QAGU

| B

Geophysical Research Letters

RESEARCH LETTER

10.1002/2017GL073606

Key Points:

« We develop a multivariate
probabilistic model that uses
precipitation to estimate the
probability distribution of crop yields

« The proposed model shows how the
probability distribution of crop yield
changes in response to droughts

« During Australia’s Millennium Drought
precipitation and soil moisture deficit
reduced the average annual yield of
the five largest crops

Supporting Information:
« Supporting Information S1

Correspondence to:
A. AghaKouchak,
amir.a@uci.edu

Citation:

Madadgar S., A. AghaKouchak,

A. Farahmand, and S. J. Davis (2017),
Probabilistic estimates of drought
impacts on agricultural production,
Geophys. Res. Lett., 44, doi:10.1002/
2017GL073606.

Received 11 APR 2017
Accepted 15 JUL 2017
Accepted article online 19 JUL 2017

©2017. American Geophysical Union.
All Rights Reserved.

Probabilistic estimates of drought impacts
on agricultural production
Shahrbanou Madadgar®, Amir AghaKouchak’ ("), Alireza Farahmand’, and Steven J. Davis?

1Department of Civil and Environmental Engineering, University of California, Irvine, California, USA, 2Department of Earth
System Science, University of California, Irvine, California, USA

Abstract increases in the severity and frequency of drought in a warming climate may negatively impact
agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of
climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that
uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season
to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the
historical period 1980-2012, including the Millennium Drought in Australia (2001-2009). We find that
precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five
largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25-45% relative to the wet
growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate
conditions and variability. Probabilistic estimates of yield may help decision-makers in government and
business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a
multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields.
The proposed model shows how the probability distribution of crop yield changes in response to droughts.
During Australia’s Millennium Drought precipitation and soil moisture deficit reduced the average annual
yield of the five largest crops.

1. Introduction

The frequency and concurrence of weather and climate extremes such as heatwaves, droughts, and heavy
rainfalls have been increasing worldwide [Easterling et al., 2000; Alexander et al., 2006; Mazdiyasni and
AghaKouchak, 2015], and this trend and the associated negative impacts on human activities are expected
to further increase under climate change [Field et al., 2012; Diffenbaugh and Giorgi, 2012; Kharin et al.,
2007; Hao et al., 2013; Timmermann et al., 1999; Cai et al., 2014]. Agriculture is particularly sensitive to climate
variability and changes in extremes [Parry et al., 2004; Howden et al., 2007; Reilly et al., 2003; Schlenker and
Lobell, 2010], and understanding the environmental determinants of crop yield and agricultural productivity
is central to evaluations of regional and global vulnerabilities to climate change [Asseng et al., 2013;
Rosenzweig et al., 2014].

The effects of environmental conditions on regional crop production may be estimated by using statistical
methods [Nicholls, 1997; Jaynes et al., 2003; Prasad et al., 2006; Lobell and Field, 2007; Lobell et al., 2011], dyna-
mical crop simulation models [Bannayan et al., 2003; Jones and Thornton, 2003; Fischer et al., 2005; Lobell and
Ortiz-Monasterio, 2007], and combined statistical-dynamical models [Lobell et al., 2005; Yu et al., 2014]. Past
studies have applied these different approaches to examine the relationships between crop production
and climate variability [Alexandrov and Hoogenboom, 2000; Porter and Semenov, 2005; Erda et al., 2005;
Lobell and Field, 2007; Thornton et al., 2009; Lobell et al., 2011], precipitation [e.g., Doorenbos et al., 1979;
Rosenzweig et al., 2002; Lobell et al., 2007; Roudier et al., 2011], soil moisture [Lal, 1974; Narasimhan and
Srinivasan, 2005; Ramakrishna et al., 2006], air temperature [e.g., Wheeler et al., 2000; Lobell et al., 2007;
Schlenker and Roberts, 2009; Welch et al., 2010; Roudier et al., 2011], and solar radiation [e.g., Monteith, 1972;
Koti et al., 2005].

