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We derive criteria for whether two cosmological events can have a shared causal past or a shared causal

future, assuming a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe with best-fit cosmological

parameters from the Planck satellite. We further derive criteria for whether either cosmic event could have

been in past causal contact with our own worldline since the time of the hot ‘‘big bang,’’ which we take to

be the end of early-universe inflation. We find that pairs of objects such as quasars on opposite sides of the

sky with redshifts z � 3:65 have no shared causal past with each other or with our past worldline. More

complicated constraints apply if the objects are at different redshifts from each other or appear at some

relative angle less than 180�, as seen from Earth. We present examples of observed quasar pairs that

satisfy all, some, or none of the criteria for past causal independence. Given dark energy and the recent

accelerated expansion, our observable Universe has a finite conformal lifetime, and hence a cosmic event

horizon at current redshift z ¼ 1:87. We thus constrain whether pairs of cosmic events can signal each

other’s worldlines before the end of time. Lastly, we generalize the criteria for shared past and future

causal domains for FLRW universes with nonzero spatial curvature.
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I. INTRODUCTION

Universes (such as our own) that expand or contract over

time can have nontrivial causal structure. Even in the

absence of physical singularities, cosmic expansion can

create horizons that separate observers from various

objects or events [1–4]. Our observable Universe has

had a nontrivial expansion history: it likely underwent

cosmic inflation during its earliest moments [5–7]; and

observations strongly indicate that our Universe was

decelerating after inflation and is presently undergoing a

phase of accelerated expansion again, driven by dark

energy consistent with a cosmological constant [8–13].

The late-time acceleration creates a cosmic event horizon

that bounds the furthest distances observers will be able to

see, even in infinite cosmic proper time [14–16].

One of the best-known examples of how nontrivial

expansion history can affect causal structure concerns the

cosmic microwave background radiation (CMB). At the

time the CMB was emitted at redshift z � 1090 [17], too

little time had elapsed since the hot big bang for regions on

the sky separated by angles greater than about 2 degrees, as

seen from the Earth today, to have exerted any causal

influence on each other. The uniformity of the CMB tem-

perature across the entire sky, including angles much

greater than 2 degrees, is known as the ‘‘horizon problem’’

[5,18,19]. Early-universe inflation addresses the horizon

problem by extending the past of our observable Universe

to earlier times, prior to what is referred to as the hot ‘‘big

bang’’; indeed, in this work, we will use the term big bang

to explicitly refer to the moment when early-universe

inflation ends [5–7].

Modern astronomical observations have furnished huge

data sets of distant objects at cosmologically interesting

redshifts (z * 0:1) with which we may explore causal

structure beyond the example of the CMB (e.g. [20–29]).

We may ask, for example, whether two quasars that we

observe today have been in causal contact with each other

in the past. How far away do such objects need to be to

have been out of causal contact between the hot big bang

and the time they emitted the light we receive today?

Previous work investigating the uniformity of physical

laws on cosmological scales has long emphasized the

importance of observing causally disjoint quasars (e.g.

[30,31]), culminating in recent searches for spatiotemporal

variation of fundamental dimensionless constants such as

the hydrogen fine-structure constant and the proton-to-

electron mass ratio using quasar absorption lines (e.g. see

[32,33] and references therein, although see [34]). We add

to such longstanding causal structure applications by out-

lining a novel formalism unifying past and future causal

relations for cosmic event pairs, generalized for arbitrary

spacetime curvature, and applying it to the current best

measurements of the cosmological parameters for our own

Universe from the Planck satellite [17]. An additional

application, which will be explored in future work, centers

on fundamental aspects of quantum mechanics where it is

important to clarify whether physical systems are prepared

independently on causal grounds alone. Experiments

designed along these lines might be able to test both
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fundamental physics and perhaps even specific models of

inflation. This strongly motivates developing a secure

handle on the theoretical conditions for past causal inde-

pendence of cosmic event pairs, which is the primary focus

of this work.

In this paper we derive criteria for events to have a

shared causal past—that is, whether the past-directed light

cones from distant emission events overlap with each other

or with our own worldline since the time of the big bang

(at the end of inflation). If event pairs have no shared causal

past with each other, no additional events could have

jointly influenced both of them with any signals prior to

the time they emitted the light that we observe today.

Similarly, if an event’s past light cone does not intersect

our worldline, no events along Earth’s comoving worldline

could have influenced that event with any signals before

the time of emission.We find, for example, that objects like

quasars on opposite sides of the sky with redshifts z � 3:65
had been out of causal contact with each other and with our

worldline between the big bang and the time they emitted

the light we receive today. This critical value, which we

call the causal-independence redshift, zind ¼ 3:65, is not

particularly large by present astronomical standards; tens

of thousands of objects have been observed with redshifts

z > zind (e.g. quasars from the Sloan Digital Sky Survey

and other surveys [22,23]). More complicated past causal

independence constraints apply if the objects are at differ-

ent redshifts from each other or appear at some relative

angle (as seen from Earth) less than 180�. The criteria

depend on cosmological parameters such as the Hubble

constant and the relative contributions to our Universe

from matter, radiation, and dark energy. Using the current

best-fit parameters for a spatially flat cosmology with dark

energy and cold dark matter (�CDM), we derive condi-

tions for past causal independence for pairs of cosmic

objects at arbitrary redshift and angle. We also generalize

these relationships for spacetimes with nonzero spatial

curvature.

In addition to considering objects’ shared causal

pasts, we also investigate whether they will be able to

exchange signals in the future, despite the late-time cosmic

acceleration and the associated cosmic event horizon. By

studying the overlap of objects’ future light cones with

each other’s worldlines, we determine under what condi-

tions signals from various objects (including Earth) could

ever reach other distant objects. Our discussion of both the

shared causal futures and causal pasts of cosmic event pairs

is presented within a unified formalism.

Throughout the paper we assume that our observable

Universe may be represented by a simply connected, non-

compact Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric, which is consistent with recent measurements of

large-scale homogeneity and isotropy [35–37]. In Sec. II

we establish units and notation for distances, times, and

redshifts. In Sec. III we derive the conditions required for

past causal independence in the case of a spatially flat

FLRW metric, and in Sec. IV we derive comparable

relations for FLRW metrics of nonzero spatial curvature.

Section V considers future light cone intersections,

and concluding remarks follow in Sec. VI. Appendix A

revisits early-universe inflation and cosmic horizons

within the formalism established in Secs. II and III, and

Appendix B examines the evolution of the ‘‘Hubble

sphere,’’ beyond which objects recede from our worldline

faster than light.

