CSCW '16, FEBRUARY 27-MARCH 2, 2016, SAN FRANCISCO, CA, USA

How to Hackathon: Socio-technical Tradeoffs
in Brief, Intensive Collocation

Erik H. Trainer, Arun Kalyanasundaram, Chalalai Chaihirunkarn, James D. Herbsleb
Institute for Software Research
Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213
{etrainer, arunkaly, cchaihir, jdh}@cs.cmu.edu

ABSTRACT

Hackathons are events where people who are not normally
collocated converge for a few days to write code together.
Hackathons, it seems, are everywhere. We know that long-
term collocation helps advance technical work and facilitate
enduring interpersonal relationships, but can similar
benefits come from brief, hackathon-style collocation? How
do participants spend their time preparing, working face-to-
face, and following through these brief encounters? Do the
activities participants select suggest a tradeoff between the
social and technical benefits of collocation? We present
results from a multiple-case study that suggest the way that
hackathon-style collocation advances technical work varies
across technical domain, community structure, and
expertise of participants. Building social ties, in contrast,
seems relatively constant across hackathons. Results from
different hackathon team formation strategies suggest a
tradeoff between advancing technical work and building
social ties. Our findings have implications for technology
support that needs to be in place for hackathons and for
understanding the role of brief interludes of collocation in
loosely-coupled, geographically distributed work.

Author Keywords
Hackathons; collocation; scientific software; multiple-case
study; qualitative methods.

ACM Classification Keywords

H.5.3. [Information interfaces and presentation (e.g., HCI)]:
Group and Organization Interfaces — Computer-supported
cooperative work.

INTRODUCTION

Hackathons are events where people who are not normally
collocated converge for a few days to write code together.
Hackathons, seemingly, are everywhere. They are held, as
one might expect, by software companies such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CSCW '16, February 27-March 02, 2016, San Francisco, CA, USA

© 2016 ACM. ISBN 978-1-4503-3592-8/16/02...$15.00

DOI: http://dx.doi.org/10.1145/2818048.2819946

1118

Facebook, Yahoo!, Google, and many, many more. But
they are also becoming an integral part of the tech
educational scene. There were about 40 university-based
hackathons in 2014, and 150 are expected in 2015, some
with over 1,000 participants [20]. Scientific communities
are also jumping on the hackathon bandwagon. Science
Hack Day [5] lists 50 hackathons in support of scientific
communities around the world. This is only a partial listing,
as a web search of science and hackathon clearly shows.

While collocated teams, distributed teams, and open-source
development have all received considerable attention in the
CSCW literature, we do not know much about hackathons,
these brief bursts of collocated activity that punctuate the
software work of diverse groups, organizations, and
communities. Research has identified developmental phases
teams generally go through before they are able to perform
effectively [8,35]. Which elements of these phases do
organizers and participants emphasize when preparing for a
hackathon? What are the social and technical outcomes of
hackathons, and how do they achieve them? How does brief
collocation fit into the flow of activities for developers,
projects, and users? With a few exceptions (e.g., [7,36]),
there is surprisingly little research into what happens during
a hackathon, and even less about how it matters to
community members’ work.

We conducted a multiple-case study [38] of three
hackathons. We build on a rich tradition of CSCW research
on collocated work, focusing in particular on research
showing the benefits of collocation for performing technical
work and for fostering coworker familiarity in distributed
teams. Radical collocation [33], where team members are
in nearly continuous close proximity to one another,
suggests the focus of hackathons on using the rich
affordances of temporary collocation may rapidly advance
technical work. In addition, as hackathon participants
observe and interact with another, the social aspects of
collocation share some elements of a “site visit,” which
provides fertile ground for developing situated coworker
familiarity [14], an understanding of their collaborators in
relation to themselves and their work, that can result in
durable social ties and other positive outcomes.

Hackathons, however, are distinct from the contexts in
which radical collocation and situated coworker familiarity
have been studied. They are brief, and generally are not

physically located in a subgroup’s regular workspace. We
seek to understand the life cycle of a hackathon, from
preparation through follow up, and to examine its role in
the ongoing work of participants and projects. In the
following sections we review related research, describe our
study, present our results, and discuss the implications of
our findings for technology support and future work.

BACKGROUND

What is the Point of a Hackathon?

Hackathons tend to either aim at software development with
specific applications and technology, or at applying
technology for a specific purpose, such as social issues and
business objectives [3]. For instance, open-source software
projects like PyPy, OpenBSD, and Linux put on hackathons
to rapidly advance work on specific development issues.
National and local government agencies tend to hold
hackathons to build technologies that address social issues,
such as helping the elderly cope with dementia [11].
Technology companies like Google, Facebook, and Yahoo!
put on hackathons to encourage new product innovation,
such as the Facebook’s Like button [16].

Team Formation

There is a temporal flow to the growth and development of
a team. Development of trust [37] and “team cognition”
[12] are essential for effective teams, and are relatively
difficult to develop in online settings, compared to face-to-
face. Group development research also shows that over
time, groups go through stages of forming, storming,
norming, and performing [8,35]. In the forming stage,
individuals attempt to identify the nature of the task and
what information is required for it. To get to know one
another they exchange personal information. In the
storming phase, conflict may arise as team members try to
establish themselves in relation to other team members and
the leader, who may receive challenges from team
members. Team members then move to the norming phase,
where they exchange task information and develop their
process and working style. Finally, in the performing stage,
the team works effectively with minimal emotional
interaction, adhering to their established norms.

To make sure that very brief hackathon time can be used
efficiently from the start, organizers and participants
undergo preparation activities. How much these activities
resemble those of forming, storming, and norming is not
entirely clear. Because time is compressed, participants
may choose to emphasize some preparation activities over
others or leave some out entirely, deferring them to the
collocated period. Furthermore, it seems very likely that
much of the communications related to preparation will
happen using information and communication technologies
(ICTs), mediums less rich than face-to-face. How and to
what extent these activities are completed will likely
influence how time at the hackathon is used as well as the
outcomes. Accordingly, we ask:

CSCW '16, FEBRUARY 27-MARCH 2, 2016, SAN FRANCISCO, CA, USA

RQ1: What preparatory activities do participants engage in,
and how do these preparations influence the hackathon
activities and their outcomes?

Benefits of Face-to-Face Interaction

Face-to-face interaction has long been considered an
important aspect of collaboration and the richest form of
social interaction [28]. Proximity increases perceptions of
familiarity [17], which contribute to the development of
social ties [24,30]. People are more likely to deceive, be
less persuaded by, and initially cooperate less with someone
they believe to be far away [2].

Over the past decade, numerous studies of periodic face-to-
face meetings in the life of distributed teams suggest that
these meetings are a critical part of establishing strong
relationships. They help coworkers develop trust and
rapport [10,27,29], build social networks [29], and access
situated knowledge [32]. In a longitudinal study of three
globally distributed teams, Maznevski and Chudoba [25],
describe how regular face-to-face meetings create temporal
rhythms that enable higher levels of coordination. Eating
and drinking together and moments of physical contact
(e.g., handshakes, pats on the back) are fundamental ways
that distributed workers connect with each other [27].

In contrast, the role of face-to-face meetings for open-
source and other online communities has been largely
unexplored. The handful of studies that do look at face-to-
face interactions (e.g., [7,36]) in open-source software
development find that the interactions increase participation
in follow-up work and facilitate socialization of new
members. To date, research has done little to connect these
results back to CSCW theory.

