T
2 by

diag(X1X
T
1 ) and diag(X2X

T
2 ) (Parkhomenko et al., 2009; Witten et al., 2009).635

Another important issue with CCA, which is directly related to AJIVE, is that when

d1 > n, d2 > n, CCA is generally driven by noise. Lee (2007); Samarov (2009); Lee

(2016) study the asymptotic behavior of CCA in the high-dimension low sample size

context and point out the inconsistency phenomenon in this case. One can solve this

issue, like AJIVE and COBE, by replacing Xk by its low rank approximation Ãk, k =640

1, 2. Recall notation from (3). The ith principal vectors are �pi = Ṽ1�u1,i, �qi = Ṽ2�u2,i,

where �uj,i is the ith singular vector of Ũi of the SVD of Ṽ T
1 Ṽ2 respectively.

As discussed in Section 2, AJIVE uses an equivalent principal angle calculation

based on SVD of M = [Ṽ1, Ṽ2]
T = UMΣMV T

M (Miao and Ben-Israel, 1992). AJIVE

uses the transpose of the ith right singular vector, V T
M,i, as the estimated ith basis vector

of the joint space, provided that the ith principal angle is smaller than the threshold

derived in Section 2.4. Moreover, if the ith principal angle has a value distinct from
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other principal angles, then the ith left singular vector of M can be written as UM,i =
[�uT

1,i, �u
T
2,i]

T /
√
2. Consequently

V T
M,i =

1

σM,i

UT
M,iM =

1√
2σM,i

(�uT
1,iṼ

T
1 + �uT

2,iṼ
T
2 ) =

1√
2σM,i

(�pTi + �qTi ).

This shows that the AJIVE direction V T
M,i is the scaled sum of the ith pair of principal

vectors.

CCA applied to the low rank approximations Ãk and AJIVE are therefore closely645

related. However, AJIVE provides one joint vector per two distinct principal vectors

that by the virtue of being an average should be a better estimate of the joint space than

either of the principal vectors. More importantly, AJIVE uses a theoretically sound

threshold of the principal angles that allows us to segment individual and joint varia-

tion.650

The AJIVE formulation allows for a natural extension to multi-block situations.

Several approaches of Multiset Canonical Correlation Analysis (mCCA) have been

developed as extensions of CCA (Horst, 1961; Kettenring, 1971; Nielsen, 2002). There

is no general consensus on which of these extensions is preferable. We point out that

AJIVE is closely related to one of the mCCA discussed in Nielsen (2002).655

This version of mCCA is defined using the optimization problem for the ith set

of canonical vectors {�a(i)1 , · · · ,�a(i)K } and corresponding principal vectors (also called

canonical variables) {�a(i)1 X1, · · · ,�a(i)K XK}:

{�a(i)1 , · · · ,�a(i)K } = argmax
�a1,··· ,�aK

∑
1≤k,l≤K

〈�akXk,�alXl〉

subject to the constraints:

K∑
k=1

‖�akXk‖22 = 1,

〈�akXk,�a
(j)
k Xk〉 = 0, k = 1, · · · ,K, j = 1, · · · , i− 1.

(12)

Notice that the constraint in (12) is different than the perhaps more natural ‖�akXk‖22 =
1 for all k.

If the ith singular value corresponding to the AJIVE direction V T
M,i has a value

distinct from other singular values in the AJIVE SVD, then calculations similar to the

two block case show that the ith basis vector of the joint space from AJIVE

V T
M,i =

1

σM,i

K∑
k=1

�a
(i)
k Xk

is the scaled sum of the corresponding canonical variables. In fact, V T
M,i is the ith flag

mean of the row spaces of X1, · · · , XK , as defined by Draper et al. (2014), which thus

is a building block of AJIVE.660

5.3. Common Orthogonal Basis Extraction

Zhou et al. (2016) proposed a compelling optimization problem for finding the
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common orthogonal basis (COBE). It is based on iteratively solving

āi = argmin
ā, zi,k,k=1,··· ,K

K∑
k=1

‖Ṽkzi,k − ā‖2

subject to the constraints: ‖ā‖2 = 1, 〈ā, āj〉 = 0, j = 1, . . . , i− 1.

