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Super-Coulombic atom–atom interactions in
hyperbolic media
Cristian L. Cortes1,2 & Zubin Jacob1,2

Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts,

superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are

conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and

virtual-photon long-range quantum electrodynamic interactions that have a singularity in

media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as

a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero

in the ideal limit irrespective of the physical distance. We investigate the entire landscape of

atom–atom interactions in hyperbolic media confirming the giant long-range enhancement.

We also propose multiple experimental platforms to verify our predicted effect with

phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic

meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic

meta-surfaces and the study of many-body physics with hyperbolic media.
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D
ipole–dipole interactions (DDIs) are instrumental in
mediating entanglement and superradiance in cold
atoms1–3, as well as coherent coupling between single

molecules or atoms4–7. Often described by real and virtual photon
exchange, they also cause cooperative frequency shifts between
superconducting qubits in circuit quantum electrodynamic
(QED) systems8,9 and Förster resonance energy transfer (FRET)
between dye molecules or quantum dots10,11. There are two
fundamental ways of controlling the strength and length scales
of DDIs. The first method involves the tuning of intrinsic
atomic properties such as transition dipole moments and
transition frequencies (cf. highly excited Rydberg atoms
and superconducting qubits7,12,13). The second method involves
the tuning of the QED vacuum, achieved through cavities,
waveguides and photonic bandgaps14–17. Up to now, these
electrodynamic methods have relied on resonant effects that
require large quality factors along with extensive nanofabrication
steps. It is an open question, however, whether there exists
alternative non-resonant techniques for controlling DDIs that
would be robust to broad spectral lineshapes of atoms or
molecules with possible room temperature applications. Here we
present work related to this new avenue of research.

In this study, we reveal a class of divergent excited-state
atom–atom interactions that can occur in natural and artificial
media with hyperbolic dispersion. Unlike the above mentioned
approaches, which engineer radiative coupling, we show that the
homogeneous hyperbolic medium itself fundamentally alters
the Coulombic near-field. The resultant singular long-range
interaction, referred to as a super-Coulombic interaction,
is described by an effective interaction distance that goes to zero
(re-0) along a material-dependent resonance angle. We show
that this interaction affects the entire landscape of real photon
and virtual photon phenomena such as the cooperative Lamb
shift (CLS), the cooperative decay rate (CDR), resonance energy
transfer rates and frequency shifts, as well as resonant interatomic
forces. Although we find that the singularity is curtailed by
material absorption, it still allows for interactions with much
larger magnitudes and longer ranges than those found in any
conventional media. We also show that atoms in a hyperbolic
medium will exhibit a strong orientational dependence that can
effectively switch the dipolar interaction off or on, providing an
additional degree of freedom to control DDI. Our investigation
reveals a marked contrast between ground-state and excited-state
interactions which can be used to distinguish the super-
Coulombic effect in experiment. Finally, we provide a unified
perspective for controlling DDIs on multiple experimental
platforms for hyperbolic media including plasmonic super-
lattices, hyperbolic metasurfaces and natural hyperbolic media
such as hexagonal boron nitride (h-BN).

We emphasize that the materials platform we introduce
in this study, to enhance DDIs, is fundamentally different from
the cavity QED18,19 or waveguide QED regimes5,8,20,21 (see
Supplementary Table 1). We do not rely on atom confinement2,5–7,19,
cavity resonances or modal effects such as the quasi transverse
electromagnetic (TEM) mode in circuit QED8, the band-edge slow
light as in PhC waveguides5,6,22, the low-mode volume of plasmonic
waveguides21,23 or the infinite phase velocity at the cutoff frequency
of epsilon-near-zero (ENZ) waveguides14,24. We also stress that the
super-Coulombic effect engineers the conventional non-radiative
(longitudinal) near-fields as opposed to radiative (transverse) modes
and will occur over a broad range of frequencies due to the
broadband nature of the hyperbolic dispersion relation25–28. Figure 1
depicts a schematic of the proposed super-Coulombic DDI using
h-BN29–32 and two dopant atoms. In the infrared spectral range,
h-BN is a uniaxial material that supports ordinary waves (polarization
perpendicular to the optic axis) and extraordinary waves (polarization

along the optic axis). Extraordinary waves satisfy the hyperbolic
dispersion relation k2x=Ez þ k2z=Ex ¼ o2=c2 when ExEzo0.

