

sign of the visual representation of target object, this model

can generate unambiguous expressions [19, 31]. Here, the

CNN-LSTM models P (r|o), where r is the referring ex-

pression and o is the target object, which can be easily con-

verted to P (o|r) via Bayes’ rule and used to address the

comprehension task [10, 19, 31, 21] by selecting the o with

the largest posterior probability. The second type of ap-

proach uses a joint-embedding model that projects both a vi-

sual representation of the target object and a semantic repre-

sentation of the expression into a common space and learns

a distance metric. Generation and comprehension can be

performed by embedding a target object (or expression) into

the embedding space and retrieving the closest expression

(or object) in this space. This type of approach typically

achieves better comprehension performance than the CNN-

LSTM model as in [23, 26], but previously was only ap-

plied to the referring expression comprehension task. Re-

cent work [1] has also used both an encoder-decoder model

(speaker) and an embedding model (listener) for referring

expression generation in abstract images, where the offline

listener reranks the speaker’s output.

In this paper, we propose a unified model that jointly

learns both the CNN-LSTM speaker and embedding-based

listener models, for both the generation and comprehension

tasks. Additionally, we add a discriminative reward-based

reinforcer to guide the sampling of more discriminative ex-

pressions and further improve our final system. Instead of

working independently, we let the speaker, listener, and re-

inforcer interact with each other, resulting in improved per-

formance on both generation and comprehension tasks. Re-

sults evaluated on three standard, large-scale datasets verify

that our proposed listener-speaker-reinforcer model signifi-

cantly outperforms the state-of-the-art on both the compre-

hension task (Tables 1 and 2) and the generation task (eval-

uated using human judgements in Table 4, and automatic

metrics in Table 3).

2. Related work

Recent years have witnessed a rise in multimodal re-

search related to vision and language. Given the individ-

ual success in each area and the need for models with more

advanced cognition capabilities, several tasks have emerged

as evaluation applications, including image captioning, vi-

sual question answering, and referring expression genera-

tion/comprehension.

Image Captioning: The aim of image captioning is to gen-

erate a sentence describing the general content of an im-

age. Most recent approaches use deep learning to address

this problem. Perhaps the most common architecture is a

CNN-LSTM model [25], which generates a sentence con-

ditioned on visual information from the image. One pa-

per related to our work is gLSTM [11] which uses CCA

semantics to guide the caption generation. A further step

beyond image captioning is to locate the regions being de-

scribed in captions [27, 22, 26]. The Visual Genome [16]

collected captions for dense regions in an image that have

been used for dense-captioning tasks [12]. There also has

been a movement toward more focused tasks, such as vi-

sual question answering [2, 30], and referring expression

generation and comprehension which involve specific re-

gions/objects within an image (discussed below).

Referring Expression Datasets: REG has been studied

for many years [29, 15, 20] in linguistics and natural lan-

guage processing, but mainly focused on small or artificial

datasets. In 2014, Kazemzadeh et al [13] introduced the first

large-scale dataset RefCLEF using 20,000 real-world natu-

ral images [9]. This dataset was collected in a two-player

game, where the first player writes a referring expression

given an indicated target object. The second player is shown

only the image and expression and has to click on the cor-

rect object described by the expression. If the click lies

within the target object region, both sides get points and

their roles switch. Using the same game interace, the au-

thors further collected RefCOCO and RefCOCO+ datasets

on MSCOCO images [31]. The RefCOCO and RefCOCO+

datasets each contain 50,000 referred objects with 3 refer-

ring expressions on average. The main difference between

RefCOCO and RefCOCO+ is that in RefCOCO+, players

were forbidden from using absolute location words, e.g. left

dog, therefore focusing the referring expression to purely

appearance-based descriptions. In addition, Mao et al [19]

also collected a referring expression dataset - RefCOCOg,

using MSCOCO images, but in a non-interactive frame-

work. These expressions are more similar to the MSCOCO

captions in that they are longer and more complex as their

was no time constraint in the non-interactive data collection

setting. This dataset has 96,654 objects with 1.3 expressions

per object on average.