We identify two theoretical frameworks particularly useful
in analyzing our data: radical collocation and situated
coworker familiarity. Radical collocation [33] is a strategy
where an entire development team is put in one room for
the duration of a project in a physical arrangement that
resembles many hackathons. The team room is typically
outfitted with individual workstations and central
worktables where multiple people can sit and work. Nearby
the team room are breakout conference rooms where groups
can work privately without distractions. Whiteboards run
along the walls of team and conference rooms.

Studies of radical collocation find that it speeds up software
development work that is normally spread across a building
or a campus. The spatiality that proximity affords allows
team members to easily move between activities, point to
visible artifacts, mark them to reflect agreed-upon changes,
and observe other participants moment to moment to
identify members puzzled or deep in thought. Overhearing
conversations allows team members to have impromptu
meetings and training sessions around the artifacts
themselves to address important issues and problems (e.g.,
[13]). These benefits can lead to significant productivity
gains. Teasley et al. [33] found that radically collocated

1119

software development teams doubled their productivity
compared with the previous company baseline.

The brevity of hackathons poses challenges for taking
advantage of the affordances of radical collocation to
advance technical work. It takes time for groups to
construct shared artifacts and to visibly mark them. There
must be some agreement on terminology, awareness of
when one’s skills are needed, and agreement on norms of
interacting in order for groups to adopt the flexible,
interactive practices of radical collocation. Hence, we ask:

RQ2: How and under what conditions do the participants
use the affordances of working face-to-face to realize the
benefits of radical collocation?

While radical collocation focuses on the affordances of the
immediate environment and how they facilitate technical
work, situated coworker familiarity focuses on enduring
interpersonal impacts. Situated coworker familiarity is a
“multiplex understanding that coworkers have of their
counterparts in relation to themselves and their work
together” [14:797]. Situated coworker familiarity is
established when people visit the sites of their distant
colleagues and share a space with their coworkers for an
extended period of time, typically several weeks. These site
visits evoke two types of activities, interacting and
observing. Interacting involves discussing work and
personal information and socializing, which helps people
become more familiar with coworker’s styles and
preferences. Observing others’ work and social behavior
allows visitors to see the context in which their remote
colleagues work, which helps make sense of their behavior.
For instance, the authors described how a visitor interpreted
a normally remote coworker’s abruptness toward him as
rude; seeing this coworker interact with all of his local
colleagues this way, however, allowed the visitor to realize
that the behavior was not personal.

Interacting and observing lead to familiarity with
coworkers’ work and communication styles, capabilities
and interests, personalities, work and social roles, and
cultural context [14]. After visitors return home, the
familiarity they have built up enables closer relationships,
which are characterized by increased responsiveness, more
frequent communications, and more personal disclosure and
discussion of difficult topics.

With respect to situated coworker familiarity, there are
important differences, beyond brevity, between site visits
and hackathons. In a site visit, the visitor gets deeper
familiarity with hosts as a result of having shared their
context. At a hackathon, everyone is de-situated from the
context of his or her regular day-to-day work, although it
seems possible that the participants experience themselves
as situated together in a distinct “place” [21]. A “place”
comprises people who provide distraction, protect from
distraction, and serve as an audience for one’s work. The
influence of this distinct and possibly unfamiliar

1120

SESSION: HACKING, MAKING, AND DISCOVERING

environment on interpersonal interactions is not entirely
clear. Thus, we ask:

RQ3: How and under what conditions do the participants
use the affordances of collocation to realize the benefits of
situated coworker familiarity?

Given the relative brevity of hackathon face-to-face
encounters, one might expect that much of the technical
work will exist only in the form of prototypes or
demonstrations at the hackathon’s conclusion. Follow-
through activities that complete and integrate work products
may be particularly important in realizing any lasting
benefits. Therefore, we ask:

RQ4: What kinds of follow through work do hackathon
participants perform, and how does this work complete or
enhance the outcomes?

The activities that facilitate situated familiarity and those
that facilitate radically collocated technical work partially
overlap. A spontaneous tutorial or help offered on a
particular topic, for example, can enhance the work at hand
and also build up familiarity. These sets of activities are
not identical, however. Familiarity is enhanced by social
activities that do not immediately advance the work. Much
code is written by individuals, out of the view of others, and
not necessarily advancing familiarity. Accordingly, we ask:

RQS5: Does the way activities are selected result in a
tradeoff between advancing technical work and building
social ties?

METHOD

To answer our research questions, we conducted a multiple-
case study [38] of three hackathons applied to scientific
software. We chose scientific software as the setting for this
study for two reasons. First, we needed to keep the domain
constant in order to reduce the variance in experiences that
other kinds of hackathons, such as social issue oriented and
tech educational oriented, introduce. Second, previous work
by others suggests that hackathons may be well suited to
address the specialized problems of scientific software,
which include learning about available tools outside one’s
own research lab, understanding the larger scientific
community’s needs, and providing needed maintenance on
software floundering due to the short-term financial support
associated with research grants [15,19,26,34].

Several considerations led us to our set of cases. Our first
criterion was to pick a hackathon that involved a single
community and a hackathon that involved multiple
communities to see differences in the ways participants
established common ground so that they could hit the
ground running during collocation. We expected that when
different communities come together, there are likely
additional mechanisms needed to learn about each other’s
expertise, motivations, and ways of thinking about the work
in order to establish familiarity on which to build during the
hackathon. In addition, it will likely take more time for

different communities to construct shared artifacts and
understandings of those artifacts, come to agreement on
technologies that will be used, and develop competency
with these technologies compared to hackathons involving
a single community. What are the challenges of linking
multiple communities at a hackathon, and how do
participants address them in order to realize the benefits of
situated coworker familiarity and radical collocation?

We found two hackathons meeting this criterion in the
Open Bioinformatics Foundation (OBF)’s Codefest 2014
(referred to hereafter as “OpenBio”) and the 2014 NSF
DataVis Hackathon for Polar CyberInfrastructure (referred
to hereafter as “PolarVis”). Held preceding the OBF's
annual Bioinformatics Open Source Conference (BOSC),
OpenBio was a single-community, two-day hackathon
aimed at giving developers of bioinformatics open-source
software libraries such as Biopython [4] and scientific
workflow platforms like Galaxy [9] a chance to be fully
focused on their projects. Attendance fluctuated, with
about 45 participants on the first day, and 35 on the second
day. PolarVis was a two-day hackathon aimed at linking
polar scientists and data visualization experts to produce
novel and high impact prototypes and visualizations.
Compared with OpenBio, attendance at PolarVis was
steady, with the same 39 participants on the first and second
day. Because of the difference in community structure,
PolarVis was a theoretical replication of OpenBio [38].

