

Trajectory-based Combustion Control for Renewable Fuels in Free Piston Engines

Chen Zhang, Zongxuan Sun¹

*Department of Mechanical Engineering, University of Minnesota, Twin Cities Campus,
111 Church Street SE, Minneapolis, MN 55455*

Abstract

Previously, the authors have developed an advanced combustion control, namely the trajectory-based combustion control, to further leverage the flexibility of free piston engine (FPE). With the assistance of this control method, the FPE enables optimization of both engine efficiency and emissions by implementing optimal piston trajectories. Extensive simulations have been conducted to prove the effectiveness of this combustion control on fossil fuels. In this paper, the investigation is extended to renewable fuels. Seven renewable fuels are considered herein including hydrogen, biogas, syngas, ethanol, dimethyl ether (DME), biodiesel, and Fischer-Tropsch fuel. The influences of both compression ratio (CR) and piston motion pattern between the two dead centers on the combustion process are considered in the study, which demonstrates the ultimate fuel flexibility and large tolerance of fuel impurity possessed by the FPE. In addition, the simulation results show that at a fixed CR, the thermal efficiency of the FPE can still be enhanced (5% in DME case) by varying the piston motion patterns alone. Furthermore, specific asymmetric piston trajectories are synthesized to further improve the engine thermal efficiency (8% in hydrogen case) and reduce the NOx emission simultaneously (around 70% reduction in hydrogen case). In other words, due to its ultimate fuel flexibility, large tolerance of fuel impurity, and controllable piston trajectory, the FPE, with the trajectory-based combustion control, enables a co-optimization of renewable fuels and engine operation.

Keywords: Renewable fuels, Free piston engine, Trajectory-based combustion control.

Highlights:

- Seven renewable fuels can be ignited through trajectory-based combustion control.
- Variable CR enables ultimate fuel flexibility and large fuel impurity tolerance.
- Different piston motion patterns can also enhance the FPE's performance.
- An optimal asymmetric trajectory can be synthesized for each renewable fuel.
- Both thermal efficiency and emissions are improved simultaneously in the FPE.

¹ Corresponding author. Tel.: +01 612-625-2107
E-mail address: zsun@umn.edu (Zongxuan Sun)

1. Introduction

Currently, transportation sector alone consumes about 30% of the total energy in the USA [1]. Almost 95% of this energy comes from petroleum-based fuels [1, 2]. This situation raises two concerns: energy sources depletion and environmental impact: as projected, the worldwide oil reserves can only sustain 40~50 years at current consumption rate. Meanwhile, almost 14% global greenhouse gas (GHG) emissions are produced due to the combustion of fossil fuels in transportation sector [3]. Such crisis will be even more exacerbated due to the rapid growth of energy demands for transportation in the future [4]. Consequently, lots of automotive technologies are proposed, and adopting renewable fuels is one of them. Such an introduction certainly increases the diversity of energy sources. In addition, based on the life cycle assessment (LCA) of renewable fuels, the GHG emission is also reduced significantly since their feedstock production are mainly via the photosynthesis process, which absorbs a large amount of CO₂ from the atmosphere. [2, 5-11].

However, widely implementation of renewable fuels in automobiles still remains elusive to date, mainly caused by its high cost. Such a high cost comes from two aspects: One is the feedstock price and the other one is the processing expenditure, which is spent to convert the feedstock to available fuels for conventional internal combustion engine (ICE). Currently, mature technologies producing renewable fuels, e.g. ethanol and biodiesel, require valuable crops or animal fats as the feedstock, which raises lots of public concerns due to the shortage of food for increasing global population [12]. As a result, low cost feedstock, such as lignocellulose, algae, waste vegetable oil, and municipal solid waste are then proposed. However, these feedstock inevitably increase the processing expenditure, since they require complicated pretreatments and purification processes.

The above trade-off makes it difficult to reduce the renewable fuel price thoroughly. However, this dilemma stems from a plausible fact that all renewable fuels have to possess similar physical and chemical properties as gasoline or diesel. This premise significantly constrains the research on renewable fuels. Consequently, the majority of related research only focus on synthesizing the so-called drop-in renewable fuels [13], rather than producing optimal alternative fuels, which power vehicles more effectively and cleanly at lower costs. It is possible that conventional ICE is not suitable for such optimal renewable fuels, due to their different physical and chemical properties compared to gasoline or diesel. Therefore, a new flexible engine is desired to leverage these renewable fuels.

Free piston engine (FPE) is such a flexible engine [14-21]. Due to the absence of the mechanical crankshaft, the FPE owns ultimate freedom on its piston motion and enables variable compression ratio (CR). As a result, different fuels can be employed in the FPE, without any mechanism modification [22]. Figure 1 shows the FPE at the University of Minnesota.

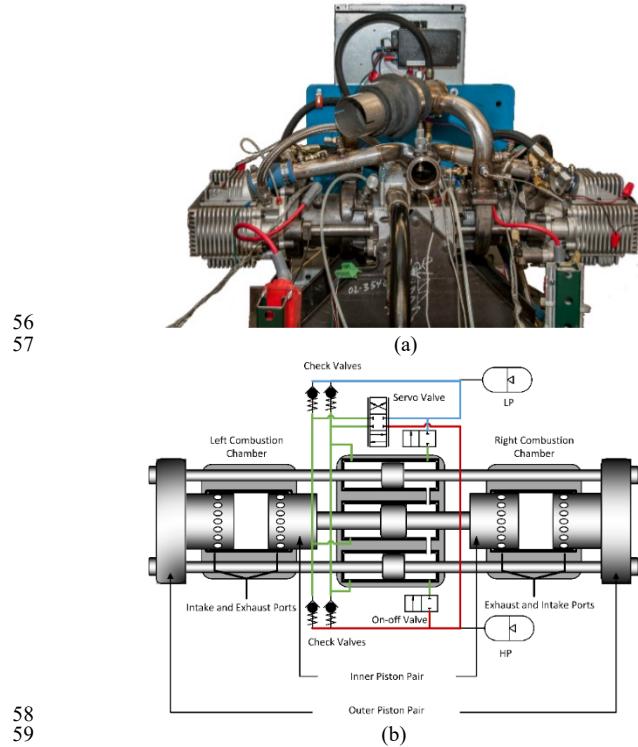


Figure 1. Picture (a) and schematic (b) of the FPE at the UMN.

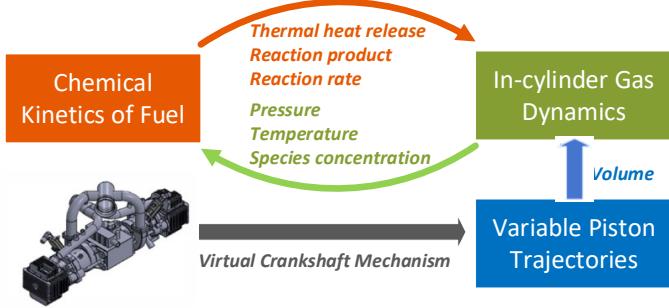

As can be seen, two combustion chambers are located at two ends of the engine, and combustion will occur inside each chamber alternatively. Consequently, the combustion forces will push the piston moving back and forth and generate fluid power through this linear piston motion. The main technical barrier of FPE is the lack of precise and robust piston motion control, since its piston movement is completely determined by combustion force and load dynamics in real-time [19, 20, 23-25]. Previously, an active piston motion control, namely the “virtual crankshaft”, has been developed and implemented into the FPE. With the assistance of this advanced control, the FPE enables its piston to track any prescribed trajectories reference precisely [19, 20]. The FPE’s specification is listed in Table. 1.

Table. 1 Specification of hydraulic free piston engine

Specification	Parameter	Unit
<i>Bore</i>	79.5	mm
<i>Nominal Stroke</i>	120	mm
<i>Displacement/cylinder</i>	0.6	L
<i>Number of cylinders</i>	2	
<i>Inner plunger diameter</i>	13.4	mm
<i>Outer plunger diameter</i>	9.48	mm
<i>Total hydraulic plunger area</i>	282.2	mm ²

Besides variable CR, the controllable piston trajectory also provides an additional control means to tailor the combustion process and therefore improves the engine performances. This capability forms the concept of trajectory-based combustion control [26, 27]. As shown in Fig. 2, the combustion inside the engine, especially for HCCI mode, is determined by the interaction between the fuel chemical kinetics and the in-cylinder gas dynamics through a feedback manner. Traditional control methods in conventional ICE can only affect this interaction at specific time instants within an engine cycle, rather than adjust it in real time. However, with the virtual crankshaft, an optimal piston trajectory can be

88 designed and implemented into the FPE, which effectively
 89 controls the combustion process via varying combustion
 90 chamber volumes profiles. In this way, the engine efficiency
 91 can be improved significantly, while the emissions are reduced
 92 simultaneously.

93
 94 Figure 2. Interaction between chemical kinetics and gas dynamics

95 The effectiveness of the trajectory-based HCCI
 96 combustion for fossil fuels has been presented previously [26,
 97 27]. In this paper, this advanced combustion control is applied
 98 to renewable fuels, which shows advantages in terms of
 99 ultimate fuel flexibility, large tolerance of fuel impurities and
 100 comprehensive engine performance improvement. The rest of
 101 this paper is structured as follow: first of all, a review of seven
 102 selected renewable fuels is presented. Afterward, a
 103 comprehensive model, describing the FPE operation under
 104 HCCI combustion, is presented. Then the corresponding
 105 simulation results are discussed. At last, the conclusions as
 106 well as potential future works, is presented.