Results
QED theory of hyperbolic media. We begin by formulating the
QED theory33 of DDIs between two neutral, non-magnetic atoms
in a hyperbolic medium. We focus on dipolar interactions where
the electrodynamic field is initially prepared in the vacuum
state 0f gj i. Using the multipolar Hamiltonian, the interaction of
two neutral atoms [positions rj, transition frequencies oj and

transition electric dipole moments d̂j (j¼ a, b)] is specified by the
interaction Hamiltonian

Ĥint ¼ �
X

j

Z 1

0

do d̂jÊ rj;o
� �

þ h:c:
h i

ð1Þ

where h.c. stands for the Hermitian conjugate. The matter-
assisted electric field is given by

Ê r;oð Þ ¼ i

ffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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G r; r0;oð Þf̂ r0;oð Þ ð2Þ

and G(r, r0;o) is the classical dyadic Green function that satisfies

the macroscopic Maxwell equations. Here, f̂
w
r0;oð Þ and f̂ r0;oð Þ

are bosonic field operators, which play the role of the creation
and annihilation operators of the matter-assisted electromagnetic
(polaritonic) field. The unique interaction properties are a direct
result of the dispersion relation of the hyperbolic polariton,
as opposed to the photonic dispersion relation, o¼ ck, seen in
vacuum. The electric field is defined so that it rigorously satisfies
the equal-time commutation relations and fluctuation–dissipation
theorem33. We use conventional perturbation theory to calculate
the various dipolar interactions in a hyperbolic medium.
We emphasize that the QED theory captures both ground
state–ground state interactions and excited state–ground state
interactions, which a semiclassical approach cannot.

Resonant dipole–dipole interaction. If the initial state of the
atomic system is prepared in the symmetric or anti-symmetric
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Figure 1 | Overview of super-Coulombic interaction. The proposed long-

range super-Coulombic DDI may be observed (a) between single-photon

defect centres in natural hyperbolic media (for example, h-BN, Bi2Se3 and

Bi2Te3) or (b) between ultra-cold atoms trapped above a hyperbolic meta-

surface. (c,d) The super-Coulombic interaction occurs over a broad range of

frequencies along the resonance angle of a hyperbolic medium and causes

the effective interaction distance to approach zero irrespective of the

physical distance.
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state, ij i ¼ 1
ffiffi

2
p eaj i gbj i � gaj i ebj ið Þ, then one can show that the

resonant DDI (RDDI) (see Methods) is given by

Vdd ¼ ‘ Jdd � i
gdd
2

� �

¼ � o2
a

Eoc2
db � G rb; ra;oað Þ � da: ð3Þ

where dj ¼ hgjjd̂jjeji is the transition dipole moment of atom j,
assumed to be real. Jdd is the CLS (also known as the virtual
photon exchange interaction) and gdd is the CDR commonly
associated with superradiant or subradiant effects.

Our result for the RDDI in a hyperbolic medium
E¼ diag Ex; Ex; Ez½ �ð Þ is

Vdd ¼
eikore

4pEo
ffiffiffiffi

Ex
p

r3e
db � 1� ikoreð Þknf � k2or

2
ekff

� �

� da þ ~Veo
dd

ð4Þ
valid when raarb. The first term arises exclusively from
extraordinary waves following a hyperbolic dispersion, whereas
the second term ~Veo