Referring Expression Comprehension and Generation:

Referring expressions are associated with two tasks, com-

prehension and generation. The comprehension task re-

quires a system to select the region being described by

a given referring expression. To address this problem,

[19, 31, 21, 10] model P (r|o) and looks for the object

o maximizing the probability. People also try modeling

P (o, r) directly using embedding model [23, 26], which

learns to minimize the distance between paired object and

sentence in the embedding space. The generation task asks

a system to compose an expression for a specified object

within an image. While some previous work used rule-

based approaches to generate expressions with fixed gram-

mar pattern [20, 5, 13], recent work has followed the CNN-

LSTM structure to generate expressions [19, 31].

7283

loss:

Ls
2(θ) =

∑

i

[λs
1 max(0,M + logP (ri|ok)− logP (ri|oi))

+λs
2 max(0,M + logP (rj |oi)− logP (ri|oi))]

(2)

The first term is from [19], while the second term encour-

ages that the target object to be better described by the true

expression compared to expressions describing other ob-

jects in the image (i.e., a ranking loss on expressions).

3.2. Listener

We use a joint-embedding model to mimick the listener’s

behaviour. The purpose of this embedding model is to

encode the visual information from the target object and

semantic information from the referring expression into a

joint space that embeds vectors that are visually or semanti-

cally related closer together in the space. Here for the refer-

ring expression comprehension task, given a referring ex-

pression representation, the listener embeds it into the joint

space, then selects the closest object in the embedding space

for the predicted target object.

As illustrated in Fig. 1, for our listener joint-embedding

model (outlined by a red dashline), we use an LSTM to en-

code the input referring expression and the same visual rep-

resentation as the speaker to encode the target object (thus

connecting the speaker to the listener). We then add two

MLPs (multi-layer perceptions) and two L2 normalization

layers following each view, the object and the expression.

Each MLP is composed of two fully connected layers with

ReLU nonlinearities between them, serving to transform the

object view and the expression view into a common embed-

ding space. The inner-product of the two normalized rep-

resentations is computed as their similarity score S(r, o) in

the space. As a listener, we force the similarity on target

object and referring expression pairs by applying a hinge

loss over triplets, which consist of a positive match and two

negative matches:

Ll(θ) =
∑

i

[λl
1 max(0,M + S(ri, ok)− S(ri, oi))

+λl
2 max(0,M + S(rj , oi)− S(ri, oi))]

(3)

where the negative matches are randomly chosen from the

other objects and expressions in the same image.

Note that the listener model is not limited to this par-

ticular triplet-based model. For example, [23] computes a

similarity score between every object for given referring ex-

pression, and minimizes the cross entropy of the SoftMax

knowing the target object, which could also be applied here.

3.3. Reinforcer

Besides using the ground-truth pairs of target object and

referring expression for training the speaker, we also use

reinforcement learning to guide the speaker toward gener-

ating less ambiguous expressions (expressions that apply to

the target object but not to other objects). This reinforcer

module is composed of a discriminative reward function

and performs a non-differentiable policy gradient update to

the speaker.

Specifically, given the softmax output of the speaker’s

LSTM, we sample words according to the categorical dis-

tribution at each time step, resulting in a complete expres-

sion after sampling the <END> token. This sampling op-

eration is non-differentiable as we do not know whether an

expression is ambiguous or not until we feed it into a re-

ward function. Therefore, we use policy gradient reinforce-

ment learning to update the speaker’s parameters. Here, the

goal is to maximize the reward expectation F (w1:T) under

the distribution of p(w1:T ; θ) parameterized by the speaker,

i.e., J = Ep(w1:T)[F]. According to the policy gradient

algorithm [28], we have

∇θJ = Ep(w1:T)[F (w1:T)∇θ log p(w1:T ; θ)], (4)

Where log p(wt) is defined by the softmax output. We then

use this gradient to update our speaker model during train-

ing.

The only thing left is to choose a reward function that

encourages the speaker to sample less ambiguous expres-

sions. As illustrated in Fig. 1 (outlined in dashed orange),

the reinforcer module learns a reward function using paired

objects and expressions. We again use the same visual rep-

resentation for the target object and use another LSTM to

encode the expression representation. Rather than using two

MLPs to encode each view as in the listener, here we con-

catenate the two views and feed them together into a MLP

to learn a 1-d Logistic Regression score between 0 and 1.

Trained with cross-entropy loss, the reward function com-

putes a match score between an input object and expression.

We use this score as the reward signal in Eqn. 4 for sampled

expression and target object pairs. After training, the reward

function is fixed to assist our joint speaker-listener system.