107 2. Renewable Fuels

108 Renewable fuels are referred to gaseous or liquid fuels
 109 converted from sustainable feedstock. Typical renewable fuels
 110 nowadays include hydrogen, biogas, syngas, ethanol, DME,
 111 biodiesel, and F-T fuel. The physical and chemical properties
 112 of these seven fuels are listed in Table. 2 for comparison. In
 113 the rest of this section, a comprehensive review is presented,
 114 which discusses properties, production technologies and
 115 existing challenges of each fuels in detail.

116 2.1. Hydrogen

117 Hydrogen (H_2) is the lightest element, which results in
 118 some extreme properties, such as high thermal conductivity,
 119 rapid burning speed, and quite a high octane number [8]. As a
 120 fuel, H_2 has the highest energy content per unit of mass,
 121 around 120MJ/kg, and produces zero C-based emissions.
 122 Additionally, since H_2 is the most plentiful element on earth, it
 123 is also considered as one of the endless energy sources.

124 Currently, extensive researches have been conducted to
 125 investigate the production of H_2 from biomass directly. Those
 126 processes are usually classified into two groups: thermal-
 127 chemical conversion and bio-chemical conversion [28]. The
 128 former approach involves a series of thermal chemical
 129 reactions, such as steam reforming, pyrolysis, and gasification
 130 of biomass. The latter one includes fermentative H_2 production,
 131 photosynthesis process, and biological water gas shift reaction
 132 [29]. Even though it is more environmental friendly and less
 133 energy intensive, the bio-chemical conversion still needs to
 134 further improve its conversion efficiency and decrease the
 135 related cost [9]. In addition, H_2 can also be produced via water

500 Table. 2 Properties of seven renewable fuels, gasoline and diesel [2-8, 10, 11]

Property	Unit	H_2	Biogas	Syngas	Ethanol	DME	Biodiesel	F-T fuels	Gasoline	Diesel
Molar mass	g/mol	2	~22	~25	46	46	~290	~210	~110	~170
C content	Mass%	0	~44	~14	52.2	52.2	~77	85.7	84	86
H content	Mass%	100	~10	~2	13	13	~12	14.3	16	14
O Content	Mass%	0	~46	~24	34.8	34.8	~11	0	0	0
Density	kg/m ³	0.082	~1.15	~0.95	785	667	880	757	737	831
Cetane number		<0	<0	<0	5-8	>55	47	>70	0-5	40-50
Auto-ignition Temperature	°C	500	>600	>600	365	350	370	-	260	210
Low heating value	MJ/kg	120	~30	~18	26.87	27.6	~37	43.24	43.47	42.5
Kinematic viscosity	cSt	~100	-	-	1.1-2.2	<0.1	1.9-6.0	-	<1	3
Boiling point	K	20	~150	~100	351	248.1	360	-	310-478	450-643
Vapor pressure (at 298K)	kPa	-	-	-	5.83	530	<10	-	<180	<<10

136 electrolysis, which is more sustainable, if renewable energy,
 137 such as solar energy, wind turbine, and hydropower plant, are
 138 employed.

139 There are some roadblocks preventing the large scale
 140 utilization of H_2 . The most severe problem is the safety of H_2
 141 storage and transportation. Due to its small molecular size and
 142 less ignition energy, H_2 could easily be dispersed into the
 143 atmosphere and ignited [8].

144 2.2. Biogas

145 Biogas is a versatile gaseous renewable energy source,
 146 which is predominantly produced by anaerobic digestion (AD)
 147 of energy crops, agriculture residues, livestock waste, industry
 148 slurry and municipal solid waste. The main components of
 149 raw biogas are CH_4 , 50-70% in vol., and CO_2 , 30-40% in vol.,
 150 with a smaller amount of H_2S and NH_3 [30]. Due to the large
 151 amount of CO_2 , the raw biogas has smaller lower heating
 152 value and much larger density compared to natural gas.

153 As one of the most energy-efficient and environment-
 154 friendly renewable fuels, the production of biogas through AD
 155 offers unbeatable benefits compared to the others. For
 156 example, extremely low cost of feedstock decreases its price
 157 significantly; the AD process provides an excellent approach
 158 dealing with the landfill deposit and waste recovery, and
 159 therefore improving human health and hygiene. As a result,
 160 more countries have explored the utilization of biogas since
 161 last century: The United States consumed 147 trillion BTU
 162 (155 trillion kJ) of energy from biogas, about 0.6% of the
 163 national natural gas consumption in 2003 [31]. In 2008, more
 164 than 60% of gaseous vehicle fuel in Sweden is biogas, which
 165 powered more than 17,000 vehicles nationally [32]. At the end
 166 of 2010, almost 6,000 biogas plants were operated in German
 167 [33].

168 Usually, the raw biogas is used in combined heat and
 169 power (CHP) plant after desulfurization and dehydration. In

addition, the raw biogas can also be upgraded by concentrating the methane component up to 95% or more [34]. The upgraded biogas, or so-called bio-methane, is widely adopted as the vehicle fuels in many European countries, such as Germany, Sweden, Switzerland, and Norway. However, the upgrading process inevitably increases the price of biogas and limits its market. Other related technological issues also exist including the methane slip problem during the upgrading process and its transportation challenges.

2.3. Syngas

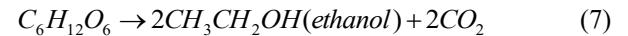
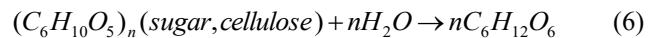
Syngas is another gaseous fuel which is converted via gasification, a thermochemical conversion process which partially oxidizes hydrocarbon compounds into different products [35]. Typically, the produced syngas contains multiple gases, such as CO, H₂, CH₄, CO₂ and N₂. Other impurities, such as tar, particulate matter (PM) and char, also exist. The main chemical reactions governing the conversion process can be summarized as follow:

Currently, gasification is recognized as the most promising technology to be fully commercialized. The gasifiers can be categorized into two groups: fixed bed gasifier and fluidized bed gasifier. The dominant gasifier is the fixed bed downdraft one due to its higher conversion efficiencies and lower production of tar and PM [36]. Typical compositions of syngas from this gasifier are listed in Table. 3.

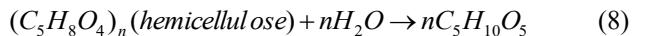
Table. 3 Typical bio-syngas composition produced from downdraft gasifiers operated on low- to medium moisture content feedstock [37]

Component	[%] in volume
H ₂	12-20
CO ₂	9-15
CH ₄	2-3
CO	17-22
N ₂	50-54

Beside the gasifier, other aspects, e.g. moisture in the feedstock, temperature, air-fuel equivalence ratio (ER) for gasifying process and gasifying agent, are also critical to determine the quality of gasification [35]. For instance, feedstock with high moisture reduces the calorific value (CV) of the product due to the need of evaporation; higher temperature leads to higher yield of CO and H₂, less tar content and more ash; Higher ER facilitates biomass oxidation and therefore generates less CV product, while low ER results in more tar and other impurities; at last, if gasifying agent is pure oxygen, more combustible gases are produced at a higher cost.

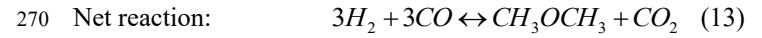
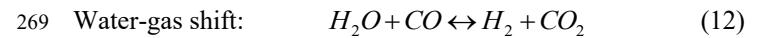
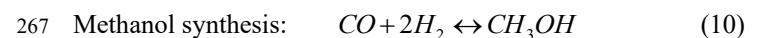


Extensive studies have been conducted to investigate the performance of feeding the syngas into the ICE directly [36-38]. It has concluded that in this case, the ICE encounters 20-30% power de-rating in the diesel mode and even larger power loss in the spark ignition mode [37]. The reduction is mainly attributed to the lower CV of the syngas and less volume of the syngas/air mixture entering the engine cylinders.

Increasing CR is an effective way to address this issue. It has been demonstrated that a 15-20% improvement of power de-rating could be achieved if high CR engine is utilized [38].


2.4. Ethanol

Ethanol is mainly produced from renewable biomass through the fermentation process. It has been accepted as a fuel for ICE even before the gasoline [39]. Currently, ethanol is still a promising alternatives fuel due to its compatibility of existing ICE. Besides, ethanol has a higher octane number, which enables the ICE to operate at higher CR [10]. The utilization of ethanol in the ICE can also reduce emissions, e.g. CO, unburned HC, SO_x and NO_x, due to its higher oxygen content, almost zero sulfur content and less lower heating value (LHV) [39].

The production of ethanol is drastically increased from 4.5 billion gallons to 23.4 billion gallons in 2010 globally [40]. Conventionally, ethanol is produced from the food crops, which are easily transformed to simple sugar through milling, liquefaction, and saccharification. Then, the simple sugar is further fermented to ethanol via specific microorganisms. The corresponding chemical process is represented as follow:




Concerns are raised for this approach due to the food supply issues worldwide. Therefore, conversion of ethanol from the non-food lignocellulosic plant, or so-called "second generation feedstock", is extensively explored [5]. Consequently, besides reactions (6) and (7), the conversion process of second generation feedstock is also affected by following reactions:

To date, how to extract simple sugar from these lignocellulosic materials in a cost-effective way, is still a bottleneck for this technology. Usually, such feedstock has been treated through acid hydrolysis and/or enzymatic hydrolysis before the fermentation process [5], which are very energy- and cost-intensive. Other conversion methods, e.g. thermochemical transformation of lignocellulosic materials and ethanol production from microalgae and seaweeds, are also proposed, which have not entered into practice yet.

