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Coordination Breakdowns and Their Impact
on Development Productivity and
Software Failures

Marcelo Cataldo and James D. Herbsleb

Abstract—The success of software development projects depends on carefully coordinating the effort of many individuals across the
multiple stages of the development process. In software engineering, modularization is the traditional technique intended to reduce the
interdependencies among modules that constitute a system. Reducing technical dependencies, the theory argues, results in a
reduction of work dependencies between teams developing interdependent modules. Although that research stream has been quite
influential, it considers a static view of the problem of coordination in engineering activities. Building on a dynamic view of coordination,
we studied the relationship between socio-technical congruence and software quality and development productivity. In order to
investigate the generality of our findings, our analyses were performed on two large-scale projects from two companies with distinct
characteristics in terms of product and process maturity. Our results revealed that the gaps between coordination requirements and the
actual coordination activities carried out by the developers significantly increased software failures. Our analyses also showed that
higher levels of congruence are associated with improved development productivity. Finally, our results showed the congruence
between dependencies and coordinative actions is critical both in mature development settings as well as in novel and dynamic

development contexts.

Index Terms—Metrics/measurement, productivity, organizational management and coordination, quality analysis and evaluation

1 INTRODUCTION

VER the past decades, software-intensive systems have

become increasingly pervasive in our lives, and their
complexity has increased drastically [1]. Software develop-
ment organizations are also changing. Factors such as project
scale, access to talent, acquisitions, and the need to reduce
the time-to-market have fueled an increase in the distribu-
tion of the development work and a corresponding increase
in organizational complexity [2], [3], [4]. Coordination—long
recognized as one of the fundamental problems of software
engineering [5], [6]—has become ever more challenging.
This has led to a growing body of work on coordination in
software development (e.g., [7], [8], [9], [10]).

Coordination is a topic that has also received significant
attention in the product development and organizational
theory literatures. Both research streams have proposed
similar theoretical perspectives based on the idea of
“nearly decomposable” systems [11], [12], [13], [14]. On
the technical dimension, the work on modular product
designs has extensively examined the role of interdepen-
dencies among components of a product and has proposed
approaches to minimize those dependencies [15], [16], [17].
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A key assumption in this line of work is that minimizing
technical dependencies among product components will
result in a modular work structure [15], [18]. In a similar
vein, organizational researchers have presented arguments
from the perspective of organizing the work around
loosely coupled entities such as teams or departments
[19], [20], [21], [22].

Despite their contributions, those theoretical perspec-
tives have important limitations. A modular strategy is
vulnerable to unanticipated “cross-cutting” product fea-
tures as they require coordinated changes to multiple
modules [23]. Moreover, modular structures as well as
traditional organizational mechanisms for coordination
tend not to be suitable for environments with volatile
dependencies [7], [12], [24]. In other words, these well-
established theoretical perspectives have taken a static view
of the problem of coordination in engineering activities,
tacitly assuming that product structure and organizational
structure are established early and do not change [25]. For
this reason, they fail to fully recognize the complex and
dynamic reality of software development projects. More
recently, organizational researchers have argued that
informal coordination mechanisms such as direct interac-
tion among project members are very valuable in highly
interdependent task contexts [12], [24]. Unfortunately, those
approaches fail to adequately manage the scale of large
projects and rely on the individuals” ability to identify the
relevant dependencies, which is a constant challenge in
software development (see, for instance, [26], [8], [10], [27]).

This paper examines the impact of adequately identifying
and managing coordination needs on two fundamental
software development outcomes: development productivity
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and software quality. In previous work [28], [7], we, together
with our collaborators, proposed a new perspective on
coordination that allows a more adequate consideration of
dynamic dependencies. Our results showed that when
coordination needs are matched by appropriate coordinat-
ing actions, a state defined as socio-technical congruence
[28], development productivity improves. In addition, our
past work showed that coordination needs could be quite
volatile during a software project [7]. The work reported in
this paper extends that earlier empirical work in three
complementary ways. First, our empirical analyses showed
that higher levels of congruence are associated with a
significant reduction in software failures results. Second,
we replicated our original results [28] on productivity in a
second large-scale project. This new research setting differs
significantly in terms of product, process, and organizational
maturity from the organization studied in our original work
[28]. Finally, we report new insights on the nature of the
volatility of dependencies when coordination needs cut
across organizational and geographical boundaries.

The rest of the paper is organized as follows: We first
discuss the traditional perspectives on dependencies and
coordination. Second, we build on our past work on socio-
technical congruence concept to articulate the research
questions examined in this paper. Third, we describe our
research setting followed by our empirical analyses and
results. We conclude with a discussion of the implications
of our results and future research directions.

2 DEPENDENCIES IN SOFTWARE DEVELOPMENT:
THE TRADITIONAL PERSPECTIVE

Over the years, work dependencies and coordination have
received significant attention from product development
and organizational researchers. On the organizational
dimension, numerous approaches to manage the work
dependencies that span organizational entities such as
individuals or teams have been proposed. March and Simon
[21] argued that schedules and feedback mechanisms are
required when interdependence is unavoidable. Thompson
[22] extended March and Simon’s work by matching three
mechanisms: standardization, plan, and mutual adjustment,
to stylized categorizations of dependencies such as pooled,
sequential, and reciprocal. Galbraith [19] argued that low
levels of interdependency could be managed by traditional
mechanisms such as rules, plans, and processes. However,
as the level of interdependency increases, additional
mechanisms such as lateral communication are required
[19]. Malone and Crowston [20] developed a typology of
coordination problems to catalog coordination mechanisms
that address specific types of interdependencies. The formal
coordination mechanisms proposed by the organizational
theory literature are appropriate in predictable and stable
settings where a priori definition of organizational structures
and processes for managing dependencies are feasible [12],
[29]. However, formalization has important limitations and
they tend to be overcome by the emergence of an informal
organization where interpersonal relationships play a
central role [30].

Recent work has shown that interpersonal coordination
mechanisms are better suited for managing highly
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interdependent tasks because the information processing
capabilities of interactions complement traditional coordi-
nation mechanisms [24]. However, in large-scale software
projects characterized by rapid changes, geographic
dispersion, and multiple organizational boundaries, these
types of informal coordination mechanisms could be
prohibitively costly [31], [9], [32]. For instance, identifying
and managing relevant technical and work dependencies
across geographic boundaries is quite challenging [32],
impacting productivity [28], [9] and software quality [31].

In the product development literature, traditional ap-
proaches to coordination are based on the decomposability
view (see [11] and [33] for reviews). That theoretical
perspective argues that complexity, technical or organiza-
tional, can be managed by dividing a system or a task into
smaller and more manageable units [13], [34]. In this
context, the work is often characterized as choosing the
design parameters for a system [15], [35]. Such decisions are
often highly interrelated, of course, and a modular
approach creates system components that are, in effect,
“bundles” of design decisions. Good architectural design
bundles decisions in such a way that there are relatively few
decisions that affect multiple components. These decisions
that do affect multiple components, often called architec-
tural decisions [36], are made first and establish the stable
“design rules” that determine how components will interact
[15]. In this strategy, the remainder of the engineering work
should consist of designing the components within the
constraints established by the design rules. This permits
different organizational entities [16], [18], [34] to work in
parallel on different components.

A modular approach to reducing technical and task
dependencies, however, is not adequate under conditions
where the product decomposition and interfaces are
uncertain and constantly changing. This is particularly
relevant in software engineering, where it is widely
accepted that the requirements of the system become
known gradually over time, and requirements change as
time progresses [5], [37]. In some cases, the changes in the
requirements result in minor modifications in the system. In
other cases, new features have to be added or existing
features are eliminated. Those changes can disrupt compo-
nent interfaces, ie, design rules, by establishing new
dependencies among the various parts of the system,
modifying existing ones, or even eliminating dependencies.
Furthermore, teams in a modularized system tend to
communicate relatively infrequently, making it harder to
achieve mutual understanding when the decomposition or
interface does change [26], [10]. Moreover, “cross-cutting”
product features pose challenges for traditional modular
designs because the changes across multiple modules need
to be coordinated [23].