dd arises from a combination of ordinary and
extraordinary waves. Here we have defined the near-field and
far-field dipole orientation matrix factors knf ¼ ExEz E� 1 � 3ð
E� 1 � rð Þ E� 1 � rð Þ= r � E� 1 � rð ÞÞ and kff ¼ ExEz E� 1 � E� 1 � rð Þð
E� 1 � rð Þ= r � E� 1 � rð ÞÞ, respectively. Equation (4) reduces to the
vacuum RDDI expression when Ex ¼ Ez ¼ 1, which is applicable
both in the retarded (rcl) and non-retarded (rool) regimes.
The most unique aspect of DDIs in uniaxial media is the
divergence that is predicted from the first term only when the
hyperbolic condition ExEzo0ð Þ is satisfied. In the ideal lossless
limit, we find that the effective interaction distance between two

atoms, re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ExEz r � E� 1 � rð Þ
p

¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ez sin
2yþ Ex cos2y

p

, tends
towards the limit

re ! 0 as y ! yR¼ tan� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� Ex=Ez
p

: ð5Þ
This super-Coulombic effect results in the divergence of the DDI
strength |Vdd|/: along the resonance angle yR, defined with
respect to the optic axis.

Atoms in a hyperbolic medium will then have an associated
CLS and CDR

Jdd �
ffiffiffiffi
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4p‘ Eor3e
db � E� 1 � 3
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3p‘ Eoc3
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in the limit y-yR. Equations (6) and (7) are the dominant factors
of the extraordinary wave contribution only.

We now contrast the scaling of CLS with distance when
mediated by hyperbolic media as opposed to vacuum modes. In
vacuum, for separation distances much larger than the transition
wavelength, the CLS scales as Jdd � go cos korð Þ= korð Þ and
becomes much smaller than the free-space spontaneous emission
rate (go). On the other hand, for distances much smaller than the
wavelength, the CLS scales as Jdd � go= korð Þ3, which implies that
it can become much larger than the spontaneous emission rate. In
contrast, the CLS in a hyperbolic medium is dependent on r� 3

e ,
Jdd � go= koreð Þ3, for all interatomic distances. The material-
dependent factor 1/r3e diverges in the lossless case and therefore
results in giant CLSs for short and large interatomic distances.

This marked contrast is also revealed in the CDR. At large
distances, the CDR in vacuum scales as gdd � go sin korð Þ= korð Þ,
therefore becoming weak for distances much larger than the
wavelength. For distances much smaller than the wavelength, the
CDR becomes independent of position, gdd � go, and remains on
the order of the free-space spontaneous emission rate. In contrast,
the CDR in a hyperbolic medium along the resonance angle is not

dependent on the effective interaction distance re and instead it
depends crucially on the orientation angle f of the dipoles,
gdd � go Ez=

ffiffi

E
p

x sin
2fþ ffiffi

E
p

x cos
2fð Þ. When both dipoles are

oriented perpendicular to the optic axis (f¼p/2), there exists a
unique wavelength when the medium can achieve an anisotropic
ENZ medium (Ex ! 0 and Ez 6¼ 0) resulting in a divergent CDR.
Surprisingly, the effect is independent of interatomic distance.
When both dipoles are parallel to the optic axis (f¼ 0), the same
anisotropic ENZ condition gives a null CDR between the two
atoms, independent of interatomic distance.

We will now consider the role of material absorption
(Ex ¼ E0x þ iE00x and Ez ¼ E0z þ iE00z ) on atom–atom interactions in
a hyperbolic medium. We find that the effective interaction
distance is not zero and tends to the finite value

rej j ! rj j E00z e0xj jþ E00x e0zj j
E0xj jþ E00zj j

	 
1=2

as y ! yR . This curtails the singularity

of the hyperbolic dipolar interaction but nevertheless allows for
very large interaction strengths compared with conventional
media whenever |re|/|r|o1 is satisfied. Material absorption will
also modify the spatial scaling laws of the RDDI in equation (3)
so that both the CDR and Lamb shift will scale as r� 3