2.5. Dimethyl ether (DME)

DME is the simplest ether with a chemical formula of CH₃OCH₃. Its physical properties are quite similar to other liquefied petroleum-based gas, such as propane and butane. DME is usually compressed to the liquid phase and works as a substitute for diesel fuel [5-7]. At the present time, most DME is produced by dehydrogenation of methanol from natural gas or syngas:

Besides, DME also owns other unmatched advantages:

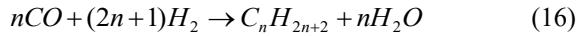
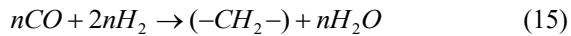
272 • *Human Health*: DME is accepted as a non-toxic and non-
 273 carcinogenic volatile organic compound.
 274 • *Economy*: due to its similar properties of liquefied
 275 petroleum gas, DME can use the existing gas
 276 infrastructures for transport and storage.

277 • *Environment impact*: The absence of C-C bond in DME
 278 and its high oxygen content result in less PM and NOx.
 279 Nonetheless, the relatively lower heating value of DME
 280 requires the ICE operating at a higher CR to fully extract its
 281 chemical energy. Meanwhile, the existence of multiple
 282 impurities, such as methanol and water, also asks for specific
 283 treatment before it is feed to conventional ICE.

284 2.6. Biodiesel

285 Biodiesel is a yellowish liquid whose chemical structure
 286 is mainly mono-alkyl esters of fatty acids [5]. It is considered

287 as one of the best non-toxic and bio-degradable drop-in
 288 biofuels. From 2003 to 2013, the worldwide production of
 289 biodiesel has increased significantly, from 213 million gallons
 290 to 6289 million gallons [41].



291 At the very beginning, the biodiesel was produced from
 292 vegetable oil or animal fat directly by mechanical extraction.
 293 However, mainly due to the high viscosity of the derived oil, it
 294 was abandoned. Afterwards, many alternative approaches, e.g.
 295 blending, micro-emulsions and transesterification, were
 296 proposed [42]. At the present time, the dominant technology is
 297 transesterification, governed by reaction (14), where R_1 , R_2
 298 and R_3 are different or the same aliphatic hydrocarbon groups
 299 [5].

300 Even though the properties of produced bio-diesel are
 301 excellent, the high cost of the corresponding feedstock, such as
 302 vegetable oil and animal fat, still prevents the
 303 transesterification from wide commercialization. This
 304 drawback results in the exploration of the second generation
 305 feedstock, including used vegetable oil, non-edible plant oils,
 306 and even waste restaurant oil [2, 5]. Due to the high content of
 307 free fatty acid in those second generation feedstock, the
 308 corresponding production technologies are also upgraded. The
 309 third generation feedstock, such as algae, bacilli, fungi, and
 310 yeast [8], are also proposed to further reduce bio-diesel price.
 311 Nonetheless, lots of challenges still exist for the third
 312 generation feedstock in terms of cost and efficiency.

313 It is widely accepted that bio-diesel can be injected into
 314 the diesel engine directly, with no or minor hardware
 315 modification. Even though the fuel economy may reduce
 316 around 10% due to its less low heating value [13], the
 317 emissions performance, in terms of SOx, NOx, and PM, is
 318 much better than its petroleum-based counterparts [43].

319 2.7. Fisher-Tropsch fuels

320 Fisher-Tropsch fuel, or F-T fuel, is the name of a variety
 321 of liquid hydrocarbons which are produced from syngas
 322 through Fisher-Tropsch synthesis, established by Germany
 323 scientists, Franz Fisher and Hans Tropsch, back to 1920s [44]:

327 As can be seen, the production of F-T fuels can be
 328 separated into three steps: syngas generation, syngas
 329 processing and finally Fischer-Tropsch synthesis. It was

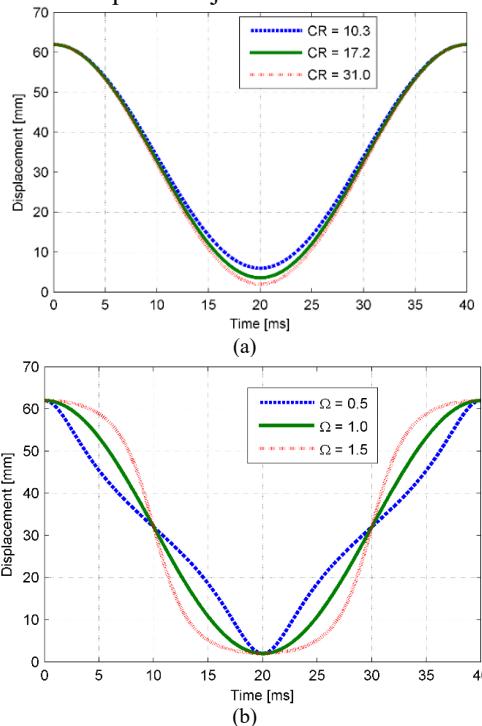
330 evaluated that the syngas generation, especially from the
 331 biomass, accounts for more than half of the capital investment
 332 and operating cost [45]. Variable aspects affect the yield and
 333 quality of the F-T fuels, including reaction temperature,
 334 reaction pressure, feed gas composition and catalyst type.

335 Since its majority components are straight-chain alkanes,
 336 the F-T fuels own very high quality as a substitute for diesel
 337 fuel. In addition, attributed to its relatively S-free content and
 338 few aromatic compounds, the F-T fuels generate nearly zero
 339 SOx and PM emissions. Furthermore, due to its high cetane
 340 number, the F-T fuels can also be blended into traditional
 341 diesel to further improve its quality.

342 3. Model Approach

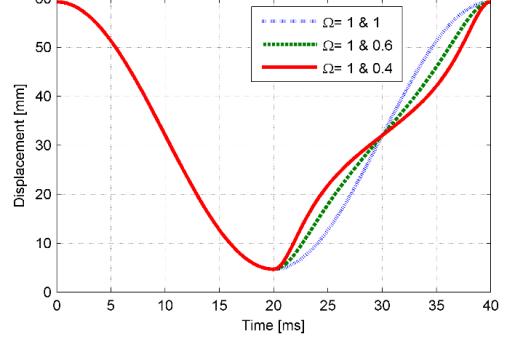
343 By leveraging the ultimate flexibility of piston motion in
 344 the FPE, all the selected renewable fuels are assumed to
 345 undergo HCCI combustion mode, which is one of the most
 346 promising low temperature combustion technologies to provide
 347 high thermal efficiency and reduce emissions significantly. As
 348 a result, the model is developed by assuming the combustion
 349 chamber of FPE as a homogeneous variable-volume reactor, in
 350 which the in-cylinder gases are ideally mixed from the
 351 beginning. During the simulation, only compression and
 352 expansion processes are considered, and scavenging process is
 353 neglected. Consequently, the simulation studies only focus on
 354 the combustion process within an engine cycle.

355 The entire model comprises three components: a unique
 356 mechanism synthesizing variable piston trajectories of FPE, a
 357 comprehensive physics-based model representing FPE
 358 operation, which is mainly developed via the first law of
 359 thermodynamics. At last, specific reaction mechanisms will
 360 also be investigated to reproduce the combustion process of


357 each fuel. A brief introduction of all these three parts will be
358 described below and a nomenclature of this model is listed in
359 Table. 4. The detailed model approach can be found in [26, 27].
360

361 Table. 4 Nomenclature for the presented model

Symbol	Description
A_{wall}	Surface area of the combustion chamber
$C_{v,i}$	Constant volume heat capacity of species i
h	Heat transfer coefficient
$h_{i,m}$	Molar enthalpy of species i
M_i	Molar weight of species i
m	The mass of in-cylinder air-fuel mixture
m_{chem}	Net production of species i in mass-scale
N_s	Total number of species in reaction mechanism
P	Pressure of in-cylinder gas
Q_{Chem}	Heat release due to chemical reaction
Q_{HT}	Heat loss through engine wall
R_{mass}	Equivalent gas constant of mixed in-cylinder gas
R_i	Gas constant of species i
T	Temperature of in-cylinder gas
T_{wall}	Temperature of engine wall
U	Internal energy of in-cylinder gas
V	Combustion chamber volume
v_i	Net production of species i in concentration scale
w	Average in-cylinder gas velocity
ω_i	Mass fraction of species i


362 **3.1. Geometric Model**

363 The geometric model mainly describes the geometric
364 structure of the FPE (Table.1). However, the most important
365 function of this model is to represent variable piston
366 trajectories in the FPE. Due to the absence of mechanical
367 crankshaft, the piston in FPE owns more freedom compared to
368 conventional ICE. This freedom enables FPE to vary both CR
369 and piston motion patterns between the bottom dead center
370 (BDC) and the top dead center (TDC) points, indicated by
371 parameter Ω , (Fig. 3). The detailed mechanism explaining how
372 to synthesize these piston trajectories can be found in [26].

377 Figure 3. Piston trajectories with variable (a) CR and (b) Ω .

378 Furthermore, the piston trajectory can even be asymmetric
379 (Fig. 4). These asymmetric trajectories actually realize in-cycle
380 combustion control by assigning different control objectives
381 while designing each trajectory section. For example, the
382 compression process can be determined by optimizing the
383 combustion phase, and the expansion process can be designed
384 to reduce the related heat loss and NOx emission [27].

385 Figure 4. Asymmetric trajectories generated by the FPE.

386 **3.2. Physics-based Model**

388 The combustion chamber is modeled as a closed system.
389 Related energy and species mass conservation equations are
390 listed as below:

$$391 \frac{dU}{dt} = -P \frac{dV}{dt} - \dot{Q}_{HT} + \dot{Q}_{Chem} \quad (18)$$

$$392 m \frac{d\omega_i}{dt} = \dot{m}_{i,chem} \quad i=1, 2 \dots N_s \quad (19)$$

393 The left term in (18), dU/dt , represents the time-derivative
394 of internal energy. The three terms on the right side are
395 volumetric work, heat loss, and chemical heat release,
396 respectively.