However, the various methods that have been previously used to assess the effects of environmental factors
on agricultural productivity are either deterministic or offer probabilistic results via a single crop yield distri-
bution function that incorporates all the possible climate conditions experienced during a growing season
[see, e.g., Goodwin and Ker, 1998; Hansen and Jones, 2000; Porter and Semenov, 2005; Tebaldi and Lobell,
2008; Ramirez et al., 2003; Roudier et al., 2011]. In contrast, stakeholders such as farmers, insurers, and
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policymakers might prefer a model that produces crop yield distributions based on a specific environmental
condition (e.g., precipitation amount) that is expected (or predicted) for a given growing season. For example,
if a seasonal drought prediction model forecasts precipitation will be at the 20th percentile of the historical
record (well below average) in the upcoming growing season, stakeholders might want to know the corre-
sponding distribution (i.e., uncertainty) of yields for different crops. Here we present a new model capable
of producing such yield distributions which relies on a copula-based [Joe, 1997; Nelsen, 1999], multivariate
statistical technique and the concept of conditional probability.

2. Methods

Our proposed model links drought information with crop yield data to provide a joint distribution in form of a
two-dimensional probability space. In turn, the joint distribution is used to obtain a distribution of crop yield
for any given set of environmental conditions (e.g., different percentiles of precipitation or soil moisture).
Unlike the univariate probability distributions, a joint distribution provides many possible distributions for
a wide range of variability in a secondary yet dependent variable. Given any projected environmental condi-
tion, one can thus develop the corresponding crop yield distribution and find the probability that crop yields
will or will not exceed a certain level.

2.1. Copula-Based Model

We use copula functions [Joe, 1997; Nelsen, 1999] to find the joint probability distribution of the annual crop
yields and the selected drought indicators (i.e., Standardized Precipitation Index (SPI) and Soil-moisture Index
(SSI)). The joint probability distribution integrates weather information (e.g., precipitation or soil moisture)
and crop yield data based on their dependency structure. A copula function is defined as the multivariate
distribution functions (C), of two or more uniformly distributed variables on the interval 0, 1 [Nelsen, 1999;
Salvadori et al., 2007]:

Fxy o (K15 oo Xiy ooy Xn) = ClFx, (X1), ey Fx, (Xi), -y Fx, (Xn)] = C(U1, «.ny Upy ooy Up) (1)

where Cis the cumulative distribution function (CDF) of copula and Fx, (x;) (also denoted by u;) is the nonex-
ceedance probability of x; i.e., the marginal distribution. Note that C joins the CDF of random variables (i.e.,
uy), while Fy, . x, joins the original random variables (i.e., x;).

Copulas have flexible structures in joining random variables (i.e., x;) with different types of marginal distribu-
tions (i.e., uy). This is a unique feature that has inspired several copula applications in hydrological studies [e.g.,
De Michele et al., 2005; Shiau, 2006; Li et al., 2013; Khedun et al., 2014; Madadgar and Moradkhani, 2015;
Grimaldi et al., 2016; Salvadori et al., 2007; Salvadori et al., 2011; Nazemi and Elshorbagy, 2012]. Unlike copulas,
other multivariate distributions such as Gaussian and Gamma distributions [Kelly and Krzysztofowicz, 1997;
Sharma, 2000; Yue et al., 2001] require all random variables coming from similar distributions. Marginal distri-
butions in a copula application (i.e., u;) are not limited to the commonly used parametric distributions and can
be treated empirically [Chui and Wu, 2009; Piani and Haerter, 2012].

