

Article

http://pubs.acs.org/journal/aesccq

1 Thermodynamic Constraints on the Lower Atmosphere of Venus

- ² Nathan S. Jacobson* and Michael Kulis
- 3 NASA Glenn Research Center, Cleveland, Ohio 44135, United States

Brandon Radoman-Shaw and Ralph Harvey

Case Western Reserve University, Cleveland, Ohio 44106, United States

Dwight L. Myers

East Central University, Ada, Oklahoma 74820, United States

Laura Schaefer

Arizona State University, Tempe, Arizona 85281, United States

Bruce Fegley

8

10

11

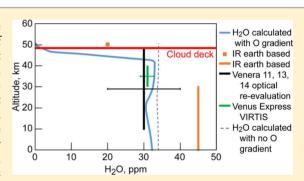
12

13

14 15

16

17


18

19

20

Washington University, St. Louis, Missouri 63130, United States

ABSTRACT: The lower Venusian atmosphere is the region from the surface to the cloud deck or about 0-50 km. Early modeling studies of the atmosphere were primarily based on thermodynamics; more recent modeling studies are based on kinetics of the elementary reactions. In this paper, we take the accepted nominal composition of near-surface gases at \sim 42 km and show some of the constituents are indeed at thermodynamic equilibrium. We impose a small oxygen gradient and use a thermodynamic free energy minimization code to describe the vertical gradients of mixing ratios for the primary gases in the lower atmosphere. The oxygen gradient is within the measurement errors on oxygen and thus preserves mass conservation. Reasonable agreement is found between our calculations and the vertical profiles of H_2O ,

 H_2SO_4 , OCS, H_2S , and S_n (n = 1-8). We then did a kinetic analysis of kinetic expressions for the formation of these species. Consistent with other investigators, we find that very few if any reactions should be at equilibrium in the lower atmosphere. Yet our equilibrium calculations do show some agreement with observations. We conclude that the available kinetic expressions likely need improvement and factors such as catalysis must be included to reflect actual Venus conditions.

KEYWORDS: Venus atmospheres, thermodynamic modeling, kinetic modeling, lower Venusian cloud deck, sulfuric acid formation

1. INTRODUCTION

21 Our knowledge of the Venusian atmosphere is continually 22 developing from probe data, earth-based observations, and 23 models. Actual measurements of the composition of the lower 24 atmosphere of Venus are complex due to the cloud layer. Much 25 of our data comes from the Venera, Vega, and Pioneer Venus 26 probes descending through the cloud layer into the atmosphere. 27 The Magellan probe gave important information on cloud layer. 28 More recently Venus Express and earth-based observations have 29 contributed to our knowledge of the Venus atmosphere. Many of 30 these measurements are of remarkable fidelity but issues such as 31 instrument contamination must always be considered. In 1984, 32 near-infrared windows were found in the cloud layer, which has 33 since enabled earth-based observations. There are numerous

reports of the lower atmosphere composition in the literature. $_{34}$ Notable reviews include those of Hoffman et al., 1 von Zahn et $_{35}$ al., 3 de Bergh et al., 4 Bézard and de Bergh, 5 and Krasnopolsky and $_{36}$ Lefèvre. 6 Tables 1 and 2 summarize the data we have used in this $_{37 \text{ tlt2}}$ study. $^{4,7-29}$ Below we briefly summarize the findings and issues $_{38}$ for SO₂, H₂O, CO, OCS, H₂S, S_n (n=1-8), and H₂SO₄ in the $_{39}$ lower atmosphere. All data are in parts per million by volume $_{40}$ (ppmv).

Received: June 14, 2017 Revised: August 2, 2017 Accepted: August 4, 2017 Published: August 4, 2017

Table 1. Lower Atmosphere Mixing Ratios of Gases on Venus

species	elevation (km)	conc (ppm)	method and reference	species	elevation (km)	conc (ppm)	method and reference
SO ₂	12	$25 \pm 2 \text{ (ISAV 1)}^a$	Vega 1 and 2 UV	CO	30	23 ± 5	Earth Based IR ^{4,10,16}
		20 (ISAV 2)	Spectroscopy'	CO	40	29 ± 7	Earth Based IR ^{4,10,16}
SO ₂	22	38 (ISAV 1) 38 (ISAV 2)	Vega 1 and 2 UV Spectroscopy ⁷	СО	42 to surface	28 ± 14	Venera 12 Gas Chromatograph ¹⁷
SO_2	42	125 (ISAV 1) 140 (ISAV 2)	Vega 1 and 2 UV Spectroscopy ⁷	СО	35	22 (equator) 37 (pole)	Venus Express VIRTIS ¹⁸
SO ₂	52	150 (ISAV 1)	Vega 1 and 2 UV	CO	36	$24 \pm 3 \text{ to } 31 \pm 2$	Venus VIRTIS ¹²
2	-	65 (ISAV ₂)	Spectroscopy	CO	36	24 ± 2	Earth Based IR ¹⁹
SO ₂	21.6	185 ± 43	Pioneer Venus Gas Chromatograph ⁸	СО	35	25 ± 3 (2009 obs) 22 ± 2 (2010 obs)	Earth Based IR ¹¹
SO_2	41.7	>176	Pioneer Venus Gas	OCS	33	$(2.5-4) \pm 1$	Venus Express VIRTIS ¹²
			Chromatograph ⁸	OCS	65	0.3-9 ppb	Earth Based IR ²⁰
SO_2	51.6	<600	Pioneer Venus Gas	OCS	33	4.4 ± 1.0	Earth Based IR ¹⁰
50	4	120 + 40	Chromatograph ⁸ Earth Based IR ⁹	OCS	30	5-20	Earth Based IR ¹⁹
SO ₂	42	130 ± 40	Earth Based IR Earth Based IR		36	0.55 ± 0.15	
SO ₂	42	180 ± 70	Earth Based IR Earth Based IR 11	OCS	36	$0.44 \pm 0.10 \ (2009 \ obs)$	Earth Based IR ¹¹
SO_2	30-45	$140 \pm 37 (2009 \text{ obs})^b$	Earth Based IK			$0.57 \pm 0.12 \left(_{2}010 \text{ obs}\right)$	
SO ₂	30-40	$126 \pm 32 \ (2010 \ obs)$ 130 ± 50	Venus Express VIRTIS ¹²	H_2S	<20 km	3 ± 2	Pioneer Venus Mass Spectrometry ²¹
H ₂ O	48.4 (cloud base)	20	Earth Based IR ¹³	H_2S	21.7	<2	Pioneer Venus Gas Chromatograph ⁸
H_2O	30 to surface	45	Earth Based IR ¹³	S_{1-8}	<50	20 ppb	Venera 11, 12 Spectrophotometers ²²
H_2O	10-48	30 ± 10	Venera 11, 13, 14 Optical Spectra (re-	S_3	3-10	11 ± 3	Venera 11 Spectrophotometer ^{23,24}
H ₂ O	clouds	30-50	evaluation) ¹⁴ Venera 11, 13, 14 Optical		10-19	18 ± 3	Venera 11 Spectrophotometer ^{23,24}
1120	ciouds	30-30	Spectra (re- evaluation) ¹⁴	S_4	3-10	4 ± 4	Venera 11 Spectrophotometer ^{23,24}
H_2O	10-40	30 ± 10	Earth Based IR ¹⁰		10-19	6 ± 2	Venera 11
H ₂ O	30-40	31 ± 2	Venus Express VIRTIS ¹²	** 00		2.12()	Spectrophotometer ^{23,24}
H_2O	30-40	$(22-35) \pm 4$	Venus Express VIRTIS ¹⁵	H_2SO_4	38-52	0-18 (equator)	Mariner 10 Radio Occulation ^{25,26}
СО	51.6	32.2	Pioneer Venus Gas Chromatograph ⁸	H_2SO_4	38-52	0-7 (67°N)	Mariner 10 Radio Occulation ^{25,26}
CO	41.7	30.2 ± 18	Pioneer Venus Gas Chromatograph ⁸	H ₂ SO ₄	50-52	1-5 (0-70°S)	Venus Express ²⁷
СО	21.6	19.9 ± 3.15	Pioneer Venus Gas Chromatograph ⁸	^a ISAV re 2009.	efers to the	spectrometer. ^b (2009 ob	os) means observation in