397 In (19), m is air-fuel mixture mass. N_s is the total number
398 of species in the reaction mechanism. ω_i represents the mass
399 fraction of species i . Its right term is net production rate of
400 species i in mass-scale calculated by all the involved reactions.

401 More specifically, the heat loss term in (18) is derived via
402 a convection model [46]:

$$403 \dot{Q}_{HT} = h \cdot A_{wall} (T - T_{wall}) \quad (20)$$

404 where A_{wall} is the variable surface area of the chamber, T_{wall} is
405 the wall temperature, assumed as 500K [26] and h is the heat
406 transfer coefficient, determined via Woshini correlation [46]:

$$407 h = 3.26 \cdot b^{-0.2} P^{0.8} T^{-0.55} w^{0.8} \quad (21)$$

408 where b is the engine bore, which is 79.5 mm, P and T are the
409 pressure and temperature of the in-cylinder gas, and w is the
410 average in-cylinder gas velocity, which is set as 8 m/s based on
411 the FPE operation [26].

412 The ideal-gas law is also applied to calculate dU/dt , in-
413 cylinder pressure P and the equivalent gas constant of mixed
414 in-cylinder gases R_{mass} . Several parameters are utilized during
415 the calculation, which include in-cylinder temperature T ,
416 constant volume heat capacity of each species $C_{v,i}$, mass
417 fraction of each species ω_i , gas constant of each species R_i ,
418 total mass m and chamber volume V :

$$419 \frac{dU}{dt} = \sum_{i=1}^{N_s} C_{v,i} \cdot m \cdot \omega_i \frac{dT}{dt} + \sum_{i=1}^{N_s} C_{v,i} \cdot m \cdot T \cdot \frac{d\omega_i}{dt} \quad (22)$$

420

$$R_{\text{mass}} = \sum_{i=1}^{N_s} R_i \cdot \omega_i \quad (23)$$

421

$$P \cdot V = m \cdot R_{\text{mass}} \cdot T \quad (24)$$

422 **3.3. Chemical Reaction Mechanisms**

423 A specific chemical reaction mechanism has to be
424 implemented into the model to calculate the chemical-related
425 terms in (18), (19) and (22) by providing thermal data of each
426 species and the corresponding chemical kinetics:

427

$$\dot{Q}_{\text{Chem}} = -V \cdot \sum_{i=1}^{N_s} v_i \cdot h_{i,m} \quad (25)$$

428

$$m \frac{d\omega_i}{dt} = \dot{m}_{i,\text{chem}} = V \cdot M_i \cdot v_i \quad (26)$$

429 where v_i , M_i and $h_{i,m}$ represent the net production rate, molar
430 weight and the molar enthalpy of species i respectively.

431 A complete reaction mechanism usually includes two parts,
432 namely the thermal data part and the chemical reactions part.
433 The thermal data part offers thermodynamic properties of each
434 species via the NASA polynomial parameterization. The
435 chemical reactions part provides valuable information to
436 calculate net production rate of species i , e.g. v_i in (25) and
437 (26).

438 A diagram of the model is presented in Fig. 5 in order to
439 reflect its intrinsic dynamics more clearly. Typically, variable
440 piston trajectories provide volumetric information to the other
441 two. Meanwhile, the chemical reaction mechanism sends the
442 thermal properties and the derived chemical states into the
443 physical-based model, while the latter one offers T , P and w_i in
444 return. Inside the physics-based model, the heat loss submodel
445 provides the heat loss term to the thermal dynamics submodel
446 after receiving T and P .

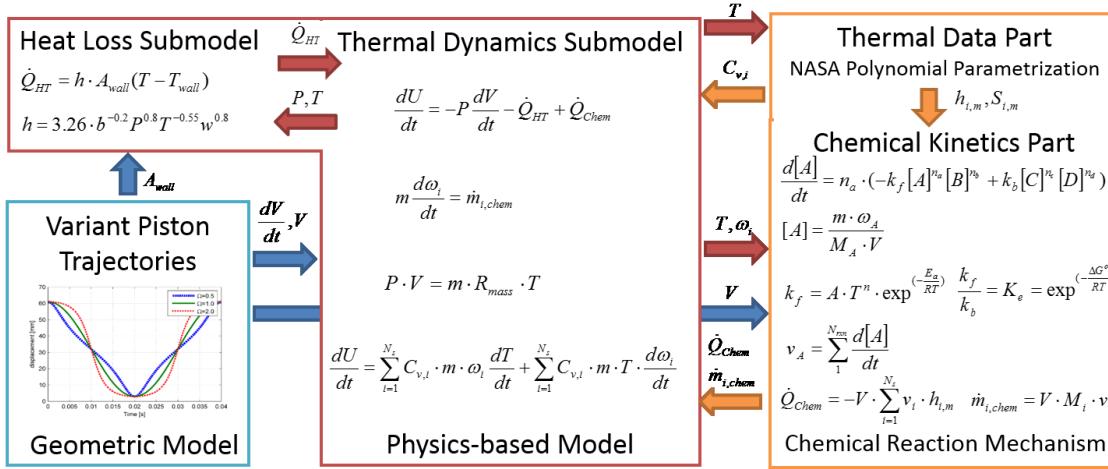


Figure 5. Diagram of the presented modeling approach [26]

446 Five reaction mechanisms are chosen and implemented
447 into the developed model to represent the combustion
448 processes of the key components within the selected
449 renewable fuels. Two requirements affect this selection
450 considerably: first of all, the selected mechanism must capture
451 the essential feature of the chemical kinetics. On the top of
452 that, the mechanism has to comprise a lowest permissible
453 number of species and reactions, which improves
454 computational efficiency significantly. The five reaction
455 mechanisms are listed in Table 5. The effectiveness of all the
456 reaction mechanisms, in terms of predictions of ignition delay
457 time and flame propagation speed, have been experimentally
458 validated by different facilities, e.g. shock tube, constant
459 volume chamber and test-bed engine [47-50].

460 Table 5 Selected reaction mechanisms for various renewable fuels

Fuel	# of species	# of reactions	Mechanism
Hydrogen	53	325	GRI-30 ^a
Biogas	53	325	GRI-30
Syngas	53	325	GRI-30
Ethanol	57	383	LLNL ^b Ethanol
DME	79	683	LLNL DME, 2000
Biodiesel	118	1178	LLNL C10 Methyl Ester Surrogates

F-T fuel	171	1620	U of Connecticut PRF mechanism
----------	-----	------	--------------------------------

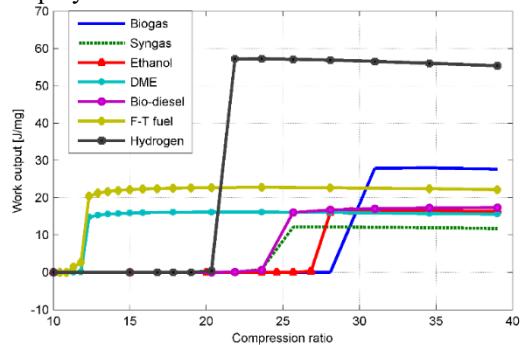
a: GRI-30 mechanism is mainly proposed by UC Berkeley
b: LLNL stands for Lawrence Livermore National Laboratory

461 **3.4. Modeling Tools**

462 Cantera is an open-sourced software package which is
463 capable of executing the chemical, thermodynamic and
464 kinetics calculation. In this research, it is used to integrate all
465 the reaction mechanisms with the physical-based model [51].
466 All the simulations are conducted with Python 2.7 version at
467 first. The derived outputs are then sent to Matlab R2012b for
468 further processing and imaging.

469 **4. Simulation Results and Discussion**

470 The main focus of this study is to investigate the effects
471 of the piston trajectory on the combustion process of different
472 renewable fuels. In the FPE, the piston trajectories can be
473 varied with respect to both CR and Ω . By changing CR, all
474 seven selected fuels can be ignited in the simulation, which
475 proves FPE's ultimate fuel flexibility. Furthermore,
476 simulations of syngas and F-T fuels show that this freedom
477 can also expand available range of fuel compositions. The
478 FPE can even enhance the engine tolerance of fuel impurities
479 by varying the CR, proved by the simulation of DME and
480 ethanol.


481 In addition, the capability of varying Ω in the FPE
 482 enables the reduction of required CR to ignite renewable fuels,
 483 which is proved by both results of biogas and biodiesel. On
 484 top of that, the simulation results of DME also show that the
 485 freedom of Ω can be further utilized to optimize the
 486 combustion process at a fixed CR.

487 Afterward, the simulation of H_2 is conducted,
 488 concentrated on the optimization of FPE operation by
 489 implementing asymmetric piston trajectories. Such
 490 asymmetric piston trajectories are designed based on the
 491 chemical kinetics of the fuel, variable loading conditions and
 492 corresponding NOx emission.

493 4.1. Effects of CR

494 CR is such an important parameter for ICE due to its
 495 significant influence on engine efficiency. In addition, some
 496 researchers even claimed that by changing CR, almost any
 497 liquid fuels can be utilized in the ICE [22]. Different variable
 498 CR mechanisms have been proposed for ICE [22, 52]. Most of
 499 them modify the crank/connecting rod mechanism with
 500 mechanical linkages and actuation systems. Those
 501 technologies offer some flexibility for CR control, but still
 502 subject to the mechanical constraints and the response time of
 503 the actuation system.