e . Another
consequence of material absorption on RDDIs is in the transition
from non-retarded (r� 3) to retarded (r� 1) interactions. In
vacuum, the transition occurs when the interatomic separation
distance is on the order of wavelength, o=cð Þr� 1. In an ideal
lossless hyperbolic medium, this transition from near-field to far-
field does not occur, as the effective separation distance
approaches zero, re-0 specifically along the resonance angle of
a hyperbolic medium. Therefore, we find that RDDI should scale
with the characteristic power law of near-field (longitudinal) non-
radiative interactions (r� 3) for all interatomic distances. Once
material absorption is included, the transition is expected to occur
approximately when o=cð Þ rej j � 1. The dipolar interactions will
transition from the power law ðr� 3

e Þ to the exponential scaling

law e� o=cð ÞIm re½ �� �

, which is valid at large interatomic distances.
Figure 2 shows the result of the CLS and CDR for two

z-oriented dipoles in a hyperbolic medium that includes material
absorption. We compare the RDDIs with the conventional results
of a lossy dielectric and vacuum. It is noteworthy that the RDDI
peaks near the resonance angle yR as predicted theoretically.
The spatial field plots in the insets clearly demonstrate the
distinguishing features of the RDDI in a hyperbolic medium
compared with vacuum. Figure 2c,d demonstrate the r� 3

e super-
Coulombic spatial dependence along the resonance angle. It is
noteworthy that the sign of the interaction is dependent on the
orientation of the dipoles, as well as the relative position of the
dipoles within the hyperbolic medium.

Orientational dependence. We now turn to the unique
orientational dependence of the RDDI between two atoms
positioned along the resonance angle yR. In Fig. 3, we plot the
normalized CLS of two atoms a full wavelength apart (r¼ l) as a
function of dipole orientation angle f. The CLS has a minimum
when f¼ yR and a maximum when f¼ yRþp/2. Assuming that
E0j j ¼ E0x

�

�

�

� � E0z
�

�

�

�, E00 ¼ E00x � E00z , and E00 � E0j j, we find that the
ratio between the maximum and minimum is

Jdd f ¼ yR þp=2ð Þ
Jdd f ¼ yRð Þ � � 3

2

E0

E00

� 
2

ð8Þ

showing that it is proportional to the square of the figure of merit
of the hyperbolic medium. In Fig. 3, we use the full Green’s
function to calculate the orientational dependence of the dipolar
interaction in a hyperbolic medium with material absorption and
find excellent agreement with the analytical expression.
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Resonance energy transfer. We now consider second-order
super-Coulombic QED interactions between non-identical atoms
arising from initial state preparation consisting of atom A in its
excited state and atom B in its ground state, ij i ¼ eaj i gbj i. In the
weak-coupling regime, an irreversible resonance energy transfer
takes place, transferring a photon from atom A to atom B. This
process is FRET and the transfer rate given by Fermi’s golden rule
is GET¼ 2p:� 1|Vdd|

2d(:oa�:ob). Along the resonance angle,
FRET is mediated by hyperbolic modes and the rate is given by

G
ET

� 2p

‘

db � knf � daj j2

4pEoð Þ2 Exj j rej j6
d ‘oa �‘obð Þ ð9Þ

which shows a r� 6
e scaling dependence and giant enhancement—

the key signature of second order super-Coulombic interactions
in hyperbolic media.

Casimir–Polder potential. In addition to the FRET rate, there is
also a predicted frequency shift that comes from the initial state
preparation ij i ¼ eaj i gbj i. This is the excited-state Casimir–
Polder potential, Ueg rð Þ ¼ U r

eg rð ÞþUor
eg rð Þ, composed of a reso-

nant and off-resonant contribution. The resonant excited-state

Casimir–Polder potential is of the form U r
eg rð Þ ¼ � daj j2o4

a
3E2oc

4 ab oað Þ
Re Tr G rb; ra;oað ÞG ra; rb;oað Þ½ �f g (ref. 34). We therefore predict
that the excited-state energy potential will also diverge with a r� 6

e

scaling dependence similar to the FRET rate.
Figure 4 shows the full numerical results for the second-order

DDIs in a lossy hyperbolic medium, a lossy dielectric and
vacuum. In the non-retarded regime r � lð Þ, we clearly see the
effect of the super-Coulombic interaction, which results in a large
enhancement of the dipolar interactions Ueg and GET (shown in
inset). The super-Coulombic enhancement occurs only along the

asymptotes of the hyperboloid and is unrelated to the suppression
of FRET rate of an ensemble of emitters near a conventional
metallic surface or hyperbolic medium35–37.