Table 2. Lower Cloud Bottom Altitude

lower cloud bottom altitude (km)	method
47	Magellan ²⁸
48.4 ± 0.75	Pioneer Venus ²⁸
48.4	calculated from kinetics of H ₂ SO ₄ production ²⁸
48.4	Yung and DeMore Model C ²⁹

The major sulfur carrier is SO_2 and most data at low elevations are from the Vega 1 and 2 probes. This SO_2 gradient is 44 controversial as it indicates decreasing SO_2 levels near the surface, which are not expected. There is no clear gas-phase 46 reaction for consuming SO_2 in the lower atmosphere.

Nonetheless, the Vega 1 and 2 measurements are among the only near surface measurements we have of SO_2 and there is no reason from the actual instrument to doubt them. Minerals on the surface may act as a sink for SO_2 and reduce its concentration at lower elevations. One possible sink is the well-known calcite/ anhydride reaction at the surface 30,31

$$_{53}$$
 $CaCO_3(s) + SO_2(g) = CaSO_4(g) + CO(g)$ (1)

Note that this reaction alone provides a source of CO at the 54 surface. Other sources of CO in the lower atmosphere must 55 provide the observed increase in CO with elevation, as will be 56 discussed. Fegley and Prinn³⁰ have shown the rate for reaction 1 57 is about one micrometer of $CaSO_4$ per year and it is possible that 58 aeolian weathering by one meter per second winds would remove 59 this anhydride layer to expose fresh calcite for reaction. 60 Carbonate may be present in carbonatite lavas on Venus. 32 On 61 the upper side of the lower atmosphere, a discussion of possible 62 UV absorbers in the cloud layer suggests that SO_2 decreases 63 through the cloud layer. 3 Understanding the presence or 64 absence of a decreasing SO_2 gradient is important and more 65 observations are needed here.

The other complication with SO_2 levels is the observed 67 temporal variation, which has been attributed to volcan-68 ism. $^{30,34-36}$ The accepted "nominal value" for SO_2 of 150 ppm 69 may represent a high point in a cycle. However, more data is 70 needed to definitively prove this.

There are a large number of probe and earth-based 72 measurements of H_2O . The early probe data (Vega, Venera, 73 and Pioneer Venus) on H_2O is somewhat contradictory showing 74 variations from 20 to 5000 ppm. ^{8,10} This appears to be resolved 75 by the earth-based observations, which give values in the 20–40 76

ACS Earth and Space Chemistry

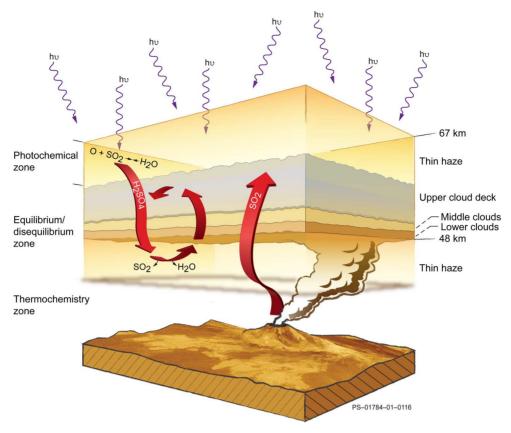


Figure 1. Schematic of Venusian atmosphere, showing the three zones as defined by Mueller. 40 The boundaries between the zones depend on the particular species. Adapted from Grinspoon.

77 ppm range below the cloud layer and seem to be constant with 78 elevation. Some Venera 11-14 and Pioneer Venus data indicates 79 a decrease in water vapor concentration from the surface to 10 80 km, a constant level to near the lower cloud bottom altitude, and 81 then another decreasing gradient to the lower cloud bottom, due 82 to sulfuric acid formation.³⁷ There seems to be general 83 agreement that the water vapor mixing ratio is 30 ± 10 ppm 84 from 5 to 40 km.⁵

The data from the probes and earth-based observations of CO 86 is reasonably consistent. De Bergh et al.⁴ point out that there 87 appears to be some variation in CO with latitude. This is indicated by an ~35% increase toward northern latitudes. de 89 Bergh et al. 4 also discuss likely temporal variations of CO. 90 However, there is agreement that CO concentration decreases 91 toward the surface.

As discussed by de Bergh et al., OCS was detected by Venera 93 13 and 14 in the lower atmosphere, but not by Pioneer Venus. 94 Earth-based observations have clearly detected OCS. The mixing 95 ratio appears to increase at 25-45 km and is likely related to the 96 decrease in CO in this same elevation range. 4,10,12 The most 97 obvious way to explain the opposing gradients of CO and OCS is 98 the consumption of CO to form OCS³⁸

$$CO(g) + 1/2S_2(g) = OCS(g)$$
(2)

100 After 25–30 km, the OCS mixing ratio is constant at about 0.1 101 ppm to the surface. 12

There are only limited data on other sulfur-bearing gases. Data 103 on H₂S are from the Pioneer Venus mass spectrometer and gas 104 chromatograph. 1,8 Several sulfur allotropes, for example, S₃ and 105 S₄, have also been detected by the Venera 11 and 12 probes but at 106 very low levels.^{23,2}

Sulfuric acid, H₂SO₄, is of primary interest as aerosols of 107 sulfuric acid form the clouds. H₂SO₄ forms as a vapor a few 108 kilometers below the clouds and then as a liquid at the cloud 109 deck.³⁹ Radio occultation measurements^{25,26} have measured 110 H₂SO₄ amounts in the cloud layer. The mixing ratio depends on 111 the latitude with the largest amount at the equator. The Pioneer 112 Venus probe conducted nephelometer measurements for the 113 lower cloud bottom altitude.²⁸ This elevation has also been 114 predicted with remarkable fidelity by several investigators. 28,29 115 Table 2 lists these measured and calculated lower cloud bottom 116 altitudes.

