A Scalable Cyberinfrastructure for Interactive
Visualization of Terascale Microscopy Data

A. Venkat*, C. Christensen*, A. Gyulassy*, B. Summa*, F. Federer+, A. Angelucci+, V. Pascucci*,

*Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA

+Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah, Salt Lake City, UT, USA

~Department of Computer Science, Tulane University

Author Email: aniketh.venkat@utah.edu

Abstract— The goal of the recently emerged field of connectomics
is to generate a wiring diagram of the brain at different scales.
To identify brain circuitry, neuroscientists use specialized
microscopes to perform multichannel imaging of labeled neurons
at a very high resolution. CLARITY tissue clearing allows
imaging labeled circuits through entire tissue blocks, without the
need for tissue sectioning and section-to-section alignment.
Imaging the large and complex non-human primate brain with
sufficient resolution to identify and disambiguate between axons,
in particular, produces massive data, creating great
computational challenges to the study of neural circuits.
Researchers require novel software capabilities for compiling,
stitching, and visualizing large imagery. In this work, we detail
the image acquisition process and a hierarchical streaming
platform, ViSUS, that enables interactive visualization of these
massive multi-volume datasets using a standard desktop
computer. The ViSUS visualization framework has previously
been shown to be suitable for 3D combustion simulation, climate
simulation and visualization of large scale panoramic images.
The platform is organized around a hierarchical cache oblivious
data layout, called the IDX file format, which enables interactive
visualization and exploration in ViSUS, scaling to the largest 3D
images. In this paper we showcase the VISUS framework used in
an interactive setting with the microscopy data.

Keywords—3D Imaging; Connectomics; Big data; Terascale
Microscopy;

1. INTRODUCTION

To date, only a few neuronal circuits have been analyzed
comprehensively— the connectivity map of the 302 neurons
comprising the entire nervous system of the nematode
caenorhabditis elegans being the most notable [6]. While
current efforts are being focused on mapping the mouse brain
[1] [2], mapping the non-human primate (NHP) brain is rapidly
becoming a feasible goal. In particular, the emergence of viral-
vector mediated high-resolution fluorescent labeling of neural
circuits [3], optical tissue clearing techniques [4], and deep
tissue imaging [5] have made it possible to characterize NHP
brain wiring at cellular resolution. Understanding human brain
function and how neurological and psychiatric diseases affect
the brain are just a few fields that would immensely benefit
from primate brain maps.

In order to effectively resolve and visualize individual
fluorescently labeled axons using 2-photon (2P) or confocal
microscopy (axons frequently cross and overlap each other

closely through the NHP cortex-see Figure 7(c)), a minimum
resolution of 20-40x magnification in the x- and y-planes
combined with a z-axis step size of 0.25-1.0 microns between
imaging planes is necessary. At these magnifications and z-
resolutions one can unambiguously identify continuous
neuronal projections and the axonal and dendritic protrusions
along them, which identify synaptic points of contact with
other cells. While these acquisition parameters allow
neuroscientists enough image detail to map brain connectomes,
they come at the cost of creating immense amounts of data. In
our own 2-photon microscope acquisitions we have found that
each 2048x2048 tiff image (8.6MB), which captures a brain
area of approximately 0.2 by 0.2 mm?, provides sufficient
image quality for NHP connectome data analysis. Using these
parameters to image a tissue block the size of a single macaque
monkey cortical area, the primary visual cortex (=6,000mm”),
would generate approximately 320TB of image data [9],
making it nearly impossible to visualize, let alone interact with,
the acquired data in its original format.