3.4. Joint Model

In this subsection, we describe some specifics of how

our three modules (speaker, listener, reinforcer) are inte-

grated into a joint framework (shown in Fig. 1). For the

listener, we notice that the visual vector in the embedding

space is learned to capture the neighbourhood vectors of re-

ferring expressions, thus making it aware of the listener’s

knowledge. Therefore, we take this MLP embedded vec-

tor as an additional input for the speaker, which encodes

the listener based information. In Fig. 1, we use concatena-

tion to jointly encode the standard visual representation of

target object and this listener-aware representation and then

feed them into speaker. Besides concatenation, the element-

wise product or compact bilinear pooling can also be ap-

plied [6]. During training, we sample the same triplets for

7285

both the speaker and listener, and make the word embedding

of the speaker and listener shared to reduce the number of

parameters. For the reinforcer module, we do sentence sam-

pling using the speaker’s LSTM as shown in the top right of

Fig. 1. Within each mini-batch, the sampled expressions for

the target objects are fed into the reward function to obtain

reward values.

The overall loss function is formulated as a multi-task

learning problem:

θ = argminLs
1(θ) + Ls

2(θ) + Ll(θ)− λrJ(θ), (5)

where λr is the weight on reward loss. The weights on the

loss of speaker and listener are already included in Eqn. 2

and Eqn. 3. We list all hyper-parameters settings in Sec. 4.1.

3.5. Comprehension and Generation

For the comprehension task, at test time, we can use ei-

ther the speaker or listener to select the target object given

an input expression. Using the listener, we would em-

bed the input expression into the learned embedding space

and select the closest object as the predicted target. Using

the speaker, we would generate expressions for each object

within the image and then select the object whose generated

expression best matches the input expression. Therefore,

we utilize both modules by ensembling the speaker and lis-

tener predictions together to pick the most probable object

given a referring expression.

ô = argmax
o

P (r|o)S(o, r)λ (6)

Surprisingly, using the speaker alone (setting λ to 0)

already achieves state-of-art results due to our joint train-

ing. Adding the listener further improves performance more

than 4% over previous state-of-art results.

For the generation task, we first let the speaker gener-

ate multiple expressions per object via beam search. We

then use the listener to rerank these expressions and select

the least ambiguous expression, which is similar to [1]. To

fully utilize the listener’s power in generation, we propose

to consider cross comprehension as well as the diversity of

expressions by minimizing the potential:

E(r) =
∑

i

θi(ri) +
∑

i,j

θi,j(ri, rj)

θi(ri) = − logP (ri|oi)− λ1 logS(ri, oi)

+ λ2 max
j 6=i

logS(ri, oj)

θi,j(ri, rj) = λ3I(ri = rj)

(7)

The first term and second term in the unary potential

measure how well the target object and generated expres-

sion match using the speaker and listener modules respec-

tively (also used in [1]). The third term in the unary po-

tential measures the likelihood of the generated sentence

of describing other objects in the same image. The pair-

wise potential penalizes the same sentence being generated

for different objects (encouraging diversity in generation).

In this way, the expressions for every object in an image

are jointly generated. Compared with the previous model

that attempted to tie language generation of referring ex-

pressions together [31], the constraints in Eqn. 7 are more

explicit and overall this works better to reduce ambiguity in

the generated expressions.

4. Experiments

4.1. Optimization

We optimize our model using Adam [14] with an initial

learning rate of 0.0004, halved every 2,000 iterations, with

a batch size of 32. The word embedding size and hidden

state size of the LSTM are set to 512. To avoid overfitting,

we apply dropout with a ratio of 0.2 after each linear trans-

formation in the MLP layers. We also regularize the word-

embedding and output layers of the speaker’s LSTM using

dropout with ratio of 0.5. For the constrastive pairs, we set

λl
1 = 1 and λl

2 = 1 in listener (Eqn. 3), and set λs
1 = 1 and

λs
2 = 0.1 in speaker (Eqn. 2). The weight on reward loss is

set as λr = 1 .