There are several models of the lower atmosphere of Venus, 118 involving both thermodynamics and kinetics. Mueller⁴⁰ first 119 divided the atmosphere into three vertical layers. The gases at the $_{120}$ lowest elevations likely exhibit some degree of chemical 121 equilibrium, the intermediate region is a mix of gases at chemical 122 equilibrium and disequilibrium, and the gases at the upper region 123 are described by photochemical reactions. Figure 1 schematically 124 fl illustrates these regions.41

This three region view maintains acceptance, although the 126 boundaries change as we learn more about the Venusian 127 atmosphere. 42 Furthermore, the exact boundaries between these 128 regions are controversial and dependent on the particular gas and 129 governing reaction(s). During the 1980s, a number of 130 thermochemical models were published on the lower atmos- 131 phere. 43-45 These utilized a free energy minimization computer 132 code to determine the expected equilibrium mixture. The 133 calculations reproduce some of the observations of probes in that 134

195

136 Krasnopolsky^{28,35,46} points out that thermodynamics cannot 137 fully explain the observations. Further he shows that some 138 reactions in the lower atmosphere are kinetically limited, such as

$$_{39}$$
 $3CO(g) + SO_2(g) = 2CO_2(g) + OCS(g)$ (3)

Measured SO₂/OCS ratios are compared to equilibrium calculations. There is only agreement at temperatures above 700 k, which corresponds to the lowest 5 km of the Venusian atmosphere. Thus, for this reaction one cannot assume chemical equilibrium. Fegley et al. have also shown that thermodynamic requilibrium for all species is only possible in the lowest elevations. They do a kinetic analysis of the principle CO consuming reactions and show that these are only feasible at the lowest elevations. Zolotov discusses equilibrium in the lowest layers of the Venus atmosphere. He points out that the higher temperatures and the possible catalytic effects of the surface minerals make equilibrium among the gases most likely in the near surface region.

The nominal atmosphere of Venus is given in Table 3.⁴⁹ The composition of this atmosphere as a function of altitude has been

Table 3. Nominal Composition of Venusian Atmosphere from Reference 49 and References Therein

gas	abundance	elevation	thermodynamic equilibrium (42 km, 410 K, 2.8 bar)
CO_2	$96.5 \pm 0.8\%$		96.48%
N_2	$3.5 \pm 0.8\%$		3.5%
SO_2	$150 \pm 30 \text{ ppm}$	22-42 km	138 ppm
H_2O	$30 \pm 15 \text{ ppm}$	0-45 km	33 ppm
Ar	$70 \pm 25 \text{ ppm}$		
CO	$30 \pm 18 \text{ ppm}$	42 km	$1.8 \times 10^{-5} \text{ ppm}$
He	$12 \pm 8 \text{ ppm}$		
Ne	$7 \pm 3 \text{ ppm}$		
OCS	$4.4 \pm 1 \text{ ppm}$	33 km	0.05 ppm
H_2S	$3 \pm 2 \text{ ppm}$	<20 km	0.03 ppm
HDO	$1.3 \pm 0.2 \text{ ppm}$		
HCl	$0.6 \pm 0.12 \text{ ppm}$	cloud top	0.6 ppm
Kr	~25 ppb		
$S_n (n = 1 - 8)$	20 ppb		
HF	5 ppb	cloud top	5 ppb
Xe	~1.9 ppb		

modeled by several investigators. 35,39,50,51 Mills, Esposito et al. 50 point out there are three primary chemical cycles, the CO₂ cycle, sulfur oxidation cycle, and polysulfur cycle. The CO₂ cycle involves photon-assisted dissociation of CO₂ to CO and O and is fairly well understood. The sulfur oxidation cycle is illustrated in Figure 1 and involves the formation of H_2SO_4 in the upper cloud layer and decomposition of H_2SO_4 in the lower cloud layer. The polysulfur cycle involves the minor sulfur species and is less well understood. These reactions have all been modeled with coupled chemical kinetic expressions.

Thus, the early modeling work for the lower atmosphere centered on thermodynamic modeling and most of the later work centered on kinetic modeling. Nonetheless, thermodynamic modeling modeling may still be useful as a partial description of the lower Venusian atmosphere. As noted, some of the early thermodynamic modeling did in fact reproduce some of the actual Venusian atmosphere observations. Further, other factors such as high ambient pressure and atmospheric particulates (possible rational catalysts) may push the reactions closer to equilibrium. Thermodynamics also establishes limits of a reaction.

More recently, some constituent behavior in the lower 175 atmosphere has been described with thermodynamics. 52 A 176 small gradient in oxygen is introduced to describe the SO_2 profile 177 measured by the Vega 1 and 2 UV spectrometers. Imposing this 178 oxygen gradient together with thermodynamic calculations 179 successfully describes the following features of the lower 180 atmosphere: increase of SO_3 and H_2SO_4 near the cloud base, 181 decrease in H_2O near the cloud base, and decrease in OCS near 182 the surface. The thermodynamic modeling does not describe the 183 CO behavior. These calculations were done using the IVTAN 184 thermodynamic database and free energy minimizer. 53

The above reference 52 is only a short conference abstract. This 186 study represents a combined effort by the group at NASA Glenn 187 and Washington University to revisit and expand on the original 188 calculations. With a small oxygen gradient, we are able to 189 reproduce several important features of the lower atmosphere 190 with equilibrium calculations. We then conduct a kinetic analysis 191 and show that many of the elementary reactions are predicted to 192 not attain equilibrium. This apparent contradiction indicates the 193 need for better kinetic data in conditions similar to Venus.

2. METHOD OF THERMODYNAMIC CALCULATIONS AND KINETIC ANALYSES

We use the FactSage free energy minimizer and associated 196 databases. The databases used in FactSage are taken from a 197 variety of sources but many of the compounds of interest, 198 particularly the important sulfur compounds, are taken from the 199 JANAF tables. The nominal composition of the Venusian 200 atmosphere is given in Table 3 and converted to elemental 201 abundances, shown in Table 4. We took the SO₂ mixing ratio at 202 to

Table 4. Elemental Composition in Numbers of Atoms

element	number from nominal composition	number with imposed gradient
O	$1,930,351.4 \pm 15791.4$	1,929,992 to 1,930,449.043
C	965021.4 ± 7722	965021.4
N	$70,000 \pm 560$	70,000
S	157.4 ± 32	157.4
Н	66.6 ± 36.12	66.6
Cl	0.6 ± 0.12	0.6
F	0.005	0.005

42 km for the nominal composition and this corresponds to 410 203 K and 2.8 bar from the VIRA profile. The As an initial calculation, 204 we ran the elemental abundances for the nominal composition in 205 the free energy minimizer. The results are shown in the third 206 column of Table 3. Note that the calculated values for CO_2 , N_2 , 207 SO_2 , H_2O , HCl, and HF are in close agreement to nominal values 208 in the second column. However, the calculated values for CCS 209 and CSS are off and the calculated CCS values are dramatically off. 210 This first calculation indicated that thermodynamics may 211 describe some of the atmospheric chemistry whereas other 212 constituents might be better described with kinetics. In the next 213 section, we impose a small oxygen gradient, as described below. 214

Our approach here is to introduce a small gradient in oxygen 215 and conduct calculations at each elevation. Because oxygen 216 combines with carbon, sulfur, nitrogen, or hydrogen this small 217 gradient would be manifest in a gradient of an observed gas such 218 as CO_2 or SO_2 . The temperature and pressure of each elevation is 219 set by the VIRA profile. As done in the original Fegley and 220 Schaefer 2 study, we derived this gradient from the Vega 1 and 2 221 SO_2 measurements. As noted in the Introduction, this gradient is 222 controversial but at this point we have no other low elevation 223 £22

224 data. The derived oxygen gradient is shown in Figure 2a in a plot 225 of elevation versus number of oxygen atoms. Note the gradient is

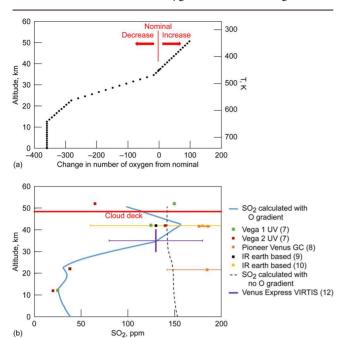


Figure 2. Gradient in oxygen (a) as developed from SO_2 profile (b). The calculated SO_2 gradient with and without an oxygen gradient is shown in (b). The arrow indicates a lower limit.