Traditional 3D visualization tools [10-13] fail to scale when
dataset sizes are in the order of several terabytes, resulting in a
need for a scalable, high performant software platform that is
specifically designed to addresses the big data challenges of
neuroscience. In this paper we describe in detail ViSUS, a
scalable data analysis and visualization framework for large
scale scientific data processing with high performance selective
queries. ViSUS Software architecture consists of three major
components. First, a lightweight and a fast out-of-core data
management framework designed to organize data in an order
that exploits the cache hierarchies of many modern data storage
architectures. Second, an efficient dataflow framework that
allows data to be processed during movement. Third, a portable
visualization layer that is designed to scale from mobile
devices to powerwall displays with the same code base. These
specialized components enable ViSUS to achieve a fast,
scalable, and highly portable data processing and visualization
environment suitable for exploration and analysis of big data in
various fields. In the following sections, we describe the
ViSUS software architecture and show how ViSUS is useful in
analyzing terascale microscopy images.

II. VISUS SOFTWARE ARCHITECTURE

To provide context, a typical visualization and analysis
pipeline is illustrated in Figure 1. We assume that raw data
from experiments are available as real-valued, regular samples

Visualization

RawData) Re-Ordered
Data

e.g. HZ-order, Analysis > Statistics

bricking ...

e.g. topological analysis,
feature quantification,
tracking ...

Figure 1. In a traditional out-of-core visualization pipeline
where raw data does not fit into memory, the data is often re-
ordered to match the capabilities of the rendering engine, for
instance, re-ordered into smaller bricks that fit onto GPUs. The
hierarchical z-ordered data layout is an integral part of ViSUS
platform, and fits into this pipeline. In each case, further
analysis, such as feature identification and statistical analysis,
often operates on the same data layouts.

of space, possibly varying in time. Due to the large size of
datasets, we emphasize that the data samples cannot all be
loaded into the main memory. As a result, it is not feasible to
use standard implementations of visualization and analysis
algorithms on commodity hardware. Figure 2 provides an
overview of the software architecture of the ViSUS application
framework that we describe next.

Data Access Layer: To achieve data access patterns
having minimal performance degradation with external
memory storage, it is essential to address the issues of data
layout restructuring and algorithm redesign. The ViSUS I/O
component (and its generalized database component), in
particular focuses on enabling the effective deployment of out-
of-core and data streaming algorithms. Algorithmic approaches
in this area also yield valuable techniques for parallel and
distributed computing. The solution to the out-of-core
processing problem is typically divided into two parts: (1)
algorithm analysis, to understand data access patterns and,
when possible, redesign to maximize data locality; (2) storage
of data in secondary memory using a layout consistent with the
access patterns of the algorithm, amortizing the cost of
individual 1/O operations over several memory access
operations.

To achieve real-time rates for visualization and/or analysis
of extreme scale data, one would commonly seek some form of
adaptive level of detail and/or data streaming. By traversing
image data hierarchically from the coarse to the fine
resolutions and progressively updating output data structures
derived from this data, one can provide a framework that
allows for real-time access of the data that performs well, even
at extreme scale. To maintain efficiency, a storage data layout
must satisfy two general requirements: (i) the input hierarchy is
traversed from coarse to fine and level by level, so that data in
the same level of resolution is accessed at the same time, and
(i1) within each resolution level, the regions that are in close
geometric proximity are stored as much as possible in close
memory locations and also traversed at the same time.

In the past, space filling curves [14] have been used
successfully to develop a static indexing scheme that generates
a data layout satisfying both of the above requirements for
hierarchical traversal (Figure 4). The data access layer of
ViSUS employs a hierarchical variant of a Lebesgue space
filling curve [15]. The data layout of this curve is commonly
referred to as HZ order in the literature. This data access layer
has three key features that make it particularly attractive. First,
the order of the data is independent of the out-of-core block
structure, so that its use in different settings (e.g. local disk
access or transmission over a network) does not require any
large data reorganization. Second, conversion from the Z-order
indexing [16] used in classical database approaches to the
ViSUS HZ-order indexing scheme can be implemented with a
simple sequence of bit-string manipulations. Third, since there
is no data replication, ViSUS avoids the performance penalties
associated with guaranteeing consistency especially for
dynamic updates. From our test data, we have found that there
is only a 27% overhead due to the conversion compared to just
copying the raw data which makes this conversion very light.
Conversion of large images into the ViSUS format requires no
additional storage, compared to the typical 1/3 data increase
common for typical tiled image hierarchies. The conversion
requires no operations on the pixel data and will outperform
even the simplest tiled hierarchies, which require some
manipulation of the pixel data.