4.2. Datasets

We perform experiments on three referring expression

datasets: RefCOCO, RefCOCO+ and RefCOCOg (de-

scribed in Sec 2). All three datasets are collected on

MSCOCO images [17], but with several differences: 1) Re-

fCOCO and RefCOCO+ were collected using an interactive

game interface while RefCOCOg was collected in a non-

interactive setting and contains longer expressions, 2) Ref-

COCOg contains on average 1.63 objects of the same type

per images, while RefCOCO and RefCOCO have 3.9 on av-

erage, 3) RefCOCO+ disallowed absolute location words in

referring expressions. Overall, RefCOCO has 142,210 ex-

pressions for 50,000 objects in 19,994 images, RefCOCO+

has 141,565 expressions for 49,856 objects in 19,992 im-

ages, and RefCOCOg has 104,560 expressions for 54,822

objects in 26,711 images.

Additionally, each dataset is provided with dataset splits

for evaluation. RefCOCO and RefCOCO+ provide person

vs. object splits for evaluation. Images containing multi-

ple people are in “TestA” while images containing multiple

objects of other categories are in “TestB”. For RefCOCOg,

the authors divide their dataset by randomly partitioning ob-

jects into training and testing splits. Thus the same image

may appear in both splits. As only training and validation

splits have been released for this dataset, we use the hyper-

paramters cross-validated on RefCOCO to train models on

RefCOCOg.

7286

Figure 2: Example comprehension results based on detection. Green box shows the ground-truth region, blue box shows

correct comprehension using our “speaker+listener+reinforcer+MMI” model, and red box shows incorrect comprehension.

We use top two rows to show some correct comprehensions and bottom two rows to show some incorrect ones.

RefCOCO RefCOCO+ RefCOCOg

val TestA TestB val TestA TestB val

1 listener 77.48% 76.58% 78.94% 60.50% 61.39% 58.11% 71.12%

2 previous state-of-art[21][31] 76.90% 75.60% 78.00%[21] 58.94% 61.29% 56.24%[31] 65.32%[31]

3 baseline+MMI[19] 72.28% 72.60% 73.39% 56.66% 60.01% 53.15% 63.31%

4 speaker+MMI[31] 76.18% 74.39% 77.30% 58.94% 61.29% 56.24% 65.32%

5 speaker+listener+MMI 79.22% 77.78% 79.90% 61.72% 64.41% 58.62% 71.77%

6 speaker+reinforcer+MMI 78.38% 77.13% 79.53% 61.32% 63.99% 58.25% 67.06%

7 speaker+listener+reinforcer+MMI 79.56% 78.95% 80.22% 62.26% 64.60% 59.62% 72.63%

RefCOCO (detected) RefCOCO+ (detected) RefCOCOg (detected)

val TestA TestB val TestA TestB val

1 listener - 71.63% 61.47% - 57.33% 47.21% 56.18%

2 previous state-of-art[31] - 72.03% 63.08% - 58.87% 47.70% 58.26%

3 baseline+MMI[19] - 68.73% 59.56% - 58.15% 46.63% 57.23%

4 speaker+MMI[31] - 72.03% 63.08% - 58.87% 47.70% 58.26%

5 speaker+listener+MMI - 72.95% 63.10% - 60.23% 48.11% 58.57%

6 speaker+reinforcer+MMI - 72.34% 63.24% - 59.36% 48.72% 58.70%

7 speaker+listener+reinforcer+MMI - 72.88% 63.43% - 60.43% 48.74% 59.51%

Table 1: Ablation study using the speaker module for the comprehension task (indicated in bold). Top half shows performance

given ground truth bounding boxes for objects, bottom half performance using automatic object detectors to select potential

objects. We find that adding listener and reinforcer modules to the speaker increases performance.

4.3. Comprehension Task

After training, we can use either the speaker or listener

to perform the comprehension task. For the speaker that

models P (r|o), we feed every ground-truth object region

within the given image to the speaker and select the most

probable region for the expression as the comprehension

result, i.e., o∗ = argmaxoi
p(r|oi). For the listener, we

directly compute the similarity score S(r, o) between the

7287

RefCOCO RefCOCO+ RefCOCOg

val TestA TestB val TestA TestB val

1 listener 77.48% 76.58% 78.94% 60.50% 61.39% 58.11% 71.12%

2 previous state-of-art [21][31] 76.90% 75.60% 78.00% [21] 58.94% 61.29% 56.24% [31] 65.32% [31]

3 speaker+listener+MMI 78.42% 78.45% 79.94% 61.48% 62.14% 58.91% 72.13%

4 speaker+listener+reinforcer+MMI 78.36% 77.97% 79.86% 61.33% 63.10% 58.19% 72.02%