(13)

To compare COBE to AJIVE we first simplify the objective function of (13) to

K∑
k=1

‖Ṽkzi,k − āi‖22 =
K∑

k=1

‖Ṽkzi,k‖22 +K‖āi‖22 − 2
K∑
k=1

〈Ṽkzi,k, āi〉

= ‖zi‖22 +K‖āi‖22 − 2zTi Māi.

where zi = [zi,1, · · · , zi,K ]. If we fix the value of ‖zi‖ we see that the solution to the

optimization problem (13) is the same as SVD of M with āi = VM,i. Moreover this

solution is invariant in ‖zi‖.

Thus the optimization problem (13) gives the same result as AJIVE. However,665

because AJIVE uses well optimized SVD rather than a heuristic iteration algorithm,

AJIVE is much faster than the COBE algorithm. Moreover, COBE lacks any princi-

pally based standard on how to choose the threshold for selecting the joint space.

To understand why this is a serious issue consider the results of applying COBE

to the TCGA data discussed in detail in the next section. To make comparisons fair670

we provided COBE the same selected first stage ranks for each data block as AJIVE.

COBE’s default threshold for separating joint and individual structure of 0.01 is too

low to find any joint component, even after we raised the selected ranks in the first step

to 11 (GE), 16 (CN), 33 (RPPA) and 29 (Mutation).

Therefore we tried raising the default threshold 0.01 to 1, in which case COBE fails675

to finish on our computer due to its inefficient handling of high dimensional data. To

see if COBE would run with a smaller three-block data set we removed the highest

dimensional data block (CN) from the analysis. When using input ranks 11 (GE), 33

(RPPA), and 29 (Mutation) COBE finished in 6.6 hours returning the joint components

of rank 11. This is unreasonable as it selected the largest possible joint space. As a680

comparison, AJIVE applied to the three-block data and given the same first stage ranks

finished in around 6 minutes returning 2 joint components.
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Appendix A. Proofs

Proof of Lemma 2.1. Define the row subspaces respectively for each matrix Ak as

row(Ak) ⊆ R
n. For non-trivial cases, define a subspace row(J) �= {�0} as the in-

tersection of the row spaces {row(Ak), k = 1, . . . ,K} i.e.

row(J) �

K⋂
k=1

row(Ak).
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For each matrix Ak, two matrices Jk, Ik can be obtained by projection of Ak on

row(J) and its orthogonal complement in the row space row(Ak). Thus the two ma-

trices satisfy Jk + Ik = Ak and their row subspaces are orthogonal with each other,

i.e. row(J) ⊥ row(Ik), k = 1, . . . ,K . Then the intersection of the row subspaces690

{row(Ik), k = 1, · · · ,K},
K⋂

k=1

row(Ik), has a zero projection matrix. Therefore, we

have
K⋂

k=1

row(Ik) = {�0} and have obtained a set of matrices simultaneously satisfying

the stated constraints.

On the other hand, it follows from the assumptions that the row space row(Ak) is

spanned by the union of basis vectors of row(Jk) and row(Ik), which indicates

row(J) =

K⋂
k=1

row(Ak).

Accordingly, the matrices Jk and Ik for k = 1, . . . ,K are also uniquely defined.

695

Proof of Lemma 2.3. Let P1 and P2 be the projection matrices onto the individually

perturbed joint row spaces. And let P be the projection matrix onto the common joint

row space J . Thus, we have

sin θ = ‖(I − P1)P2‖ (A.1)

≤ ‖(I − P1)(I − P )P2‖+ ‖(I − P1)PP2‖ (A.2)

≤ ‖(I − P1)(I − P )‖‖(I − P )P2‖+ ‖(I − P1)P‖‖PP2‖ (A.3)

in which ‖(I−P1)P‖ = sin θ11, ‖(I−P1)(I−P )‖ = cos θ1, ‖(I−P2)P‖ = sin θ2,1
and ‖(I − P2)(I − P )‖ = cos θ2,1. Therefore,

sinφ ≤ cos θ1,1 sin θ2,1 + sin θ1,1 cos θ2,1 = sin(θ1,1 + θ2,1).

Proof of Lemma 2.4. Notation from (5) and (7) is used here. For each singular value

σM,i, it can be formulated as a sequential optimization problem i.e

σ2
M,i = maxQ‖MQ‖2F = maxQ

K∑
k=1

‖Ṽ T
1 Q‖2F ,

where Q is a rank 1 projection matrix that is orthogonal to the previous i − 1 optima

i.e. Q1, . . . , Qi−1. The Q that maximizes the Frobenius norm of MQ is denoted as

Qi.