II. DISTANCES, TIMES, AND REDSHIFTS

For arbitrary spatial curvature, we may write the FLRW

line element in the form

ds2¼�c2dt2þR2
0a

2ðtÞ
�

d~r2

ð1�k~r2Þþ~r2ðd�2þsin2�d’2Þ
�

;

(1)

where aðtÞ is the scale factor, c is the speed of light, R0 is a

constant with units of length, and the dimensionless con-

stant k ¼ 0, �1 indicates the curvature of spatial sections.

[By including R0, we take aðtÞ and ~r to be dimensionless

for any spatial curvature k.] The angular coordinates

range over 0 � � � � and 0 � ’ � 2�, and in the case

k ¼ 1, the radial coordinate satisfies ~r � 1. We normalize

aðt0Þ ¼ 1, where t0 is the present time.

For arbitrary curvature k, the (dimensionless) comoving

radial distance � between an object at coordinate ~r and the
origin is given by

� ¼
Z ~r

0

d~r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k~r02
p ¼

8
><

>:

arcsin ~r for k ¼ 1;

~r for k ¼ 0;

arcsinh~r for k ¼ �1:

(2)

We may likewise define a (dimensionless) conformal

time, �, via the relation

d� � c

R0

dt

aðtÞ : (3)

Then we may rewrite the line element of Eq. (1) as

ds2 ¼ R2
0a

2ð�Þ½�d�2 þ d�2 þ S2kð�Þðd�2 þ sin 2�d’2Þ�;
(4)

where

Skð�Þ ¼

8
><

>:

sin� for k ¼ 1;

� for k ¼ 0;

sinh� for k ¼ �1:

(5)

It is also convenient to define

Ckð�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kS2kð�Þ
q

¼

8
><

>:

cos� for k ¼ 1;

1 for k ¼ 0;

cosh� for k ¼ �1:

(6)
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Given Eq. (4), light rays traveling along radial null

geodesics (d� ¼ d’ ¼ 0) obey

d� ¼ d�: (7)

For any spatial curvature k, we set the dimensionful

constant R0, with units of length, to be

R0 ¼
c

H0

; (8)

where H0 is the present value of the Hubble constant with

best-fit value H0 ¼ 67:3 km s�1 Mpc�1 ¼ ð14:53 GyrÞ�1

[17]. In the case k ¼ 1, the coordinates (~r, �, ’) only cover
half the spatial manifold. In that case, ~r ¼ sin ð0Þ ¼ 0 at

the north pole and ~r ¼ sin ð�=2Þ ¼ 1 at the equator, so for
a single-valued radial coordinate ~r, we may only cover the

upper (or lower) half of the manifold. We may avoid this

problem by working with the coordinate � in the k ¼ 1
case and allowing � to range between 0 � � � � rather

than 0 � � � �=2 [38,39].

The cosmological redshift, z, of an object whose light

was emitted at some time te and which we observe today at
t0 is given by

1þ z ¼ aðt0Þ
aðteÞ

¼ 1

ae
; (9)

upon using our normalization convention aðt0Þ ¼ 1 and

defining ae � aðteÞ. Following [38,40], we parametrize

the Friedmann equation governing the evolution of aðtÞ
in terms of the function

EðaÞ � HðaÞ
H0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� þ�ka
�2 þ�Ma

�3 þ�Ra
�4

q

;

(10)

whereHðaÞ is the Hubble parameter for a given scale factor

a ¼ aðtÞ. The �i are the ratios of the energy densities

contributed by dark energy (��), cold matter (�M), and

radiation (�R) to the critical density �c ¼ 3H2
0=ð8�GÞ,

whereG is Newton’s gravitational constant. We also define

a fractional density associated with spatial curvature

(�k � 1��T) and the total fractional density of matter,

dark energy, and radiation (�T � �M þ�� þ�R). We

assume that �� arises from a genuine cosmological con-

stant with equation of state w ¼ p=� ¼ �1, which is

consistent with recent measurements [11,12,17,35,36,41],

and hence ��a
�3ð1þwÞ ¼ ��. Current observations yield

best-fit cosmological parameters for our Universe consis-

tent with

~� ¼ ðh;�M;��;�R;�k;�TÞ
¼ ð0:673; 0:315; 0:685; 9:289	 10�5; 0; 1Þ; (11)

where we define the dimensionless Hubble constant as

h � H0=ð100 km s�1 Mpc�1Þ. Values for Eq. (11) are

taken from Table II, column 6 of [17] including the most

recent CMB temperature data from the Planck satellite and

low multipole polarization data from the 9-year Wilkinson

Microwave Anisotropy Probe release [42]. The fractional

radiation density �R is derived from the relation

�R ¼ �M=ð1þ zeqÞ where �M ¼ �b þ�c is the frac-

tional matter density given by the sum of the fractional

baryon (�b) and cold dark matter (�c) densities and zeq is

the redshift of matter-radiation equality. The quantities

�bh
2, �ch

2, and zeq are all listed in Table II, column 6

of [17].

Given Eqs. (3), (7), and (9), and cosmological parame-

ters from Eq. (11), we may evaluate comoving distance

along a (radial) null geodesic using either aðtÞ or z as our
timelike variable,

� ¼
Z 1

ae

da

a2EðaÞ ¼
Z z

0

dz0

Eðz0Þ : (12)

Although Eq. (12) does not permit analytic solutions for

the general case in which the various�i are nonvanishing,

the equation may be integrated numerically to relate

comoving distance to redshift.

We may also consider how conformal time, �, evolves.
If � ¼ 0 is the beginning of time and inflation did not

occur, � is equivalent to the comoving distance to the

particle horizon,

�ðtÞ ¼
Z ae

0

da

a2EðaÞ ¼
Z 1

z

dz0

Eðz0Þ : (13)

As above, � is dimensionless and R0�=c ¼ H�1
0 � has

dimensions of time. The present age of the Universe,

�0 ¼ �ðt0Þ, is given by

�0 �
Z 1

0

da

a2EðaÞ ¼
Z 1

0

dz

EðzÞ � �1 (14)

which is equivalent to �1, the comoving distance to the

particle horizon today (at the comoving location corre-

sponding to z ¼ 1).