Beyond the theoretical interest in developing hierarchical
indexing schemes for n dimensional space filling curves,
ViSUS targets practical applications in out-of-core data
analysis and visualization and has been successfully used for
direct streaming and real-time remote monitoring of large scale
simulations during their executions on IBM BG/L
supercomputers at LLNL [17] as well as on Hopper
supercomputer at NERSC [18]. The multi-resolution data
model used in ViSUS allows adjusting the quality of the
visualization depending on the communication speed and on
the performance of the local workstation. Owing to the
extremely scalable nature of this approach, the same code base
is used for a large set of applications while exploiting a wide
range of available devices from large power-wall displays to
workstations, laptop computers or handheld devices.

Z & HZ ordering: In the two-dimensional case, the Z-
order curve can be defined recursively by a Z shape whose
vertices are replaced by Z shapes half its size (see Figure 4(a-
e)). Given the binary row-major index of a pixel (i,...isi,
Jne--Jijo) the corresponding Z-order index / is computed by
interleaving the indices I = j,i,...j1i;joip (see Figure 3 (a) step
1). While Z-order exhibits good locality in all dimensions, it
does so only at full resolution and does not support hierarchical
access. Instead, ViSUS uses the hierarchical variant, called the
HZ-order. This new index changes the standard Z-order to be
organized by levels corresponding to a subsampling binary
tree, in which each level doubles the number of points in one
dimension (see Figure 3 (b)). This pixel order is computed by
adding a second step to the index conversion. To compute an
HZ-order index I, the binary representation of a given Z-order
index [is shifted to the right until the first 1-bit exits. During
the first shift, a 1-bit is added to the left and 0-bits are added in
all following shifts (see Figure 3 (a)). This conversion could

Required Compilation
Dependency (A requires B)

[Ble—dA]

Visus
framework

Optional Dependency
(A may use B)

external
libraries

(openg})

ViSUS Apps
I withaul

GUI library
(Juce)

External SQL Image C i Compressi i i
and other ... (Freelmage) (zlib) (curl) (pthreads/windows-native)

Figure 2. The ViSUS application framework. Arrows denote external and internal dependencies of the main software components.
Additionally we show the relationship with several applications that have been successfully developed using this framework.

have a potentially very simple and efficient hardware
implementation.

IDX Data format: ViSUS sorts the original data in an HZ-
order and groups consecutive samples in blocks of constant
size. A sequence of consecutive blocks is grouped into a record
and records are clustered in groups, which are organized
hierarchically. Each record has a header specifying which of its
blocks are actually present and if the data are stored raw or
compressed. Groups can miss entire records or subgroups,
implying that all their respective blocks and records are
missing. The file format is implemented via a header file
describing the various parameters (dimension, block size,
record size, etc.) and one file per record. The hierarchy of
groups is implemented as a hierarchy of directories each
containing a predetermined maximum number of
subdirectories. The leaves of each directory contain only
records. To open a file, one needs only to reconstruct the path
of a record and defer its search to the file system. In particular,
the path of a record is constructed as follows: we take the HZ-
address of the first sample in the record, represent it as a string,
and partition it into chunks of characters naming directories,
subdirectories, and the record file. Note that, since blocks,
records and groups can be missing, one is not restricted to
arrays of data that cover the entire index space. In fact, we can
easily store even images with different regions sampled at
different resolutions.