3 DEPENDENCIES AND THEIR IMPLICATIONS FOR
SOFTWARE FAILURES AND DEVELOPMENT
PRODUCTIVITY

We, together with our collaborators, introduced the concept

of socio-technical congruence as a new perspective on
coordination where evolving dependencies are front and
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center [28], [7]. In that conceptualization, socio-technical
congruence is defined as the degree of matching between
two elements, coordination requirements and actual co-
ordination activities. Traditional coordination perspectives
have worked quite well in stable settings. In such context,
coordination requirements are typically articulated as high-
level and stylized categorizations of dependencies (e.g.,
task A needs to be completed before task B can start).
However, those perspectives suffer from serious limitations
in rapidly changing work contexts [12]. In contrast, our
congruence approach considers task dependencies as
dynamic relational entities that can be defined at any level
of granularity. For instance, we showed that logical
dependencies are a more reliable predictor of coordination
requirements than traditional syntactic dependencies [28],
presumably because they are better able to capture semantic
relationships among code elements.

Gaining a deeper understanding of the role of socio-
technical congruence in software development involves
examining the relationship between congruence and critical
outcomes such as software quality and development
productivity. Furthermore, generalizing those results re-
quires understanding whether that relationship remains
consistent across settings with different contextual factors,
such as the novelty of a product. The following paragraphs
discuss the hypothesized relationship between congruence
and software failures and productivity.

3.1 Congruence and Software Failures

Mismatches between coordination requirements derived
and coordination behavior have been shown to have a
negative impact on the quality of complex systems such as
airplane engines [38] or automobiles [39]. In software
engineering, coordination breakdowns can lead to higher
number of defects and higher costs [5], [40]. An important
challenge in software engineering is that software failures
can stem from various types of dependencies, which in
many cases are not easily identifiable (e.g., [41]). Further-
more, traditional design techniques such as modularization
sometimes have undesirable side effects. For example,
several researches have documented how the use of
modular designs to reduce technical dependencies tends
to lead development teams to assume an exaggerated
degree of independence (e.g., [8], [10]). The end result is a
significantly higher number of integration problems.
Therefore, we expect that identifying the relevant depen-
dencies, and the corresponding coordination needs, com-
bined with adequate coordination actions should result
in a reduction in software failures. This leads to our first
research question:

RQ 1: Are higher levels of socio-technical congruence
associated with lower levels of software failure?

The nature of the relationship between software depen-
dencies, coordination requirements, and software quality
could be impacted by at least two important contextual
factors: product maturity and process maturity. Early in the
development life cycle of a new software system, coordina-
tion needs tend to be very dynamic. The development
organization needs to grasp the novelty of the system to be
built, learn and understand the requirements, and define
and realize the structure of the system [42], [7], [5], [43]. In
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this context, a detailed view of coordination can be very
valuable to better understand how such dynamism impacts
the quality of a software system. As systems mature, the
nature of the coordination needs changes. For example,
changes to the system tend to face more scrutiny and inertia
[14], suggesting less dynamism. However, modifications in
mature systems are likely to involve or impact a higher
number of components or modules than in less mature
systems [44]. For these reasons, the coordination costs, the
likelihood of coordination breakdowns, and, consequently,
the likelihood of software failures associated with those
changes could increase. These opposing forces suggest that
the relationship between socio-technical congruence and
software failures should be examined in different product
maturity contexts.

A second dimension to consider is the maturity in the
development processes. As development organizations
achieve higher levels of maturity in their processes, the
quality of the systems produced by such organizations tends
to increase [45], [46]. Past research has shown that standar-
dized processes are very valuable when dependencies among
tasks are known a priori and stable. However, standardized
processes as a coordination mechanism have major limita-
tions when coordination needs are dynamic, uncertain, and
difficult toidentify [47], [12], [19], [29]. Those limitations may
also apply even in the case of organizations with mature
processes. This leads to our second research question:

RQ 2: Does the relationship between socio-technical
congruence and software failure persist across mature and
less mature development contexts?

3.2 Congruence and Software Development
Productivity

The organizational literature suggests that congruence is an
important factor affecting task performance (e.g., [48], [49]).
In software development, coordination breakdowns can lead
to longer development times [50], [9]. Our earlier work [28],
[7] showed that congruence was associated with improve-
ments in the resolution time of development tasks in a large-
scale project that developed a novel software system. The
previous section argued that the relationship between
congruence and software quality could differ across mature
or less mature development organizations as well as across
products that are novel or mature. The basis of such an
argument is also applicable to development productivity.
This leads to the last two research questions addressed in this
paper:

RQ 3: Are higher levels of socio-technical congruence
associated with higher levels of development productivity?

RQ 4: Does the relationship between socio-technical
congruence and development productivity persist across
mature and less mature development contexts?

4 RESEARCH SETTING

We examined our research questions using data collected
from two large-scale software development projects from
two distinct companies.

4.1 Project A: Distributed System

Project A was a large distributed system for a data storage
product. The data covered 39 months of development
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activity corresponding to the first four releases of the
product. The company had been in existence for 21 months
prior to the beginning of the period covered by our data. The
company had 114 developers grouped into eight develop-
ment teams distributed across three development locations
in North America. All the members of each team were
colocated. All the developers worked full time on the project
during the time period covered by the data. The system was
composed of about 5 million lines of code distributed in 7,737
source code files, mostly in C language, and a small portion
(117 files and less than 96,000 lines of code) in C++ language.
The system consisted of 27 architectural components and the
development responsibility of each one was assigned to only
one development team. All developers had full access to a
Perforce version control system and a modification request
(MR) tracking system based on the Bugzilla open source
system. The development organization had a collection of
scripts that automated the linking of commits to the version
control system with the MR tracking system. A modification
request represents a unit of work such as a defect, an
enhancement to an existing feature, or the development of a
new feature. The data corresponded to a total of 8,257
resolved MRs involving 67,652 commits to the version
control system.

Software developers communicated and coordinated
using various means. Opportunities for interaction existed
when working in the same formal team or when working in
the same location through periodic team meetings as well as
impromptu interactions. Developers also used tools such as
Internet Relay Chat (IRC) and an MR tracking system to
interact and coordinate their work. Each formal team had a
channel in IRC where most of the interactions with the team
took place. The company stored the contents of those IRC
channels and such content was viewable through a web-
based interface. The MR tracking system kept track of the
progress of the development task, comments, and observa-
tions made by developers as well as additional material
used in the development process such as snapshots of
screen reporting errors, trace dumps, or specification
documents. We collected communication and coordination
information from these two systems. Finally, we also
collected demographic data about the developers such as
the geographical location and the team he/she belonged to.

4.2 Project B: Embedded System

We collected data from a multinational development
organization responsible for producing a complex em-
bedded system for the automotive industry. The develop-
ment organization used a product line approach and the
collected data covered 65 months of development activities
associated with the latest version of the main platform
software from the beginning of the project in late 2003 until
the end of 2008. Three hundred eighty developers located in
eight development sites distributed across Europe and India
participated in the project. Those developers were organized
in 37 development teams. Thirteen developers had been
with the development organization for less than one year
and all developers underwent training related to all the tools
and processes used in the development projects. The system
was composed of about 7 million lines of code distributed in
9,074 source code files and 562 architectural components.
The development responsibilities of each component were
assigned to a single development team. All source code files
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were written in the C language. All developers had full
access to the version control system and the modification
request tracking system. This development organization
used ClearCase and ClearQuest as the version control
system and MR tracking system, respectively. Both systems
were highly customized to the development processes of the
organization and a collection of scripts was used to link an
MR with the revisions of the impacted source code files
through the use of labels in the version control system. The
data corresponding to a total of 4,170 resolved modification
requests were identified and 2,340 of those were multiteam
modification requests. The multittam MRs involved 10,736
commits to the version control system.