Even if inflation did occur, Eq. (13) is still a reliable way

to calculate � numerically for times after inflation, � > 0.
We consider inflation to begin at some early cosmic time ti
and to persist until some time tend, where tend will typically
be of the order tend 
Oð10�37 secÞ [6,7]. In this case, the

limits of integration in Eq. (13) would be altered as

�ðtÞ ¼
Z ae

aðtendÞ

da

a2EðaÞ ¼
Z zðtendÞ

z

dz0

Eðz0Þ ; (15)

where aðtendÞ is the scale factor at the end of inflation

[�ðtendÞ ¼ 0] and zðtendÞ is the redshift for a hypothetical

object we could observe today that emitted light at � ¼ 0.
Although aðtÞ would have grown enormously during in-

flation, such that aðtendÞ � aðtiÞ, we still expect aðtendÞ �
ae for objects whose light was emitted well after the end

of inflation. In particular, as discussed in Appendix A,

for cosmological parameters as in Eq. (11) we have

aðtendÞ=aðt0Þ 
Oð10�28Þ, so that the nonzero lower bound
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to the scale-factor integral in Eq. (15) makes a negligible

numerical contribution to the evolution of � for � > 0 after
the end of inflation. The same is true for the large but finite

upper limit zðtendÞ 
Oð1028Þ in the integral over redshift in
Eq. (15). Thus we may still use Eq. (13) to evaluate �
numerically for times after the end of inflation.

If inflation did occur, it would correspond to times

� < 0. For convenience we assume k ¼ 0 for the explicit

construction, though comparable results may be derived

for k ¼ �1 as well. Assuming quasi–de Sitter expansion

during inflation, Eq. (3) may be solved as

�ðtÞ ¼ 1

aðtendÞ

�
H0

HI

��

1� aðtendÞ
aðtÞ

�

; (16)

where HI is the value of the Hubble parameter during

inflation, and we have used Eq. (8) for R0. As usual, we

find that � < 0 during inflation, and � ! 0� as t ! tend. If
we assume instant reheating to a radiation-dominated uni-

verse at tend, then we may match smoothly to a solution in

which � > 0 following the end of inflation. In particular,

for a radiation-dominated phase in a spatially flat FLRW

universe we may write

aðtÞ ¼ aðtendÞ
�

t

tend

�
1=2

(17)

or

�ðtÞ ¼ 2H0tend
aðtendÞ

��
t

tend

�
1=2

� 1

�

(18)

for t � tend. Consistent with Eqs. (16) and (18), we there-

fore take the time of the big bang to be tend or �ðtendÞ ¼ 0,
after the end of early-universe inflation.

III. SPATIALLY FLAT CASE

In this section we consider a spatially flat universe (like

our own), and set k ¼ �k ¼ 0. We may then absorb the

constant R0 into the definition of the comoving radial

coordinate by introducing r � R0~r ¼ R0�. For the remain-

der of this section, we work in terms of a comoving radial

coordinate r that carries dimensions of length, whereas the

comoving radial coordinate � remains dimensionless, as

does conformal time �. In this section, boldface symbols

represent spatial 3-vectors.

With respect to the CMB dipole, we treat the Earth’s

position in the CMB rest frame as the origin of the spatial

coordinates. However, small corrections between the helio-

centric and CMB frame or systematic redshift offsets from

peculiar velocities do not affect our results, which are

presented only to two decimal places in redshift. Typical

random peculiar velocities of �
pec
v � 300 km s�1 lead to a

systematic redshift error of only �
pec
z � 0:001 [43].

We now present the formalism for intersection of

past light cones for cosmic event pairs in a flat universe

(see Fig. 1). An object A at comoving spatial location rA

emits light at conformal time �A which the observer on

Earth receives at the present time, �0, while an object B at

comoving location rB emits light at conformal time �B
which the observer also receives at �0. The light signals

travel along null geodesics, ds ¼ 0, and hence from Eq. (7)

we immediately find

�0 � �A ¼ �A ¼ R�1
0 jrAj;

�0 � �B ¼ �B ¼ R�1
0 jrBj:

(19)

The past-directed light cones from the emission events

A and B intersect at comoving location rAB at time �AB,
such that

�A � �AB ¼ R�1
0 jrA � rABj;

�B � �AB ¼ R�1
0 jrB � rABj;

(20)

or, upon making use of Eq. (19),

�0 � �AB ¼ �A þ R�1
0 jrA � rABj;

�0 � �AB ¼ �B þ R�1
0 jrB � rABj:

(21)

Without loss of generality, we consider event A to occur

later than event B (�A > �B and hence zA < zB), in which

case the past-directed light cone centered on A must

expand further before it intersects with the past-directed

light cone centered on B. By construction, we take event B

to lie along the x axis and the vector rA to make an angle

� with respect to the x axis, so that an observer on

Earth would see events A and B separated by an angle � ¼
�� � on the sky. See Fig. 2.

Given the orientation of the vectors in Fig. 2(b), we have

jrA � rBj ¼ jrA � rABj þ jrB � rABj: (22)

Using Eqs. (20) and (22), we then find

�AB ¼ 1

2
ð�A þ �B � �LÞ; (23)

where we have defined �L as the (dimensionless) comov-

ing spatial distance between events A and B:

�L � R�1
0 jrA � rBj ¼ R�1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrA � rBÞ 
 ðrA � rBÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
A þ �2

B � 2�A�B cos�
q

: (24)

In the special case � ¼ � (see Fig. 1), for which �L !
�A þ �B, Eq. (23) reduces to

�AB ! �A þ �B � �0 (25)

upon using Eq. (19).

We may also solve for the comoving spatial location,

rAB, at which the past-directed light cones intersect.

Squaring both sides of the identity rA ¼ rB þ ðrA � rBÞ
yields

r2A ¼ r2B þ r2L � 2rBrL cos�; (26)
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FIG. 2 (color online). Left: Plot of our past light cone from �0 (gray outer cone) and the past light cones from emission events A and

B (red and blue cones, respectively). The green circles show the projection of the past light cones on the hypersurface � ¼ �AB when

the light cones first intersect. For the case shown here, � ¼ 135�, zA ¼ 1, and zB ¼ 3. Right: Plot of the spatial ðx; yÞ plane for the

hypersurface � ¼ �AB, corresponding to the green circles in the left figure. Earth is at the origin. Event A occurs at comoving location

rA (red vector) and event B occurs at comoving location rB (blue vector). The past-directed light cones from A and B appear in the

plane as circles centered on A and B, respectively. The past light cones intersect at event AB at comoving location rAB (green vector).

The angle between events A and B as seen from Earth is � ¼ �� �. For animations of the intersecting light cones as one varies zi and
�, see Supplemental Material [44] or http://web.mit.edu/asf/www/causal_past.shtml, which includes these and additional animations.