Efficient Multiresolution Range Queries: One of the key
components of ViSUS is the ability to quickly extract
rectangular subsets of the input image in a progressive manner.
Computing the row-major indices of all samples residing
within a given query box is straightforward. However,
efficiently calculating their corresponding HZ-indices is not.
Transforming each address individually results in a large
number of redundant computations by repeatedly converting
similar indices. To avoid this overhead, we introduce a
recursive access scheme that traverses an image in HZ-order,
while concurrently computing the corresponding row-major

indices. This traversal implicitly follows a kd-tree style
subdivision, allowing us to quickly skip large portions of the
image. To better illustrate the algorithm we will first describe
how to recursively traverse an array in plain Z-order.
Subsequently, we will discuss how to restrict the traversal to a
given query rectangle and finally, how the scheme is adapted to
HZ-order. We wuse a stack containing tuples of type
(split_dimension, I start, min_i, max_i, min_j, max_j,
num_elements). To start the process, we push the tuple t0 =
(1,0,0,3,0,3,16) onto the stack. At each iteration we pop the
top-most element ¢ from the stack. If ¢ contains only a single
element we output the current [start as HZ-index and fetch
the corresponding sample. Otherwise, we split the region
represented by ¢ into two pieces along the axis given by split
dimension and create the corresponding tuples ¢/ =
(0,0,0,3,0,1,8) and 2 = (0,8,0,3,2,3,8). Note that all elements
of ¢/ and t2 can be computed from ¢ by simple bit
manipulation. In case of a square array, we simply flip the split
dimension each time a tuple is split. However, one can also
store a specific split order to accommodate rectangular arrays.

To use this algorithm for fast range queries, each tuple is
tested against the query box as it comes of the stack and
discarded if no overlap exists. Since the row-major indices
describing the bounding box of each tuple are computed
concurrently, the intersection test is straightforward.
Furthermore, the scheme applies, virtually unchanged, to
traverse samples in Z-order that sub-sample an array uniformly
along each axis, where the sub-sampling rate along each axis
could be different. Finally, to adapt the algorithm to HZ-order
(see Figure 3 (b)), one exploits the following two important
facts:

* One can directly compute the starting HZ-index for
each level. For example, in a squared array, level 0 contains
one sample and all other levels / contain 2"/ samples.
Therefore, the starting HZ-index of level h, e, is 2™,
where m is the number of bits of the largest HZ-index.

Step 1 Exitbit

setto 0

While (Exitbit=0):
right shift Exitbit

el - T -0

After the loop the right 24 bits represent the address I

Step 2

Level of
resolution and its
samples in red

Binary representation

HZ-order|Z-order| i j

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
| 1010
1011
1100
1101
1110
150 1111

0000 OO 00 10
1000 0O 10 1
0100 10 00
1100 10 10
0010 0O 01
0110} 10 01
1010 0O 11
1110} 10 11
0001 01 00
0011 01 01
0101} 11 00
0111 11 01
1001 01 10
1011 01 11
1101} 11 10
1111 11 11

—_—
[\®]

p—
(98]

—
~

Sample index
:S\OOO\IO\LII-PU)N'—‘O
W

[] [

Figure 3: (a) Address transformation from row-major index (i;
j) to Z-order index I (Step 1) and then to hierarchical Z-order
index (Step 2); (b) Levels of the hierarchical Z-order for a 4x4
array. The samples on each level remain ordered by the
standard Z-order.

* Within each level, samples are ordered according to
plain Z-order and can be traversed with the stack algorithm
described above, using the appropriate subsampling rate.

Using these two facts one can iterate through an array in HZ-
order by processing one level at a time, adding Ihsm,., to the
I start index of each tuple. In practice, we avoid subdividing
the stack tuples to the level of a single sample. Instead,
depending on the platform, we choose a parameter n and build
a table, with the sequence of Z-order indices for an array with
2" elements. When running the stack algorithm, each time a
tuple ¢ with 2" elements appears, we loop through the table
instead of splitting ¢. By accessing only the necessary samples
in strict HZ-order, the stack-based algorithm guarantees that
only the minimal number of disk blocks are touched and each
block is loaded exactly once. For progressively refined zooms
in a given area, we can apply this algorithm with a minor
variation. In particular, one would need to reduce the size of
the bounding box represented in a tuple each time it is pushed
back into the stack. In this way, even for a progressively
refined zoom, one would access only the needed data blocks,

()
Figure 4: (a-e) The first five levels of resolution of the 2D
Lebesgue’s space filling curve. (f-j) The first five levels of
resolution of the 3D Lebesgue’s space filling curve.

each being accessed only once.