The development organization had in place a well-defined
set of development processes. Telephone and conference
calls as well as e-mail were the primary mechanisms of
communication among distributed engineers. The use of
communication technologies such as instant messaging was
not authorized. Finally, we also collected demographic data
about the developers such as the geographical location and
the team he/she belonged to.

4.3 Comparison across Projects

Research questions 2 and 4 focus on the relationship
between socio-technical congruence and development out-
comes in development contexts that differ in maturity. The
two projects studied were chosen because they represent
two very distinct points, differing on both of two dimen-
sions of maturity: product maturity and process maturity.
Table 1 highlights the key differences where project A
represents the less mature development context while
project B exhibited high levels of product and process
maturity." It is important to notice that the two dimensions
of maturity, product and process maturity, are not
completely orthogonal. In fact, they might be confounded.
Such a limitation can be addressed from an experimental
design point of view. If the impact of congruence is the
same across the two projects, then the confounding effect
between product maturity and process maturity does not
pose a problem. On the other hand, the confounding
represents a challenge if the relationship between congru-
ence and the outcome variables, software quality and
development productivity, is not consistent across projects.
In this case, the confounding between product and process
maturity will not allow us to disentangle which of the
factors is influencing the results.

5 ComPUTING COORDINATION REQUIREMENTS AND
CONGRUENCE

In this section, we describe how the coordination require-
ments and congruence measures were computed from the
collected data. Our socio-technical congruence approach [28],
[7] provides us with a measure of coordination requirements

1. The data collected from both projects also points out a difference in
terms of what amount of development work each MR represented. Qur
analyses as well as data collected in interviews revealed project-specific
characteristics that we think drove those differences. Members in project B
tended to define tasks as units of work that would take at least one or more
weeks worth of work. Labor regulations in European countries were the
main driver behind such an approach. In the case of project A, project
members tended to define tasks based solely on the technical aspects. Such
a difference is evidenced in the significantly higher variance in the
resolution time on project A's tasks.
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Differences between Projects along Product and Process Dimensions of Maturity

Project A

Project B

Product Maturity

Novel Product
First in its class, based on an academic pro-
ject

Market-leader product
8™ generation of the product

Process Maturity

A combination of agile and open source
processes (e.g. daily builds, minimal focus

Strong focus on processes. Well-established
use of the V-model methodology.

on requirements engineering)
No CMM assessment

Relatively immature development organiza-
tion. Our data cover 39 of the first 60 months

of the company existence

Two locations were assessed CMM Level 5,
five locations were CMM Level 3 and the
remaining one was CMM Level 2

Very matured development organization with
more than 20 years developing the various
generations of the system

which is computed from two elements: a people-to-task
relationship (task assignment matrix—T4 ) and a task-to-task
relationship (task dependency matrix—Tp). In our research
settings, an MR represents a unit of development work where
one or more engineers can be involved. The work performed
by those individuals in an MR is materialized in changes to
software artifacts such as source code files. Those changes
may impact other source code files or might be impacted by
changes or properties of other files. The technical dependen-
cies among source code files represent a key relationship that
allows us to examine or assess the impact or influence of
changes among source code files. Then, the potential impact
of a change represents a potential need to coordination
among developers working within a given MR or between
MRs. This set of linkages between individuals, MRs, and
software artifacts such as source code files allows us to
construct T4 and Tp.

More specifically, the necessary data can be extracted
from two types of repositories commonly encountered in
software development projects: the MR tracking systems
and the version control systems. An MR provides the
“developer i modified file j” relationship that constitutes
our Ty matrix. The task dependency (Tp) matrix can be
articulated as the technical dependencies among the
different source code files. Our past work showed that
logical dependencies® were a significantly better predictor
of coordination needs than syntactic dependencies [28].
Therefore, we considered logical dependencies for our
analyses. In that case, the cell ij in the Tp matrix
represents the number of times a particular pair of source
code files changed together as part of the work associated
with MRs prior to the focal MR. Finally, the coordination
needs matrix Cg is computed as Ty # Tp * transpose(Ty)
and the result a people to people matrix where each cell ij
indicates the extent to which the work of developers i and
j is interdependent.?

Computing congruence involves comparing the Cg matrix
against another person-to-person matrix, called actual co-
ordination matrix Ca. The Ca captures the coordination
activities performed by the individuals working on

2. The idea of logical dependencies was first articulated by Gokpinar et al.
[39] as files changed together as part of a unit of work.

3. A step-by-step example of the calculation of the CR matrix can be
found in our previous work [28].

development tasks [28], [7]. As described in our past work
[28], [7], congruence is formally defined as the quotient
between the number of cells ij in Cg and Cj that are nonzero
and the number of cells ij in Cg that are nonzero.
Development organizations may coordinate work in
different ways; therefore, we constructed two distinct Cy
matrices for each project. One Cj matrix captured the
existence of coordination activity between engineers i and j
if they belonged to the same formal team. Such a matrix
represented the potential paths of communication and
coordination that members of a formal team have through
various mechanisms such as team meetings and other
work-related activities. This particular view of congruence
captures the essence of the theorized relationship between
product and work modularization. If the system is perfectly
modular, then the work in one module can be done within
one team and no coordination is required among different
teams. Relating this matrix, Cs-giue, matrix to the
Cr matrix gives us the Structural Congruence measure.
Similarly, a second matrix C4-ge,, was built around the
idea of potential paths of communication and coordination
that exist when individuals work in the same physical
location [51], [32]. In terms of the matrix of coordination
activities, engineers i and j have a linkage if they work in
the same location. Relating the Cy4.g.,, matrix to the
Cr matrix gives us the Geographical Congruence measure.
Fig. 1 describes an example of computing the congruence
measures. In the case of structural congruence, all three

Cr Coastnut
= 1 10 = 1 1
Structural Congruence = Diff ( |1 - 4:| [1 - 1] )/6=1
10 4 - 101 -
E]
Cr Caceo
- 1 10 = 1 1
Geographical Congruence =Diff ( (1 - 4 1 - of )/6=066
10 4 - 1 0 -
]
Cr Camr
- 1 10 - 3 3
MR Congruence =Diff (|1 - 4 3 - p| )/6=0.66
04 -f |3 0 -
Cr Cairc
- 1 10 - 2 5
IRC Congruence = Diff (|1 - 4 2 - 3 )/6=1
10 4 - 5 3 -

Fig. 1. Example of congruence computation.
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developers belong to the same team, so the C4-g: matrix
contains all 1s, resulting in a congruence measure of 1 since
the Cg matrix indicates that all three developers have some
level of interdependence (off-diagonal cells are nonzero).
On the other hand, the information reported in the Cy .o
matrix indicates that one of the three developers is not in
the same geographical location, resulting in a value of
geographical congruence of 0.66.

In the case of project A, we had data associated with two
additional communication and coordination mechanisms:
the exchanges of information in the MR tracking system and
IRC. Using such data, we constructed two additional
measures of congruence. MR Communication Congruence
considers an exchange of technical information between
engineers 7 and j only when both i and j explicitly
commented in the modification request report. All dupli-
cates of the focal MR were also used to capture the
interactions among developers. We focused on interactions
among developers that explicitly commented on the MR
report and we did not consider those individuals that just
received notification e-mails every time an MR is updated.
The creator of the MR was included in the construction of
the MR Communication Congruence measure. IRC Commu-
nication Congruence was computed based on interaction
between developers from the IRC logs. Three raters, blind to
the research questions, examined the IRC logs correspond-
ing to the period of time associated with each MR. They
then established an interaction between engineers i and j if
they made reference to the MR identifier or to the task or
problem represented by the MR in their conversations. In
order to assess the reliability of the raters’ work, 10 percent
of the MRs were coded by all raters. Comparisons of the
obtained networks showed that 98.2 percent of the networks
had the same set of nodes and edges. In Fig. 1, the Cymr
and Cj4-rpc matrices have cells with values higher than one
because those cells represent the number of times the pair
of individuals interacted through that particular commu-
nication means.