It is interesting that the dispersive van der Waals
interaction between two ground-state atoms does not diverge in
a hyperbolic medium. Using fourth-order perturbation theory38,
the interaction energy between two ground-state atoms is given by

Ugg ra; rbð Þ¼ �‘m2o
2p

R1
0 dZZ

4aa iZð Þab iZð ÞTr G rb; ra; iZð ÞG ra; rb; iZð Þ½ �,
where aA,B(o) is the isotropic electric polarizability of atom A
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Figure 2 | Manifestation of super-Coulombic interaction in hyperbolic media. Angular dependence of (a) CLS Jdd and (b) CDR gdd for two z-oriented

dipoles in a lossy hyperbolic medium, lossy dielectric and vacuum. The CLS and CDR have large peaks near the resonance angle of the hyperbolic medium

indicative of the super-Coulombic interaction, even for distances of a wavelength. Comparison of (c) CLS and (d) CDR at the resonance angle versus

interatomic separation distance. The CLS and CDR both obey a 1/r3 power law dependence in the near-field due to the inclusion of absorption in the

hyperbolic medium. It is noteworthy that the giant interactions start occuring at distances on the order of a wavelength (arrows) even in the presence of

material absorption, which is in stark contrast to vacuum. The insets show the contrasting spatially-resolved (c) CLS and (d) CDR for vacuum and for a

hyperbolic medium.
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The plot shows CLS versus orientation angle f for two dipoles positioned

along the resonance angle. The CLS is minimized when the dipoles are

collinear with the the resonance angle and it is maximized when the dipoles

are perpendicular to the resonance angle. The inset shows the asymmetric

nature of the spatially-resolved Jdd/go when the dipoles are orthogonal to

the resonance angle.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14144

4 NATURE COMMUNICATIONS | 8:14144 | DOI: 10.1038/ncomms14144 | www.nature.com/naturecommunications



or B. In the non-retarded limit, the dominant contribution is
given by

Ugg � � ‘

32p3E2o

Z 1

0

dZ
Tr k2nf iZð Þ
� �

Ex iZð Þr6e iZð Þ aa iZð Þab iZð Þ ð10Þ

which reduces to the well-known free-space non-retarded van der
Waals interaction energy when Ex ¼ Ez ¼ 1. It is important to
note that the integral is performed over the entire range of
positive imaginary frequencies (Z¼ io). In general, the hyperbolic
condition ExEzo0 is only satisfied within a finite bandwidth of the
electromagnetic spectrum. We therefore expect that it would
not alter the broadband cumulative effect of the entire
electromagnetic spectrum and, as a result, we predict that the
ground state–ground state interaction energy will not diverge in a
hyperbolic medium. From Fig. 4, it is also clear that the ground
state–ground state Casimir–Polder potential Ugg does not show
any type of enhancement for the hyperbolic medium,
in agreement with our discussion. It is noteworthy that the
distance scaling dependence in the non-retarded regions is in
agreement with equations (9) and (10), as expected. In the
retarded regime (rcl), the excited-state interactions Ueg and
GET display an exponential damping behaviour due to material
absorption, whereas the ground-state interaction Ugg displays
the typical Casimir–Polder power law dependence, r� 7 (Fig. 4).

Discussion
In the following, we discuss multiple experimental platforms
for hyperbolic media paving the way for the experimental
demonstration of the long-range super-Coulombic interactions
and unique many-body physics in hyperbolic media.