Parallel I/O for Large Scale Simulations: The multi-
resolution data layout of ViSUS discussed above is a
progressive, linear format and therefore has a write routine that
is inherently serial. During the execution of large scale
simulations, it would be ideal for each node in the simulation
to be able to write its piece of the domain data directly into this
layout. Therefore, a parallel write strategy must be employed.
Figure 5 illustrates different possible parallel strategies that
have been considered. As shown in Figure 5(a), each process
can naively write its own data directly to the proper location in
a unique underlying binary file. This is inefficient due to the
discontinuous access of sparse buffers within memory as well
as the large number of small granular, concurrent accesses to
the same file. As the data gets large, it becomes
disadvantageous to store the entire dataset as a single large file
and typically the entire dataset is partitioned into a series of
smaller more manageable files. This disjointedness can be used
by a parallel write routine. As each simulation process
produces simulation data, it can store its piece of the overall
dataset locally and pass the data on to an aggregator process.
These aggregator processes can be used to gather the individual
pieces and composite the entire dataset. In Figure 5(b), each
process transmits a contiguous data segment to an intermediate
aggregator. Once the aggregator’s buffer is filled, the data is
written to disk using a single large I/O operation. Figure 5(c),
illustrates a strategy where several noncontiguous memory
accesses from each process are bundled into a single message.
This approach reduces the number of small network messages
needed to transfer data to aggregators.

ViSUS Dataflow: In a large scale dataset, even simple
manipulations can be very expensive when applied to each
variable. Instead, it would be ideal to process the data based on
need by pushing data through a processing pipeline as the user
interacts with different portions of the data. With the ViSUS
multi-resolution layout different regions of the data can be
efficiently accessed at varying resolutions. Therefore, different
compute modules can be implemented using progressive
algorithms to operate on this data stream. Operations such as
binning, clustering, or rescaling are trivial to implement on this
hierarchy given some known statistics on the data, such as the
function value range, etc. These operators can be applied to the

|Rank0| |Rank1| | Rank 2 | |Rank3| | Rank 1 | | Rank 2 | | Rank 3 | | Rank1 | | Rank 2 | | Rank 3 |
€T ovgy 2999 o0 90 o0 09 o0 09
\ .
A7 S A 4
\‘\Q\ \\“ \‘1| l"'l ;;i}”/ \\\ : P

Process

IDX Binary File

\ h 4

Process

RN 4 N y s :
~
Rank 0 < Rank 0 [¢ t
Aggregator o000 Aggregator -®
)

IDX Binary File IDX Binary File
(A) 8) (€
L CEELTETTPTEEY Forming Indexed datatype €= NMPI File writes €= = = = MP| Puts . MPI Indexed Data type @ Data chunks

Figure 5: (a) Naive parallel strategy where each process writes its piece of the overall dataset into the underlying file, (b) each
process transmits each contiguous data segment to an intermediate aggregator. Once the aggregator's buffer is complete, the data
are written to disk, (c) several noncontiguous memory accesses are bundled into a single message to decrease communication

overhead.

data stream as-is while the data is moving to the user,
progressively refining the operation as more data arrives. More
complex operations can also be reformulated to work well
using the hierarchy. These adaptive, progressive solutions
allow the user to explore a full resolution solution as if it were
fully available, without the expense of the full computation.
The ViSUS Dataflow facilitates this stream processing model
by providing definable modules within a dataflow framework
with a well understood API. Figure 6 gives an example of a
dataflow for the analysis and visualization of a scientific
simulation. This particular example is the dataflow for a
microscopy simulation. Each of the dataflow modules provides
streaming capability through input and output data ports which
can be used in a variety of data transfer/sharing modes.