6 Socio-TECHNICAL CONGRUENCE AND
SoFTWARE FAILURES

In this section, we present our empirical examination of the
relationship between congruence and software failures
across our two distinct development projects (RQ1 and
RQ?2). The contents are organized as follows: We first
describe the various measures used in our analyses, followed
by a description of the statistical model. We conclude with a
presentation of the results.

6.1 Description of the Measures

We considered software failures as failure proneness, which
is defined as the likelihood of software entities (e.g., source
code files) being modified as part of fixing a field defect.
The literature has identified a number of factors that impact
failure proneness (e.g., [41], [52], [53]). Some of those factors
are related to attributes of the files, attributes of the
technical dependencies among the files, as well as char-
acteristics of the development tasks. We collected measures
across all three of those dimensions and the following
paragraphs describe them.
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6.1.1 Measuring Failure Proneness

Our dependent variable, File Buggyness, is a binary measure
indicating whether a file has been modified as part of
resolving a field defect. Therefore, the unit of analysis is
the source code file. We selected this particular way of
examining software quality for two reasons. First, the
measure has been empirically evaluated in prior research
(see, for instance, [40] and [41]). Second, examining the
linkage between software failures and the related source
code files has very important practical implications [41].

In project A, our data covered four releases of the product.
Defects reported after the official release of the product were
considered field defects. In the case of project B, the
consequences of postrelease defects are quite severe
because they typically involve a recall of vehicles with
significant financial and reputational impact. Great effort
goes into quality assurance and, consequently, postrelease
defects seldom occur. Therefore, we considered “field
defects” as those defects encountered during the integra-
tion and system-testing phase.* Using 2,375 modification
requests from project A and 4,170 modification requests
from project B, the dataset of source code files was
constructed in the following way: First, the dataset included
all the files that were modified as part of the development
activities of each project. For each one of those files, we
determined if it was associated with a field defect in any of
the releases of the product covered by the data. However,
considering only those files that were modified by the
development activities can result in a selection bias. For
example, defects might exist in source code files that were
not modified as part of development activities in a
particular time period and they are discovered at some
point in time after a release of the product. Therefore, we
also included all files that were associated with field defects
that did not change during the development of a release
under study.

6.1.2 Congruence Measures

In order to construct the congruence measures, we used the
same formulation proposed in our earlier work [28], [7].
However, the outcome of such computation is a measure of
congruence per modification request. Since our unit of
analysis is the source code file, the congruence measures at
the file level were constructed in the following way: For
each file, we identified all the modification requests that
touched the file. Subsequently, the median value of each
congruence measure was associated with that particular
file. An alternative approach would be to compute the
measure as an average of level of congruence across all
modification requests that affected each particular file.
However, such a measure was highly correlated with our
control factors. Hence, it was more appropriate to use the
measure based on the median value of congruence.
Measures based on structural and geographical congruence
were computed for both projects, while IRC and MR
congruence measures were computed only for project A.

4. We recognize that equating defects found in an integration and system
testing phase with field defects may be inappropriate for some purposes.
However, we think that in the context of project B, it is not an issue for
concern because system testing involves evaluating the software system in a
real automobile and, due to safety concerns, reaching this point requires the
quality of the system to be in many respects as high as those found in
released product in other industries.
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TABLE 2
The Impact of Congruence on Failure Proneness
Project A Project B

Model I Model I  Model IIIL  Model IV
LOC (log) 1.125%* 1.137%* 1.251%* 1.151%*
Avg. Lines Changed (log) 1.128%* 1.118** 1.331** 1.314%*
Number Logical Dep. (log) 2.219%* 2.109%* 3.829%* 3.830**
Clustering Logical Dep. (log) 0.012%* 0.012%* 0.002%* 0.002%*
Coordination Req. Dep. (log) 2.187** 1.967** 1.111%* 1.801%*
Structural Congruence 0.285%* 0.859*
Geographical Congruence 0.317 0.578*
Model Fit
N 3980 3980 9074 9074
Model x2 1663%* 1701** 3092%* 3401%*

5 7 5 7

Deviance Explained 0.302 0.317 0.362 0.401
Model Comparison y2 -- 38.13%* -- 309.07**

(+p<0.10; * p<0.05; ** p<0.01)

6.1.3 Additional Control Factors

Past research on failure proneness has identified a number
of technical and work-related factors that impact it (e.g.,
[54], [55], [52], [53]). Building on such a line of work, we
examined, together with our collaborators [41], the
relationship of failure proneness with several process,
product, and work-related metrics in two large-scale
industrial software development projects from two distinct
companies. We identified a subset of technical and work
dependencies related factors that had consistent impact
across both projects. Given the demonstrated generality of
the role of those factors in the context of failure proneness,
we decided to consider them as the set of control variables
used in this study. The subsequent paragraph describes
those measures.

The size of the file (LOC) was computed as the number of
nonblank noncomment lines of code. We also computed
the average number of lines changed in a file as part of the
modification requests. Using the information in the
Tp matrices described in Section 5, we computed the two
technical dependency measures as proposed in our earlier
work [41]. Number of logical dependencies was computed from
the corresponding Tp matrix as the row sum minus the cell in
the diagonal. Notice that the Tp matrix based on logical
dependencies is symmetric; therefore, the variable could also
be computed by summing the cells in the corresponding
column. Clustering of logical dependencies measure for file 4
was computed as the density of connections among the direct
neighbors of file i. A “neighbor of file i” is a file that has
logical dependencies with file i. This measure is equivalent to
Watts’s [56] local clustering measure. We computed the
Coordination Needs Dependencies measure, which captures for
each file i, the degree centrality of the most central developer
in the Cg matrix that change such file [41].

6.2 Description of the Statistical Model

Since our dependent measure is a binary variable, our
analyses use the following logistic regression model to
assess the impact of socio-technical congruence on failure
proneness:

P(Buggyness = 1| X)

— [1 +ez‘_m*CmgruenceMea,mrs‘-+Ek ﬂk*Cmtrdemrek} _1,
where X is the vector consisting of the congruence and
control measures. As is customary with logistic regres-
sions, the models were estimated using a maximum-
likelihood method. We report several goodness-of-fit
measures for each statistical model. In particular, we
report the x?, the percentage of deviance explained by the
model as well as the statistical significance of the
difference between a model that adds new factors and
the previous model without the new measures. Deviance
is defined as —2 times the log likelihood of the model. The
percentage of the deviance explained is a ratio of the
deviance of the null model (containing only the intercept)
and the deviance of the final model.

We report odds ratios instead of the traditional
regression coefficients because they simplify the interpre-
tation of the results. Odds ratios are the exponent of the
logistic regression coefficient. Odds ratios larger than 1
indicate a positive relationship between the independent
and dependent variables, whereas an odds ratio less than 1
indicates a negative relationship. For instance, an odds
ratio of 2 associated with the size of the file measure
indicates that a unit change in such measure doubles the
probability of a file having a customer reported defect
when the remaining factors in the model are kept constant.
Finally, it is worth noting that the data for project A covers
four releases of the product; therefore, the source code files
can have multiple data points in the dataset. In order to
adequately handle the repeated measures and the random
effects associated with idiosyncrasies of each release, we
used a multilevel logistical regression model.

6.3 Resulis

We performed several logistic regression analyses to assess
the effect of the congruence measures on failure proneness of
source code files. Table 2 reports the odds ratios associated
with the various regression models. We constructed a
baseline model for both project A and B (models I and IIT)
considering only the control factors. The results from both
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projects are consistent in terms of the directionality and
magnitude of the effects with those reported in our past
work [41]. The odds ratios associated with the clustering of
logical dependency measure are quite small. This suggests
that increases in this measure result in a significant
reduction in the likelihood of failure proneness of a source
code file. Specifically, we consider ceteris paribus, the
change in the outcome variable between the minimum and
maximum observed values of the clustering measure. Fixing
the other independent variables at their means in project A;
for instance, we observe a 71.6 percent reduction in the
estimated probability of a source code file. The estimated
probability goes from 0.88 (for the minimum observed value
of the clustering measure) down to 0.25 (for the maximum
observed value). In the case of project B, we see a 90.4 percent
reduction in the estimated probability of a file being
associated with a field defect.