Figure 5a–b propose a practical plasmonic super-lattice system
to enhance atom-atom interactions taking into account the role of
dissipation, dispersion and finite unit cell size. We show the large
enhancement of CLS (Jdd) for an effective medium model and
compare it with a 40-layer structure consisting of Ag and TiO2

with a total slab thickness of 100 nm. For such a system, effective

medium theory predicts a type I response Ex40; Ezo0ð Þ for
wavelengths smaller than 492 nm and a type II response
Exo0; Ez40ð Þ for wavelengths larger than 492 nm. Atom A is
4 nm away from the top interface (see Fig. 5 inset), whereas atom
B is assumed to be adsorbed to the bottom interface. Atom B has
a fixed horizontal displacement of xb¼ 5 nm and therefore there
is a fixed separation angle yo between atom A and atom B with
respect to the normal to the interface. The two large peaks seen in
Fig. 5 occur when the dispersive resonance angle yR(l) is equal to
the fixed separation angle, that is, yR(l)¼ yo in agreement with
theory. For the material system shown here, this occurs both in
the type I and type II hyperbolic regions. The inset shows the
directional sensitivity of the interaction as a function of atom B’s
horizontal displacement. It is noteworthy that accurate agreement
between the effective medium model and the super-lattice
structure is achieved when the unit-cell size is smaller than the
separation distance between atom A and the top interface
(Supplementary Note 1).

Figure 5c,d propose a two-dimensional van der Waals bonded
natural material, hBN, as a candidate material to control optically
active vibrational transitions between molecules, or electronic
intersubband transitions between quantum wells. hBN is a
natural hyperbolic medium in the mid-infrared spectral range.
We show giant CLSs Jdd for the case of two atoms 10 nm away
from the top interface of an h-BN structure, as well as for two
atoms across an h-BN film. In the first case, the atom–atom
interaction is due to a super-Coulombic ray-like interaction that
reflects from the bottom interface (see insets). In the second case,
the interatomic interaction is primarily due to a direct super-
Coulombic interaction from atom A to atom B. Atom A is 10 nm
above the top interface, whereas atom B is assumed to be
adsorbed to the bottom interface. It is noteworthy that these
long-range DDIs are seen equally in the type I hyperbolic region
(lB12–13 mm) and in the type II hyperbolic region (lB6–7 mm).
We have used the experimentally verified permittivities for h-BN
from Caldwell et al.29 for our numerical simulations.

Finally, Fig. 6 proposes a two-dimensional material system to
enhance RDDIs, using hyperbolic metasurfaces. Our theoretical
proposal provides additional future directions for designer
metasurfaces based on graphene, black phosphorous, h-BN,
gold/air or silver/air nanogratings39–42 (see Fig. 6a). We must
emphasize that all of the experimental and theoretical studies thus
far have focused on Purcell factor enhancements or the photonic
spin-Hall effects. Here we propose hyperbolic metasurfaces to
control many-body DDIs. Figure 6a shows the key difference
from bulk hyperbolic media where a two dimensional resonance
cone mediates giant long-range interactions due to in-plane
hyperbolic dispersion (x–y plane anisotropy). In Fig. 6b, we show
an enhancement of the CLS Jdd versus angle yxy of atom B. The
angle yxy is defined with respect to the optic axis that lies parallel
to the interface, such that E¼ diag Ex; Ez; Ez½ �. A clear enhancement
is seen along the resonance angle yR compared with the
vacuum and the dielectric half-space cases. Furthermore,
when the position of atom B lies along the resonance angle
yxy ¼ yR¼ tan� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� Ez=Ex
p

we find a clear order-of-magnitude
enhancement in the CLS up to distances of 200 nm (Fig. 6b,c).
Numerical simulations of the hyperbolic meta-surface were done
using a dyadic Green function approach (Supplementary Note 2).