5 speaker+listener+reinforcer+MMI (ensemble) 80.36% 80.08% 81.73% 63.83% 65.40% 60.73% 74.19%

RefCOCO (detected) RefCOCO+ (detected) RefCOCOg (detected)

val TestA TestB val TestA TestB val

1 listener - 71.63% 61.47% - 57.33% 47.21% 56.18%

2 previous state-of-art[31] - 72.03% 63.08% - 58.87% 47.70% 58.26%

3 speaker+listener+MMI - 72.95% 62.43% - 58.68% 48.44% 57.34%

4 speaker+listener+reinforcer+MMI - 72.94% 62.98% - 58.68% 47.68% 57.72%

5 speaker+listener+reinforcer+MMI (ensemble) - 73.78% 63.83% - 60.48% 49.36% 59.84%

Table 2: Ablation study using listener or ensembled listener+speaker modules for the comprehension task (indicated in bold).

Top half shows performance given ground truth bounding boxes for objects, bottom half performance using automatic object

detectors to select potential objects. We find that jointly training with the speaker improves listener’s performance and that

adding the reinforcer module in an ensembled speaker+listener prediction performs the best.

RefCOCO RefCOCO+ RefCOCOg

Test A Test B Test A Test B val

Meteor CIDEr Meteor CIDEr Meteor CIDEr Meteor CIDEr Meteor CIDEr

speaker+tie [31] 0.283 0.681 0.320 1.273 0.204 0.499 0.196 0.683 - -

baseline+MMI 0.243 0.615 0.300 1.227 0.199 0.462 0.189 0.679 0.149 0.585

speaker+MMI 0.260 0.679 0.319 1.276 0.202 0.475 0.196 0.683 0.147 0.573

speaker+listener+MMI 0.268 0.704 0.327 1.303 0.208 0.496 0.201 0.697 0.150 0.589

speaker+reinforcer+MMI 0.266 0.702 0.323 1.291 0.204 0.482 0.197 0.692 0.151 0.602

speaker+listener+reinforcer+MMI 0.268 0.697 0.329 1.323 0.204 0.494 0.202 0.709 0.154 0.592

speaker+listener+reinforcer+MMI+rerank 0.296 0.775 0.340 1.320 0.213 0.520 0.215 0.735 0.159 0.662

Table 3: Ablation study for generation using automatic evaluation.

proposal/object and expression and pick the object with

the highest probability. For evaluation, we compute the

intersection-over-union (IoU) of the comprehended region

with the ground-truth object. If the IoU score of the pre-

dicted region is greater than 0.5, we consider this a correct

comprehension.

To demonstrate the benefits of each module, we run ab-

lation studies in Lines 4-7 of Table 1 (for speaker as com-

prehender) and in Lines 3-5 of Table 2 (for listener as com-

prehender) on all three datasets. Each row shows the re-

sults after adding a module during training. For some mod-

els that have both speaker and listener, we highlight the

module being used for comprehension in bold. For ex-

ample, “speaker+listener” means we use the speaker mod-

ule of the joint model to do the comprehension task, while

“speaker+listener” means we use the listener module for

this task. Note our speaker module is implemented using

the “visdif” model in [31] as mentioned in Section 3.12.

As the model trained with MMI on speaker outperforms

w/o MMI as [19][31][21], we only show results with MMI

in Table 12. We compare our models with the “base-

line+MMI” model [19] (Line 3 in Table 1), the pure listener

model (Line 1), and previous state-of-art results (Line 2)

2The “visdif” model trained in this paper performs slightly better on

comprehension task than the original one reported in [31].

achieved in [21][31].

First, we evaluate the performance of the speaker on the

comprehension task (Table 1). We find that the speaker can

be improved by joint training with the listener module and

by incorporating the reinforcer module. Note the speaker

(Line 7) trained with full model is able to outperform the

pure listener by around 2% on all three datasets, which al-

ready achieves state-of-art performance on the comprehen-

sion task.

Second, we show evaluations using variations of the lis-

tener module or ensembled listener+speaker modules (indi-

cated in bold) for the comprehension task in Table 2. We

note that the listener generally works better than speaker

for the comprehension task, indicating that the determinis-

tic joint-embedding model is more suitable for this task than

the speaker model – similar results were observed in [23].