We sought a third case that would contrast with our original
pair on other dimensions, serving as another theoretical
replication. We selected the National Evolutionary
Synthesis Center (NESCent) Population Genetics in R
Hackathon 2015 (referred to hereafter as “PopGen”), a
hackathon that aimed to foster an interoperating ecosystem
of tools and resources for population genetics data analysis
using the popular R platform. Whereas PolarVis comprised
two different communities working on related problems,
PopGen comprised a single community. We therefore
expected to see fewer mechanisms for developing common
ground. Although both OpenBio and PopGen comprised
participants from a single community, OpenBio had
primarily developers while PopGen had different classes of
users, including end users contributing use cases, end users
with some programming experience wanting to learn how
to develop reusable packages (the unit of code distribution
in R), and software developers. We expected this contrast in
roles and programming experience to be helpful in
understanding how participants divided by expertise rather
than community membership might use the affordances of
collocation. Would PopGen participants use spatiality
primarily to learn about the codebases of the universe of
population genetics tools from the lead developers? Would
this come at an expense of developing familiarity with other
population genetics scientists? Attendance for PopGen was
28 participants, and in contrast to OpenBio and PolarVis,
PopGen was five days long.

CSCW '16, FEBRUARY 27-MARCH 2, 2016, SAN FRANCISCO, CA, USA

Data Collection

We collected multiple sources of evidence, including event
documentation (e.g., mailing list discussions, agendas,
announcements, idea lists, and team progress reports) to
understand planning practices, 71 hours of on-site
observations (OpenBio=17 hours, PolarVis=17 hours,
PopGen=37 hours) to understand event dynamics (e.g., how
teams form around tasks), and 23 semi-structured
interviews to understand in more detail the interactions we
observed and the reasons behind them. We conducted all
interviews post-hackathon, except for two PolarVis
participants who we interviewed at the event.

At each hackathon we captured photographs of the event
space, daily team stand-up reports, work breaks, technical
sessions, and team meetings. The organizers of OpenBio
and PopGen allowed us to video record participant
introductions, stand-up reports, and final demonstrations.
Legal and insurance issues associated with the PolarVis
event space prohibited all video recording.

In selecting interviewees we aimed for coverage across
hackathon teams. For PopGen, we looked across the
spectrum of participant roles, aiming to see examples of
teaching and learning as well as end user feedback. Our on-
site observational notes helped us develop probes around
the motivations for concrete interactions, how they
happened, and their results. We solicited participants by e-
mail and interviewed them using either Skype or Google
Hangouts. We interviewed one participant by phone.
Interviews typically lasted just under an hour. A
professional transcription services firm transcribed all
interviews. Fourteen interviews were conducted with
developers, four with end users (little to no development
experience), four with end user developers (end users with
moderate development experience), and one with a
manager. Three of the developers were also hackathon
organizers. Throughout this paper, we denote quotations
from developers with “D,” end users with “U,” end user
developers with “U-D,” managers with “M,” and organizers
with “O,” each with a unique number for identification.
Table 1 lists ranges of participant IDs for each hackathon.

We created a pre-survey to understand participant
expectations (“What would the ideal outcome of this
hackathon be to you?”), tasks participants desired to work
on (“Please specify one or more tasks you want to
accomplish at the hackathon”), and preparation for those
tasks (“What preparation did you do for the above tasks?
Select all that apply. [list]”).

Hackathon Participant IDs
OpenBio 1-7
PolarVis 8-15
PopGen 16-23

Table 1. The range of participant IDs for each hackathon.

1121

One week before each hackathon, the organizers e-mailed a
link to our survey to all registered participants.

We created a post-survey to assess if, how, and why
outcomes did or did not match expectations. The survey
consisted of open-ended questions and questions on a 5-
point Likert scale. It asked about participants’ satisfaction
with their teams’ work (“To what extent were you satisfied
or dissatisfied with the work completed in your team?”),
reasons for this (“What were the reasons for the extent to
which you were satisfied or dissatisfied with the work
completed in your team?”), perceived outcomes (“In your
opinion, what were your most important outcomes of the
event?”), and if outcomes matched expectations (“Think
about what your ideal outcome coming into the event was.
To what extent was this outcome achieved?”). Some
participants completed a paper version of the post-survey
on the last day of the hackathon; others chose to complete
an online version. Response rates for OpenBio, PolarVis,
and PopGen were 68%, 100%, and 75% respectively.

Finally, we obtained work artifacts (e.g., presentation
slides, committed source-code changes) throughout each
hackathon in order to triangulate on our qualitative data and
compare outputs from each hackathon.

Data Analysis

We applied qualitative analysis techniques described by
Corbin and Strauss [6] to our interview transcripts,
observational notes, and event documentation. We first
imported these materials into the Dedoose qualitative data
analysis software [31]. Three of the authors independently
conducted open coding on the text about activities before,
during, and after each hackathon, differences among them,
and hackathon outputs.

In the next phase of analysis we wrote, shared, and
discussed descriptive memos about emerging themes in the
data. We used the video recordings to corroborate and
augment our observations. We met weekly to unify, refine,
and collapse codes where there was commonality, using
themes from our memos as support. We applied the
resulting set of codes to the remaining data, adding codes
when necessary and continuing until theoretical saturation.

RESULTS

RQ1: What preparatory activities do participants engage
in, and how do these preparations influence the
hackathon activities and their outcomes?

In some ways, preparation activities clearly resembled those
of the stages of group formation, particularly establishing
relationships during forming. PolarVis and PopGen
participants interacted with one another using GitHub’s
issue tracker, a tool usually used by software developers to
track bugs in a software project. At PolarVis, for example,
domain scientists created an issue describing a research
problem, and a use case describing how technology might
be used to solve it, and any relevant data (e.g., U10).
Software developers replied to the original post, often

1122

SESSION: HACKING, MAKING, AND DISCOVERING

asking scientists to clarify aspects of the problem (e.g., how
the data is formatted, what other libraries the tool might be
used with), and then code up a prototype addressing parts of
the problem. D11 summed up the benefit of these activities:

“So that GitHub pre-meeting activity was helpful to me to
orient, learn the problems that are interesting, to learn
some of the profiles of the researchers. ‘Ah, this is a very
visionary person who wants to do this. This is somebody
who’s providing data specific to this community’” (D11).

Some hackathon organizers also encouraged participants to
introduce themselves on a mailing list created for the event
(016). We found evidence that this helped participants
identify others with shared interests (e.g., U-D22, U23). For
instance, U-D22 told us: “What [another participant] had
said sounded quite similar to the kind of problems that 1
work on” (U-D22). Realizing this, she e-mailed the other
participant prior to the hackathon and they ended up
working together on the same team throughout the event.

In other ways, hackathon preparation seemed to re-arrange
the early stages of group development. Participants
collectively created tasks before forming teams, rather than
the other way around as the forming stage suggests. The
exception was OpenBio, in which tasks came from existing
teams’ product roadmaps and issues that users had posted in
the issue tracker. PolarVis and PopGen participants, in
contrast, generated tasks by creating an issue in GitHub as
described previously. Participants from multiple disciplines
were involved here asking for elaboration, providing
required expertise, suggesting improvements, and pointing
to existing solutions that might facilitate completion of the
tasks. Because these participants were starting with
basically no familiarity with one another, they had to learn
about each other’s interests and skills in order to define a
practical set of tasks to work on. This was a pre-requisite to
forming teams around tasks.

With respect to tools and data, hackathon preparation also
shifted some aspects of norming ahead of the forming stage.
Brainstorming tasks using GitHub’s issue tracker for
instance, familiarized participants with appropriate ways to
report bugs (albeit indirectly); reporting bugs is an
important part of a software development process, and tools
supporting it need to be in place before technical work can
proceed. Participants also used GitHub’s wiki functionality
to create a list of software that should be installed prior to
the hackathon (012, D18, U20).