To summarize, we have revealed a class of singular excited-
state atom–atom interactions in hyperbolic media that arise from
a fundamental modification of the Coulombic near-field. The
experimental observation of such effects will require careful
isolation of medium-induced cooperative interactions between
atoms from the effect of independent atoms interacting with the
hyperbolic medium. Preliminary results have shown signatures of
such interactions between molecules via FRET43. Future
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energy in hyperbolic media. Casimir–Polder interaction energy between
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ground-state atom (Ueg) show fundamental differences when interacting in

hyperbolic medium. UegcUgg, as resonant interactions lie completely

within the bandwidth of hyperbolic dispersion and are strongly enhanced.
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interatomic distance of ro¼ l/100. The inset shows the giant enhancement

of the FRET rate, GET, as compared with vacuum. The FRET rate is

normalized to the vacuum energy transfer rate evaluated at ro.
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work should also focus on understanding the intricate role of
non-locality44,45 on DDIs in hyperbolic media. Our work
motivates the search for defect centers in natural hyperbolic
media such as h-BN, where the interaction is mediated by
hyperbolic phonon–polaritons. It should also motivate the study
of unique many-body physics in atomic lattice quantum
metamaterials with hyperbolic response46. Our work also paves
the way for studies of long-range entanglement and self-
organization6. It is also a first step towards cold-atom studies
with hyperbolic meta-surfaces exhibiting unique effects that are
not found in photonic crystals, waveguides or cavities.

Methods
Atomic system. In the following, we only consider the interaction between two
identical atoms for the case of RDDIs. We then consider the interaction between
two non-identical atoms for the case of second-order DDIs such as FRET and
the excited-state Casimir–Polder interaction. For the simulations, we took the
transition frequency of atom A to be oa/2p¼ 500 THz, whereas the transition
frequency of atom B was ob/2p¼ 460 THz.

In the study, we provided equations for the interaction between two two-level
systems for illustrative purposes. The generalized interaction between two N-level
atoms can be easily extended with the general perturbation results. Furthermore,
it is noteworthy that h-BN is considered due its high-quality factors and its low-loss
phonon–polaritonic nature. The super-Coulombic effect will occur even in the
presence of rapid dispersion in the dielectric constant of h-BN as long as the
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emitter linewidths are not significantly broader than the Reststrahlen bands of
h-BN where optically active hyperbolic phonon-polaritons are found. For our
simulations, representative values of loss and dielectric constants have been chosen
from recent experiments in the mid-infrared spectral range.

Perturbation theory. All DDIs can be calculated from the transition matrix
element:

Mfi ¼ f Ĥint
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f Ĥint

�

�

�

�II
� �
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EI �Eið Þ EII �Eið Þ þ :::

ð11Þ

where the summation in the second- and higher-order terms runs over all possible
intermediate states; the summation can be replaced by integration for the case of
continuum states. The energy level shift of the initial state ij i is then given by

DEi ¼ Mii ð12Þ
where it is understood that the principal value is taken during the integration of
continuum intermediate states. The probability transition rate from initial state
ij i to final state fj i is given by Fermi’s Golden rule

Gi!f ¼
2p

‘

X

i;f

Mfi

�

�

�

�

2
d Ef �Ei
� �

ð13Þ

where the summation runs over all initial and final states.

Resonant dipole–dipole interaction. We now consider the interaction between two
identical atoms, labelled atom A and atom B, respectively. The probability
transition rate between state ij i and fj i is found through equation (13) to give
the CDR

gdd ¼ 2o2
a

‘ Eoc2
db � Im G rb; ra;oað Þ½ � � da: ð14Þ

Assuming the dipole moments of both atoms are oriented along the same direction,
the total decay rate of two identical atoms will be gtot¼ ga±gdd, where ga is the
bare spontaneous emission rate of atom A (or atom B). The initial state is
ij i ¼ 1

ffiffi

2
p eaj i gbj i � gaj i ebj ið Þ 	 0f gj i and final state fj i ¼ gaj i gbj i 	 1f gj i. It is

noteworthy that 1f gj i ¼ 1 r;oð Þf g represents the single-photon Fock state with
position r and frequency o.