Here we use the two main Copula families that have been used in the literature: elliptical and Archimedean
[Embrechts et al., 2003; Nelsen, 1999]. Among different functions, t and Gaussian copulas from the elliptical
family, and Clayton [1978] and Frank [1979] copulas from Archimedean family (Table 1) are more frequently
used. This study adopts bivariate copulas, as listed in Table 1, to estimate the joint probability distribution
between the drought indicators (x) and crop yields (y). Thus, equation (1) reduces to the following
two-dimensional form:

Fxy(x,y) = C[Fx(x),Fy(y)] )

In this study, we are interested in conditional probability of crop production exceeding a certain amount
(Y>y) at different climatic conditions (X=x); i.e,, Fy|x(Y>y | X=x). The conditional probability density
function of fy| x(y | x) is expressed as follows [Madadgar and Moradkhani, 2013; Mazdiyasni et al., 2017]:

frix(y | x) = c[Fx(x), Fy(¥)].fr(y) 3)

where c is the probability density function (PDF) of the continuous copula function and fy(y) is the PDF of
marginal distribution for crop yield. Once the conditional PDF for a particular drought condition is
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Table 1. Summary of the Bivariate Copula Functions Used in This Study
Copula Function Domain

Gaussian : 2452 2 X1, X2 €R
-1 -1 X X2° — 2pX1X;
Clur,up) = [, 902 <m)271,'('| ) EXP{— ! 2 — 2 2}dmdxz

2(1 —p?)
uy = Ox7)up = (xy)
p: Linear correlation coefficient
®: Standard normal cumulative distribution function
t X1, X2 €R

1 2 2_H —(v+2)/2
Clur,up) = f'ﬁ; (UZ)JL](“‘)71 exp{1 o AESEZ G +X pr1x2} dx;dx;
27(1 — p?)= v(1 —p?)

up =t,(x1), Uy =t,(xz)
p: Linear correlation coefficient
t,: Cumulative distribution function of t distribution with v degree of freedom
Clayton C(u1,u2):(u1_9+u2_g— 1)_1/9 0e(0,0)
6: Measure of dependency between u; and us.
Frank OeR

ouy _q ouy 4
C(ur,uz) =3 In <%>

6: Similar to Clayton copula

obtained from equation (3), the probability of crop yield exceeding a certain amount, i.e., Fy|x(Y >y | X=X), is
calculated as the area under fy | x(y | x) for Y > y.

To select the best copula function for each combination of drought indicators and crop yields, we apply the
parametric bootstrapping goodness-of-fit test [Genest and Rémillard, 2008; Sadegh et al., 2017]. More details
on the test statistics and copula selection procedure are available in the supporting information and in
Multivariate Copula Analysis Toolbox (MvCAT) [Sadegh et al., 20171. In a group of copulas, the one with the
smallest test statistic (S) and greatest p value can be considered as the best alternative [Sadegh et al.,
2017]. We tested the t, Gaussian, Clayton, and Frank copula functions for all combinations of drought
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Figure 1. Time series of major rain-fed crop yields in Australia (a) before and (b) after removing the increasing trend over
1980-2012 and (c) comparing the detrended time series with drought indices based on precipitation (SPI, blue bars) and
soil moisture (SSI, purple bars) over the same period. The grey vertical shading across the panels indicates the driest years.
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Table 2. Pearson Correlation Coefficient Between the Crop Yields and  jndicators and crop yields and found the

the Selected Drought Indicators (SPI and SSI) During 1980-2012 Clayton copula have the smallest S and

Crop sPl S5l the greatest p value among others (see
Wheat 0.68 0.66 Table S1 in the supporting information).
Broad beans 0.40 0.40

Canola 0.64 0.60 2.2. Study Area and Data for

Lupine 0.54 0.46 Model Demonstration

Barley 0.67 0.62

Australia has suffered several droughts
in the past few decades [Mpelasoka
et al., 2008; Horridge et al., 2005; Low et al., 2015; Aghakouchak et al., 2014] with significant environmental
and socioeconomic impacts [Alston, 2012]. Here we demonstrate our copula-based model in the analysis
of five major rain-fed crops cultivated in Australia: wheat, broad beans, canola, lupine, and barley
[Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES), 2013]. Annual crop yields
during the analysis period 1980-2012 come from the Food and Agriculture Organization (FAO) of the
United Nations [FAOSTAT, 2015]. The growing season for wheat, canola, and barley in Australia is May to
October, and the season for broad beans and lupine is June to November [ABARES, 2013].