FIG. 1 (color online). Conformal diagram showing comoving distance, R0� in Glyr, vs conformal time, R0�=c in Gyr, for the case in
which events A and B appear on opposite sides of the sky as seen from Earth (� ¼ 180�). The observer sits at Earth at � ¼ 0 at the

present conformal time � ¼ �0. Light is emitted from A at ð�A; �AÞ and from B at ð�B; �BÞ; both signals reach the Earth along our past
light cone at ð0; �0Þ. The past-directed light cones from the emission events (red and blue for A and B, respectively) intersect at

ð�AB; �ABÞ and overlap for 0< �< �AB (purple region). For redshifts zA ¼ 1 and zB ¼ 3 and a flat�CDM cosmology with parameters

given in Eq. (11), the events are located at comoving distances R0�A ¼ 11:11 Glyr and R0�B ¼ 21:25 Glyr, with emission at

conformal times R0�A=c ¼ 35:09 Gyr and R0�B=c ¼ 24:95 Gyr. The past light cones intersect at event AB at R0�AB ¼ 10:14 Glyr at
time R0�AB=c ¼ 13:84 Gyr, while the present time is R0�0=c ¼ 46:20 Gyr. Also shown are the cosmic event horizon (line separating

yellow and gray regions) and the future-directed light cones from events A and B (thin dashed lines) and from the origin (0,0) (thick

dashed lines). In a �CDM cosmology like ours, events in the yellow region outside our current past light cone are spacelike separated

from us today but will be observable in the future, while events in the gray region outside the event horizon are spacelike separated

from observers on Earth forever. Additional scales show redshift (top horizontal axis) and time as measured by the scale factor, að�Þ,
and by proper time, t (right vertical axis), as measured by an observer at rest at a fixed comoving location.
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where � is the angle between vectors rB and (rB � rA),

as in Fig. 2(b), and rL ¼ jrA � rBj ¼ R0�L. We likewise

have

rAB 
 rAB ¼ ½rB � ðrB � rABÞ� 
 ½rB � ðrB � rABÞ�: (27)

Upon using rAB ¼ R0�AB and Eq. (20) to substitute

jrB � rABj ¼ R0ð�B � �ABÞ, Eq. (27) may be written

�2
AB ¼ �2

B � 2�Bð�B � �ABÞ cos�þ ð�B � �ABÞ2: (28)

From Eqs. (26) and (28), we then find

�2
AB ¼�2

Bþð�B��ABÞ2�
2�B

�L

ð�B��ABÞð�B��A cos�Þ:

(29)

By fixing � and �B and using Eqs. (19), (23), and (24),

we may derive the condition on the critical comoving

distance �̂A such that the past light cones from A and B
intersect at time �AB,

�̂ A ¼ �B � ð�0 � �ABÞ
h
�Bð1þcos�Þ
2ð�0��ABÞ � 1

i : (30)

Alternatively, we may fix �A and �B to derive the critical

angle �̂ such that the past light cones intersect at �AB,

�̂ ¼ cos�1

�
�2
A þ �2

B � ð�A þ �B � 2�ABÞ2
2�A�B

�

: (31)

When �AB � 0, events A and B share no causal past after

the end of inflation. Considering event pairs that just barely

meet this condition (�AB ¼ 0) leads to Figs. 3 and 4, where
we use Eq. (30) with �AB ¼ 0 to plot the hyperbolic curves
for different angles � in Figs. 3(a) and 4. For Fig. 3(b), we

must invert Eq. (12) numerically to solve for the redshift z
corresponding to a given comoving distance �ðzÞ. Setting
�AB ¼ 0, then for �A � �̂A or � � �̂, events A and B
share no causal past since the big bang. In particular, if

we fix � ¼ � and consider the symmetric case in which

�A ¼ �B, then Eq. (30) for �AB ¼ 0 and cosmological

parameters ~� as in Eq. (11) yields R0�ind ¼ 23:10 Glyr,
which, using Eq. (12), corresponds to the causal-

independence redshift zind ¼ 3:65.
We may further impose the condition that neither event

A nor B shares a causal past with our own worldline since

� ¼ 0. From Eq. (7), for � � 0 the comoving distance to

the future-directed light cone emanating from the origin

ð�; �Þ ¼ ð0; 0Þ is given by

FIG. 3 (color online). Left: Comoving distance R0�A vs R0�B for pairs of objects separated by angle �, such that (a) their past-

directed light cones intersect at �AB ¼ 0 (colored curves for various angles), and (b) neither object’s past-directed light cone intersects
our worldline after � ¼ 0 (white box in upper right corner). For a given �, comoving distances for event pairs that lie above the

corresponding colored curve (toward the upper right corner) satisfy �AB < 0 and thus share no causal connection after the end of

inflation. Event pairs with comoving distances in the light gray region have at least one object with a past light cone that intersects our

worldline at some time � > 0; thus the Earth’s comoving location had been in causal contact with the event prior to emission. Objects

in the lower left of the plot (dark gray region) have �AB > 0 and hence always have a shared causal past for any angular separation.

For � ¼ 180� and �A ¼ �B, objects with R0�> R0�ind ¼ 23:10 Glyr share no causal past with each other or with our worldline

since � ¼ 0. Right: The same plot in terms of redshift rather than comoving distance. For � ¼ 180� and zA ¼ zB, object pairs
with z > zind ¼ 3:65 share no causal past with each other or with our worldline since � ¼ 0. Both plots are constructed for a flat

�CDM cosmology with parameters ~� given in Eq. (11). In both figures, the dashed black box corresponds to the most distant

object observed to date, at zmax ¼ 8:55 or R0�max ¼ 30:31 Glyr, corresponding to the gamma-ray burst in associated host galaxy

UDFy-38135539 [45].
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�flcð�Þ ¼ �: (32)

See Fig. 1. If inflation did not occur and � ¼ 0 corresponds
to t ¼ 0, then �flcð�Þ ¼ �phð�Þ, the comoving distance to

the particle horizon for an observer at rest at � ¼ 0. Along
the radial null geodesic extending backward from Earth at

ð�; �Þ ¼ ð0; �0Þ toward the event at A, the past-directed

light cone is given by

�plcð�Þ ¼ �0 � �: (33)

The past-directed light cone from ð0; �0Þ will intersect the
future-directed light cone from (0,0) at some location �lc at

conformal time �lc

�plcð�lcÞ ¼ �flcð�lcÞ (34)

or

�lc ¼
1

2
�0: (35)