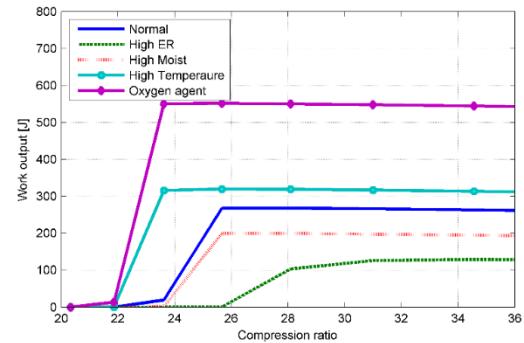
504 FPE, however, offers continuously variable CR control
 505 with the assistance of the virtual crankshaft, and thus realizes
 506 the ultimate fuel flexibility. In other words, all renewable fuels
 507 can be employed into the FPE.

508
 509 Figure 6. Work output per unit mass vs different CR (seven different
 510 renewable fuels, AFR = 2, identical Ω = 1)

511 As can be seen in Fig.6, under the HCCI combustion
 512 mode, all the seven renewable fuels considered herein can be
 513 ignited by employing an appropriate CR into the FPE. The
 514 minimal CR to ignite each renewable fuel is listed in Table. 6.

515 Table. 6 Minimal CR to ignite each renewable fuels in FPE (Ω = 1)

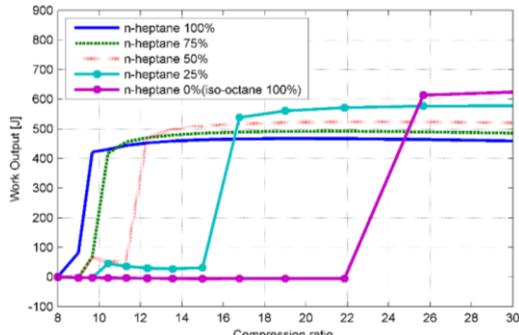
Fuels	Components	CR
Biogas	90% CH_4 and 10% CO	31
Syngas	20% CO, 18% H_2 , 2% CH_4 , 10% CO_2 and 50% N_2	26
Bio-ethanol	100% C_2H_5OH	28
DME	100% DME	12
Bio-diesel	100% Methyl Decanoate	25
F-T fuel	50% n-heptane, 50% iso-octane	12
Bio-hydrogen	100% hydrogen	22


516
 517 Clearly, the required CRs for each renewable fuel are
 518 completely different. Nonetheless, all of these CRs can be
 519 obtained in one FPE without any hardware modification. In
 520 addition, Fig. 6 also shows that H_2 has much higher energy
 521 density compared to the other fuels. Biogas, which consists of

522 90% methane, and F-T fuels are followed from this
 523 perspective. Fewer output works per mass are produced by
 524 DME, ethanol, and bio-diesel, partially because higher oxygen
 525 contents in their molecules. At last, syngas has the least
 526 energy density since it comprises more incombustible
 527 components, such as CO, CO_2 and a large amount of N_2 .

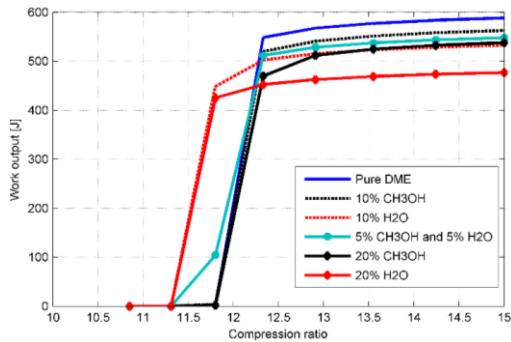
528 Besides, variable CR also enhances FPE's capability of
 529 dealing with different compositions of renewable fuel. For
 530 example, as mentioned in section 2.2, the compositions of the
 531 syngas can be varied significantly due to the moisture content
 532 of the feedstock, employed ER during gasification,
 533 gasification temperature and utilized gasification agent, as
 534 listed in Table. 7.

535 Table. 7 Typical compositions (in vol.) of various syngas under
 536 different conditions [53, 54]


Conditions	CO	H_2	CH_4	CO_2	N_2
Normal	20	18	2	10	50
High ER	10	9	1	15	65
High moist	9	22	1	8	60
High T	30	20	1	9	40
Oxygen agent	45	35	6	14	0

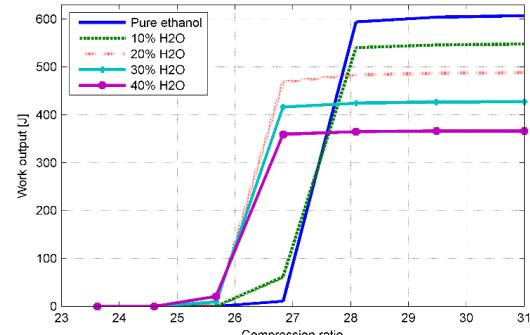
537
 538 Figure 7. Work outputs vs different CR (syngas produced in different
 539 conditions, AFR = 2, identical Ω = 1)

540
 541 Generally, if the gasification proceeds at a higher
 542 temperature or with pure oxygen agent, more combustible
 543 components, such as CO and H_2 , are produced. In this way,
 544 the syngas is easier to be ignited by compression and
 545 generates more output work as shown in Fig. 7. If the
 546 feedstock has a high content of moisture, more energy is
 547 consumed to evaporate the moisture before the gasification,
 548 which results in less yield of combustible components. At last,
 549 if high ER is employed, more biomass feedstock will be
 550 converted to completed products, such as CO_2 and H_2O .
 551 Consequently, high CR is required to ignite such syngas and
 552 least output work is produced. The last two types of syngas are
 553 usually considered as non-combustible syngas for
 554 conventional ICE. [34] However, by varying the CR using the
 555 virtual crankshaft mechanism, the FPE can still ignite the last
 556 two types of syngas and produce output work, though its
 557 amount is still relatively low.


558
 559 A similar trend can be achieved in F-T fuels, which is
 560 indicated by a combination of n-heptane and iso-octane with
 561 different volume percentages respectively (Fig. 8).

561
562 Figure 8. Work output vs different CR (F-T fuels with different compositions,
563 AFR = 2, identical Ω = 1)

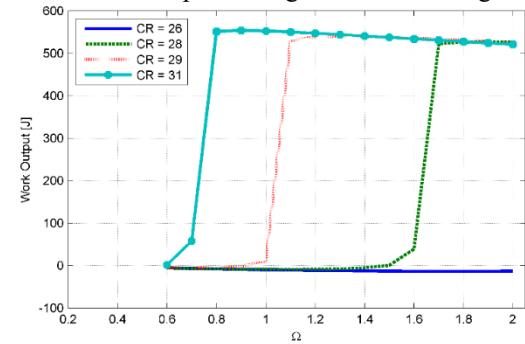
564 Besides large variation in compositions, the existences of
565 impurities are also recognized as another roadblock preventing
566 the wide application of renewable fuel. For instance, the
567 production of DME usually generates methanol
568 simultaneously. Complicated after-treatment processes are
569 conducted aimed to remove methanol, which inevitably
570 increases the price of DME. Another example is ethanol,
571 which is completely miscible with water. Usually, multiple
572 distillation processes are needed to dehydrate the produced
573 ethanol in order to make it satisfying the requirement as a
574 vehicle fuel.


575 Variable CR provides an effective method to increase the
576 tolerance of undesired components in renewable fuels, as
577 shown in Fig. 9 (DME case) and Fig. 10 (ethanol case)
578 respectively.

579
580 Figure 9. Work output vs different CR (DME with different impurities, AFR =
581 2, identical Ω = 1)

582 As can be seen in Fig. 9, no matter how many methanol
583 and water are contained in DME (within 20% impurities), the
584 FPE can always trigger the combustion by providing a suitable
585 CR. Compared to the current purity requirement of DME
586 using in the ICE (usually 95~98% in vol.) [55], such large
587 tolerance of fuel impurity enhances the application of DME
588 and reduces the corresponding cost. However, less work
589 output is indeed a problem, when a larger amount of water
590 and/or methanol exists in DME.

591 It may be surprised at the first glimpse that smaller CR is
592 required to ignite DME with water. However, this
593 phenomenon can be explained since more reactive radicals,
594 such as H, O, and OH, are generated from H_2O during the
595 ignition process. A similar trend can be observed in ethanol
596 case as well (Fig. 10). These results offer unintuitive insights
597 for renewable fuel production. It seems that there is no need to
598 completely dehydrate the final products, since an appropriate
599 amount of water inside fuel can somewhat improve the
600 ignition and reduce the requirement for after treatment.


601
602 Figure 10. Work output vs different CR (ethanol with different water contents,
603 AFR = 2, identical Ω = 1)

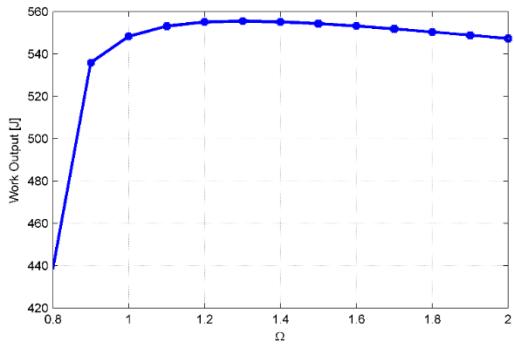
604 In a sum, the capability of varying CR possessed by FPE
605 not only offers FPE ultimate fuel flexibility, but also reduces
606 the refinement requirements for those renewable fuels.
607 Consequently, a co-optimization can be achieved. On one
608 hand, the production of renewable fuels can be optimized by
609 taking their chemical and physical properties, environmental
610 impact, and related economy influence into a full
611 consideration. On the other hand, an optimal CR can always
612 be designed and implemented into the FPE to fully leverage
613 the utilization of the employed renewable fuel.