The lack of familiarity before a hackathon may make it hard
to form appropriate norms. For example, organizers may
assume a base familiarity with the tools that may not hold.
Software developers at PolarVis, for instance, suspected
that some domain scientists did not propose ideas because
they could not figure out how to use GitHub (U9, O12).
One domain scientist approached O12 at the beginning of
the hackathon and started talking about his goal to find up
to date documentation for the locations of shipping vessels

in polar regions. O12 was surprised that the participant had
not proposed this idea on the issue tracker, and it became
apparent to him in their discussion that the participant did
not know how. PopGen organizers saw the software
development features of GitHub as vital to hackathon work,
so much so that they offered a tutorial on GitHub at the
beginning of the hackathon.

RQ2: How and under what conditions do the
participants use the affordances of working face-to-face
to realize the benefits of radical collocation?

The hackathon spaces of our participants very much
resembled those of radically collocated teams. Each venue
was configured to seat all participants in a single room, and
to accommodate multiple teams. According to survey
responses, the average size of a team in OpenBio was 4
(min=1, max=8), in PolarVis it was 7 (min=2, max=14),
and in PopGen it was 6 (min=4, max=8). There were
breakout rooms available to teams who wanted to have
conversations without distractions from the main room.

On the one hand, participants used the affordances of
radical collocation in ways we would expect from theory
[23,33]. For instance, hackathon participants gathered
around whiteboards to sketch out ideas, make architectural
and design decisions, and reflect on alternatives.
Overhearing issues raised by others allowed some
participants to hold impromptu training sessions where
people could move in and out depending on their interest
and expertise in the topic (U-D17, D18, U-D19, U-D22).

On the other hand, because of the variety in roles and levels
of expertise of hackathon participants, we saw affordances
used for purposes seldom reported in the literature: eliciting
end user feedback and education and training. At OpenBio
and PopGen, for instance, we observed a “generative” form
of requirements gathering. Some developers at OpenBio
would implement a series of new features, walk over to
users to try them out, and ask those same users approach
them throughout the event to address issues and bugs they
encountered in use (D3, D5). We observed more of this at
PopGen, likely due to differences in how tasks were
identified before the hackathon. Because tasks were
generally more open-ended, e.g., improving interoperability
as opposed to fixing specific bugs, additional clarifications
of the use cases and design inputs were needed. The pool of
end users on hand was also larger. End users working with
developers would periodically approach other teams to
clarify use cases or needs (U20, D21). In team discussions
about design of the tools, end users and developers realized
that certain use cases were unclear (e.g., what format the
data is in when the tool reads it). Team members decided
that while developers wrote code, end users should initiate
these conversations with other teams. Other teams expected
end users to approach them with such questions because the
teams trying to clarify needs would announce that they
needed help during their daily progress reports to everyone.

CSCW '16, FEBRUARY 27-MARCH 2, 2016, SAN FRANCISCO, CA, USA

Spatiality and overhearing were crucial for training sessions
directed at scientists who were not familiar with certain
tools. One type of training we observed only at PopGen was
what participants referred to as a “bootcamp,” an interactive
tutorial run by developers to get end users up to speed on a
particular technology or codebase used during the
hackathon. We believe this was related to the multiple
classes of participants that were unique to PopGen.
Participants sat around the tutorial leader with their laptops
and the leader used a projector to project his or her screen.
Participants followed along on their computers. Anyone
with questions would shout out, and either the leader or
someone else with experience would answer the question,
sometimes coming around to look at the asker’s screen to
examine the issue. However, there were very few
volunteers compared to the number of participants and
hence it was difficult to monitor and address the issues
faced by all participants. In addition, some participants
were not comfortable asking for help.

Participants’ working styles changed during moments
requiring high coordination. The learning curve associated
with GitHub’s workflow prevented many participants from
using it early on to share code. As a result, some people e-
mailed their code to their team members or used file sharing
tools such as Google Drive. Eventually, however, in order
to present a working prototype, code from team members
needed to be integrated. Some participants would e-mail
their code to one team member who would take the
responsibility for uploading everything to the shared
repository. Others would use the GitHub workflow to push
their contributions to the shared repository. However, if and
when something went wrong (e.g., incorrect output, failure
to compile), there was very little time to fix the issues. At
PopGen, some teams used continuous integration tools that
frequently integrate people’s new or changed code with the
team’s repository to avoid conflicts and build failures that
result due to making changes in isolation over time.
However, setting up these tools was time consuming; one
participant said he spent more than a day on this task.

RQ3: How and under what conditions do the
participants use the affordances of collocation to realize
the benefits of situated coworker familiarity?

As we would expect, co-presence facilitated interacting and
observing work. During tool demonstrations, for instance,
developers were able to learn much about end users’ needs.
At PolarVis for instance, while demonstrating his metadata
search tool for polar science datasets and having polar
scientists try it out, O12 learned:

“[Polar scientists] want to be able to search on [a single
metadata attribute on a file] and they want to be able to say
like give me all the files from this specific data set or this
slice of the dataset...it's not like top level, it's not explicit,
it's very implicit within the dataset” (012).

Socializing during coffee breaks, meals, and bus rides to the
hackathon venue from the hotel helped participants learn

1123

about each other’s interests, their approaches to shared
intellectual concerns, and reflect on opportunities for
collaboration. These discussions led to collaboration plans
for writing grant proposals (U9, D13), working on
manuscripts (D15, U20, D22) and collaborating on source-
code projects outside the scope of the hackathon (D2, D7,
D18, U20, D21).

Watching others code allowed participants to gauge each
other’s expertise and understand the programming
conventions and practices of experienced programmers
(D7, U10, U-D17, U-D22, U23). To learn how to use
particular frameworks and data structures, participants
would go over to team members who were using those
frameworks to code and watch over their shoulder as they
were coding. The more experienced team members would
say what they were doing and why they were doing it. This
greatly helped watchers, who would then know where to go
for help later in the hackathon.

Hackathons regularly facilitate learning about behaviors not
often explored in site visits, such as how people work under
pressure. In the hours before final demonstrations of the
work products, they worked to solve errors together such as
missing source-code dependencies or overwriting each
other’s changes in the code repository. This work allowed
participants to understand how their team members reacted
to problems along the way, and the shared experience
helped them develop stronger connections (D2, D5, D7,
D18). Participants told us that this intense collaboration
lowered the barrier to future collaboration and helped to
enable more communications (D5, D6, U9, D13, D18, U-
D22). D5 said she and her new collaborator “understand
each other’s personalities and perspectives and what
motivates us, and we can drop each other notes” (D5).

In some ways the hackathons provided a shared “place”
[21]. D6 described how OpenBio served as a place to
establish and explore common issues in the bioinformatics
community. She told us:

“...there was an introduction in the morning where people
got to say who they are and what they were interested in
and I mentioned that I was interested in learning a little bit
about [platform name]...and whether there were any
opportunities to cooperate or interoperate. And so a little
bit later that morning, [developer name] from [platform
name] came over, and introduced himself, and started the
conversation about what is [D6’s tool]? What is [platform
name]? What can we do to reduce duplicated work in the
open-source community?...so that conversation continued
and we were also joined by [D1]...and also [D5]... and so
we had a circle discussion in the kitchen for a couple of
hours...So basically that discussion continued all day into
something more serious where we decided maybe this is
something that we could really work on together” (D6).