We evaluate weather conditions based on two drought indicators: Standardized Precipitation Index (SPI)
[McKee et al, 1993] for meteorological drought and Standardized Soil-moisture Index (SSI) [Hao and
AghaKouchak, 2013] for agricultural drought. The SPI and SSI indicate the deviation of accumulated precipi-
tation and soil moisture, respectively, during the growing season as compared to long-term climatology [Hao
and AghaKouchak, 2014]. We used SPI and SSI records assessed by the Global Integrated Drought Monitoring
and Prediction System (GIDMaPS) [Hao et al., 2014; http://drought.eng.uci.edu/], which uses precipitation and
soil moisture observations from NASA’s Modern-Era Retrospective Analysis for Research and Applications-
Land (MERRA-Land) [Rienecker et al., 2011; Reichle et al., 2011; Bosilovich et al., 2011]. The GIDMaPS data are
available at a 1/2° x 2/3° spatial resolution. In this study, we used the standardized average precipitation
and soil moisture over the rain-fed regions in Australia for the 6 month growing season of each selected crop.

3. Results

Figure 1a shows the agricultural production of major rain-fed crops in Australia during 1980-2012. Overall,
improvements in agricultural practices, investments, and technological advances over this time period have
led to steadily increasing crop yields but the sharp dips in crop yields occur during severe and extreme
droughts (as highlighted by gray vertical shading in Figure 1). The Mann-Kendall trend test [Mann, 1945;
Kendall, 1975] confirms a statistically significant positive trend (at o = 0.05) in all crop yields except canola
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Figure 2. (a) Yield distributions of major rain-fed crops under different drought conditions based on precipitation (SPI, blue
boxes and bars) and soil moisture (SSI, purple boxes and bars). The filled boxes show the yield distribution in years with

wet/normal index values (i.e., > — 0.5) and unfilled boxes show the distribution in years with dry index values (< — 0.5). In
each case, (b) the bars show the related average percent change in annual yield under the dry conditions relative to wet/
normal conditions using either the precipitation or soil moisture indices (Figure S1 in the supporting information show a
similar figure but with the original crop yield data).
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Figure 3. Conditional probability distributions of major detrended crop
yields under dry and wet conditions. The shaded areas and percentages

and broad beans are the most and least
correlated (i.e., sensitive to) crops with
the selected drought indicators, respec-

indicate the probability of crop yields exceeding its annual average
(vertical dashed line). The conditional probabilities are defined as Pr
(Yield > y | SPI=x)—Figure S2 in the supporting information shows a
similar figure but with the original crop yield data.

tively (Figure 1).

The boxplots in Figure 2a show the sub-
stantial historical decreases in major
rain-fed crop yields in dry conditions
(SPI or SSI < —0.5) as compared to normal/wet conditions (SPI or SSI > —0.5). These thresholds of dry and
wet/normal are consistent with those used by the U.S. Drought Monitor (http://droughtmonitor.unl.edu/).
The corresponding bars in Figure 2b depict the average percent reduction in crop yields in dry seasons, ran-
ging from roughly 25% for lupine, barley, and wheat (with respect to soil moisture deficit) to 45% for broad
beans (with respect to precipitation deficit). Changes due to precipitation and soil moisture deficits (blue and
red bars, respectively) are similar in all cases, where all the five crop yields seem more sensitive to precipita-
tion than soil moisture. Figure S1 in the supporting information shows similar results using the original crop
yield data as opposed to detrended data. Given the similarity of observed responses to the two drought indi-
cators (Figures 1 and 2), we present probabilistic model results based on precipitation (i.e., SPI) variations.
However, soil moisture or any other environmental indicator could be readily substituted if such alternatives
were shown to be better correlated with crop yields.