The first-order dipole–dipole frequency shift of initial state ij i is then found
through evaluation of equation (12), which results in a resonant and off-resonant
contribution Jdd ¼ Jrdd þ Jordd , specified by

Jrdd ¼ � o2
a

‘ Eoc2
db � Re G rb; ra;oað Þ½ � � da ð15Þ

and

Jordd ¼
mo
‘p

Z 1

0

dZ Z2
oa

o2
a þ Z2

db � G rb; ra; iZð Þ � da: ð16Þ

In the Letter, we only retain the resonant contributions (4) and (5), as they give rise
to the super-Coulombic DDIs. The results agree with those of ref. 47.

Resonance energy transfer rate. Using equation (3), the resonance energy transfer
rate between state ij i and fj i can be calculated to give

GET rð Þ ¼ 2p

‘
2

o4
a

E2oc
4
db � G ra; rb;oað Þ � daj j2d oa �obð Þ ð17Þ

where we have taken ij i ¼ eaj i gbj i 	 0f gj i and final state fj i ¼ gaj i ebj i 	 0f gj i
(ref. 48).

Excited state–ground state interaction. The excited-state Casimir–Polder
potential is given by34

Ueg rð Þ ¼ U r
eg rð ÞþUor

eg rð Þ ð18Þ
where the resonant component is

U r
eg rð Þ ¼ � o4

a daj j2
3E2oc

4
a
g
b oað ÞRe Tr G oað ÞG oað Þ½ �f g ð19Þ

and off-resonant component is given by

Uor
eg rð Þ ¼ � ‘m2o

2p
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0

dZ Z4aea iZð Þagb iZð ÞTr G iZð ÞG iZð Þ½ �: ð20Þ

aka oð Þ is the isotropic electric polarizability of atom A in the kth energy eigenstate,
defined as

aka oð Þ ¼ 2
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omk kh jd̂a mj i
�
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�

2

o2
mk �o2 � io0þ : ð21Þ

Ground state–ground state interaction. The ground state–ground state
Casimir–Polder potential is given by38

Ugg rð Þ ¼ � ‘m2o
2p

Z 1

0

dZ Z4aga iZð Þagb iZð ÞTr G iZð ÞG iZð Þ½ � ð22Þ

which is applicable in the retarded and non-retarded regimes. It is noteworthy that
we have dropped the spatial coordinate dependence of the Green function in
equations (19), (20) and (22).

It is worth noting that for the numerical calculation of the integrals, we
considered an anisotropic medium with a Lorentz resonance parallel to the optic
axis with parameters oPz/2p¼ 550
 1012Hz, oTz/2p¼ 450
 1012Hz and
gz¼ 0.01oPz, and a Lorentz resonance perpendicular to the optic axis with
parameters oPx/2p¼ 770
 1012Hz, oTx/2p¼ 600
 1012Hz and gz¼ 0.01oPx.
The isotropic medium had the same relative permittivity as the x axis of the
anisotropic medium.

Applicability of perturbation theory. It is noteworthy that the perturbative
formalism used in this work is strictly applicable for the case of finite absorption
with a sufficiently large interatomic separation distance. This is in agreement with
our simulations for practical experimental systems such as plasmonic super-lattices
and hyperbolic metasurfaces. For the case of low losses and extremely short
separation distances, a non-perturbative treatment will be required to treat the
dipole–dipole singularity in a self-consistent manner. It is also noteworthy that the
presence of emitters do not alter the hyperbolic polaritonic branches in the weak
coupling limit.

Green function in a uniaxial medium. The Green tensor is the unique solution to
the homogeneous Helmholtz equation with permittivity tensor E oð Þ,

r
r
G r; r0;oð Þ� E oð Þo
2

c2
G r; r0;oð Þ ¼ Id r� r0ð Þ; ð23Þ

and radiation condition G(r, r0; o)¼ 0 for |r� r0|-N. The coordinate-free form
of the Green function is given by49

G r; r0;oð Þ ¼ 1
4p

ffiffiffi
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where we have fixed the spatial coordinate of the source at the origin, that is, r0 ¼ 0.
It is noteworthy that this Green function is only applicable when rar0 , as we have
excluded the singularity term that occurs when r¼ r0.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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