1124

SESSION: HACKING, MAKING, AND DISCOVERING

RQ4: What kinds of follow through work do hackathon
participants perform, and how does this work complete
or enhance the outcomes?

Unlike radically collocated teams who spend months
together surrounded by physical project artifacts and their
colleagues, hackathon participants quickly leave these
artifacts behind, left only with what they have captured
digitally. Moreover, many tasks are incomplete when the
hackathon ends. To the extent that finishing hackathon
tasks is a priority, participants generally want to preserve as
much context and meaning surrounding the people and
artifacts as possible.

Much of the needed work to complete and integrate tasks
was recorded during the hackathon but in different
locations: software issue trackers, personal notebooks,
shared wikis, and file sharing folders. For instance, U23
described his team’s process as follows: “So, some of that
kind of stuff was shunted in [GitHub]. And then other
general files and things of certain kinds. Some of the
datasets we’ve used—which are larger, don’t really share
that well on GitHub—those kind of little file-size
limitations. So, we shared those via the Google Drive”
(U23). Participants also took pictures of content on flip
charts and whiteboards. The ease with which participants
could retrieve this work later is an open question. For
instance, although having told us that he received valuable
feedback on his tool, D15 had noticeable difficulty finding
any specific item of advice in his notebook.

Participants recognized the need for continued coordination
beyond the hackathon. OpenBio and PopGen participants
scheduled follow-up teleconferences with their team
members (D1, D5, D6, U-D17, U20, D21), and arranged to
meet some of them at other hackathons (U20, D21). Some
participants created online discussion groups. Most notably,
as of this writing, a working group that emerged from
OpenBio is still meeting every two weeks via Google
Hangouts (D1, D5, D6). To coordinate work and make
decisions they use a mailing list. Several weeks after
PopGen, participants used a mailing list to discuss venues
for publications describing each team’s work products. As
of this writing, six months after the hackathon, participants
have submitted seven article proposals for publication in a
special issue of a journal.

Beyond technical work, we have some evidence suggesting
efforts to strengthen interpersonal relationships established
at the hackathons. Multiple developers told us how they
would likely see users they met at the hackathon at future
conferences (D2, D7, O12, D14, DI18). After PopGen,
participants created a private Facebook group, which more
than fifty percent of the participants joined. We noticed
participants sharing photos and discussion of personal
topics, such as going out for a drink or buying a laptop.

RQ5: Does the way activities are selected result in a
tradeoff between advancing technical work and building
social ties?

We did find evidence suggesting a tradeoff between
advancing technical work and building social ties. The
clearest example of this was from the way teams formed
during the hackathon. Our observations revealed three
distinct team formation strategies. In the open shepherding
style of OpenBio, most participants came to the hackathon
already associated with a project (and therefore a team)
since OpenBio’s objective was to give these developers
focused time on their projects. As a result, most participants
by default sat with their usually remote colleagues. There
were, however, “free agents,” attendees not associated with
these projects. During individual introductions, the event
organizer suggested matches between free agents and
existing teams and teams with each other.

In contrast, PolarVis and PopGen used project pitches, short
presentations made by participants to everyone in
attendance describing ideas intended for wider adoption.
Most were based on ideas discussed in the preparation
stage. After pitches there was time for participants to ask
questions, discuss the projects, and sign up for them. In the
selection by organizer style of PolarVis, participants
indicated their interest in ideas by writing their names on
flip charts (one flip chart per idea). The organizers selected
a few ideas with high interest to work on first. Other high
interest ideas were reserved for later, according to the
organizers, in order to balance between ideas that had lower
interest. On the second day, participants were encouraged to
work on different ideas to disperse participants’ enthusiasm
and energy across ideas (OS8). Periodically the organizers
walked around and determined which teams were
“complete” and which needed more time. When teams
were complete, new teams formed around remaining ideas.

In the selection by attraction style of PopGen, ideas that
people got behind were de facto selected. Participants wrote
down ideas they thought would be interesting, one idea per
sheet. Participants then discussed their ideas with others
sitting at their table, and each table was asked to pitch the
most important idea. The organizer wrote this idea down on
a chart and attached the relevant post it-notes. Each table
used different color notes. This was repeated in round robin
fashion. If ideas from other tables were similar, the post-its
were attached to the same chart. Volunteers were then
asked to stand next to the flip charts, and everyone else was
free to wander around the room, discussing pitches, offering
suggestions, and deciding how to fit in. In contrast to the
selection by organizer style, teams in the selection by
attraction style stayed together for the whole hackathon.

Table 2 summarizes the expected and actual outputs of each
hackathon, as identified in our surveys. One can see, for
instance, that OpenBio and PopGen teams were more
successful than PolarVis teams in achieving their technical
objectives. To determine the level of technical progress we
extracted source-code commits made to all repositories

CSCW '16, FEBRUARY 27-MARCH 2, 2016, SAN FRANCISCO, CA, USA

represented at each hackathon two weeks before, during,
and two weeks after. Figure 1 shows that compared with
OpenBio and PopGen teams, PolarVis teams made few
commits to software repositories. PolarVis teams were also
less satisfied with their technical output. Only 66% (21/32)
of PolarVis participants were satisfied or very satisfied with
what was achieved in their team. In contrast, 81% (25/31)
of OpenBio and 86% (18/21) of PopGen participants were
satisfied or very satisfied with technical work achieved in
their team. These observed differences are not statistically
significant (Fisher Exact Test p=.24) so they should be
taken only as suggestive, i.e., as descriptive of our sample.

Interviews and open-ended survey responses revealed that
despite the fact that PolarVis participants were able to
develop a base familiarity with each other during
preparation, they had not been clear about how tasks could
be able to combine polar science and development:

“[Participants] weren't able to really be able to see what
the real contribution from the other side would be. You
know might have been better sessions had been
cosponsored or something like that... I don't know how long
it takes for a developer to do particular tasks just like they
probably don't know how long it would take me to do
particular things” (U9).

As such polar scientists and data visualization developers
were uncertain how they could concretely contribute to the
tasks that were selected (U9, D13, D14).

Expected Outputs Actual Outputs

1125

* Publications

OpenBio | * Bug fixes * Bug fixes
* New tool * New tool
features features
* Improved * Improved
documentation documentation
* Workflow
Platform
Working Group
PolarVis | « New prototypes * Visualization
* Visualization mock-ups
designs * Bug fixes
¢ New ¢ New
collaborations collaborations
* Proposals
PopGen | ¢ Community * Community
website website
* Improved * Improved
documentation documentation
* New R packages ¢ New R packages
* Newly * Newly
interoperating R interoperating R
packages packages

* Publications
* Facebook group

Table 2. Expected and actual outputs of each hackathon.

Average Daily Source-Code Commits
to Hackathon Repositories Over Time

15

1

) u I I
0 _— .

Week: -2 Week: -1 During Week: +1 Week: +2
Time

®OpenBio
®PolarVis

®PopGen

Average Commits per day (Log Scale)

SESSION: HACKING, MAKING, AND DISCOVERING

Average Daily Online Discussions
in Hackathon Repositories Over Time

e
©

@

kS

~

®*QOpenBio
®PolarVis
®PopGen

Average Discussions per day (Log Scale)
o o o
o w e

o
N

i |

Week: -2 Week -1 During Week: +1 Week: +2
Time

Figure 1. Average number of source-code commits (left) and discussions (right) per day two weeks before, during, and after each
hackathon shown on a log scale to heighten the visibility of differences at the bottom of the range. For PolarVis and PopGen we
show unique comments posted to the GitHub issue tracker. Because OpenBio participants used a Google Document, we show
unique edits to that document extracted from the revision history.