226 within the errors on number of oxygen atoms, as given in Table 4. 227 Thus, mass conservation within these error limits is maintained. 228 The small addition/removal of oxygen atoms is manifest in small 229 changes in CO_2 , SO_2 , and the other oxygen bearing gases. We use 230 the VIRA profile of temperature and pressure as a function of 231 elevation together with the oxygen gradient. Calculations are 232 conducted in steps of one kilometer through the lower 233 atmosphere. Figure 2b shows the SO_2 gradient calculated with 234 and without the imposed oxygen gradient. As expected, the latter 235 is nearly constant.

The origin of the oxygen gradient may be due to a variety of factors. There may be a sink for some of the species such as CO_2 and SO_2 at the surface. To understand this, we need more information on the surface composition and extent of magmas and other possible sinks. It is also likely that photochemical dissociation of CO_2 in the cloud layer may produce more O in the upper regions.

In the second part of this study, we try to reconcile the the thermodynamic results with reported kinetics for some of the elementary reactions. Following the methods of other the investigators to the the mixing lifetime ($t_{\rm mix}$) to the chemical lifetime ($t_{\rm chem}$). Unless $t_{\rm chem} < t_{\rm mix}$, the gases will diffuse to higher elevations and colder temperatures (quench) before they react. The mixing lifetime is defined as

$$t_{\text{mix}} = \frac{H^2}{K_{\text{eddy}}} \tag{4}$$

251 Here, H is the pressure scale height (16 km at 735 K) and $K_{\rm eddy}$ is 252 a parametrized eddy diffusion coefficient, which is taken as $10^4-253\ 10^6\ {\rm cm}^2/{\rm sec}$. This gives a $t_{\rm mix}$ of 0.08–8.2 earth years. Chemical 254 lifetime for a particular species is simply the time it takes for 255 consumption of that species. It is calculated from the rate

expression. For a bimolecular reaction of A + B, the chemical 256 lifetime for A is defined as

$$t_{\text{chem}} = \frac{[A]}{\left(\frac{d[A]}{dt}\right)} = \frac{[A]}{k[A][B]} = \frac{1}{k[B]}$$
 (5) ₂₅₈

Here, k is the tabulated rate expression for the particular reaction 259 and [B] is concentration of species B which we take as the 260 calculated equilibrium concentration as a first approximation. 261

For a termolecular reaction, the expression includes another 262 reactant concentration. Generally an error band of 2–3 times is 263 taken on rates calculated in this manner.

3. GASES IN LOWER ATMOSPHERE

The Venusian surface is known to be 740 K at 92 bar pressure, 265 which is in the supercritical fluid region of the CO_2 phase 266 diagram. This is such a high temperature that the supercritical 267 phase is generally more "gaslike" in properties. So the surface has 268 been regarded as a dense, high-pressure gaslike mixture of CO_2 , 269 N_2 , and other minor gas constituents. However, a recent study 270 proposes that the supercritical fluid may account for the observed 271 instability in the lowest 7 km and create a region of nearly all CO_2 272 in these lowest layers. More data is needed to confirm or refute 273 this

Using the imposed oxygen gradient, we calculated the vertical 275 profiles for the gases H_2O , CO, OCS, H_2S , S_n , and H_2SO_4 276 (Figures 3–8). These figures also include most of the data with 277 f3

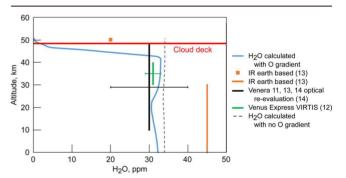
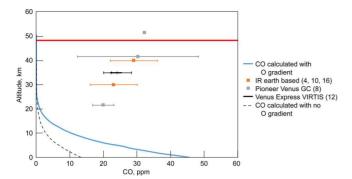



Figure 3. Calculated H_2O concentration compared to observations.

error limits in Table 1. We also calculated the first appearance of 278 H_2SO_4 liquid, which is the cloud deck boundary. For H_2O , CO, 279 OCS, and H_2S profiles, we show the calculation with and without 280 an oxygen gradient.

Figure 3 gives calculated H_2O concentrations. Generally, these 282 compare favorably with the observations. As noted in the 283 Introduction, most of the data suggest a constant H_2O level with 284 elevation. Kinetic modeling of the lower atmosphere 28 also leads 285 to constant H_2O levels of 20-25 ppm. Above about 42 km, the 286 H_2O levels decrease too fast in this analysis. Thermochemically 287 this occurs because of the reaction of SO_3 and H_2O to form 288 H_2SO_4 . However, kinetic models require some H_2O to exist in 289 the cloud layer. 58 Venus Express measurements in the cloud layer 290 indicate several ppm, for example 1 ppm of H_2O at 70-110 km 291 and 6.1 ± 1.2 ppm of H_2O at 61.9 ± 0.5 km and low latitudes. 292 Thus, H_2O formation within the cloud layer cannot be described 293 with thermodynamics and is likely photochemically assisted.

Figures 4 and 5 show the results for CO and OCS. The initial 295 f4f5 calculations (Table 3, column 3) indicate that CO cannot be 296 calculated from thermodynamics. This is also evident in Figure 4. 297 CO is likely formed via photon-assisted dissociation of CO₂ in 298

Figure 4. Calculated CO concentration compared to observations. See Table 1 for more details of the Venus Express data.

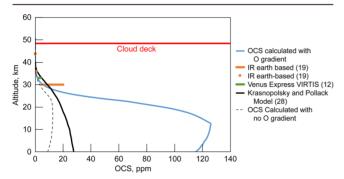


Figure 5. Calculated OCS concentration compared to observations.

299 the upper atmosphere (eq 4). Thermodynamics suggests that the 300 amount of CO should increase at the higher temperatures near 301 the surface. However, the data in Figure 4 shows that the 302 measured amounts of CO decrease. A re-evaluation of the surface 303 measurements of the CO concentration from the CONTRAST 304 experiment indicate [CO] ranges from \geq 2.3 to \geq 6.8 ppm. ⁴² As 305 noted, a primary source of CO is

$$CO_2(g) + hv \rightarrow CO(g) + O(g)$$
 (6)

307 In the lower atmosphere the smaller amount of energetic 308 photons supports the observation that this reaction is less likely 309 to occur.

Fegley et al. 47 methodically examined the elementary reactions involving CO and CO₂ and show that the chemical time constant is greater than the convective mixing time constant. This means that before the gases can equilibrate at the lower (hotter) elevations, they will move to higher (cooler) elevations, where equilibrium is not attained.