As long as �A < �lc ¼ �0=2, then the past light cone

from event A will not intersect the observer’s worldline

since the big bang at � ¼ 0. By construction, since we have

identified �A � �B, the past light cone of event B will

likewise not intersect the observer’s worldline since

� ¼ 0. For ~� as in Eq. (11), the requirement that

�A < �0=2 is satisfied by any object with zA > zind ¼
3:65. See Fig. 3.
Requiring both �AB � 0 and �B � �A < �0=2 ensures

that events A and B share no causal past with each other

and that neither shares any causal past with our own world-

line since the time of the big bang at � ¼ 0. A quick

examination of Fig. 1 illustrates that if the emission events

A and B have no shared causal past with each other or with

us since � ¼ 0, then neither will any prior events along the
worldlines of A and B. Many real objects visible in the sky

today fulfill the conditions �AB � 0 and �B � �A < �0=2.
Representative astronomical objects (quasar pairs) that

obey all, some, or none of these joint conditions are

displayed in Fig. 5 and listed in Table I.

Of course, one may consider objects that have been out

of causal contact with each other only during more recent

times. For example, one may calculate the criteria for

objects’ past light cones to have shared no overlap since

the time of the formation of the thin disk of the Milky

Way galaxy around 8.80 Gyr ago [46]; or since the

formation of the Earth 4.54 Gyr ago [47]; or since the

first appearance on Earth of eukaryotic cells (precursors

to multicellular organisms) 1.65 Gyr ago [48]. Events

FIG. 4 (color online). For various fixed values of zB, we plot

the critical redshift ẑA vs the angular separation � such that

�AB ¼ 0. For each zB and �, ẑA is derived from �̂A in Eq. (30) by

inverting Eq. (12) numerically. For all values of zB, ẑA mono-

tonically increases as � decreases: as the angular separation

between event pairs decreases, larger redshifts for object A

(for a given zB) are required for the events to have no shared

causal past. Event pairs with zA > ẑA that lie above the colored

curve for a given � and zB have no shared causal past since the

end of inflation. For any angle � � 180�, events A and B have

no shared causal past with Earth’s worldline if zA > zind ¼ 3:65
(above the thin dashed line) and zB > zind ¼ 3:65. As in Fig. 3

the dashed horizontal line corresponds to the most distant object

observed to date, at zmax ¼ 8:55.

FIG. 5 (color online). Same as Fig. 3(b), with three quasar

pairs marked (see Table I). For pair 1 (red), the past light cones

from each emission event share no overlap with each other or

with our worldline since � ¼ 0. For pair 2 (green), the past light

cones from each emission event share no overlap with each

other, though the past light cone from quasar A2 does overlap our

worldline for � > 0. For pair 3 (blue), both emission events have

past light cones that intersect each other as well as our worldline

at times � > 0.
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more recent than around 1.35 Gyr ago correspond to

redshifts z � 0:1, and hence to distances where peculiar

velocities are not negligible compared to cosmic expan-

sion [43]. For the � ¼ 180� case, pushing the past light

cone intersection time closer to the present day, �AB !
�0, yields curves in the zA-zB plane that move down and

to the left through the gray region of Fig. 3(b). See Fig. 6

and Table II.

IV. CURVED SPATIAL SECTIONS

We now consider how the results of Sec. III generalize

to the cases of nonzero spatial curvature. Given the

FLRW line element in Eq. (4), radial null geodesics

satisfy Eq. (7) for arbitrary spatial curvature k. For

concreteness, we consider first a space of positive curva-

ture, k ¼ 1. As illustrated in Fig. 7, we place the Earth at

point E at the north pole of the 3-sphere, with coordinates

� ¼ � ¼ ’ ¼ 0. By construction, the coordinates � and

� are dimensionless, while R0að�Þ has dimensions of

length. Thus we may take the comoving spatial manifold

to be a unit sphere. In that case, the coordinate �B

(for example) gives the angle between the radial line

connecting the center of the sphere (point O) to the point

B on its surface, and the radial line connecting O to the

point E at the north pole. Because the comoving spatial

manifold has unit radius, �B also gives the arclength

along the surface from the point B to the point E. At a

given time �, the physical distance between points B and

E is then given by R0að�Þ�B. See Fig. 7.

TABLE I. Three quasar pairs from [23], as shown in Fig. 5. Redshift pairs ðzAi; zBiÞ and angular separations �i (in degrees) are

chosen so that the pairs obey all (pair 1), some (pair 2), or none (pair 3) of the joint conditions of having no shared causal past with

each other (�AB � 0) and each having no shared causal past with our worldline ð�A; �B < �0=2Þ. Given the parameters in Eq. (11), the

latter constraint corresponds to zA, zB > 3:65. Basic properties of each quasar from [23] are also shown including object names from

the relevant quasar catalogs, celestial coordinates ðRA;DECÞ in degrees, and R and B band brightnesses (in magnitudes).

Pair

Separation angle

�i (deg)

Event

labels

Redshifts

zAi, zBi Object names RA (deg) DEC (deg) R (mag) B (mag)

1 116.003 A1 6.109 SDSS J031405:36� 010403:8 48.5221 �1:0675 16.9 20.1

B1 6.606 SDSS J171919:54þ 602241:0 259.8313 60.3781 18.6 16.9

2 130.355 A2 3.167 KX_257 24.1229 15.0481 16.7 17.8

B2 6.086 SDSS J110521:50þ 174634:1 166.3396 17.7761 16.4 25.1

3 154.357 A3 1.950 Q 0023� 4124 6.5496 �41:1381 14.2 15.4

B3 2.203 HS 1103þ 6416 166.5446 64.0025 14.7 15.4

FIG. 6 (color online). Left: Redshifts zA vs zB for the case � ¼ 180� corresponding to various times at which the past-directed light

cones from emission events A and B last intersected. Light cone intersection times (in Gyr) are given in terms of conformal time since

the big bang, H�1
0 �AB, and lookback time tlAB, the cosmic time that has elapsed since the event in question. The black line toward the

upper right corresponds to past light cone intersection at the big bang, �AB ¼ 0 as in Fig. 3. Right: Causal-independence redshift, zind,
vs lookback time, tlAB, for the case zA ¼ zB and � ¼ 180�, which asymptotes to zind ¼ 3:65 (dotted line) as the light cone intersection

approaches the time of the big bang, tlAB ¼ 13:82 Gyr ago. All calculations assume parameters ~� as in Eq. (11).
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As in the spatially flat case, we take the angle