Participants joined teams based primarily on their own
interests rather than where their expertise was needed. This
led to relatively homogenous teams. Following the selection
by organizer style, when some teams dissolved mid-day
continuing teams had to rehash previous discussions for
newcomers (U9), leaving little time to take ideas from
concept to realization.

The flip side, however, was that the prolonged discussions
that PolarVis teams had during preparation and face-to-face
led to collaboration plans, which strengthened existing
social ties. High turnover in teams at the event exposed
more people to different ideas. Of the 20 participants at
PolarVis who had worked together previously, 90% (18/20)
described their relationships with others as “much better”
because of the hackathon. This was higher than OpenBio,
where of the 23 participants who had worked together
previously, 57% (13/23) responded “much better.” Only
nine participants from PopGen had worked together
previously, but all nine described their relationships as
“much better.” We think this may be due to the longer
duration of PopGen, which roughly matches the minimum
amount of time for the benefits of situated coworker
familiarity to accrue [14].

At OpenBio, open-source software teams had mostly
identified their tasks ahead of time, writing them down in a
shared document but having little public discussion.
Because participants had clear goals and expertise, they
were able to make rapid progress on their technical work.
However, not including domain scientists in brainstorming
discussions or at the event mean that there were fewer
opportunities to build new social ties. Although there was
more training than in OpenBio, PopGen participants were
also able to make quite a bit of technical progress.
Watching others code resulted in participants learning about
programming conventions and practices needed for their
work without burdening developers. The longer duration

1126

may have also offset losses in productivity due to experts
spending time mentoring less experienced programmers.

DISCUSSION

Radical collocation [33] and situated coworker familiarity
[14] served as important theoretical background for
understanding the potential benefits of hackathons, but
there are key differences between hackathons and the
contexts in which these theories have been traditionally
applied. These differences raise questions about the
practices and tool support that hackathons groups need
leading up to and winding down from a hackathon in order
to effectively start and complete work, and form and
cement social ties.

Work

In essence, radical collocation explains how the affordances
of the immediate environment facilitate technical work. It
takes time, however, for teams to develop trust, shared
norms for interacting, and an understanding of work
artifacts so that they can use these affordances effectively.
Research has shown that teams develop over time in a
series of stages.

This paper contributes an understanding of how a very
narrow slice of collocation fits into the developmental
stages of teams. A hackathon compresses and as such forces
careful attention to forming and norming. Forming
activities, such as learning about the research interests and
goals of other attendees and familiarizing one’s self with
technologies and datasets happened by way of ICTs.
Establishing norms related to tools and datasets critical to
the work happens to a degree before teams are formed, but
because not everyone will be familiar with them, tutorials
may be needed during collocation. Given that attendees’
day-to-day responsibilities left very little free time,
however, organizers we spoke to did not consider finalizing
tasks and teams beforehand to be an option. This shifts
aspects of forming, storming, and norming to the collocated

period, which reduced the time available to take advantage
of the affordances of radical collocation. Future research
could investigate and evaluate ways of shifting these
activities ahead of collocation, such as scheduling a shared
block of time for task brainstorming and prioritization.

Studies of radical collocation [23,33] often take a
perspective of the work as a complete “product.” But a
hackathon ends with the work in multiple, incomplete
forms such as mock-up drawings and prototypes. The real
benefits of radical collocation come from being able to
observe, overhear, and have impromptu training. How then,
do participants effectively complete and integrate work that
is so dependent on co-presence? Capturing artifacts and
context in a form suitable for subsequent distributed work is
an important open problem.

Social Ties

Situated coworker familiarity explains how visiting the site
of one’s coworkers leads to understanding coworkers in
relation to one’s self and the work together. While our
participants acquired familiarity with others’ research
interests and personalities, we did not find much evidence
that they gained insight into an existing context or
organizational culture that might explain their
collaborators’ working styles and behaviors. Rather
participants seemed to share a new “place” [21] that
provided a forum not only to work on tasks established
prior to the coding period of the hackathon, but to define
new ones during it.

On the one hand, the value “place” provides is ephemeral; it
may or may not boost productivity, and only for so long
before it is time to move on [21]. On the other, “site visits”
build situated coworker familiarity and can lead to enduring
interpersonal relationships [14]. Where do hackathons fit?
If one of the benefits of a hackathon is building community,
there has to be some non-ephemeral impact on social ties.
We found that participants sometimes collaborated with one
another beyond the contexts of their hackathon projects.
Under what conditions and to what extent these
collaborations occur are open questions for future work. As
a next step, surveys could be administered to participants
weeks or months after a hackathon. Collecting archival data
from source-code repositories and mailing lists, such as
number of contributions and types of contributions, and
linking that data to people would allow researchers to
construct social networks representing the social structure
of a hackathon. Further data collection could look outside a
hackathon at the full set of people who made contributions
to projects, revealing connections among hackathon
participants, external developers, and end users.

Future work in this area might also focus on practices and
technologies for hackathon participants who wish to
continue deepening familiarity after a hackathon. For
instance, future hackathon participants might benefit by
borrowing an idea from participants of PopGen, who
created a shared group on a social networking site. These

CSCW '16, FEBRUARY 27-MARCH 2, 2016, SAN FRANCISCO, CA, USA

groups permit repeated exposure, by seeing photos and
information about members and their recent activities, and
self-disclosure, both of which have been shown to
strengthen social ties [18:91].

Factors Influencing Usage of Radical Collocation

The stories that our case study tells suggest that the way
hackathon-style collocation is used to advance technical
work varies across technical domain, community structure,
and expertise of participants. While OpenBio participants
used collocation to advance work by spending focused time
on their projects, PopGen participants filled gaps in
expertise among the different roles by gathering
requirements and clarifying use cases, as well as providing
training needed to advance the technical work. PolarVis
participants did not make much technical progress due to
not having articulated upfront the contributions needed
(e.g., research problems, software development languages,
tools) from each community for each task.

Participants at all three hackathons, however, used
collocation in similar ways to build familiarity with their
fellow attendees. Watching others code enabled participants
to familiarize themselves with coding practices. Socializing
in a hackathon “place” allowed them to identify common
interests. Pressure resulting from deadlines to integrate and
complete work products allowed them to learn about each
other’s personalities. Our findings, for instance, that
OpenBio participants created a new working group,
PolarVis participants identified potential collaborators on
grant proposals, and PopGen participants created a
Facebook group and used it to share personal information
are evidence that hackathons lead to increased familiarity
among participants.

Implications for Design

Brevity of the face-to-face contact in a hackathon places a
huge premium on the preparation and follow-through
phases. Placing emphasis on the preparation phase helps
ensure that the hackathon time can be used efficiently right
from the start, and the follow-through phase helps complete
work that is started, but very often not finished, at the
hackathon. Tools that support preparation and bring the
results into the hackathon in a usable form, and tools that
capture progress at the hackathon so that incomplete
artifacts can be worked on in a distributed way after the
hackathon are very helpful.