ViSUS also provides a scene graph hierarchy for both
organizing objects in a particular environment, as well as the
sharing and inheriting of parameters. Each component in a
model is represented by a node in this scene graph and inherits
the transformations and environment parameters from its
parents. Three-dimensional volume or two-dimensional slice
extractors are children of a data set node. As an example of
inheritance, a scene graph parameter for a transfer function can
be applied to the scene graph node of a data set. If the extractor
on this data set does not provide its own transfer function, it
will be inherited.

Portable Visualization Layer - ViSUS AppKit: The
visualization component of ViSUS was built with the
philosophy that a single code base can be designed to run on a
variety of platforms and hardware ranging from mobile devices
to powerwall displays. To enable this portability, the basic
rendering routines were designed to be OpenGL ES
compatible. This is a limited subset of OpenGL used primarily
for mobile devices. More advanced rendering routines can be
enabled if hardware support is available. In this way, the data
visualization can scale in quality depending on the available

hardware. Beyond the display of the data, the underlying GUI
library can hinder portability to multiple devices. Therefore,
ViSUS AppKit provides an abstract GUI interface that
currently supports both the Qt and Juce libraries providing
lightweight support for mobile platforms such as iOS and
Android in addition to major desktop operating systems.
ViSUS provides a generic viewer which contains standard
visualizations such as slicing, volume rendering and
isosurfacing. Additionally, the base system can display 2D and
3D time-varying data. The system considers a 2D dataset as a
special case of a slice renderer and therefore the same code
base is used to render both 2D and 3D data.

Webserver and Plugin: ViSUS has been extended to
support a client-server model in addition to the traditional
viewer. The ViSUS server can be used as a standalone
application or a web server plugin module. The ViSUS server
uses HTTP (a stateless protocol) in order to support many
clients. A traditional client/server infrastructure, where the
client established and maintained a stable connection to the
server, can only handle a limited number of clients robustly.
Using HTTP, the ViSUS server can scale to thousands of
connections. The ViSUS client keeps a number (normally 48)
of connections alive in a pool using the "keep-alive" option of
HTTP. The use of lossy or lossless compression is configurable
by the user. For example, ViSUS supports JPEG and EXR for
lossy compression of byte and floating point data, respectively.
The ViSUS server is an open client/server architecture,
therefore it is possible to port the plugin to any web server
which supports a C++ module (i.e., Apache, IIS). The ViSUS
client can be enabled to cache data to local memory or to disk.
In this way, a client can minimize transfer time by referencing
data already sent, as well as having the ability to work offline if
the server becomes unreachable. The ViSUS portable
visualization framework (Appkit) also has the ability to be
compiled as a Google Chrome, Microsoft Edge, or Mozilla
Firefox web browser plugin. This allows a ViSUS framework

Figure 6. Several dataflow modules chained together to provide a light and a flexible stream processing capability.

based viewer to be easily integrated into web visualization
portals.

III. APPLICATION: MICROSCOPY

The ViSUS application framework has been used at the Moran
Eye Centre, University of Utah to visualize 2-photon2P
microscope acquired images of axons labeled with GFP
(through intracortical injections of AAV9-GFP) and blood
vessels labeled with Alexa594-conjugated tomato lectin
through transparent Clarity-treated blocks (~60mm3) of
marmoset monkey V1. These scans yielded a 3TB dataset with
sufficient imaging detail for tracing. The acquired images were
manually transferred to a local ViSUS server where the data
was converted and stored in our multi-resolution IDX format.
Storing the data on a server accessible to the ViSUS viewer
applications allows the user to rapidly open the image stacks
into a single 3D volume, which can be viewed and manually
aligned in x, y and z (Figure 7(a)). In tissue volumes containing
only sparse GFP-labeled axons (green channel), we used the
stained blood vessels (red channel), which are larger than
axons and densely weave throughout the cortex, for volume-to-
volume alignment (Figure 7(b)). After this, switching to the
green channel (which is simultaneously imaged using multi-
channel 2P acquisition) yielded perfectly aligned sparse GFP-
labeled axons (Figure 7(c)).