Models II and IV introduce the measures of congruence
based on logical dependencies for projects A and B,
respectively. The results show a statistically significant
impact of both structural and geographical congruence in
project B (model IV). Higher levels of congruence are
associated with lower levels of failure proneness (odds
ratios less than 1). In project A, only structural congruence
was statistically significant. The magnitude of the impact of
congruence differs across projects, as evidenced by the
substantially smaller values in the odds ratios in project A
relative to project B. In the less mature development setting,
such project A improvements in the levels of congruence
seem to be associated with larger reduction of the likelihood
of software failures (smaller odds ratios) than in the more
mature setting such as project B (odds ratios closer to 1). We
can quantify those differences by considering the minimum
and maximum observed values of the congruence and
calculating the change in the estimated probability of failure
associated with the source code files while fixing the other
variables at their means. For instance in project A, a change
in structural congruence from 0.156 (the minimum observed
value) to 0.421 (the maximum observed value) results in a
reduction of 18.6 percent in the estimated probability of
failure associated with a source code file. In project B, a
change in structural congruence from 0.009 to 0.891 results
in a reduction of 7.6 percent in the estimated likelihood of
failure proneness.

The data collected in project A allowed us to compute two
additional measures of congruence, IRC and MR commu-
nication congruence. Table 3 reports the odds ratios from the
models that included all four measures of congruence.
Model I represents the baseline model with only the control
factors. Model II incorporates the congruence measures.
Overall, the results from model II are consistent with those
reported in Table 3. IRC and MR congruence are also
statistically significant, suggesting such means of commu-
nication and coordination are very valuable in managing
dependencies and, consequently, improving software qual-
ity. We also replicated the analyses using the data from the
entire set of MRs from project A (8,257 MRs). The results
were consistent with those reported in Table 3 (model II).
However, we did not have IRC-based coordination data for
the entire set of MRs. Consequently, we decided to report the
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TABLE 3
The Impact of Congruence on Failure Proneness When
Considering Additional Coordination Capabilities in Project A

Model I Model IT
LOC (log) 1.125%* 1.136%*
Avg. Lines Changed (log) 1.128%# 1.121%*
Number Logical Dep. (log) 2.219%* 2.109%+
Clustering Logical Dep. (log) 0.012%* 0.012%*
Coordination Req. Dep. (log) 2.187** 1.962**
Structural Congruence 0.281*
Geographical Congruence 0.317
MR Congruence 0.209%*
IRC Congruence 0.271**
Model Fit
N 3980 3980
Model 32 1663** 1859%*
df 5 9
Deviance Explained 0.302 0.335

Model Comparison 32 - 196.24%*

(+p<0.10; * p<0.05; ** p < 0.01)

analyses based on the subset of MRs that allows us to
examine the impact of all four measures of congruence.

Summarizing, the results of our analyses suggest that
when the relevant work dependencies are adequately
managed by the developers, the likelihood of software
failures decreases. In other words, higher levels of socio-
technical congruence are associated with better software
quality (RQ1). Furthermore, the various measures of con-
gruence demonstrate the complementary benefits of different
approaches of satisfying coordination needs. Finally, the
results also demonstrate that socio-technical congruence is
important and valuable in both high maturity and low
maturity settings, although the benefits of congruence appear
to be greater when maturity is low (RQ2).

7 Socio-TECHNICAL CONGRUENCE AND
SOFTWARE DEVELOPMENT PRODUCTIVITY

In this section, we present our empirical examination of the
relationship of socio-technical congruence and develop-
ment productivity across our two projects (RQ3 and RQ4).
The contents are organized as follows: We first describe the
various measures used in our analyses, followed by a
description of the statistical model. We conclude with a
presentation of the results.

7.1 Description of the Measures

Past research has identified a number of factors that impact
development productivity (e.g., [5], [50], [9]). Some of those
are related to characteristics of the tasks such as the amount
of code to be written or modified and the priority of the
task, whereas other factors capture relevant attributes of the
individual developers and the teams that participate in a
development task.

7.1.1 Measuring Development Productivity

Our measure of development productivity is Resolution
Time, which is defined as the time, in days, it took to resolve
a particular MR. We recognize that some modification
requests may have longer resolution times for several
reasons. For instance, people are working on multiple MRs
simultaneously, or an MR was temporarily suspended to
address other higher priority work. We addressed these
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concerns in two different ways. First, we collected several
control variables that impact resolution time and they are
described later in this section. Second, our measure of
productivity accounts only for the time that the MR was
assigned to aparticular developer. We were able to accurately
determine such time periods because theboth companies had
a process in which modification requests were assigned to
developers only when they were actively working on them.
Otherwise, in the case of Project A, MRs would be assigned to
a generic team identifier. Inspection of a random sample of
modification requests suggested that this process followed in
the vast majority of cases. In project B, the MR report had an
explicit set of fields in which the engineers recorded the
times in which they worked on the development tasks. This
information enabled us to compute an accurate measure of
the time an individual spent in a particular development
task, which was also used by the company as part of their
resource management systems.

7.1.2 Congruence Measures

The congruence measures were constructed based on the
same formulation we proposed in our past work [28], [7].
For each modification request in both projects, we obtained
a structural and geographical congruence measure. In the
case of project A, we also computed MR and IRC
congruence measures.

7.1.3 Additional Control Measures

Past research has reported several additional factors that
impact resolution time of development tasks (e.g., [50], [9]).
We collected a number of control variables that capture
attributes of the development tasks, the individuals, and
the teams associated with the development work. The
amount of code written or changed is a proxy for the actual
amount of development work done. The change size
measure was computed as the number of files that were
modified as part of the change for the focal MR. Prior
research (e.g., [50]) has used lines of code changed as
a measure of the size of the modificaion. However, a
comparative analysis of both measures showed the mea-
sure using number of files had better explanatory power in
the statistical models. Therefore, the results presented in
this study are based on the measure computed from the
number of files modified. The change size measure was
highly skewed, so a log transformation was applied to
satisfy the normality requirements of the regression model
used in our analysis.

Two measures were constructed to capture attributes of
the teams involved in each modification request. Team load
is a measure of the average workload of the teams
responsible for the components associated with the
modification request. This control variable was computed
as the ratio of the average number of modification requests
in open or assigned state over the total number of
engineers in the groups involved in the focal modification
request during the period of time the MR was in assigned
state. Multiple locations is a binary variable that indicates
whether all the developers that worked on a particular MR
were in the same geographical location (a value of 0) or
were distributed across different development locations
(a value of 1).

An experienced software engineer familiar with tools
and programming languages can be substantially more
productive than an inexperienced developer [57], [58], [5].
Furthermore, experience with the domain area and with the
application being developed help accelerate development
time [5]. We used data from the software repositories to
assess individual-level experience based on the measures
proposed by Boh et al. [59]. First, Component experience was
computed as the average number of times that the
engineers responsible for the modification request have
worked on the same files affected by the focal modification
request. Second, shared work experience was computed as the
average number of times both persons in each dyad in a
modification request worked together prior to the focal MR,
averaged across all dyads. Finally, the variable time
captures the month within the project in which the
modification request was resolved.