There is agreement on a drop of OCS at \sim 30 km. ⁶¹ As shown in Figure 5, thermodynamic calculations with the oxygen gradient do not capture this. Figure 5 does show agreement with OCS observations at higher elevations.

Figure 6 shows the results for H_2S calculations. The data for H_2S is limited but seems to be in the ppm range primarily. The H_2S is limited but seems to be in the ppm range primarily. The measurements are reasonably close to the data at 20 km but more measurements are needed to determine if thermodynamics can describe the variation of this gas with elevation. The calculation in Figure 6 without an oxygen gradient gives similar results to that with an oxygen gradient. It appears the calculations with an oxygen gradient are closer to the measured numbers but given the error probably both are close.

The data on the allotropes of sulfur gas is limited. The most common allotrope observed at lower elevations seems to be S_3 as predicted by thermodynamics. Maiorov et al. 23 have interpreted

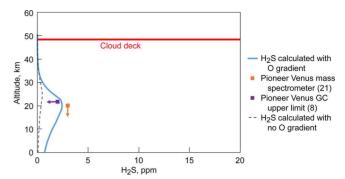


Figure 6. Calculated H_2S concentration compared to observations. The arrows indicate upper limits.

the spectrophotometric data from Venera 11, 12 to give mixing 332 ratios in the ppb level or less. These are shown along with the 333 thermodynamic calculations in Figure 7.

An examination of the FactSage output for the first appearance 335 of liquid H_2SO_4 as temperature and pressure are changed gives 336 the dewpoint and the boundary of the cloud layer. These results 337 are shown in Figure 8. Note the concentration of H_2SO_4 vapor 338 8 agrees reasonably well with radio occultation measurements 339 at the equator. The first liquid H_2SO_4 appears at 51.6 km, which 340 is in reasonable agreement with measurements and other 341 calculations of the cloud deck elevation (48.4 km). However, 342 this is only H_2SO_4 liquid, and there does not seem to be enough 343 water for the hydrated forms of H_2SO_4 to appear.

The formation of the sulfuric cloud aerosols is, of course, more 345 complex and cannot be described by thermochemistry alone. 346 Parkinson et al. 62 have summarized the 1D models for this as 347 follows. The sulfuric acid forms at the higher cloud elevations and 348 migrate downward (sedimentation). At lower elevations and 349 higher temperatures, they vaporize and create the 42 SO 4 liquid/ 350 vapor boundary.

Our thermodynamic analysis is consistent with the sedimen- 352 tation model in that it indicates the $^{H}_2SO_4$ droplets and vapor are 353 thermodynamically stable in the lower cloud layer and below, 354 respectively. Thermodynamic equilibrium may be further 355 promoted by the autocatalytic behavior of $^{H}_2SO_4$ is made by the reaction of $^{H}_2SO_4$ with $^{50}_3$ to form $^{357}_2$ pyrosulfate

$$H_2SO_4 + SO_3 \rightarrow H_2S_2O_7$$
 (7) ₃₅₉

$$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$$
 (8) ₃₆₀

It is possible that an intermediate pyrosulfate on the $\rm H_2SO_4$ 361 droplets assists in maintaining equilibria in lower cloud deck 362 boundary.

Thus, the assumption of a small oxygen gradient and 364 equilibrium for $H_2O-SO_3-SO_2-O_2-H_2SO_4$ allows this model 365 to reproduce some features of the lower atmosphere. Below 366 about 40 km, H_2O and H_2SO_4 are predicted with reasonable 367 accuracy. Other gases in the lower atmosphere may or may not be 368 in equilibrium. Assuming CO comes from photon-assisted CO_2 369 decomposition (reaction 6), the lack of energetic photons in the 370 lower atmosphere easily explains kinetic limitations on the 371 formation of CO.

4. KINETIC ANALYSIS

As discussed, many of the atmospheric reactions are likely 373 kinetically limited. Other investigators 35,47 have shown that only 374 the lowest 10 km or so can be considered to be in complete 375

Figure 7. Calculations of elemental sulfur gas species compared to observations.

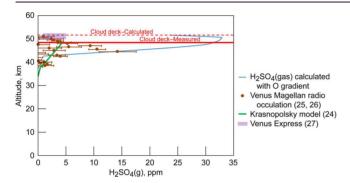
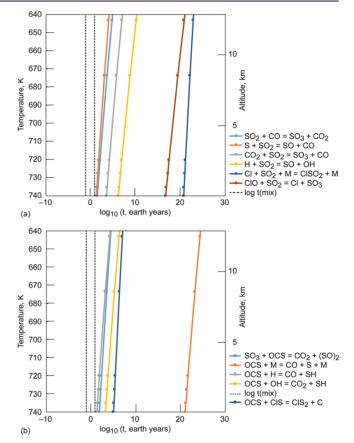


Figure 8. Calculated H₂SO₄ concentration compared to observations.

376 thermodynamic equilibrium. Some key SO_2 consuming reactions 377 are listed in Table 5. Using the methods described in the previous

Table 5. Kinetics of Some Key SO₂ Consuming Reactions^a


reaction	rate	reference
$SO_2 + CO \rightarrow CO_2 + SO$	$(4.5 \times 10^{-12})e^{-24300/T}$	35
$SO_2 + S \rightarrow 2 SO$	$(2.3 \times {}^{1}0^{-11})e^{-5200/T}$	35
$SO_2 + H \rightarrow SO + OH$	$(3.7 \times 10^{-9} e)^{-14350/T}$	35
$SO_2 + CO_2 \rightarrow SO_3 + CO$	$(4.8 \times 10^{-12})e^{-35209/Tb}$	35, 53
$SO_2 + Cl + M \rightarrow ClSO_2 + M$	$(1.3 \times 10^{-34})e^{-940/T}$	35, 51
$SO_2 + CIO \rightarrow CI + SO_3$	4×10^{-18}	51

^aHere T is absolute temperature in Kelvin. The units of the bimolecular rate constants are cm³/sec and the units of termolecular rate constants are cm⁶/sec. ^bDerived from the rate of the reverse reaction in ref 35 and the equilibrium constant calculated with the IVTAN code and database.⁵³

 378 section, chemical lifetime is compared to mixing lifetime. The 379 rates are given in Table 5 and the comparison is shown in Figure 380 9a. None of the chemical lifetimes are equal to the mixing 381 lifetimes. The SO_2 consumption kinetics indicate that few, if any, 382 of the elementary reactions are expected to equilibrate in the 383 Venusian atmosphere.

A similar situation exists for OCS consumption. Some key SSS OCS consumption reactions are listed in Table 6. The rates are SSS given in Table 6 and the comparison of chemical lifetime to SSS mixing lifetime is shown in Figure 9b. Again, none of the SSS chemical lifetimes are equal to the mixing lifetimes, indicating SSSS equilibration is not expected.

Yet our calculations indicate some equilibration at elevations as high as 40 km, that is, the basic equilibrium matches observations in the lower atmosphere. Although we have rate expressions for many key elementary reactions, these are generally measured under laboratory conditions (see, for

Figure 9. (a) Comparison of $t_{\rm mix}$ to $t_{\rm chem}$ for selected SO₂ consumption reactions. (b) Comparison of $t_{\rm mix}$ to $t_{\rm chem}$ for selected OCS consumption reactions.