IV. FUTURE WORK

While ViSUS infrastructure enables interactive
visualization and analysis of terascale microscopy data, the
vast amount of data presents new problems in the acquisition
process. Based on our current acquisition parameters, we have
estimated that scanning an entire mouse brain would result in a
31TB dataset. While big, this dataset is small compared to the
estimated 320TB that would result from imaging labeled
circuits at mesoscopic scale just in the macaque monkey

primary visual cortex (~6,000mm’). Moreover, a slight
increase in resolution would quickly double or quadruple the
dataset size. A computer with hardware powerful enough to
process and visualize that many images is beyond the scope of
a typical laboratory budget, requiring frequent human
intervention to offload the data to a server and continue the
acquisition. Further, once the acquisition and the copying
process is completed, it is required to manually convert
millions of images into a multiresolution data format before the
data can be visualized, causing additional delays. To address
this sizeable issue of data transfer and conversion that currently
hinders our ability to interactively explore and analyze
connectomics data, we plan to expand the ViSUS streaming
platform, by introducing a number of web services that convert
in real time 2D images generated by the microscope to IDX
data format. Our new acquisition system saves significant
processing time by amortizing the conversion and copying
effort, allowing the microscope to continuously operate to
acquire massive datasets. As a consequence, investigators can
remotely monitor the progress of their acquisitions which can
be invaluable for immediate analysis of critical images. In
addition, we plan to incorporate real time diagnostics into
ViSUS to detect variations in the acquired image quality which
would be particularly useful during a long acquisition to
identify and rectify unforeseen issues. We envision our
cyberinfrastructure to perform all these operations without
adding additional delays providing an end-to-end scalable
solution for terascale microscopy.

As data sizes continue to grow, the relative ability of a user
to manually trace neurons decreases. Automated analysis will
become an integral part in obtaining full-scale wiring diagrams.
These trends inevitably require migration of data to HPC
resources and deployment of algorithms in an HPC setting. The
ViSUS infrastructure has already been shown to perform as a
state-of-the-art 1/O infrastructure for large scale simulations,

and we plan to add the functionality needed to buffer and
migrate data from microscopes to the remote HPC setting, to
design and schedule analysis workflows, and achieve long-
term storage of the raw imagery.

V. CONCLUSIONS

Interactive visualization and data exploration are an
indispensable part of hypothesis testing and knowledge
discovery. Like most fields, visualization faces substantial
scientific data management challenges that are the result of
growth in size and complexity of the data being produced by
simulations and collected from experiments. In the context of
neuroscience, the large size and complexity of the NHP brain
produces massive amounts of imaging data, creating great
computational challenges to the study of neural circuits. To
address these challenges, neuroscientists require novel software
capabilities for compiling, stitching, and visualizing large
imagery. With data of massive scale, it is often useful to
perform a multiresolution analysis, working first with a
smaller, coarser version of the data, then progressively refining
the analysis as interesting features are revealed. With ViSUS
we showed that a space-filling curve model has proven to be
highly efficient for interactive analysis of massive
neuroscience data. Topological methods for multi-scale,

REFERENCES

[1] Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the
direction-selectivity circuit of the retina. Nature 471, 183—-188 (2011).

[2] Bock, D.D. et al. Network anatomy and in vivo physiology of visual
cortical neurons. Nature 471, 177-182 (2011).

[31 Luo, L., Callaway, E. M. & Svoboda, K. (2008). Genetic dissection of
neural circuits. Neuron 57, 634-660.

[4] Chung, K, Wallace, J, Kim, SY, Kalyanasundaram, S, Andalman, AS,
Davidson, TJ, Mirzabekov, JJ, Zalocusky, KA, Mattis, J, Denisin, AK,
Pak, S, Bernstein, H, Ramakrishnan, C, Grosenick, L, Gradinaru, V &
Deisseroth, K. (2013). Structural and molecular interrogation of intact
biological systems. Nature 497, 332-337.