While the benefits from reinforcer seems not as effective

as on the speaker, we still find that the joint training always

brings additional discriminative benefits to the listener mod-

ule, resulting in improved performance (compare Lines 3-5

with Line 1 in Table 2). Ensembling the speaker and listener

together (Line 5) achieves the best results overall.

Both of the above experiments analyze comprehension

performance given ground truth bounding boxes for poten-

tial comprehension objects, where the algorithm must select

7288

Figure 3: Joint generation examples using “speaker+listener+reinforcer+MMI+rerank”. Each sentence shows the generated

expression for one of the depicted objects (color coded to indicate correspondence)

RefCOCO RefCOCO+

Test A Test B Test A Test B

speaker+tie[31] 71.40% 76.14% 57.17% 47.92%

speaker+MMI [31] 68.82% 75.50% 53.57% 47.88%

speaker+listener+MMI 73.23% 76.08% 53.83% 49.19%

speaker+reinforcer+MMI 71.08% 76.09% 55.16% 48.50%

speaker+listener+reinforcer+MMI 74.08% 76.44% 56.92% 53.23%

speaker+listener+reinforcer+MMI

+rerank 76.95% 78.10% 58.85% 58.20%

Table 4: Human Evaluations on generation.

which of the objects is being described. This provides an

analysis of comprehension performance independent of any

particular object detection method. Additionally, we also

show results using an object detector to automatically se-

lect regions for consideration during comprehension in the

bottom half of each table (Tables 1 and 2). As our detection

algorithm, we use current state of the art detector in effec-

tiveness and speed, SSD [18], trained on a subset of the MS

COCO train+val dataset, removing images that are in the

test splits of RefCOCO or RefCOCO+ or in the validation

split of RefCOCOg. We empirically select 0.30 as the con-

fidence threshold for detection output. While performance

drops somewhat due to the strong dependence of “visdif”

model on detection [31], the overall improvements brought

by each module are consistent with using ground-truth ob-

jects, showin the robustness of our joint model. Fig. 2 shows

some comprehension results using our full model.

4.4. Generation Task

For the generation task, we evaluate variations on the

speaker module. Evaluating the generation is not as simple

as comprehension. In image captioning, BLEU, ROUGE,

METEOR and CIDEr are common automatic metrics and

have been widely used as standard evaluations. We show

automatic evaluation using the METEOR and CIDEr met-

rics for generation in Table 3 where “+rerank” denotes mod-

els incorporating the reranking mechanism and global opti-

mization over all objects (Eqn. 7). To computer CIDEr ro-

bustly, we collect more expressions for objects in the test

sets for RefCOCO and RefCOCO+, obtaining 10.1 and 9.4

expressions respectively on average per object. For Ref-

COCOg we use the original expressions released with the

dataset which may be limited, but we still show its per-

formance for completeness. We choose the “speaker+tie”

model in [31] as reference, which learns to tie the expres-

sion generation together and achieves state-of-art perfor-

mance. Generally we find that the speaker in jointly learned

models achieves higher scores than the single speaker under

both metrics across datasets.

In addition, since previous work [31] has found that these

metrics do not always agree well with human judgments

for referring expressions, we also run a human evaluation

on the same set of objects as [31] for RefCOCO and Ref-

COCO+. Here we ask Turkers to click on the referred ob-

ject given a generated expression. These results are shown

in Table. 4. Results indicate the ablated benefits brought

by each module, and ultimately the “+rerank” of our joint

model achieves the best performance.

We show the joint expression generation using our full

model with “+rerank” in Fig. 3. As observed, the expres-

sions of every target object are considered together, where

each of them is meant to be relevant to the target object and

irrelevant to the other objects.

5. Conclusion
We demonstrated the effectiveness of a unified frame-

work for referring expression generation and comprehen-

sion. Our model consists of speaker and listener mod-

ules trained jointly to improve performance and a reinforcer

module to help produce less ambiguous expressions. Exper-

iments indicate that our model outperforms state of the art

for both comprehension and generation on multiple datasets

and evaluation metrics.

Acknowledgements: This research is supported by NSF

Awards #1405822, 144234, 1562098, 1633295, NVidia,

Google Research, and Microsoft Research.

7289

References

[1] J. Andreas and D. Klein. Reasoning about pragmatics with

neural listeners and speakers. EMNLP, 2016. 2, 5

[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,

C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question

answering. In ICCV, 2015. 2

[3] M. Eldon, D. Whitney, and S. Tellex. Interpreting multi-

modal referring expressions in real time. In ICRA, 2016. 1

[4] R. Fang, M. Doering, and J. Y. Chai. Embodied collaborative

referring expression generation in situated human-robot in-

teraction. In Proceedings of the Tenth Annual ACM/IEEE In-

ternational Conference on Human-Robot Interaction, 2015.