For an arbitrary component in the theoretical joint score subspace row(J), write its

projection matrix as P
(1)
J . The Frobenius norm of M projected onto P

(1)
J is

‖MP
(1)
J ‖2F =

⎡
⎢⎢⎣
Ṽ T
1 P

(1)
J

...

Ṽ T
KP

(1)
J

⎤
⎥⎥⎦
2

F

≥

⎡
⎢⎣
cos θ1

...

cos θK

⎤
⎥⎦
2

F

=

K∑
k=1

cos2 θk (A.4)
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Considering the mechanism of SVD, σ2
M,1 is the maximal norm obtained from the

optimal projection matrix Q1 ⊆ ⋃K
k=1 row(Ãk) ⊆ R

n. If all Ãk contain all compo-

nents obtained by noise perturbation of the common row space row(J), then we have

σ2
M,1 ≥ ‖MP

(1)
J ‖2F ≥

K∑
k=1

cos2 θk

to be considered as a component of the joint score subspace.700

This argument can be applied sequentially. For the Q2 ∈ Q⊥
1 ∩ {⋃K

k=1 row(Ãk)},

there exist a non-empty joint subspace (⊆ row(J)) such that all Q⊥
1 ∩row(Ãk) contain

perturbed directions of a joint component other than the one above. Therefore this joint

component with projection matrix P
(2)
J should have

σ2
M,2 ≥ ‖MP

(2)
J ‖2F ≥

K∑
k=1

cos2 θk.

Thus the singular values corresponding to the joint components satisfies (8) and this

procedure can continue through at least rJ steps.

Appendix B. Details of the toy example

Section 1.1 introduces a toy example of two data blocks, X (100 × 100) and Y
(10000 × 100), with patterns corresponding to joint and individual structures. For705

details see Figure 2.

A naive attempt at integrative analysis can be done by concatenating X and Y on

columns and performing a singular value decomposition on this concatenated matrix.

Figure B.10 shows the results for 3 choices of rank. The rank 2 approximation essen-

tially captures the joint variation component and the individual variation component of710

X , but the Y components are hard to interpret. The bottom 2000 rows show the joint

variation but the top half of Y reveals signal from the individual component of X . One

might hope that the Y individual components would show up in the rank 3 and rank

4 approximations. However, because the noise in the X matrix is so large, a random

noise component from X dominates the Y signal, so the important latter component715

disappears from this low rank representation unlike the AJIVE result in Figure 3. In

this example, this naive approach completely fails to give a meaningful joint analysis.

Figure B.11 presents the PLS approximations with different numbers of compo-

nents selected. PLS completely fails to separate joint and individual components. In-

stead it provides mixtures of the joint, and some of the individual components. Increas-720

ing the rank of the PLS approximation only includes more noise.

The Lock et al. (2013) method, called JIVE here, is applied to this toy data set.

The left panel of Figure B.12 shows a reasonable approximation of the total signal

variation within each data block. However, the Lock et al. (2013) method gives rank

2 approximations to the joint matrices shown in the middle panel. The approximation725

consists of the real joint component together with the individual component of X .

Following this, the approximation of the X individual matrix is a zero matrix and a
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× × ×

Figure B.10: Shows the concatenation SVD approximation of each block for rank 2 (left), 3 (center) and

4 (right). Although block X has a relatively accurate approximation when the rank is chosen as 2, the

individual pattern in block Y has never been captured due to the heterogeneity between X and Y .

× × ×

Figure B.11: PLS approximations of each block for numbers of components as 1 (left), 2 (center) and 3

(right). PLS fails to distinguish the joint and individual variation structure.
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wrong approximation of the Y individual matrix is obtained shown in the top half of

the right panel. We speculate that failure to correctly apportion the joint and individual

variation is caused by the fact that the individual spaces are correlated. Because of730

relying on a permutation test JIVE’s algorithm does not handle correlated individual

signals very well.

We finally remark that the Zhou et al. (2016) method COBE correctly segments the

toy example. However it takes significantly (42 times) longer time than AJIVE to do

so.735

× × ×

Figure B.12: The Lock et al. (2013) JIVE method approximation of the data blocks X and Y in the toy

example are shown in the first panel of figures. The joint matrix approximations (middle panel) incorrectly

contain the individual component ofX caused by the problematic algorithm and inappropriate normalization.
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