614 4.2. Effects of Ω

615 The minimal required CRs in Table. 6 are derived only
616 according to chemical kinetics. However, it is possible that
617 those CR are still too high that the FPE cannot sustain a long-
618 term operation due to the mechanical strength of engine
619 material. Besides, high CR condition also adversely impacts
620 engine's NVH behavior. As a result, the FPE is expected to
621 operate at the lowest permissible CR.

622 The FPE provides another degree of freedom on piston
623 trajectory to further reduce the CR listed in Table. 6. With the
624 virtual crankshaft, the piston motion pattern between the TDC
625 and BDC points, indicated by Ω , can also be varied to realize
626 this function. An example of biogas is shown in Fig. 11.

627
628 Figure 11. Work output vs different Ω (biogas, AFR = 2)


629 It is clearly from Fig. 11 that by increasing Ω , the ignition
630 of biogas can be achieved at CR = 28, rather than CR = 31 as
631 listed in Table. 6. The result is even more impressive
632 compared to conventional HCCI engines for upgraded biogas,
633 of which CR is usually in the range of 30 ~ 40 [15]. This
634 reduction can be explained via Fig. 3(b). Obviously, larger Ω
635 represents a longer period of piston locating around the TDC
636 point. As a result, even though the CR is smaller, the longer
637 period for piston staying around the TDC point still guarantees
638 the accumulation of sufficient radical species to trigger the
639 chain reaction mechanism and thus ignite the air-fuel mixture.

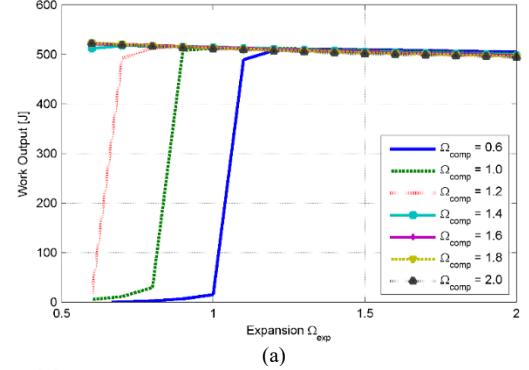
640 A similar trend is obtained in biodiesel case. As shown in Fig. 641 12, the required minimal CR is reduced from 25 to 22.

642
643 Figure 12. Work output vs different Ω (biodiesel, AFR = 2)

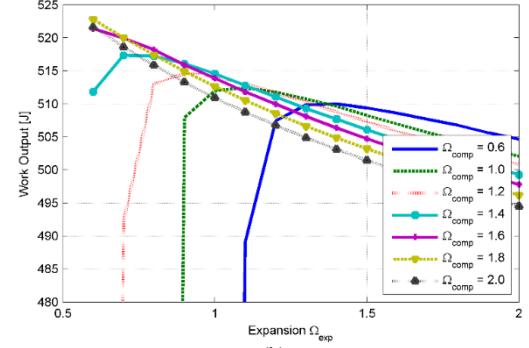
644 On the other hand, the ability to vary Ω in the FPE can 645 also benefit the combustion itself at a fixed CR.

646
647 Figure 13. Work output vs different Ω (DME, AFR = 2, CR = 12)

648 Fig. 13 shows the combustion of DME along different 649 piston trajectories with distinct Ω but identical CR = 12. 650 Obviously, the optimal Ω under this CR is 1.3, which 651 produces 555.57J output work at about 49.3% thermal 652 efficiency. In addition, similar simulation is also conducted 653 using piston trajectory of conventional ICE at same CR. The 654 corresponding thermal efficiency is 44.5%, which agrees the 655 results reported in [56]. In this case, the variable Ω in the FPE 656 enables about 5% improvement on thermal efficiency. It is 657 worth noting that at higher CR, the improvement of thermal 658 efficiency achieved by this freedom will be further enhanced, 659 as shown in [26].


660 4.3. Asymmetric piston trajectory

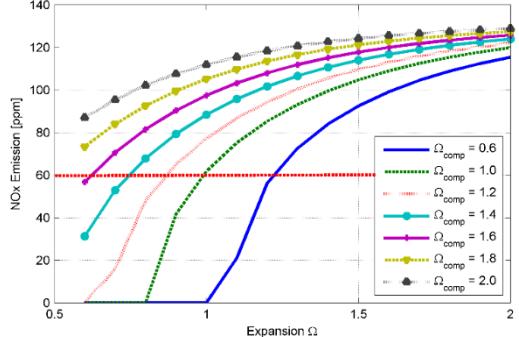
661 The most appealing advantage of the trajectory-based 662 combustion control is that the implemented trajectory can 663 even be asymmetric. In this way, two control objectives can be 664 assigned to piston trajectory separately. For instance, the 665 compression trajectory can be designed to optimize the 666 combustion phasing. The expansion trajectory can be 667 determined to reduce NOx emission. An example of H₂ is 668 illustrated in Fig. 14 and Fig. 15. In this example, each 669 asymmetric piston trajectories are described by two Ω s: Ω_{comp} 670 represents the Ω of compression trajectories and Ω_{exp} shows 671 the value along expansion process.


672 Fig. 14 shows the corresponding output work along 673 different asymmetric piston trajectories. As can be seen, if 674 Ω_{comp} is too small, a specific Ω_{exp} is required to ignite the H₂. 675 For example, if Ω_{comp} is as small as 0.6, the minimal required 676 Ω_{exp} is 1.2, reflected by the blue line in Fig. 14(a). On the 677 other hand, if Ω_{comp} is large enough (≥ 1.4), any Ω_{exp} in the 678 range of 0.6 to 2.0 can be implemented to trigger the

679 combustion. The above results can be explained by the 680 relationship between the Ω and the duration while piston 681 locating around the TDC. Any trajectory with Ω_{comp} larger 682 than 1.4 already provides enough time for ignition while the 683 piston locating around the TDC point along the compression 684 process. Consequently, a quick expansion can be implemented 685 afterwards to reduce the heat loss by selecting the smallest 686 Ω_{exp} available. To the contrary, if Ω_{comp} is too small to provide 687 enough time for ignition, the subsequent Ω_{exp} has to be 688 increased to trigger the combustion.

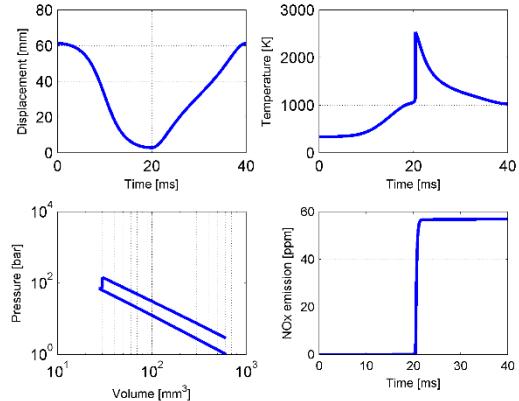
689 In addition, as long as the combustion is triggered 690 successfully, the amounts of output works are very close to 691 each other, as shown in Fig. 14(a). Specifically, the variation 692 is within 25J in the entire Ω domain. Fig. 14(b) is a zoomed-in 693 view, which illustrates the output works more clearly. 694 Obviously, the maximal output work is achieved when $\Omega_{comp} =$ 695 1.8 and $\Omega_{exp} = 0.6$, of which output work is 522.81 J, with 55.9% 696 thermal efficiency. To compare, the simulation is also 697 repeated using the ICE's trajectory. The later result turns out 698 that the combustion cannot occur in this situation. In addition, 699 a study, investigating the HCCI combustion in a FPE with 700 uncontrollable pistons, claimed that 48% thermal efficiency is 701 achieved when the engine was powered by H₂ and operated at 702 similar CR [15]. As a result, by using the designed asymmetric 703 piston trajectory, almost 8% improvement on thermal 704 efficiency can be achieved. However, the derived asymmetric 705 trajectory ($\Omega_{comp} = 1.8$, $\Omega_{exp} = 0.6$) may still not be the optimal 706 one, if NOx emission is taken into account.

(a)

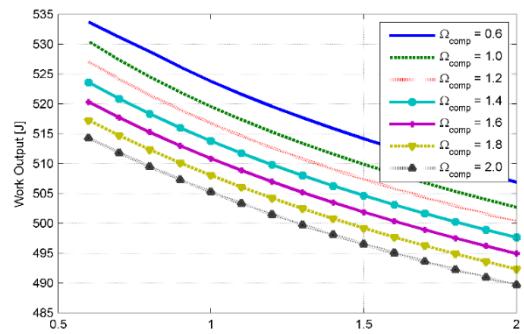


(b)

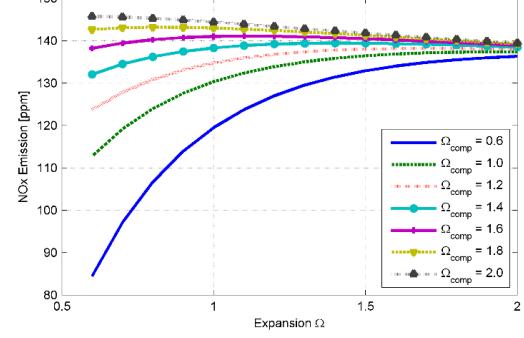
707
708
709
710
711
712 Figure 14. Work output along asymmetric piston trajectories, indicated by two 713 Ωs (H₂, AFR = 2, CR = 22), (b) is the zoom-in view of (a)


713 NOx emission is such a critical aspect due to the 714 increasingly public concerns on the environment. Fig. 15 715 represents the corresponding NOx emission following the 716 same setup in Fig. 14. As can be seen, the NOx emissions of 717 all the simulation cases are within the range of 30 to 140 ppm, 718 which are significantly less than typical range of NOx

719 emission, 100 to 500 ppm, in the conventional engine (almost
720 70% reduction) [15, 57]. Usually, the smallest NOx emission
721 is achieved by the smallest available Ω_{exp} . Those trajectories
722 provide quickest expansion, and therefore reduce in-cylinder
723 temperature immediately and freeze the NOx production
724 reactions [58].