(as seen from Earth) between events A and B to be �.
The past-directed light cones from events A and B intersect

at a comoving location marked AB, which falls along the

spatial geodesic connecting A and B. We label the comov-

ing arclength between points A and B as �L; the comoving

arclength from A to AB as u; and the comoving arclength

from point AB to B as v, such that

�L ¼ uþ v: (36)

In our chosen coordinate system, neither A nor B is at the

origin, and hence the path connecting points A and B does

not appear to be a radial null geodesic. In particular,

d�=d	 � 0 along the path connecting points A and B,

where 	 is an affine parameter with which to parametrize

the geodesic. But we may always rotate our coordinates

such that point A is the new origin (at �0 ¼ �0 ¼ ’0 ¼ 0)
and extend a radial null geodesic from the new origin to

point B0. We may then exploit the spherical symmetry of

the spatial manifold to conclude that the arclength between

points A0 and B0 will be the same as the arclength between

points A and B in our original coordinate system. Thus

we find that the arclength u is the (comoving) radius of

the past-directed light cone between points A and AB,

and from Eq. (7) we know that the radius of that light

cone at time �AB must equal u ¼ �A � �AB. Likewise, the
arclength v ¼ �B � �AB. Thus Eq. (36) is equivalent to

�AB ¼ 1

2
ð�A þ �B � �LÞ; (37)

which is identical to Eq. (23) for the spatially flat case.

We next wish to relate the arclength �L to the inscribed

angle �. Although Fig. 7 is constructed explicitly for a

positively curved space, we may use it to guide our appli-

cation of the generalized law of cosines [38,39] for either

spherical (k ¼ 1) or hyperbolic (k ¼ �1) geometries. In

terms of the functions Skð�Þ and Ckð�Þ defined in Eqs. (5)

and (6), the arclength�L between events A and B separated

by an angle � may be written

Ckð�LÞ ¼ Ckð�AÞCkð�BÞ þ kSkð�AÞSkð�BÞ cos�: (38)

The conformal time �AB at which the past-directed light

cones intersect is thus given by Eq. (37), with �L given by

Eq. (38), which is equivalent to alternative expressions

found in [49,50] (but see [51]).

We may likewise solve for the comoving spatial

coordinate, �AB, at which the past-directed light cones

intersect. Using Fig. 7, we again label the comoving

arclength from points AB to B as v ¼ �B � �AB; we label
the inscribed angle between arclengths v and BE as �; and
we use the fact that the comoving arclength from point AB

to E (the green arc in Fig. 7) is simply �AB. Then for the

triangle with vertices AB, E, and B, we have, in the general

curved case

TABLE II. Table of sample light cone intersection times equal to times of selected past cosmic events from Fig. 6. Redshifts z in

column 2 correspond to lookback, proper, and conformal times in columns 3–5. Pushing the past light cone intersection event forward,

�AB ! �0, is highly nonlinear in redshift. Column 6 shows the causal-independence redshift ~zind ¼ ~zindð�ABÞ for each conformal light

cone intersection time �AB. For two sources on the sky with zA, zB > ~zindð�ABÞ and � ¼ 180�, the past-directed light cones from the

emission events have not intersected each other or our worldline since �AB. When the past light cones intersect at the big bang, we have

the familiar ~zindð�AB ¼ 0Þ ¼ zind ¼ 3:65. Computations are done for parameters ~� from Eq. (11).

Event Redshift z

Lookback time

tlAB (Gyr)

Proper time

tAB (Gyr)

Conformal time

H�1
0 �AB (Gyr)

Causal-independence

redshift ~zindð�ABÞ
Big bang 1 13.82 0 0 3.65

Galaxy formed 1.23 8.80 5.01 33.32 0.506

Earth formed 0.41 4.54 9.27 40.81 0.195

First eukaryotes 0.124 1.65 12.16 44.45 0.061

FIG. 7 (color online). The curved-space analog of Fig. 2(b),

showing emission events A and B on the unit comoving spherical

manifold (k ¼ 1). Earth is at the north pole (labeled point E).

The center of the sphere is labeled O. The emission at event A

occurs at angle �A, which is the angle between the lines OE and

OA; the emission at event B occurs at angle �B. The past-

directed light cones from events A and B intersect at point

AB, which falls along the spatial geodesic connecting points A

and B. The comoving arclength between events A and AB is u,
and the comoving arclength between events B and AB is v. The
angle between Earth (E) and the light cone intersection event AB

as seen from event B is �. As usual, � represents the angle

between emission events A and B as seen from Earth.
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Ckð�ABÞ ¼ CkðvÞCkð�BÞ þ kSkðvÞSkð�BÞ cos�: (39)

We may solve for the angle � by considering the larger

triangle with vertices A, B, and E, for which we may write

Ckð�AÞ ¼ Ckð�BÞCkð�LÞ þ kSkð�AÞSkð�LÞ cos�; (40)

where �L is given by Eq. (38). Using Eq. (40) and the

arclength v ¼ �B � �AB, we may rearrange Eq. (39) to

yield

Ckð�ABÞ ¼ Ckð�B � �ABÞCkð�BÞ þ
Skð�B � �ABÞSkð�BÞ

Skð�AÞSkð�LÞ
	 ½Ckð�AÞ � Ckð�BÞCkð�LÞ�; (41)

with �AB and Ckð�LÞ given by Eqs. (37) and (38),

respectively.

As in the flat case (k ¼ 0), for the spatially curved cases
(k ¼ �1) if the past-directed light cones from A and B

intersect at time �AB, given by Eq. (37), we can fix � and

FIG. 8 (color online). Same as Fig. 3 but for FLRW cosmologies with nonzero spatial curvature. We again consider parameters
~�¼ðh;�M;��;�R;�k;�TÞ. Top row: A spatially closed universe (k ¼ 1) with ~� ¼ ð0:673; 0:315, 0.800, 9:289	 10�5;�0.115,

1.115). Bottom row: A spatially open universe (k ¼ �1) with ~� ¼ ð0:673; 0:315, 0.570, 9:289	 10�5, 0.115, 0.885). In each case,

departures from the k ¼ 0 case of Eq. (11) are indicated in italics. Compared to the k ¼ 0 case, increasing �� shrinks the comoving

distance scale and decreases the critical redshift for a given angle, whereas decreasing �� stretches the comoving distance scale and

increases the critical redshift for a given angle. In all figures the dashed box represents the furthest observed object at zmax ¼ 8:55,
corresponding to R0�max ¼ 28:77 Glyr (closed), 30.31 Glyr (flat), and 31.55 Glyr (open). The criterion that the past light cones from

eventsA andBdo not intersect each other or ourworldline for � > 0 in the� ¼ 180� case (white square regions in Figs. 3 and 8) yields zA,
zB � 2:38 (closed), 3.65 (flat), and 5.25 (open).