1

[5] N. FitzGerald, Y. Artzi, and L. S. Zettlemoyer. Learning

distributions over logical forms for referring expression gen-

eration. In EMNLP, 2013. 2

[6] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and

M. Rohrbach. Multimodal compact bilinear pooling for vi-

sual question answering and visual grounding. In EMNLP,

2016. 4

[7] D. Golland, P. Liang, and D. Klein. A game-theoretic ap-

proach to generating spatial descriptions. In EMNLP, 2010.

1

[8] H. P. Grice. Logic and conversation. In P. Cole and J. L.

Morgan, editors, Syntax and Semantics: Vol. 3: Speech Acts,

pages 41–58. Academic Press, San Diego, CA, 1975. 1

[9] M. Grubinger, P. Clough, H. Müller, and T. Deselaers. The

iapr tc-12 benchmark: A new evaluation resource for visual

information systems. In International Workshop OntoImage,

2006. 2

[10] R. Hu, H. Xu, M. Rohrbach, J. Feng, K. Saenko, and T. Dar-

rell. Natural language object retrieval. CVPR, 2016. 2

[11] X. Jia, E. Gavves, B. Fernando, and T. Tuytelaars. Guiding

the long-short term memory model for image caption gener-

ation. In ICCV, 2015. 2

[12] J. Johnson, A. Karpathy, and L. Fei-Fei. Densecap: Fully

convolutional localization networks for dense captioning.

arXiv preprint arXiv:1511.07571, 2015. 2

[13] S. Kazemzadeh, V. Ordonez, M. Matten, and T. L. Berg.

Referitgame: Referring to objects in photographs of natural

scenes. In EMNLP, pages 787–798, 2014. 1, 2

[14] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014. 5

[15] E. Krahmer and K. Van Deemter. Computational generation

of referring expressions: A survey. Computational Linguis-

tics, 38(1):173–218, 2012. 1, 2

[16] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz,

S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, et al.

Visual genome: Connecting language and vision using

crowdsourced dense image annotations. arXiv preprint

arXiv:1602.07332, 2016. 2

[17] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In ECCV, 2014. 5

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-

Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.

ECCV, 2016. 8

[19] J. Mao, J. Huang, A. Toshev, O. Camburu, A. Yuille, and

K. Murphy. Generation and comprehension of unambiguous

object descriptions. CVPR, 2016. 1, 2, 3, 4, 6, 7

[20] M. Mitchell, K. Van Deemter, and E. Reiter. Generating ex-

pressions that refer to visible objects. In HLT-NAACL, 2013.

1, 2

[21] V. K. Nagaraja, V. I. Morariu, and L. S. Davis. Modeling

context between objects for referring expression understand-

ing. In ECCV, 2016. 2, 6, 7

[22] B. A. Plummer, L. Wang, C. M. Cervantes, J. C. Caicedo,

J. Hockenmaier, and S. Lazebnik. Flickr30k entities: Col-

lecting region-to-phrase correspondences for richer image-

to-sentence models. In ICCV, 2015. 2

[23] A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and

B. Schiele. Grounding of textual phrases in images by re-

construction. ECCV, 2016. 2, 4, 7

[24] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 3

[25] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and

tell: A neural image caption generator. In CVPR, 2015. 1, 2

[26] L. Wang, Y. Li, and S. Lazebnik. Learning deep structure-

preserving image-text embeddings. CVPR, 2016. 2

[27] M. Wang, M. Azab, N. Kojima, R. Mihalcea, and J. Deng.

Structured matching for phrase localization. ECCV, 2016. 2

[28] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

learning, 8(3-4):229–256, 1992. 4

[29] T. Winograd. Understanding natural language. Cognitive

psychology, 3(1):1–191, 1972. 1, 2

[30] L. Yu, E. Park, A. C. Berg, and T. L. Berg. Visual madlibs:

Fill in the blank description generation and question answer-

ing. In ICCV, 2015. 2

[31] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg. Mod-

eling context in referring expressions. ECCV, 2016. 1, 2, 3,

5, 6, 7, 8

7290