Social coding environments perform many of the needed
functions for preparation, supporting technical work and
familiarization, both when the participants are distributed
and when they are collocated. For instance, collaborative
document editors and wikis in these environments made it
easy for participants to create and share lists of software
that everyone may not have installed, but that many if not
most people will need to use during the hackathon, and
understand each other’s interests, needs, and skills.

1127

However, they fall short in a couple of ways. First, radical
collocation relies on interpersonal relationships where
people feel free to ask and offer help, and to work openly in
ways others can observe. While this did happen to an
extent, we observed that some participants were not
comfortable asking for help. The development of trust takes
time, but can be facilitated with effective practices even
while teams are distributed [1]. These practices and tools
could be adapted for the preparation phase of hackathons. A
finding of interest is that people tend to trust and want to
work with others who share their emotions and ideals. One
could imagine, for example, a pre-hackathon exercise
where participants make and share short videos talking
about their own interests and goals for the hackathon.

The second way in which social coding tools sometimes fell
short is that not all participants were familiar with them, nor
did they have the incentive to become familiar with them if
they did not plan to use them beyond the hackathon.
Domain scientists in PolarVis were inadvertently excluded
from most of the preparation, which happened on GitHub, a
tool with which they were not familiar and did not wish to
learn. Less specialized tools seem particularly important
when mixing groups that do not share a common tool set.

Tools that support the transition from a face-to-face setting
to remote collaboration are useful to continue incomplete
work after a hackathon. For instance, participants using
whiteboards commonly took pictures of the sketches and
later posted them to their team’s wiki page. Unfortunately,
these pictures cannot be easily evolved after a hackathon.
First, whiteboard sketches often do not capture context
(e.g., who drew what, their intended meaning). Second,
people sketching at whiteboards often do not use standard
(e.g., UML) notation that could be used to import the
sketches into recognizable digital representations for future
use. Digital whiteboards with features that preserve context,
like allowing users to tag sketches with descriptions,
associate people with what they drew, and create text lists
summarizing the work would be very helpful. Such tools
could also save the sketches, which do not have to conform
to a particular standard, in a digital format, allowing them
to be collaboratively edited in real time. Tools like Calico
[22] provide features that resemble these.

Such tools often assume, however, that the purpose of
sketching is design. We also observed the whiteboard as a
teaching tool: developers teaching other developers about
the structure of a codebase or explaining how an algorithm
works. A feature that could potentially be useful for real
time whiteboard sessions would be to allow the people who
are not sketching to see the board from the perspective of
the sketcher, with synchronous audio or text
communication. This could give the viewer insight into
how experienced developers think and allow them to ask
questions and receive answers in a way that better mimics
the flexible ways of interacting at a hackathon.

1128

SESSION: HACKING, MAKING, AND DISCOVERING

Study Limitations

We conducted a multiple-case study of hackathons in situ,
and used interviews and surveys to collect data on
hackathon activities and outcomes from participants. We
strove to devise a sensible replication strategy, and
collected multiple sources of data to triangulate on our
observations. Our interviewees were not limited to software
developers, but ranged from very technical jobs to end users
of the software. They also spanned communities and
disciplines. This inclusion is not typical of studies of face-
to-face meetings in open-source software development.

All three cases focused on scientific communities, however,
which are special in several ways. Scientists likely have a
shared view about the importance of science and the value
of building up networks of collaborators. Hackathon
participants for OpenBio and those for PopGen were from
the same scientific domain, meaning they shared scientific
vocabulary, intellectual concerns, and awareness of
methods. Software plays a secondary, yet necessary, role
for many scientists, which may lead to an enhanced
willingness to share tools and development practices.
Participants at a company-sponsored hackathon, in contrast,
may just want to get familiar with a suite of tools. They
therefore may not spend so much time learning about each
other’s objectives and working styles. Hackathons in
support of social objectives, on the other hand, may share
many advantages of common knowledge and goals that
communities of scientists have as hackathon participants.

CONCLUSION

This study provides insight into the hackathon
phenomenon, a modern day form of brief collocation that is
quite different from most collocation settings studied in
existing CSCW research. We extend theories of radical
collocation and situated familiarity to apply to this novel
setting, and contribute a rich description of hackathon
activities from preparation, to the hackathon itself, to the
follow through period. Comparing observations across our
cases reveals that technical domain, community type, and
expertise shape how participants use face-to-face
interactions to advance technical work. Building familiarity,
however, is relatively constant across different participant
compositions and hackathon activities. Our hope is that in
addition to informing future empirical studies, our results
bring attention to the hackathon model in CSCW and raise
the level of discussion about planning and conducting
successful engagements.

ACKNOWLEDGMENTS

This research was supported in part by National Science
Foundation awards 1064209, 1111750, 0943168, and
1322278, the Alfred P. Sloan Foundation, the National
Evolutionary Synthesis Center (NESCent), NESCent’s
National Science Foundation award EF-0905606, and the
Google Open Source Programs Office. We thank Chris
Mattmann, Hilmar Lapp, Arlin Stoltzfus, Lewis John
Mcgibbney, Saskia van Manen, Brad Chapman, and
Michael Heuer, hackathon organizers who provided vital

support for and feedback on this study. Thanks also to our
participants, and to our anonymous reviewers for their
feedback on earlier drafts of this paper.

REFERENCES

1. Ban Al-Ani, Matthew J. Bietz, Yi Wang, et al. 2013.
Globally Distributed System Developers: Their Trust
Expectations and Processes. Proceedings of the ACM
Conference on Computer-Supported Cooperative Work
& Social Computing, ACM Press, 563-573.
http://doi.org/10.1145/2441776.2441840

2. Erin Bradner and Gloria Mark. 2002. Why Distance
Matters: Effects on Cooperation, Persuasion and
Deception. Proceedings of the ACM Conference on
Computer-Supported Cooperative Work, ACM Press,
226-235. http://doi.org/10.1145/587078.587110

3. Gerard Briscoe and Catherine Mulligan. 2014. Digital
Innovation: The Hackathon Phenomenon. Retrieved
August 4, 2014 from
http://www creativeworkslondon.org.uk/wp-
content/uploads/2013/11/Digital-Innovation-The-
Hackathon-Phenomenon 1 .pdf

4. Peter J.A. Cock, Tiago Antao, Jeffrey T. Chang, et al.
2009. Biopython: freely available Python tools for
computational molecular biology and bioinformatics.
Bioinformatics (Oxford, England) 25,11, 1422-3.
http://doi.org/10.1093/bioinformatics/btp163

5. Science Hack Day Community. Science Hack Day.
Retrieved July 25,2015 from http://sciencehackday.org

6. Juliet Corbin and Anselm Strauss. 2014. Basics of
Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. SAGE Publications,
Inc., Thousand Oaks, CA.

7. Kevin Crowston, James Howison, Chengetai Masango,
and U. Yeliz Eseryel. 2007. The Role of Face-to-Face
Meetings in Technology-Supported Self-Organizing
Distributed Teams. IEEE Transactions on Professional
Communication 50, 3, 185-203.
http://doi.org/10.1109/TPC.2007.902654

8. Donald B. Egolf and Sondra L. Chester. 2013. Forming
Storming Norming Performing: Successful
Communication in Groups and Teams. iUniverse,
Bloomington, IN.