Table 6. Kinetics of Some Key OCS Consuming Reactions

reaction	rate	reference
$SO_3 + OCS \rightarrow CO_2 + (SO)_2$	$(1 \times 10^{-11})e^{-10000/T}$	35
$OCS + M \rightarrow CO + S + M$	$(2.2 \times 10^{-7})e^{-37300/T}$	35
$OCS + H \rightarrow CO + SH$	$(1.2 \times 10^{-11})e^{-1950/T}$	35
$OCS + OH \rightarrow CO_2 + SH$	$(1.1 \times 10^{-13})e^{-1200/T}$	35
$OCS + ClS \rightarrow ClS_2 + CO$	3×10^{-16}	51

example, ref 64) and would not include all the Venusian 395 conditions. These conditions include catalysts such as metal 396 chloride particles and/or self-catalysts and the high ambient 397 pressures. It may be that some reactions actually have faster 398 kinetics in the actual Venusian situation. This points to the need 399

400 for continuing measurements and calculations of the rates of the 401 elementary atmospheric reactions.

5. CONCLUSIONS

402 The lower 50 km of Venus from the surface to cloud deck is 403 probably best described with a mixture of kinetic and 404 thermochemical modeling. In this study, we examine the primary 405 gas species and show that several features of the lower 406 atmosphere can be described with thermochemical modeling 407 using a free-energy minimizer. The vertical profile of the gases 408 above the surface are modeled with the free energy minimizer by 409 imposing a small oxygen gradient. This oxygen gradient is 410 developed from the Vega 1 and 2 SO₂ vertical profile. It is within 411 the experimental error of the nominal Venus gas composition 412 and thus mass conservation is maintained. This gave good 413 agreement for the H₂O and H₂SO₄ vertical profiles. It also 414 allowed the approximate cloud deck altitude to be easily 415 calculated. Equilibrium calculations for OCS, H_2S , and S_n (n = $416\ 1-8$) show some agreement with data from the probes, 417 suggesting that catalytic effects may also lead to near equilibrium 418 for these species. However, the calculations for CO showed an 419 increase near the surface instead of the observed decrease. The 420 near agreement of some observations with equilibrium 421 calculations is in apparent conflict with a kinetic analysis of 422 some of the elementary reactions. This suggests the need for 423 further measurements of reaction rates under conditions closer 424 to those of the lower Venusian atmosphere. Catalysis either from 425 particles in the atmosphere or self-catalysis in the case of H₂SO₄ 426 forming reactions may also be important.

427 **AUTHOR INFORMATION**

428 Corresponding Author

429 *E-mail: nathan.s.jacobson@nasa.gov.

430 ORCID ®

431 Nathan S. Jacobson: 0000-0002-9177-4129

432 Notes

433 The authors declare no competing financial interest.

434 ACKNOWLEDGMENTS

435 Support from NASA Grant NNX14AN54G "Alteration of 436 Basaltic Materials under simulated Venus Surface Conditions" 437 is appreciated. B.F. was support by NSF Astronomy Program 438 Grants AST-1412175 and AST-1517541.

439 REFERENCES

- 440 (1) Hoffman, J. H.; Oyama, V. I.; von Zahn, U. Measurements of the 441 Venus lower atmosphere composition: A comparison of results. *J.* 442 *Geophys. Res.* **1980**, 85 (A13), 7871–7881.
- 443 (2) Allen, D. A.; Crawford, J. W. Cloud structure on the dark side of 444 Venus. *Nature* **1984**, *307*, 222–224.
- 445 (3) Von Zahn, U.; Kumar, S.; Niemann, H.; Prinn, R. In *Venus*; 446 Hunten, D. M., Colin, L., Donahue, T. M., Moroz, V. I., Eds.; University 447 of Arizona Press: Tucson, AZ, 1983; pp 299–429.
- 448 (4) de Bergh, C.; Moroz, V. I.; Taylor, F. W.; Crisp, D.; Bézard, B.; 449 Zasova, L. V. The composition of the atmosphere of Venus below 100 450 km altitude: An overview. *Planet. Space Sci.* **2006**, *54* (13), 1389–1397. 451 (5) Bézard, B.; de Bergh, C. Composition of the atmosphere of Venus
- 452 below the clouds. *J. Geophys. Res.* **2007**, 112 (E4), 1–10. 453 (6) Krasnopolsky, V. A.; Lefèvre, F. In *Comparative Climatology of* 454 *Terrestrial Planets*; Mackwell, S. J., Simon-Miller, A. A., Harder, J. W.,
- 455 Bullock, M. A., Eds.; University of Arizona Press: Tucson, AZ, 2013; pp 456 231–275.
- 457 (7) Bertaux, J.- L.; Widemann, T.; Hauchecorne, A.; Moroz, V.; 458 Èkonomov, A. P. 1996. VEGA 1 and VEGA 2 entry probes: An