[S] Denk W.; Strickler J.; Webb W. (1990). "Two-photon laser scanning
fluorescence microscopy". Science 248 (4951): 73—-6.

[6] White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure
of the nervous system of the nematode Caenorhabditis elegans. Philos.
Trans. R. Soc. Lond. B Biol. Sci. 314, 1-340 (1986).

[71 Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K, Myers
EW, Chandrashekar J A platform for brain-wide imaging and
reconstruction of individual neurons. Elife, 2016 5:e10566.

[8] Ragan T, Kadiri LR, Venkataraju KU, Bahlmann K, Sutin J, Taranda J,
Arganda-Carreras I, Kim Y, Seung HS, Osten P. 2012. Serial two-
photon tomography for automated ex vivo mouse brain imaging. Nature
Methods 9:255-258.

[9] Christensen, C, Federer, F, Gooch, A, Merlin, S, Pascucci, V &
Angelucci, A. (2015). Large scale imaging and 3D visualization of long-
range circuits in CLARITY-treated primate visual cortex. . Soc Neurosci
Abstr Online 598.19.

quantitative feature detection and analysis have also been
demonstrated to be highly effective by providing intermediate
concise descriptions of the data. By providing a higher level
abstraction, they enable scientists to explore feature definitions
interactively even if the raw data is prohibitively large in size.

Figure 7. Visualization of terascale microscopy data
using ViSUS cyberinfrastructure. (A) Adjacent
image sub-volumes of primate V1 blood vessels,
stained with fluorescent tomato lectin, rendered in
different colors to facilitate their alignment. (B) A
large volume of V1 blood vessels aligned and
visualized in 3D. (C) A zoomed in (higher
resolution) image of aligned blood vessels (red) and
GFP-labeled axons (green).

[10] Clendenon, J.L., Phillips, C.L., Sandoval, R.M., Fang, S. & Dunn, K.W.
Voxx: a PC-based, near real-time volume rendering system for
biological microscopy. Am. J. Physiol. Cell Physiol. 282, C213-C218
(2002).

[11] Swedlow, J.R., Goldberg, I., Brauner, E. & Sorger, P.K. Informatics and
quantitative analysis in biological imaging. Science 300, 100-102
(2003).

[12] Abramoff, M.D., Magalhdes, P.J. & Ram, S.J. Image processing with
Imagel]. Biophotonics Internatl. 11, 36-42 (2004).

[13] Sommer, C., Strachle, C., Kothe, U. & Hamprecht, F.A. Ilastik:
Interactive learning and segmentation toolkit. Biomedical Imaging:
From Nano to Macro, 2011 IEEE International Symposium on 230-233
(2011).

[14] Hans Sagan. Space-Filling Curves. Springer-Verlag, New York, NY,
1994.

[15] Valerio Pascucci and Randall J. Frank. Global static indexing for real-
time exploration of very large regular grids. In Supercomputing ’01:
Proceedings of the 2001 ACM/IEEE conference on Supercomputing
(CDROM), pages 2-2, New York, NY, USA, 2001. ACM Press.

[16] J. K. Lawder and P. J. H. King. Using space-filling curves for multi-
dimensional indexing. Lecture Notes in Computer Science, 1832:20,
2000.

[17] S. Kumar, V. Pascucci, V. Vishwanath, P. Carns, R. Latham, T. Peterka,
M. Papka, and R. Ross. Towards parallel access of multi-dimensional,
multiresolution scientific data. In Proceedings of 2010 Petascale Data
Storage Workshop, November 2010.

[18] S. Kumar, V. Vishwanath, P. Carns, B. Summa, G. Scorzelli, V.
Pascucci, R. Ross, J. Chen, H. Kolla, and R. Grout. Pidx: Efficient
parallel i/o for multi-resolution multi-dimensional scientific datasets.
InProceedings of IEEE Cluster 2011, September 2011.