9. Jeremy Goecks, Anton Nekrutenko, and James Taylor.
2010. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome
Biology 11, 8,R86. http://doi.org/10.1186/gb-2010-11-
8-186

10. Rebecca E. Grinter, James D. Herbsleb, and Dewayne
E. Perry. 1999. The Geography of Coordination:
Dealing with Distance in R&D Work. Proceedings of
the ACM Conference on Supporting Group Work,

CSCW '16, FEBRUARY 27-MARCH 2, 2016, SAN FRANCISCO, CA, USA

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

1129

ACM Press, 306-315.
http://doi.org/10.1145/320297.320333

HackerNest. 2014. DementiaHack TORONTO by the
British Govt & HackerNest. Retrieved May 11,2015
from http://www .eventbrite.com/e/dementiahack-
toronto-by-the-british-govt-hackernest-tickets-
12349265987 ?aff=estw

Jun He, Brian Butler, and William King. 2007. Team
Cognition: Development and Evolution in Software
Project Teams. Journal of Management Information
Systems 24,2,261-292.
http://doi.org/10.2753/M1S0742-1222240210

Christian Heath and Paul Luff. 1992. Collaboration and
Control: Crisis Management and Multimedia
Technology in London Underground Line Control

Rooms. Computer Supported Cooperative Work 1,
1990, 69-94.

Pamela J. Hinds and Catherine Durnell Cramton. 2014.
Situated Coworker Familiarity: How Site Visits
Transform Relationships Among Distributed Workers.
Organization Science 25, 3,794-814.

Toshiaki Katayama, Mark D. Wilkinson, Kiyoko F.
Aoki-Kinoshita, et al. 2014. BioHackathon series in
2011 and 2012: penetration of ontology and linked data
in life science domains. Journal of Biomedical
Semantics 5,5, 5. http://doi.org/10.1186/2041-1480-5-
5

Pedram Keyani. 2012. Stay focused and keep hacking.
Retrieved May 11, 2015 from

https://www .facebook.com/notes/facebook-
engineering/stay-focused-and-keep-
hacking/10150842676418920/

Sara Kiesler and Jonathon N. Cummings. 2002. What
Do We Know about Proximity and Distance in Work
Groups? A Legacy of Research on Physical Distance.
In Distributed Work, Pamela J. Hinds and Sara Kiesler
(eds.). MIT Press, Cambridge, MA, 57-80.

Robert E. Kraut and Paul Resnick. 2011. Building
Successful Online Communities: Evidence-Based
Social Design. MIT Press, Cambridge, MA.

Hilmar Lapp, Sendu Bala, James P. Balhoff, et al.
2007. The 2006 NESCent Phyloinformatics
Hackathon: A Field Report. Evolutionary
Bioinformatics 3, 287-296.

Steven Leckart. 2015. The Hackathon Fast Track,
From Campus to Silicon Valley. The New York Times.
Retrieved May 11, 2015 from http://nyti.ms/1CawQxH

Michael Liegl. 2014. Nomadicity and the Care of
Place-on the Aesthetic and Affective Organization of
Space in Freelance Creative Work. Computer
Supported Cooperative Work 23,2, 163—-183.
http://doi.org/10.1007/s10606-014-9198-x

22.

23.

24.

25.

26.

217.

28.

29.

30.

Nicolas Mangano, Thomas D. LaToza, Marian Petre,
and André van der Hoek. 2014. Supporting informal
design with interactive whiteboards. Proceedings of the
ACM Conference on Human Factors in Computing
Systems, 331-340.
http://doi.org/10.1145/2556288.2557411

Gloria Mark. 2002. Extreme Collaboration.
Communications of the ACM 45, 6, 89-93. Retrieved
June 30, 2014 from
http://dl.acm.org/citation.cfm?id=508453

Jennifer Marlow and Laura Dabbish. 2012. Designing
Interventions to Reduce Psychological Distance in
Globally Distributed Teams. Proceedings of the ACM
Conference on Computer-Supported Cooperative
Work, ACM Press, 163—-166.
http://doi.org/10.1145/2141512.2141568

Martha L. Maznevski and Katherine M. Chudoba.
2000. Bridging Space Over Time: Global Virtual Team
Dynamics and Effectiveness. Organization Science 11,
5,473-492.

Steffen Moller, Enis Afgan, Michael Banck, et al.
2014. Community-driven development for
computational biology at Sprints, Hackathons and
Codefests. BMC Bioinformatics 15, Suppl 14, S7.
http://doi.org/10.1186/1471-2105-15-S14-S7

Bonnie A. Nardi and Steve Whittaker. 2002. The Place
of Face-to-Face Communication in Distributed Work.
In Distributed Work, Pamela J. Hinds and Sara Kiesler
(eds.). MIT Press, Cambridge, MA, 83-110.

Gary Olson and Judith Olson. 2000. Distance Matters.
Human-Computer Interaction 15,2, 139-178.
http://doi.org/10.1207/S15327051HCI1523_4

Wanda J. Orlikowski. 2002. Knowing in Practice:
Enacting a Collective Capability in Distributed
Organizing. Organization Science 13, 3,249-273.
http://doi.org/10.1287/orsc.13.3.249.2776

Patricia M. Sias and Daniel J. Cahill. 1998. From
coworkers to friends: The development of peer
friendships in the workplace. Western Journal of

1130

31.

32.

33.

34.

35.

36.

37.

38.

SESSION: HACKING, MAKING, AND DISCOVERING

Communication 62,3,273-299.
http://doi.org/10.1080/10570319809374611

LLC SocioCultural Research Consultants. 2014.
Dedoose Version 5.0.11, web application for
managing, analyzing, and presenting qualitative and
mixed method research data. Retrieved from
http://www.dedoose.com

Deborah Sole and Amy Edmondson. 2002. Situated
Knowledge and Learning in Dispersed Teams. British
Journal of Management 13, 174,517-534.

Stephanie Teasley, Lisa Covi, M.S. Krishnan, and
Judith S. Olson. 2000. How Does Radical Collocation
Help a Team Succeed? Proceedings of the ACM
Conference on Computer-Supported Cooperative
Work, ACM Press, 339-346.
http://doi.org/10.1145/358916.359005

Erik H. Trainer, Chalalai Chaihirunkarn, Arun
Kalyanasundaram, and James D. Herbsleb. 2014.
Community Code Engagements: Summer of Code &
Hackathons for Community Building in Scientific
Software. Proceedings of the ACM Conference on
Supporting Group Work, ACM Press, 111-121.
http://doi.org/10.1145/2660398.2660420

Bruce W. Tuckman. 1965. Developmental Sequence in
Small Groups. Psychological Bulletin 63, 6,384-399.
http://doi.org/10.1037/h0022100

Patrick Wagstrom, James D. Herbsleb, Robert E.
Kraut, and Audris Mockus. 2010. The impact of
commercial organizations on participation in an online
community. Presentation at the Annual Academy of
Management Meeting, August 10, Academy of
Management, Briarcliff Manor, NY.

Jeanne M. Wilson, Susan G. Straus, and Bill McEvily.
2006. All in due time: The development of trust in
computer-mediated and face-to-face teams.
Organizational Behavior and Human Decision
Processes 99,16 — 33.
http://doi.org/10.1016/j.0bhdp.2005.08.001

Robert K. Yin. 2014. Case Study Research. SAGE
Publications, Inc., Thousand Oaks, CA.