725
726 Figure 15. NOx emission along asymmetric piston trajectories, indicated by
727 two Ω s (H_2 , AFR = 2, CR = 22)

728 As a result, the final optimal Ω pair has to be determined
729 by considering both effects of output work and NOx emission.
730 For instance, the aforementioned Ω pair ($\Omega_{\text{comp}} = 1.8$, $\Omega_{\text{exp}} =$
731 0.6), even though it produces the maximal output work, cannot
732 be selected if the NOx emission is required to be less than 60
733 ppm. Thus, the optimal Ω pair should be $\Omega_{\text{comp}} = 1.6$ and $\Omega_{\text{exp}} =$
734 0.6, which produces 56.82 ppm NOx emission and slightly
735 less output work, which is 521.39 J at 55.7% thermal
736 efficiency. The corresponding optimal asymmetric piston
737 trajectory, in-cylinder temperature profile, P-V diagram, and
738 NOx production are shown in Fig. 16.



739
740 Figure 16. Combustion performance along piston trajectory $\Omega_{\text{comp}} = 1.6$, Ω_{exp}
741 = 0.6, (H_2 , AFR = 2, CR = 22)

742 Certainly, the derived optimal Ω pair should be adjusted
743 according to CR. For example, if the CR is increased from 22
744 to 24 for the same setup in Fig. 14 and Fig. 15, the
745 corresponding optimal Ω pair is then varied to $\Omega_{\text{comp}} = 0.6$,
746 $\Omega_{\text{exp}} = 0.6$, as can be seen in Fig. 17. Intuitively, specific
747 optimal asymmetric piston trajectories can also be generated
748 for other renewable fuels.

749
750

751

752
753 Figure 17. Combustion performance along asymmetric piston trajectories,
754 indicated by two Ω s (H_2 , AFR = 2, CR = 24, (a) output work (b) NOx
755 emission)

756 In summary, the controllable piston trajectory in the FPE
757 is able to extract the chemical energy from the renewable fuels
758 in an effective and clean manner. Such asymmetric piston
759 trajectories are very difficult to realize in conventional ICEs.
760 However, it is easy to achieve in the FPE with the assistance
761 of the virtual crankshaft mechanism, by designing an
762 appropriate trajectory reference accordingly. The above results
763 show that by applying the optimal asymmetric piston
764 trajectories, the thermal efficiency of the FPE is enhanced
765 significantly, while the NOx emission can be reduced
766 simultaneously. Furthermore, the virtual crankshaft also
767 enables real-time control of the piston motion. In this way, the
768 optimal asymmetric piston trajectory can even be modified
769 according to the load variation in real time.

770 5. Conclusion

771 In this paper, the trajectory-based combustion control,
772 enabled by the FPE with the virtual crankshaft mechanism, is
773 applied to renewable fuels. Seven renewable fuels, e.g.
774 hydrogen, biogas, syngas, ethanol, DME, biodiesel, and F-T
775 fuels are considered herein. The results show that the FPE has
776 the ultimate fuel flexibility. In addition, a suitable CR can also
777 be selected not only to guarantee the ignition, but also to
778 widen the tolerance of undesired composition in renewable
779 fuels. Furthermore, an appropriate piston motion pattern
780 between the two dead centers can also be determined to reduce
781 the required CR for each renewable fuel and to further
782 enhance engine efficiency (5% improvement in DME case).
783 At last, optimal asymmetric piston trajectory can be designed
784 for specific renewable fuels, which enables a significant
785 reduction on the NOx emission (70% reduction in H_2 case)
786 and an improvement on the thermal efficiency (8%
787 improvement in H_2 case) simultaneously.

788 In summary, the trajectory-based combustion control
 789 realizes the co-optimization of fuels and engine operation.
 790 Within this context, the production of utilized fuels, no matter
 791 renewable or traditional, can be optimized from the
 792 perspectives of their own physical and chemical properties,
 793 environment impacts and economical costs. Subsequently, the
 794 engine operation can also be optimized by implementing an
 795 optimal piston trajectory into the FPE, which is synthesized
 796 according to specific characteristics of the utilized fuel,
 797 variable loading requirements, and stringent emission
 798 regulation.

799 In the future, a multi-zone model will be developed to
 800 take into account the inhomogeneity inside the combustion
 801 cylinder. The effect of this combustion control on the
 802 production of other emissions, such as CO, unburned HC and
 803 PM can then be evaluated. Moreover, advanced control-
 804 oriented models will be developed and rigorous optimization
 805 method will be integrated to achieve both off-line and on-line
 806 optimization in terms of maximal engine efficiency and
 807 minimal emissions production.