7.2 Description of the Statistical Model

Past research has found that linear and hierarchical linear
regression models (e.g., [50], [6]) are appropriate techni-
ques for examining the effects of different factors on
development productivity. In this study, we examined the
effect of the various congruence measures on the resolution
time of development tasks using the following linear
regression model:

ResolutionTime = Z B; * CongruenceMeasure;

+ Z 6; * ControlVariable; + ¢.
J

We report several measures of goodness-of-fit for each
linear regression model including R?, the adjusted R?, and
the F-statistic as indicators of the models’ explanatory
power. An examination of descriptive statistics and Q-Q
plot indicated that several of the variables were highly
skewed to the left. The log transformation provided the best
approximation to a normal distribution. An analysis of the
pairwise correlations among the independent variables as
well as a variance inflation analysis suggested no relevant
collinearity problems. Finally, we report for each linear
regression model the standardized coefficients, also known
as beta coefficients. Standardized beta coefficients are
measured in standard deviations, instead of the units of
the variables, allowing them to be compared to one another.
In fact, some researchers use them to compare the relative
strength of the various predictors within the model [60].
However, other researchers have called for caution in using
betas in such comparisons because a change in standard
deviation units might not be equivalent across independent
variables [61].

7.3 Resulis

We performed several linear regression analyses to assess
the effect of the congruence measures on resolution time.
Table 4 reports the standardized coefficients from the
various linear regression models. The results associated
with project A have been previously published in our
original work [28]. We constructed a baseline model for
each project (model I and III) considering only the control
factors. The results are consistent with past empirical work
in software engineering. Factors such as the size of the



352 |IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, WVOL. 39, NO.3, MARCH 2013
TABLE 4
The Impact of Congruence on the Resolution Time of Modification Requests
Project A Project B
Model 1 Model 11 Model I Model IV
Time -0.005* -0.008* -0.003* -0.004*
Change Size (log) 0.025%* 0.018** 0.014%* 0.014%*
Team Load 0.033 0.034 -0.009 -0.009
Multiple Locations 0.169** 0.171** 0.084%* 0.082*
Shared Work Experience (log) -0.435** -0.478** -0.34]1** -0.338**
Component Experience (log) -0.108** -0.107** -0.188** -0.194**
Structural Congruence -0.041* -0.059*
Geographical Congruence -0.069* -0.071*
Model Fit
N 2375 2375 2480 2480
R? 0.657 0.698 0.463 0.528
Adjusted R? 0.656 0.697 0.462 0.527
F-test 885.3%* 786.3%* 418.2*%* 384.1%*

('p<0.10, p<0.05," p<0.01)

modification, familiarity with the software components,
familiarity working together with other developers, and
geographic distribution are significant factors impacting the
resolution time of modification requests in expected
directions [59], [50], [9].

We then included the measures of structural and
geographical congruence. The results are reported in
models II and IV for projects A and B, respectively. Both
measures of congruence, structural and geographical, have
statistically significant effects. The negative values of their
estimated standardized coefficients suggest that higher
levels of congruence are associated with a reduction in
time to resolve a MR. More specifically, the association of
higher levels of structural congruence with shorter devel-
opment times supports the argument that when coordina-
tion requirements are contained within a formal team,
development productivity increases. Geographical congru-
ence had a positive effect on resolution time, consistent with
past research finding distance has detrimental effects on
communication (see [9] and [32] for reviews).?

The inclusion of the congruence measures in models II
and IV results in an improvement in the adjusted R” of 6
and 14 percent for projects A and B, respectively. It is
important to highlight that the primary purpose of our
analyses is to determine the existence of a reliable relation-
ship between congruence and development productivity.
Higher improvements in R* would be necessary if the focus
of the investigation is purely a predictive exercise.

The data collected in project A allowed us to compute two
additional measures of congruence: IRC and MR commu-
nication congruence. Table 5 reports the results from the
models that included all four measures of congruence.
The results are consistent with those reported in Table 4. In
addition, congruence based on the coordination activities

5. The measures of structural and geographical congruence could be
affected by personnel turnover and mobility across teams. In project A,
archival data showed a yearly turnover rate of only 3 percent and an
intergroup mobility rate of less than 1 percent. Removing the MRs that
involved individuals who left the company or changed group membership
yielded consistent results to those reported in Tables 4 and 5. Unfortunately,
we did not have access to the necessary data in project B but based on
interviews with project members, turnover was perceived to be negligible.

among engineers performed through the MR reports as well
asIRC werealso statistically significant. These results suggest
the usefulness of these tools as additional coordination
capabilities that facilitate interdependent work, particularly
in a geographically distributed context.

The standardized coefficients reported in Tables 4 and 5
suggest that the impact on the resolution time of modifica-
tion requests of each individual congruence measure is
relatively small, in particular when comparing them to the
standardized coefficients associated with experience and
geographic distribution. However, the impact of each type of
congruence is complementary. Therefore, considering the
combined impact of all four measures, we find that
congruence is the second most important factor leading to
reductions in resolution time of MRs in project A and the
third most important in project B, behind the role of the
various types of experience.

Summarizing, our results suggest that when the relevant
work dependencies are adequately managed by the devel-
opers, the resolution time of development tasks decreases.
In other words, higher levels of socio-technical congruence
are associated with improvements in development produc-
tivity (RQ3). In addition, the results also demonstrate that
socio-technical congruence is important and valuable not
just in a novel and less mature development setting such as
project A but also in a significantly more mature develop-
ment setting such as project B (RQ4).

8 A CLOSER LOOK AT THE TEMPORAL EVOLUTION
OF COORDINATION REQUIREMENTS

In Sections 6 and 7, we examined our research questions
and our analyses showed that matching the work coordi-
nation needs that emerge from the technical dependencies
with appropriate coordinative actions helps improve soft-
ware quality and development productivity. Furthermore,
those results are consistent across two projects with very
distinct characteristics in terms of product and process
maturity. In this section, we take a closer look at how the
coordination needs of the development organization evolve
over time. This is of particular interest because highly



CATALDO AND HERBSLEB: COORDINATION BREAKDOWNS AND THEIR IMPACT ON DEVELOPMENT PRODUCTIVITY AND SOFTWARE... 353
TABLE 5
The Impact of Congruence on Resolution Time When Considering Additional Coordination Capabilities in Project A

Model I Model I1

Time -0.005* -0.006*

Change Size (log) 0.025%* 0.018**

Team Load 0.033 0.031

Multiple Locations 0.169%* 0.171**

Shared Work Experience (log) -0.435%* -0.436%*

Component Experience (log) -0.108%* -0.108**

Structural Congruence -0.041*

Geographical Congruence -0.070*

MR Congruence -0.034*

IRC Congruence -0.043*

Model Fit

N 2375 2375

R’ 0.657 0.748

Adjusted R? 0.656 0.747

F-test 885.3** 763.1**

(p<0.10, p<0.05, p<0.01)

volatile coordination needs tend to render traditional
coordination approaches such as standardized processes
inadequate [47], [12], [19], [29]. Past research has examined
the evolution of coordination needs over the life cycle of a
development project. Our past work [7] showed that
coordination needs changed substantially on a weekly
basis and that a sizeable portion of those coordination
needs tended to involve different formal teams. Costa et al.
[62] extended our original analyses [7] to examine the scale
and range of coordination needs across organizational
boundaries such as formal teams, development locations,
and time zones.

In this paper, we extend those two previous works in the
following way: First, we extended the Costa et al. [62]
analyses by examining the evolution and the oscillation of
new coordination need on a monthly basis. These analyses
allow us to understand the extent to which new coordination
needs could represent a major challenge of software projects.®
Second, we replicated the evolution analysis across different
groups of developers reported in our earlier work 717

Fig. 2 depicts the evolution of the proportion of new
coordination needs that, on average, each engineer faces in
projects A and B on a monthly basis over the time period
covered by the datasets (39 months for project A and
65 months for project B). The proportion of new coordina-
tion needs is represented by the bars in darker color. We
identified new coordination needs by comparing the
coordination requirements matrices corresponding to
month ¢ against month ¢ —1. Then, the cells in the
Cr matrix from month ¢ that are nonzero and have a
corresponding zero value in the Cgr matrix from month
t —1 constitute new coordination requirements at time ¢
that did not exist at time ¢— 1. Fig. 2 also shows the
proportion of new coordination needs that involve indivi-
duals in other formal organizational groups (bars in light

6. Projects A and B in this paper correspond to projects A and B in [22].
Thompson [22] reported average levels of volatility and oscillation whereas
in this paper we focused on monthly level data and how it evolved over
time.