- investigation of local UV absorption (220–400 nm) in the atmosphere 459 of Venus (SO₂ aerosols, cloud structure). *J. Geophys. Res.: Planets* **1996**, 460 101 (E5), 12709–12745.
- (8) Oyama, V. I.; Carle, G. C.; Woeller, F.; Pollack, J. B.; Reynolds, R. 462 T.; Craig, R. A. Pioneer Venus gas chromatography of the lower 463 atmosphere of Venus. *J. Geophys. Res.* 1980, 85 (A13), 7891–7902. 464
- (9) Bézard, B.; de Bergh, C.; Fegley, B.; Maillard, J.- P.; Crisp, D.; 465 Owen, T.; Pollack, J. B.; Grinspoon, D. The abundance of sulfur dioxide 466 below the clouds of Venus. *Geophys. Res. Lett.* **1993**, 20 (15), 1587–467 1590.
- (10) Pollack, J. B.; Dalton, J. B.; Grinspoon, D.; Wattson, R. B.; 469 Freedman, R.; Crisp, D.; Allen, D. A.; Bézard, B.; de Bergh, C.; Giver, L. 470 P.; Ma, Q.; Tipping, R. Near-infrared light from Venus' nightside: A 471 spectroscopic analysis. *Icarus* 1993, 103 (1), 1–42.
- (11) Arney, G.; Meadows, V.; Crisp, D.; Schmidt, S. J.; Bailey, J.; 473 Robinson, T. Spatially resolved measurements of H₂O, HCl, CO, OCS, 474 SO₂, cloud opacity, and acid concentration in the Venus near-infrared 475 spectral windows. *J. Geophys. Res.: Planets* **2014**, *119*, 1860–1891. 476
- (12) Marcq, E.; Bézard, B.; Drossart, P.; Piccioni, G.; Reess, J. M.; 477 Henry, F. A latitudinal survey of CO, OCS, H₂O, and SO₂ in the lower 478 atmosphere of Venus: Spectroscopic studies using VIRTIS-H. *J.* 479 *Geophys. Res.* **2008**, *113*, E00B07.
- (13) Meadows, V. S.; Crisp, D. Ground-based near-infrared 481 observations of the Venus nightside: The thermal structure and water 482 abundance near the surface. *J. Geophys. Res.: Planets* **1996**, 101 (E2), 483 4595–4622.
- (14) Ignatiev, N. I.; Moroz, V. I.; Moshkin, B. E.; Ekonomov, A. P.; 485 Gnedykh, V. I.; Grigoriev, A. V.; Khatuntsev, I. V. Water vapour in the 486 lower atmosphere of Venus: A new analysis of optical spectra measured 487 by entry probes. *Planet. Space Sci.* 1997, 45 (4), 427–438.
- (15) Tsang, C. C. C.; Wilson, C. F.; Barstow, J. K.; Irwin, P.G. J.; 489 Taylor, F. W.; McGouldrick, K.; Piccioni, G.; Drossart, P.; Svedhem, H. 490 Correlations between cloud thickness and sub-cloud water abundance 491 on Venus. *Geophys. Res. Lett.* **2010**, *37* (2), L02202.
- (16) Taylor, F. W.; Crisp, D.; Bezard, B. In *Venus II*; Bougher, S. W., 493 Hunten, D. M., Phillips, R. J., Eds.; University of Arizona: Tucson, AZ, 494 1997; pp 325–351.
- (17) Gel'man, B. G.; Zolotukhin, V. G.; Lamonov, N. I.; Levchuk, B. V.; 496 Mukhin, L. M.; Nenarokov, D. F.; Okhotnikov, B. P.; Rotin, V. A.; 497 Lipatov, A. N. An analysis of the chemical composition of the atmosphere of 498 Venus on an AMS of the Venera-12 using a gas chromatograph, NASA-TM-499 75476; National Aeronautics and Space Administration: Washington, 500 DC 1979
- (18) Tsang, C. C. C.; McGouldrick, K. General circulation of Venus 502 from a long-term synoptic study of tropospheric CO by Venus Express/ 503 VIRTIS. *Icarus* **2017**, 289, 173–180.
- (19) Marcq, E.; Encrenaz, T.; Bezard, B.; Birlan, M. Remote sensing of 505 Venus' lower atmosphere from ground-based IR spectroscopy: 506 Latitudinal and vertical distribution of minor species. *Planet. Space Sci.* 507 **2006**, 54 (13), 1360–1370.
- (20) Krasnopolsky, V. A. Spatially-resolved high-resolution spectros- 509 copy of Venus 2. Variations of HDO, OCS, and SO₂ at the cloud tops. 510 *Icarus* **2010**, 209 (2), 314–322.
- (21) Hoffman, J. H.; Hodges, R. R.; Donahue, T. M.; McElroy, M. B. 512 Composition of the Venus Atmosphere From the Pioneer Venus Mass 513 Spectrometer. *J. Geophys. Res.* **1980**, 85 (A13), 7882–7890.
- (22) Moroz, V. I.; Golovin, Yu.M.; Ekonomov, A. P.; Moshkin, B. E.; 515 Parfent'ev, N. A.; San'ko, N. F. Spectrum of the Venus day sky. *Nature* 516 **1980**, 284 (5753), 243–244.
- (23) Maiorov, B. S.; Ignat'ev, N. I.; Moroz, V. I.; Zasova, L. V.; 518 Moshkin, B. E.; Khatuntsev, I. V.; Ékonomov, A. P. A new analysis of the 519 spectra obtained by the VEnErA missions in the Venusian atmosphere. I. 520 The analysis of the data received from the VEnErA-11 Probe at altitudes 521 below 37 km in the $0.44-0.66 \mu m$ wavelength range. Sol. Syst. Res. **2005**, 522 39 (4), 267–282.
- (24) Krasnopolsky, V. A. S_3 and S_4 abundances and improved chemical 524 kinetic model for the lower atmosphere of Venus. *Icarus* **2013**, 225 (1), 525 570–580.

- 527 (25) Jenkins, J. M.; Steffes, P. G. Results for 13-cm absorptivity and 528 $\rm H_2SO_4$ abundance profiles from the season 10 (1986) Pioneer Venus
- 529 Orbiter radio occultation experiment. *Icarus* **1991**, *90* (1), 129–138.
- 530 (26) Kolodner, M. A.; Steffes, P. G. The Microwave Absorption and 531 Abundance of Sulfuric Acid Vapor in the Venus Atmosphere Based on
- 532 New Laboratory Measurements. *Icarus* 1998, 132, 151–169. 533 (27) Oschlisniok, I.; Häusler, B.; Pätzold, M.; Tyler, G. L.; Bird, M. K.;
- 533 (27) Oscillismok, J.; Hausier, B.; Patzoid, M.; Tyler, G. L.; Bird, M. K.; 534 Tellmann, S.; Remus, S.; Andert, T. Microwave absorptivity by sulfuric
- 535 acid in the Venus atmosphere: First results from the Venus Express
- 536 Radio Science experiment VeRa. *Icarus* **2012**, 221 (2), 940–948.
- 537 (28) Krasnopolsky, V. A.; Pollack, J. B. H₂O-H₂SO₄ System in Venus 538 Clouds and OCS, CO, and H₂SO₄ Profiles in Venus Troposphere. *Icarus* 539 **1994**. *109* (1), 58–78.
- 540 (29) Yung, Y. L.; DeMore, W. B. Photochemistry of the stratosphere of 541 Venus: Implications for atmospheric evolution. *Icarus* **1982**, *51* (2), 542 199–247.
- 543 (30) Fegley, B., Jr.; Prinn, R. G. Estimation of the rate of volcanism on 544 Venus from reaction rate measurements. *Nature* **1989**, 337 (6202), 55–
- 546 (31) Treiman, A. H.; Bullock, M. A. Mineral reaction buffering of 547 Venus' atmosphere: A thermochemical constraint and implications for 548 Venus-like planets. *Icarus* **2012**, *217* (2), 534–541.
- 549 (32) Kargel, J. S.; Kirk, R. L.; Fegley, B., Jr.; Treiman, A. H. Carbonate-550 sulfate volcanism on Venus? *Icarus* **1994**, *112* (1), 219–252.
- 551 (33) Ékonomov, A. P.; Moshkin, B. E.; Moroz, V. I.; Golovin, Yu. M.;
- 552 Gnedykh, V. I.; Grigor'ev, A. V. Experiment on UV photometry at the 553 Venera 13 and Venera 14 landers. *Translated from Kosmicheskie* 554 *Issledovaniya* 1983, 21 (2), 194–206.
- 555 (34) Esposito, L. W. Sulfur Dioxide: Episodic Injection Shows 556 Evidence for Active Venus Volcanism. *Science* **1984**, 223, 1072–1074.
- 557 (35) Krasnopolsky, V. A. Chemical kinetic model for the lower 558 atmosphere of Venus. *Icarus* **2007**, *191* (1), 25–37.
- 559 (36) Esposito, L. W. Planetary science: Rising sulphur on Venus. *Nat.* 560 *Geosci.* **2012**, *6* (1), 20–21.
- 561 (37) Donahue, T. M.; Hodges, R. R., Jr. Past and present water budget 562 of Venus. J. Geophys. Res. 1992, 97 (E4), 6083–6091.
- 563 (38) Fegley, B., Jr. Treatise on Geochemistry: Planets, Asteroids, 564 Comets and The Solar System, 2nd ed.; Davis, A. M., Ed.; Elsevier: 565 London, U.K., 2014; Volume 2, pp127–148.
- 566 (39) Esposito, L. W.; Bertaux, J. L.; Krasnopolsky, V.; Moroz, V. I.; S67 Zasova, L. V. In *Venus II*; Bougher, S. W., Hunten, D. M., Phillips, R. J., S68 Eds.; University of Arizona: Tucson, AZ, 1997; pp 415–458.
- 569 (40) Mueller, R. F. A chemical model for the lower atmosphere of 570 Venus. *Icarus* **1964**, 3 (4), 285–298.
- 571 (41) Grinspoon, D. H. Venus Revealed; Perseus Publishing: Cambridge, 572 MA, 1997.
- 573 (42) Florensky, C. P.; Volkov, V. P.; Nikolaeva, O. V. A geochemical 574 model of the Venus troposphere. *Icarus* **1978**, 33 (3), 537–553.
- 575 (43) Barsukov, V. L.; Khodakovsky, I. L.; Volkov, V. P.; Florensky, K. P. 576 The Geochemical Model of the Troposphere and Lithosphere of Venus 577 Based on New Data. *Space Res.* **1980**, *10*, 197–207.
- 578 (44) Khodakovsky, I. L. Atmosphere-Surface Interactions on Venus 579 and Implications for Atmospheric Evolution. *Planet. Space Sci.* **1982**, *30* 580 (8), 803–817.
- (45) Craig, R. A.; Reynolds, R. T.; Ragent, B.; Carle, G. C.; Woeller, F.; S82 Pollack, J. B. Sulfur Trioxide in the Lower Atmosphere of Venus? *Icarus* 1983, 53, 1–9.
- 584 (46) Krasnopolsky, V. A. Photochemistry of the Atmospheres of Mars and 585 Venus. Physics and Chemistry in Space, 13; Springer-Verlag: Berlin, 1986.
- 586 (47) Fegley, B., Jr.; Zolotov, M.; Yu; Lodders, K. The oxidation state of 587 the lower atmosphere and surface of Venus. *Icarus* **1997**, *125* (2), 416–588 439.
- 589 (48) Zolotov, M. Yu. A Model for the Thermal Equilibrium of the 590 Surface Venusian Atmosphere. *Geochem. Int.* **1996**, 33 (10), 80–100.
- 591 (49) Lodders, K.; Fegley, B., Jr. *The Planetary Scientist's Companion*; 592 Oxford University Press: New York, 1998; p 120.
- 593 (50) Mills, F. P.; Esposito, L. W.; Yung, Y. L. Atmospheric composition,
- 594 chemistry, and clouds. Exploring Venus as a Terrestrial Planet; Geophysical
- 595 Monograph Series 176; Esposito, L. W., Stofan, E. R., Cravens, T. E.,