808 Acknowledgement

809 The work is supported in part by NSF under grant CMMI-
 811 1634894

812 References

- 813 [1] The U.S. Department of Energy, “Quadrennial Technology Review: an
 814 Assessment of Energy Technologies and Research Opportunities”,
 815 *September 2015*.
- 816 [2] Bhutto, A. W., Qureshi, K., Abro, R., Harijan, K., Zhao, Z., Bazmi, A.
 817 A., Abbas, T. and Yu, G., “Progress in the Production of Biomass-to-
 818 liquid Biofuels to Decarbonize the Transport Sector – Prospects and
 819 Challenges”, *Royal Society of Chemistry Advances*, issue. 6, pp. 32140-
 820 32170. 2016.
- 821 [3] International Energy Agency, “Energy Climate and Change: World
 822 Energy Outlook Special Report”, *Paris, France, 2015*.
- 823 [4] Ribeiro, S. K., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, S.
 824 D., Muromachi, Y., Newton, P. J., Plotkin, S., Sperling, D., Wit, R. and
 825 Zhou, P. J. “Transport and its infrastructure”, *Cambridge, United
 826 Kingdom and New York, NY, USA, 2007*.
- 827 [5] Guo, M., Song, W. and Buhain, J., “Bioenergy and Biofuels: History,
 828 Status, and Perspective”, *Renewable and Sustainable Energy Reviews*,
 829 vol. 42, pp. 712-725, 2015.
- 830 [6] Sadeghiezad, E., Kazi, S. N., Sadeghinezad, F., Badarudin, A., Mehrali,
 831 M., Sadri, R. and Safaei, M., “A Comprehensive Literature Review of
 832 Bio-fuel Performance in Internal Combustion Engine and Relevant
 833 Costs of Involvement”, *Renewable and Sustainable Energy Reviews*, vol.
 834 30, pp. 29-44, 2014.
- 835 [7] Bergthorson, J. M. and Thomson, M. J., “A Review of the Combustion
 836 and Emissions Properties of Advanced Transportation Biofuels and
 837 Their Impact on Existing and Future Engines”, *Renewable and
 838 Sustainable Energy Reviews*, vol. 42, pp. 1393-1417, 2015.
- 839 [8] Sangeeta, S. M., Pande, M., Rani, M., Gakhar, R., Sharma, M., Rani, J.
 840 and Bhaskarwar, A. N., “Alternative fuels: an Overview of Current
 841 Trends and Scope for Future”, *Renewable and Sustainable Energy
 842 Reviews*, vol. 32, pp. 697-712, 2014.
- 843 [9] Salvi, B. L., Subramanian, K. A. and Panwar, N. L., “Alternative Fuels
 844 for Transpiration Vehicles: a Technical Review”, *Renewable and
 845 Sustainable Energy Reviews*, vol. 25, pp. 404-419, 2013.
- 846 [10] Agarwal, A. K., “Biofuel (Alcohols and Biodiesel) Applications as Fuels
 847 for Internal Combustion Engine”, *Progress in Energy and Combustion
 848 Science*, vol. 33, pp. 233-271, 2007.
- 849 [11] Demirbas, A., “Progress and Recent Trends in Biofuels”, *Progress in
 850 Energy and Combustion Science*, vol. 33, pp. 1-8 2007.
- 851 [12] Sanchez, O. and Cardona, C. A., “Trends in Biotechnological Production
 852 of Fuel Ethanol form Different Feedstock”, *Bioresource Technology* vol.
 853 99 pp. 5270-5295 2008.
- 854 [13] Sadeghinezad, E., Kazi, S. N., Badarudin, A., Oon, C. S., Zubir, M. N.
 855 M. and Mehrali, M., “A Comprehensive Review of Bio-diesel as
 856 Alternative Fuel for Compression Ignition Engines”, *Renewable and
 857 Sustainable Energy Reviews*, vol. 28, pp. 410-424, 2013.
- 858 [14] Mikalsen, R. and Roskilly, A. P., “A Review of Free-piston Engine
 859 History and Applications”, *Applied Thermal Engineering*, Vol.27,
 860 Issue.14-15, pp.2339-2352, Oct 2007.
- 861 [15] Van Blarigan, P., Paradiso, N. and Goldsborough, S., “Homogeneous
 862 Charge Compression Ignition with a Free Piston: A New Approach to
 863 Ideal Otto Cycle Performance”, *SAE Technic Paper 982484, Oct. 1998*.
- 864 [16] Somhorst, H. E. and Achten, P. J., “The Combustion Process in a DI
 865 Diesel Hydraulic Free Piston Engine”, *SAE Transaction*, Vol.105, 1996.
- 866 [17] Kosaka, H., Akita, T., Moriya, K., Goto, S., Hotta, Y., Umeno, T. and
 867 Nakakita, K., “Development of Free Piston Engine Linear Generator
 868 System Part 1 - Investigation of Fundamental Characteristics”, *SAE
 869 Technical Paper 2014-01-1203, Apr. 2014*.
- 870 [18] Goto, S., Moriya, K., Kosaka, H., Akita, T., Hotta, Y., Umeno, T. and
 871 Nakakita, K., “Development of Free Piston Engine Linear Generator
 872 System Part 2 – Investigation of Control System for Generator”, *SAE
 873 Technical Paper 2014-01-1193, 2014*.
- 874 [19] Li, K., Sadighi, A. and Sun, Z., “Active Motion Control of a Hydraulic
 875 Free Piston Engine”, *IEEE/ASME Transaction. Mechatronics*, Vol. 19,
 876 Issue. 4, pp. 1148-1159, Aug. 2014.
- 877 [20] Li, K., Zhang, C. and Sun, Z., “Precise Piston Trajectory Control for a
 878 Free Piston Engine”, *Control Engineering Practice*, Vol. 34, pp. 30-38,
 879 Jan 2015.
- 880 [21] Jia, B., Tian, G., Feng, H., Zuo, Z. and Roskilly, A. P., “An
 881 Experimental Investigation into the Starting Process of Free-piston
 882 Engine Generator”, *Applied Energy*, Vol. 157, pp. 798-804, 2015.
- 883 [22] Christensen, M., Hultqvist, A. and Johansson, B., “Demonstrating the
 884 Multi-Fuel Capability of a Homogeneous Charge Compression Ignition
 885 Engine with Variable Compression Ratio”, *SAE transactions*, vol.108,
 886 no. 3, pp. 2099-2113, 1999.
- 887 [23] Mikalsen, R. and Roskilly, A. P., “The Control of a Free-piston Engine
 888 Generator. Part 1: Fundamental Analyses”, *Applied Energy*, Vol. 87,
 889 Issue. 4, pp. 1273-1280, 2010.
- 890 [24] Mikalsen, R. and Roskilly, A. P., “The Control of a Free-piston Engine
 891 Generator. Part 2: Engine Dynamics and Piston Motion Control”,
 892 *Applied Energy*, Vol. 87, Issue. 4, pp. 1281-1287, 2010.
- 893 [25] Jia, B., Zuo, Z., Feng, H., Tian, G., Smallbone, A. and Roskilly, A. P.,
 894 “Effect of Closed-loop Controlled Resonance Based Mechanism to Start
 895 Free Piston Engine Generator: Simulation and Test Results”, *Applied
 896 Energy*, Vol. 164, pp. 532-539, 2016.
- 897 [26] Zhang, C., Li, K. and Sun, Z., “Modeling of Piston Trajectory-based
 898 HCCI Combustion Enabled by a Free Piston Engine”, *Applied Energy*,
 899 vol. 139, pp. 313-326, 2015.
- 900 [27] Zhang, C. and Sun, Z., “Using Variable Piston Trajectory to Reduce
 901 Engine-out Emissions”, *Applied Energy*, vol. 170, pp. 403-414, 2016.
- 902 [28] Kalinci, Y., Hepbasli. A. and Dincer, I., “Biomass-based Hydrogen
 903 Production: A Review and Analysis,” *International Journal of Hydrogen
 904 Energy*, vol. 34, pp. 8799-8817, 2008.
- 905 [29] Kirtay, E., “Recent Advances in Production of Hydrogen from Biomass”,
 906 *Energy Conversion and Management*, vol. 52, pp. 1778-1789, 2011.
- 907 [30] Poschl, M., Ward, S. and Owende, P., “Evaluation of Energy Efficiency
 908 of Various Biogas Production and Utilization Pathways”, *Applied
 909 Energy*, vol. 87, pp. 3305-3321, 2010.
- 910 [31] The U.S. Department of Energy, “What is Biogas”, April, 2010.
- 911 [32] European Biomass Association, “A Biogas Road Map for Europe”, Jun,
 912 2010.
- 913 [33] German Biogas Association, “Biogas Segment Statistic 2014/2015”, Nov.
 914 2015.
- 915 [34] International Energy Agency, “Biogas Upgrading to Vehicle Fuel
 916 Standards and Grid Injection”, Dec, 2006.
- 917 [35] Asadullah, M., “Barriers of Commercial Power Generation Using
 918 Biomass Gasification Gas: A Review”, *Renewable and Sustainable
 919 Energy Reviews*, vol. 29, pp. 201-215, 2014.
- 920 [36] Martinez J. D., Mahkamov, K., Andrade, R. and Silva Lora, E. E.,
 921 “Syngas Production in Downdraft Biomass Gasifiers and its Application
 922 using Internal Combustion Engine”, *Renewable Energy*, vol. 38, pp. 1-9,
 923 2012.
- 924 [37] Tinaut, F. V., Melgar, A., Horrillo, A. and de la Rose, A. D., “Method
 925 for Predicting the Performance of an Internal Combustion Engine
 926 Fuelled by Producer Gas and other Low Heating Value Gases”, *Fuel
 927 Processing Technology*, vol. 87, pp. 135-142, 2006.
- 928 [38] Sridhar, G., Sridhar, H. V., Dasappa, S., Paul, P. J., Rajan, N. K. S. and
 929 Mukunda, H. S., “Development of Producer Gas Engine”, *Proceeding*

930 of the Institution of Mechanical Engineers, Part D: Journal of
 931 Automobile Engineering, vol. 219, pp. 423-438, 2005.

932 [39] Balat, M. and Balat, H., "Recent Trends in Global Production and
 933 Utilization of Bio-ethanol Fuel", *Applied Energy*, vol. 86, pp. 2273-2282,
 934 2009.

935 [40] Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Liden, G. and
 936 Zacchi, G., "Bio-ethanol – the Fuel of Tomorrow from the Residues of
 937 Today", *Trends in Biotechnology*, vol. 24, issue. 12, pp. 549-556, 2006.

938 [41] The U. S. Energy Information Administration, "Monthly Biodiesel
 939 Production Report", 2014.

940 [42] Ma, F. and Hanna, M. A., "Biodiesel Production: A Review",
 941 *Bioresource Technology*, vol. 70, pp. 1-15, 1999.

942 [43] Lapuerta, M., Armas, O. and Rodriguez-Fernandez, J., "Effect of
 943 Biodiesel Fuels on Diesel Engine Emissions", *Progress in Energy and
 944 Combustion Science*, vol. 34, pp. 198-223, 2008.

945 [44] Schulz, H., "Short History and Present Trends of FT Synthesis", *Applied
 946 Catalysis A General*, vol. 186, pp. 1-16, 1999.

947 [45] Wilhelm, D. J., Simbeck, D. R., Karp, A. D. and Dickenson, R. L.,
 948 "Syngas Production for Gas-to-liquids Applications: Technologies,
 949 Issues and Outlook", *Fuel Processing Technology*, vol. 71, pp. 139-148,
 950 2001.

951 [46] J. Heywood, (1988). Internal Combustion Engine Fundamentals,
 952 McGraw-Hill.

953 [47] Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W.
 954 Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman,
 955 Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V.
 956 Lissianski, and Zhiwei Qin http://www.me.berkeley.edu/gri_mech

957 [48] Kaiser, E. W., Wallington, T. J., Hurley, M. D., Platz, J., Curran, H. J.,
 958 Pitz, W. J. and Westbrook, C. K., "Experimental and Modeling Study of
 959 Premixed Atmospheric-Pressure Dimethyl Ether-Air Flames", *Journal
 960 of Physical Chemistry A*, vol. 104, no.35, pp. 8194-8206, 2000.

961 [49] Marinov, N. M., "[A Detailed Chemical Kinetic Model for High
 962 Temperature Ethanol Oxidation](#)", *International Journal Chemical
 963 Kinetics*, vol.31, pp. 183-220, 1999.

964 [50] Herbinet, O., Pitz, W. J. and Westbrook, C. K., "Detailed Chemical
 965 Kinetic Mechanism for the Oxidation of Biodiesel Fuels Blend
 966 Surrogate", *Combust and Flame*, vol. 157, issue. 5, pp. 893-908, 2010.

967 [51] Goodwin, D., Malaya N. and Speth, R., "Cantera: An Object-oriented
 968 Software for Chemical Kinetics, Thermodynamics and Transport
 969 Processes", available at <https://code.google.com/p/cantera/>.

970 [52] Ozawa, G., "Variable Compression Ratio Engine", *U.S. Patent
 971 5,682,854, 1997.*

972 [53] Asadullah, M., "Barriers of Commercial Power Generation Using
 973 Biomass Gasification Gas: A Review", *Renewable and Sustainable
 974 Energy Reviews*, vol. 29, pp. 201-215, 2014.

975 [54] Puig-Arnau, M., Bruno, J. C. and Coronas, A., "Review and Analysis
 976 of Biomass Gasification Models", *Renewable and Sustainable Energy
 977 Reviews*, vol. 14, pp. 2841-2851, 2010.

978 [55] ASTM international standard specification for dimethyl ether for fuel
 979 purpose ASTM D7901.

980 [56] Komnios, N. P. and Rakopoulos, C. D., "Modeling HCCI Combustion
 981 of Biofuels: A Review", *Renewable and Sustainable Energy Reviews*,
 982 vol. 16, pp. 1588-1610, 2012.

983 [57] DieselNet Technology Guide, "What Are Diesel Emissions", available
 984 at https://www.dieselnet.com/tech/emi_gas.php.

985 [58] Zeldovich, Y. B., Sadovnikov, P. Y. and Frank-kamenetskii, D. A.,
 986 "Oxidation of Nitrogen in Combustion", *Academy of Sciences of USSR,
 987 Institute of Chemical Physics, Moscow-Leningrad*, 1947.