7. Galibrath [19] reported similar results as those in Figs. 4 and 5 but
using a subset of the data (only 809 MRs) used in this study.

color in Fig. 2). In our research settings, that proportion
implies that the coordination requirement involves two
distinct architectural components. When all the new
coordination needs in a particular month are with
individuals outside the person’s formal team, the two bars
representing the two measures overlap. Hence, Fig. 2 only
shows the bar in light color corresponding to the average
proportion of new coordination needs that involve indivi-
duals in other formal organizational group.

On average and over the life cycle of the project, each
engineer in project A faced 2.9 new coordination require-
ments out of 27.2 total coordinationneeds on a monthly basis.
In project B, each engineer faced 5.3 new coordination
requirements out of 25.8 total coordination needs on a
monthly basis. Although, the overall averages seem some-
what small, it is clear from Fig. 2 that the average amount of
new coordination requirements faced by a developer con-
stitute a substantial proportion of all coordination needs at
several points in time in the projects. Furthermore, those new
coordination needs tend to be quite volatile over time in both
projects, suggesting that mature development settings such
as project B could be at a disadvantage. The same volatile
patterns are exhibited by those new coordination needs that
involve different organizational teams. Consequently, those
coordination needs are associated with development work
involving different architectural components, which argu-
ably introduce another dimension of complexity in the
context of coordinating development work.

In addition to highly volatile patterns, Fig. 2 highlights
points in the life cycle of a project where new coordination
needs significantly exceed average levels. For example, in
project A we observe that the proportion of new coordina-
tion needs is above 30 percent on months 24, 27, and 28,
while in project B, months 51 and 53 exceed those levels as
well. We took a closer look at the characteristics of the
development tasks to determine the source of such
patterns. We examined the descriptions and comments
stored in the MR reports. We also examined the attributes
of the commits in the version control system such as the
number of files, whether files were being removed, moved,
or renamed, as well as whether significant portions of the
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Fig. 2. The evolution of new coordination requirements on a monthly basis.

code were being moved across files. The goal of this
analysis was to understand if those above average levels in
new coordination need were a byproduct of cross-cutting
features being implemented, decisions to rearchitect, or
refactor parts of the software systems. In project A, we
found that the development tasks within three months of
the points of interest tended, on average, to involve higher
numbers of architectural components (1.78 versus 3.1).
However, the tasks did not involve the development of
obvious “cross-cutting” concems. The tasks represented
core features of the product that impacted several parts of
the software system. In project B, we did not find any
particular characteristics of the tasks that would explain
the above average levels of coordination needs.

We perform additional analyses to gain further insight
on the challenges associated with the volatility of new
coordination requirements. Specifically, we examined the
degree to which the new coordination needs oscillate
among small groups of people and over short periods of
time or whether they exhibit more complex patterns. When
coordination needs oscillate among a small set of indivi-
duals over a short period of time (e.g., every other month),
we could argue that the volatility of the coordination needs
might not be a major challenge. The reason is that
individuals are likely develop implicit coordination me-
chanisms to handle those dependencies [50]. On the other
hand, when new coordination needs involve constantly
new actors, the coordination effort increases and the
likelihood for misunderstanding, errors, and lower produc-
tivity increases. In particular, we are interested in those new
coordination needs involving at least two distinct architec-
tural components. In other words, those coordination needs
involving other formal teams.

Fig. 3 depicts the proportions of the new out-of-group
coordination requirements computed not just by comparing
Cr matrices from time ¢ and t—1 but also comparing
month ¢ against the coordination needs from months ¢ — 2
and t — 3. A new coordination need with respect to ¢t —i
means an engineer has not had coordination needs with a
particular person in the last i months. The three different
measures are depicted in a form of a bar, with the darker
shade corresponding to the ¢ — 1 new out-of-group coordi-
nation needs while the lightest shade corresponds to the
t — 3 measure. This graphical approach allows us to clearly
observe the proportions of out-of-group coordination needs
that are new relative to the past month, the past two months,
and the past three months. On average over the lifetime of a
project, 52.6 percent of the new out-of-group coordination
needs in project A are among individuals that have not been
interdependent in the last month (Fig. 3, “relative to month
t—1” data series). In project B, that percentage of new
coordination needs is 56.7 percent. More importantly, 29.1
and 18.2 percent of the new out-of-group coordination
requirements in project A are among developers that have
not had coordination needs in the last two and three
months, respectively. In project B, those percentages are 28.2
and 15.1 percent, respectively. Fig. 3 also shows many
instances where the proportion of this challenging set of
coordination needs represent more than 50 percent of the
new coordination needs faced by an individual.

Summarizing, our results show that new coordination
needs tend to be quite volatile over the life of both projects
despite their differences in terms of product and process
maturity. More importantly, coordination needs that cross
formal organizational boundaries (e.g., formal team) are
also quite common. Furthermore, in many instances they
involve engineers that have not been interdependent for at
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Fig. 3. The “Newness” of new out-of-group coordination needs on a monthly basis.

least three months. Combined, these results suggest the
need for new coordination mechanisms that complement
traditional coordination methods (e.g., standardized pro-
cesses) in assisting project members in navigating the
complex landscape of work dependencies.

9 A CLOSER LoOK AT THE TEMPORAL EVOLUTION
oF CONGRUENCE

In earlier sections, we showed that the various measures of
congruence are associated with improvements in develop-
ment productivity and software quality. The development
productivity analysis showed evidence of learning effects.
In fact, it is well established that individuals, groups, and
organizations are able to learn over time to perform their
task better [63]. In our context, as developers gain
experience in different aspects of the development project,
we could expect that developers, over time, are better able
to identify and manage emerging work dependencies.
Examples of the experience gained include understanding
how the various components of the system being developed
relate to each, learning who is working in the various parts
of a system, and learning how to work with each other. The
benefits accrued from learning, however, can be diminished
when important changes in the coordination requirements
take place (e.g., structure of the system or the allocation of
functional responsibilities change). In this section, we take a
closer look at the temporal evolution of our socio-technical
congruence measures.

In order to examine the evolutionary patterns of
congruence, we constructed measures of congruence on a
semi-annual basis, which resulted in six semesters for
project A and 10 semesters for project B. We considered all

the modification requests started and completed within
each semester of each project covered by our data.
Combining that data with the logical dependencies data
corresponding to the same semester, we constructed a semi-
annual Cg matrix, as discussed in Section 5. Fig. 4 shows the
average level of the structural and geographical congruence
over time in projects A and B. We observe that structural
congruence (solid line) declines significantly over time in
both projects. This decline could be interpreted as a
deterioration of the homomorphic relationship between
product and work structures posited by the modularity
theoretical argument [15], [18]. In other words, the benefits
of modularizing a software system to reduce the inter-
dependency among development teams seem to diminish
over time. Regarding geographical congruence, Fig. 4 shows
that it remains relatively stable in both projects (dashed
line) suggesting that the coordination needs across locations
did not change significantly over time. However, the low
levels of congruence, particularly in project B, suggest that
the organization was never able to appropriately deal with
cross-site dependencies.