Figure 3 shows modeled conditional probability density functions of crop yields in wet (SPI=0.5; blue) and
dry (SPI= — 0.5; red) conditions for each of the major rain-fed crops in Australia. In the case of each crop,
yields are substantially larger during wet years, while cross comparing the PDFs shows that barley and wheat
yields have rather similar distributions than other crops (consistent with historical yield records 1980-2012
shown in Figure 1). Further, lupine and canola production varies less than that of other crops, and broad
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Figure 4. Comparing estimated crop yield distribution (normalized
between 0 and 100%) with the observed annual production for each of
the major rain-fed crops in Australia. Each panel shows where the
observed annual crop yields locate with respect to the crop yield

distribution for different observed SPI values.

(Figure 3). As shown, the results are
quite consistent with both original and
detrended crop yield data.

Figure 4 compares the estimated crop
yield distribution with observed annual
production for each of the major rain-
fed crops in Australia. Each panel shows

where the observed annual crop yields locate within the crop yield distribution. There is one probability den-
sity function (PDF) in z axis at any SPI value which is represented by pixel colors. The colors represent normal-
ized probability density function at given SPI, with 100% for the highest density and 0 for the lowest density.
As seen, the majority of observed annual yields (filled dots) fall in the high-density region of PDFs in all panels.
As a result, the estimated distributions are considered reliable for the major rain-fed crops in Australia.

For verification purposes, we also employed a 1 year out cross-validation procedure and applied three
metrics, listed in Table S3 in the supporting information, to evaluate the performance of the proposed model
in simulating the crop yield distribution [Laio and Tamea, 2007; Miiller et al., 2005]. In 1 year out cross valida-
tion, the proposed model is trained with the entire record except 1 year. The trained model is then used to
simulate the crop yield distribution of the year excluded from the training period. This procedure is repeated
for all years during the analysis period. The metrics and verification results including Q-Q plots are listed in
Figure S3 and Tables S3 and S4 in the supporting information. The results confirm the reliability of the pro-
posed model in simulated crop distributions.

4, Discussion and Conclusions

As demonstrated, our copula-based model can produce probability distributions of crop yields given differ-
ent projected weather conditions. In southwest Australia, where severe droughts (e.g., 1982, 1994, 2002,
2004, and 2006) led to major reductions in the yields of rain-fed crops [Dijk et al., 2013; Chiew et al., 1998;
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Mpelasoka et al., 2008] (see Figure 1), the model indicates that a shift from wet (SPI > —0.5) to dry (SPI < —0.5)
conditions causes yields of the five most important rain-fed crops to decrease by 25-45%. Unlike previous
models, our model can provide a distinct crop yield distribution and the probability of achieving any target
yield under any given weather conditions (e.g., 20th or 50th percentile of average precipitation). Further, the
model is general and can be reformulated to use any other yield-related climatic variables and can readily
compute the probability that yields will or will not exceed a target of interest. Future work will expand the
number of climate/land surface variables included in the model and use it to more comprehensively assess
regional and crop-specific sensitivities to drought, including perhaps short-term risk assessments of the
future. The model can be used with climatic inputs aggregated over different temporal scales (e.g., 3 month
and 6 month) as long as there is a relationship between climatic variables and crop production information.
For example, the observed climate records used in this study could in theory be replaced by forecasts from
climate/regional models—even if such forecasts are not available for entire growing season.

The model’s ability to assess yield probabilities based on the best available weather forecasts fills a gap in the
tools and information previously available to policymakers operating at both local and regional scales to
manage water resources, plan drought responses, set long-term agriculture and water policies, and build
up responsive and resilient food systems [Moschini and Hennessy, 2001; Chen and Chang, 2005]. On the busi-
ness side of agriculture, having region- and crop-specific yield probabilities under different environmental
conditions could inform better crop choices and improve the efficiency and effectiveness of farm policy inter-
ventions such as crop insurance and price or supply supports [Cuéllar et al., 2014; Barnett and Mahul, 2007].
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