ı

- Eds.; American Geophysical Union: Washington, DC, 2007; pp 73–596 100.
- (51) Zhang, X.; Liang, M. C.; Mills, F. P.; Belyaev, D. A.; Yung, Y. L. 598 Sulfur chemistry in the middle atmosphere of Venus. *Icarus* **2012**, 217 599 (2), 714–739.
- (52) Fegley, B., Jr.; Schaefer, L. An explanation of the SO₂ profile on 601 Venus from the Vega 1 and 2 UV spectrometers. *Bull. Am. Astronom. Soc.* 602 **2003**, 35, 983.
- (53) Chekhovskoi, D. V.; Ivanisov, A. V.; Proskurnev, A. Y. 604 IVTANTHERMO Database on Thermodynamic Properties of Individual 605 Substances. NIST Special Database 5; CRC Press: Boca Raton, FL, 1993. 606
- (54) Bale, C. W.; Chartrand, P.; Degterov, S. A.; Eriksson, G.; Hack, K.; 607 Ben Mahfoud, R.; Melançon, J.; Pelton, A. D.; Petersen, S. FactSage 608 thermochemical software and databases. *CALPHAD: Comput. Coupling* 609 *Phase Diagrams Thermochem.* **2002**, 26 (2), 189–228.
- (55) Chase, M. W. NIST-JANAF Thermochemical Tables; National 611 Institute of Standards and Technology: Washington, DC, 1998.
- (56) Seiff, A.; Schofield, J. T.; Kliore, A. J.; Taylor, F. W.; Limaye, S. S.; 613 Revercomb, H. E.; Sromovsky, L. A.; Kerzhanovich, V. V.; Moroz, V. I.; 614 Marov, M. Ya. Models of the structure of the atmosphere of Venus from 615 the surface to 100 kilometers altitude. *Adv. Space Res.* **1985**, 5 (11), 3—616 58
- (57) Lebonnois, S.; Schubert, G. The deep atmosphere of Venus the 618 possible role of density-driven separation of CO₂ and N₂. *Nat. Geosci.* 619 **2017**, *10*, 473–477.
- (58) Parkinson, C. D.; Gao, P.; Esposito, L.; Yung, Y.; Bougher, S.; 621 Hirtzig, M. Photochemical control of the distribution of Venusian water. 622 Planet. Space Sci. 2015, 113-114, 226–236.
- (59) Bertaux, J.-L.; Vandaele, A. C.; Korablev, O.; Villard, E.; Fedorova, 624 A.; Fussen, D.; Quémerais, E.; Belyaev, D.; Mahieux, A.; Montmessin, F.; 625 Muller, C.; Neefs, E.; Nevejans, V.; Wilquet, V.; Dupois, J. P.; 626 Hauchecorne, A.; Stepanov, A.; Vinogradov, I.; Rodin, A.; et al. A 627 warm layer in Venus' cryosphere and high-altitude measurements of HF, 628 HCl, H₂O and HDO. *Nature* 2007, 450 (7170), 646.
- (60) Fedorova, A.; Marcq, E.; Luginin, M.; Korablev, O.; Bertaux, J. L.; 630 Montmessin, F. Variations of water vapor and cloud top altitude in the 631 Venus' mesosphere from SPICAV/VEx observations. *Icarus* **2016**, 275, 632 143–162.
- (61) Yung, Y. L.; Liang, M. C.; Jiang, X.; Shia, R. L.; Lee, C.; Bézard, B.; 634 Marcq, E. Evidence for carbonyl sulfide (OCS) conversion to CO in the 635 lower atmosphere of Venus. *J. Geophys. Res.* **2009**, *114*, E00B34.
- (62) Parkinson, C. D.; Gao, P.; Schulte, R.; Bougher, S. W.; Yung, Y. L.; 637 Bardeen, C. G.; Wilquet, V.; Vandaele, A. C.; Mahieux, A.; Tellmann, S.; 638 Pätzold, M. Distribution of sulphuric acid aerosols in the clouds and 639 upper haze of Venus using Venus Express VAST and VeRa temperature 640 profiles. *Planet. Space Sci.* 2015, 113-114, 205–218.
- (63) Torrent-Sucarrat, M.; Francisco, J. S.; Anglada, J. M. Sulfuric acid 642 as autocatalyst in the formation of sulfuric acid. *J. Am. Chem. Soc.* **2012**, 643 134 (51), 20632–20644.
- (64) Lovejoy, E. R.; Hanson, D. R.; Huey, L. G. Kinetics and Products 645 of the Gas-Phase Reaction of SO₃ with Water. *J. Phys. Chem.* **1996**, 100, 646 19911–19916.