Our previous work [7] showed that the evolutionary
patterns of the congruence differ significantly between
those developers that contribute larger portions to the
development effort and the rest of the developers. We
replicated their analysis and Fig. 5 depicts the results. In
project A, we found that 50 percent of the modifications
made to the system were done by only 18 (15 percent)
developers, while in project B, 107 developers (28 percent)
contributed 50 percent of the modifications. We labeled
those developers as “top-contributors” and we labeled the
rest of the developers as “other-developers.” In project A,
the top contributors were involved in tasks that required
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Structural Congruence

Geographical Congruence

Project A

Average Value of Congruence

Project B

Semester in the Project

Fig. 4. The evolution of structural and geographical congruence.

significantly more coordination across teams (decreasing
structural congruence) and, over time, they became quite
effective at coordinating over IRC and the MR tracking
system. On the other hand, the other developers seem not to
use communication tools (e.g., IRC) to interact with the
right set of people. Consequently, they never achieve high

levels of congruence in the IRC and MR-based measures. It
is important to point out that the usage of the IRC and MR
tracking tools in project A was pervasive and interviews
with 12 engineers suggested that they were very important
mechanisms for information exchange and coordination
related to development tasks. In project B, we observe

Structural

Geographical

Project A, Other-Developers

01234567891
T T T T T T S T

Average Value of Congruence

0123456782981
I TS O N T N T O O |

10 1

Semester in the Project

Fig. 5. The evolution of congruence for top-performing and other developers.
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similar patterns where top contributors tend to be involved
in tasks that require more cross-team coordination, parti-
cularly as the project evolves.

Summarizing, the patterns shown in Figs. 4 and 5
represent two additional and important results. First, the
decreasing levels of structural congruence suggest that the
benefits of modularization diminish as a project matures.
Second, top contributors tend to exhibit very different
coordinative actions relative to other developers, suggesting
that the traditional perspective in software engineering
relating only cognitive ability and experience to contribu-
tions [58], [5] may not capture all of the important attributes
of top contributors since their performance seems to have a
substantial social component as well.

10 DisSCuUSSION

This paper studied the relationship between socio-technical
congruence and critical software development outcomes
such as software quality and development productivity. We
addressed four specific research questions. First, we
examined the impact of congruence on software quality
(RQ 1). The results of our empirical analyses revealed that
the gaps between the computed coordination requirements
and the actual coordination activities carried out by the
developers had major implications on software failures.
Second, we also studied the relationship between congru-
ence and development productivity (RQ 3). Our analyses
showed that when engineers identified and managed the
relevant coordination needs, development productivity
improved. Finally, our analyses were performed on two
different large-scale projects from two different companies
with very distinct characteristics in terms of product and
process maturity (RQs 2 and 4). Our results showed that
considering dependencies and adequately managing them
is critical in mature development settings as well as less
mature contexts.

Our descriptive analyses of the temporal evolution of
coordination needs and congruence provided additional
important results. We showed that new coordination needs
are quite volatile and they also tend to cross formal teams.
We observed the same results across our two projects. These
results suggest that mature development settings also face
significant coordination challenges despite the lower levels
of uncertainty associated with their products and more
mature development processes. Combined, these findings
demonstrate the dynamic nature of work dependencies that
exist in software development projects.

Second, our measure of structural congruence di-
minishes over time. Such a pattern suggests a more complex
relationship between the product and the organizational
structures than theorized in the modular design literature
(e.g., [15]). As demonstrated by our results, high levels of
structural congruence (indicative of a good match between
product and organizational structure) are associated with
better productivity and quality, complementing the abun-
dance of evidence highlighting the benefits of modular
designs. However, as the development of a system evolves,
new dependencies emerge and they tend not to be aligned
with the existing formal organizational structure. Thus,
additional coordination capabilities are required. For in-
stance, our analyses revealed a group of developers in
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project A tended to coordinate more congruently over
communication mediums such as IRC and the MR tracking
system. Those patterns occurred as the coordination
mechanism provided by the formal organization increas-
ingly failed to match the developer’s coordination needs.

10.1 Limitations

Itis also important to highlight some of the limitations of the
work reported in this paper. First, the congruence measures
are contingent on assumptions about the software develop-
ment processes used in the organization as well as usage
patterns of tools that assist the development effort such as
defect tracking and version control systems. One key
assumption is the possibility of identifying 1) the set of
source code files that were changed as part of a modification
request and 2) the developers who made those changes. Both
our research settings, as described earlier, had a collection of
tools that allow a very detailed tracking and linkage of
changes in the version control system with task tracking
systems. However, we recognized that such approaches
might not be commonly used in industry or open source
projects. Furthermore, particular processes (e.g., file owner-
ship policy) may also impact the measurement of congru-
ence. However, our projects did not exhibit such a situation.

A second limitation of our work is that we did consider
all forms of coordination, such as telephone, e-mail
communication, and certain forms of documentation.
Unfortunately, we were not able to collect such data in
both of our research settings. It is worth pointing out that in
project A, interviews with 17 project members revealed that
the project used face-to-face meetings and conference calls
for architectural and design meetings. However, the
comments in the MR tracking system and IRC were the
primary means of communication for task-related discus-
sion as well as exchanging technical information. Therefore,
we think that our measures of MR and IRC congruence
capture a very relevant aspect of the coordination activities
in project A.

10.2 Implications for Future Research

The results reported in this paper provide a number of
directions for future research activities. First, our results
have important implications for tools to support develop-
ment organizations manage the dynamic and evolving web
of work dependencies in software development projects.
First, collaboration and awareness tools such as Palantir
[67], Ariadne [68], FastDASH [69], and TeamRooms [70]
could use our coordination requirements needs and con-
gruence measures to provide complementary dependency
information to such tools. Recent tools such as Tesseract [71]
and Ensemble [72] have implemented various aspects of the
congruence approach. However, they have not yet been
empirically evaluated in the context of coordination and
awareness. A second type of tools that could benefit from
the work presented in this paper builds design principles
from social computing and expertise finder tools. For
example, Codebook [73] presents an approach to mine
software repositories such that users could search the graph
of interrelated individuals and artifacts. Our results suggest
that tools such as Codebook could be improved by using
the measures of coordination needs and congruence to
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recommend project members or artifacts that are highly
interrelated to a person’s current tasks. Finally, separating
the coordination needs across organizational or geographi-
cal boundaries can be used to enhance the capabilities of
collaboration tools for large-scale projects. In sum, our
congruence approach allows tools to identify the relevant
dependencies and raise awareness among the project
members about those dependencies. Then, tools would be
in a better position to manage the issues of scale associated
with identification, management, and presentation of
dependency information.

Second, the work reported in this paper has focused on
development tasks. Certainly software projects involve
other types of tasks and stakeholders. Recent research has
shown the value of socio-technical congruence in other
contexts. Wagstrom et al. [75] showed that congruence is
associated with higher individual-level performance in
open source projects. Damian et al. [76] showed the
applicability of the socio-technical congruence approach in
requirement engineering tasks. Future research should
consider the use of the congruence approach across other
types of tasks that take place in a software projects as well
as integrating other stakeholders (e.g., architects, designers,
or testers) and artifacts. In a related vein, the general nature
of the congruence approach opens the door for the analyses
of numerous other forms of technical dependencies. For
example, dependencies could be grouped around product
features or around “cross-cutting” concerns [23], which
might not necessarily match the source code file or
component-based representations of technical dependen-
cies, and the implications on coordination of those units
could then be examined.

Finally, the nature of the coordinative actions may vary
across pairs of individuals, groups, or when involving
different parts of a software systems. For example,
coordination activities might take place among individuals
that might not be explicitly interdependent. Recent research
has considered variants to the congruence approach in
order to gain more insight on the patterns of coordination
needs, coordinative actions, and their impact. Ehrlich et al.
[77] examined the mismatches between coordination needs
and action. The authors found that geographically dis-
tributed pairs of individuals tended to have higher numbers
of unsatisfied coordination needs. Kwan et al.[78] proposed
a weighted measure of congruence to gain a better under-
standing of the relative impact of the strength of the
coordination needs and the corresponding coordination
activities. Wagstrom et al. [75] proposed and evaluated an
individual-level measure of congruence that allows the
examination of the relationship between a person’s con-
gruence patterns and his/her individual-level performance.
Furthermore, the authors found that communication among
individuals who did not have coordination needs among
them did not impact the resolution time of defects.
However, Sosa et al. [38] in an analysis of a complex
product development project found that noncongruent
communication is likely when indirect technical dependen-
cies exist and they tend to be valuable from a quality point
of view. Future research should examine in more detail the
role noncongruent communication as well as considering
further empirical evaluations of the various proposed
extensions to our congruence metric.
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