FRIEDMAN, KAISER, AND GALLICCHIO PHYSICAL REVIEW D 88, 044038 (2013)

044038-10



�B to derive the condition on the critical comoving

distance, �̂A,

�̂A ¼ T�1
k

�
Ckð�B � 2�0 þ 2�ABÞ � Ckð�BÞ

k½Skð�BÞ cos�þ Skð�B � 2�0 þ 2�ABÞ�

�

;

(42)

where Tkð�Þ � Skð�Þ=Ckð�Þ. Or we may fix �A and �B to

determine the critical angle �̂ such that the past light cones

of A and B intersect at time �AB,

�̂ ¼ cos�1

�
Ckð�A þ �B � 2�ABÞ � Ckð�AÞCkð�BÞ

kSkð�AÞSkð�BÞ

�

: (43)

Setting �AB ¼ 0, then for �A � �̂A or � � �̂ the shared

causal past of the events is pushed to � � 0, into the

inflationary epoch. We use Eq. (42) with �AB ¼ 0 to plot

the hyperbolic curves for different angles� in the left-hand

side of Fig. 8, and use Eq. (12) to relate � to z for the plots
in the right-hand side of Fig. 8.

Equations (42) and (43) are the curved-space general-

izations of Eqs. (30) and (31). It is easy to see that

they reduce to the spatially flat case when k ¼ 0. The limit

k ! 0 corresponds to taking arclengths �i small compared

to the radius of curvature. Since we are considering comov-

ing distances on a unit comoving sphere (for k ¼ 1) or on a
unit hyperbolic paraboloid (for k ¼ �1), the limit of in-

terest is �i � 1. Then we may use the usual power-series

expansions,

Skð�Þ ¼ �þOð�3Þ;

Ckð�Þ ¼ 1� k

2
�2 þOð�4Þ;

Tkð�Þ ¼ �þOð�3Þ

(44)

to write Eqs. (42) and (43) as

�̂AðkÞ ¼ �̂AðflatÞ þOð�3
i Þ;

�̂ðkÞ ¼ �̂ðflatÞ þOð�4
i Þ

(45)

in the limit �i � 1, where �̂AðflatÞ and �̂ðflatÞ are given by
Eqs. (30) and (31), respectively.

Comparing Figs. 3 and 8, one finds that FLRWuniverses

with the same values of �M and �R as ours but with

different values of �� yield different values of the critical

angle �̂ at which objects with redshifts zA and zB satisfy

�AB � 0. First note that��;f ¼ 0:685 is the value of�� in

Eq. (11) corresponding to our Universe. For a closed uni-

verse (�� >��;f) the range of critical angles �̂ for which

one may find objects with redshifts zA and zB that satisfy

the condition �AB � 0 is broader than in the spatially flat

case, whereas in an open universe (�� <��;f) the range

of critical angles �̂ is narrower than in the spatially flat

case. These results are exactly as one would expect given

the effect on the inscribed angle � at the point E as one

shifts from a Euclidean triangle ABE to a spherical triangle

or a hyperbolic triangle.

V. FUTURE LIGHT CONE INTERSECTIONS

To extend our analysis of shared causal domains to the

future of events A and B we define �1, the total conformal

lifetime of the universe,

�1 � �ðt ¼ 1Þ ¼
Z 1

0

da

a2EðaÞ : (46)

As usual, �1 is dimensionless while R0�1=c ¼ H�1
0 �1 is

measured in Gyr. We restrict attention to cosmologies like

our own (�CDM with k ¼ 0 and �� > 0) that undergo
late-time cosmic acceleration and expand forever; that

ensures that the total conformal lifetime of the universe

is finite, �1 <1. In particular, for ~� as in Eq. (11), we find

H�1
0 �1 ¼ 62:90 Gyr. See Figs. 1 and 9.

FLRW cosmologies with a finite conformal lifetime

necessarily have cosmic event horizons [39]. Objects we

observe today that are beyond the cosmic event horizon

have already emitted the last photons that will ever reach us

(at t ¼ 1), and it is impossible for us to send a signal today

that will ever reach those objects in the future history of

our Universe [3,14–16]. The condition �1 <1 holds for

FLRW cosmologies with nonzero spatial curvature

(k � 0) as long as�� > 0 is large enough that dark energy
domination sets in before matter, curvature, or radiation

domination causes the universe to recollapse [52].

The event horizon is a particular past-directed light

cone, and hence the surface is a null geodesic. Thus we

may use Eq. (12), suitably modifying the limits of integra-

tion. At a particular time, a� ¼ aðt�Þ, the comoving dis-

tance from our worldline at � ¼ 0 to the event horizon is

given by

�ehðt�Þ ¼
Z 1

a�

da

a2EðaÞ : (47)

We may also trace back along the past light cone from our

present location (at �0 rather than �1) to the equivalent

comoving distance. We set aðt�Þ ¼ aðt0Þ ¼ 1 and compute

�ðt0Þ ¼
Z 1

aeh

da

a2EðaÞ : (48)

Equating Eqs. (47) and (48) and using zeh ¼ a�1
eh � 1, we

find zehðt0Þ ¼ 1:87 for our cosmologywith ~� as in Eq. (11).

Note that since zeh < zind ¼ 3:65, objects with z � zind
are beyond the cosmic event horizon: though we have

received light from them at �0, no return signal from us

will ever reach them before �1, nor (symmetrically) can

light emitted from them now (at �0) ever reach us before the
end of time. See Figs. 1 and 9.

Another quantity of interest is the value of the redshift

today of an emission event whose light we will receive at

�1 but whose past light cone has no overlap with our
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worldline since � ¼ 0. Such will be the case for any

object with redshift z > z1ind. As can be seen from Fig. 9,

z1ind corresponds to the comoving location where the

cosmic event horizon intersects the future light cone

from the origin, namely at the spacetime point ð�;�Þ¼
ð�1=2;�1=2Þ. We may therefore evaluate z1ind either by

computing the comoving distance from the origin to the

event horizon at �1=2, or by computing the comoving

distance of the forward light cone from the origin at

�1=2. In the first case we have

�eh

�
�1
2

�

¼
�

�1 � �1
2

�

¼
Z 1

a1
ind

da

a2EðaÞ ; (49)

and in the second case we have

�flc

�
�1
2

�

¼
�
�1
2

� 0

�

¼
Z a1

ind

0

da

a2EðaÞ : (50)

Numerically inverting either Eq. (49) or (50) and using

z1ind ¼ ða1indÞ�1 � 1, we find z1ind ¼ 9:99> zind for our cos-

mology with ~� as in Eq. (11). We emphasize that both z1ind
and zind are evaluated at the time �0: among the objects

whose redshift we might measure today, those with z > z1ind
will (later) release light that will reach our worldline at �1

and whose past light cones from that later emission event

will have had no overlap with our worldline since � ¼ 0.
Events have no shared causal future if their future light

cones will never intersect each other’s worldlines before

�1. Thus we may ask whether the forward light cone from

emission event A intersects with the worldline of event B at

some time �0 < � � �1, or vice versa. This question can

be answered by visual inspection of Fig. 1 for the special

case for our universe when � ¼ 180� with fixed redshifts

zA ¼ 1, zB ¼ 3. In Fig. 1, the future light cones from

events A and B are shown as thin dashed lines, and the

worldlines of A and B are shown as thin dotted lines at the

fixed comoving locations �A and �B, respectively. From

Fig. 1, it is easy to see that the future light cone from event

B crosses event A’s worldline before �1 while the future

light cone from event A does not cross event B’s worldline

before �1. Thus, in this situation, event B can send a signal

to the comoving location of event A before the end of time,

while event A can never signal event B’s worldline even in

the infinite future. Similarly, we can consider the future

light cone from Earth today in Fig. 1, and note that, while

we can signal the comoving location of event A before time

ends, we will never be able to send a signal that will reach

the comoving location of event B. Of course, as shown in

Fig. 1, events A and B have already signaled Earth by

FIG. 9 (color online). Conformal diagram as in Fig. 1 showing the causal independence region bounded by the particle horizon and

the past-directed light cone from the present time, �0 (purple cross-hatching); the causal diamond bounded by the particle horizon and

the cosmic event horizon (red stripes tilted at �45 degrees), which includes the causal independence region; and the Hubble sphere

(equal to the apparent horizon for �k ¼ 0; see Appendix B), which is the spacetime region beyond which all objects are receding

faster than light (yellow). Relevant redshifts include the current value of the redshift of the Hubble sphere, zhs ¼ 1:48; the current

redshift of the event horizon, zeh ¼ 1:87; the current value of the causal-independence redshift, zind ¼ 3:65; and the current value of

the redshift that bounds the causal diamond, z1ind ¼ 9:99, which is the limiting value of the causal-independence redshift as the proper

age of the universe approaches infinity.
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virtue of our observing their emission events along our past

light cone at ð�; �Þ ¼ ð0; �0Þ, and the future light cone from
Earth today necessarily overlaps with the future light cones

of events A and B for � > �0.
For general cases at different angles and redshifts,

without loss of generality we retain the condition that

emission event A occurred later than B, �A � �B. We

introduce the notation that ~�ij is the conformal time

when the future light cone from event i intersects the

worldline of event j, for ~�ij > �0. Using Fig. 1 and reason-

ing as in Secs. III and IV, we find

~�AB ¼ �L þ �A; ~�BA ¼ �L þ �B; (51)

where �L is the comoving distance between events A and

B given by Eqs. (24) and (38) for the spatially flat and

curved cases, respectively. Since all angular and curvature

dependence is implicit in the �L term, Eq. (51) holds for

arbitrary angular separations 0 � � � 180� and curva-

tures (k ¼ 0,�1). In general ~�AB � ~�BA; the two are equal
only if �A ¼ �B. Given our assumption that �A � �B it

follows that ~�AB � ~�BA.
Three scenarios are possible. (a) Events A and B

will each be able to send a light signal to the other,

~�BA � ~�AB < �1, which implies �L < �1 � �A �
�1 � �B. (b) B will be able to send a signal to A but not

vice versa, ~�BA < �1 < ~�AB, which implies �1 � �A <
�L < �1 � �B. (c) A and B will forever remain out of

causal contact with each other, ~�AB � ~�BA � �1, which
implies �1 � �A � �1 � �B < �L.

Fixing �B and �, we may find the comoving distance ~�A

such that the future light cone from A will intersect the

worldline of B at time ~�AB. For a spatially flat universe

(k ¼ 0), we find

~�A ¼ �2
B � ð~�AB � �0Þ2

2ð~�AB � �0 þ �B cos�Þ
: (52)

Or we may fix �A and �B and find the critical angle, ~�AB,

such that the future light cone from A intersects the world-

line of B at time ~�AB,

~�AB ¼ cos�1

�
�2
A þ �2

B � ð~�AB � �AÞ2
2�A�B

�

: (53)

As in Sec. IV, we may generalize these results to the case of

spatially curved geometries (k ¼ �1), to find

~�A ¼ T�1
k

�
Ckð~�AB � �0Þ � Ckð�BÞ

k½Skð�BÞ cos�þ Skð~�AB � �0Þ�

�

(54)

and

~�AB ¼ cos�1

�
Ckð~�AB þ �AÞ � Ckð�AÞCkð�BÞ

kSkð�AÞSkð�BÞ

�

: (55)

For Eqs. (52)–(55), the comparable expressions (~�B and

~�BA) for the case in which the future light cone from B

intersects the worldline of A at time ~�BA follow upon

substituting �B $ �A, �B $ �A, and ~�AB ! ~�BA.
With these expressions in hand, we may draw general

conclusions about whether events A and B share a causal

past and/or a causal future. From Eq. (23), the condition for

no shared causal past since the big bang, �AB � 0, is

equivalent to

�A þ �B � �L; (56)

while from Eq. (51), the condition that A and B share no

causal future, ~�BA � �1, is equivalent to

�1 � �B � �L: (57)

Each of these conditions holds for arbitrary spatial

curvature and angular separation, provided one uses the

appropriate expression for �L, Eq. (24) or (38). Thus the

criterion that events A and B share neither a causal past nor

a causal future between the big bang and the end of time is

simply

�A þ �B <�L and �1 � �B <�L: (58)

If instead

�A þ �B < �L < �1 � �B; (59)

then events A and B share no causal past but B will be able

to signal A in the future. And if

�1 � �B < �L < �A þ �B; (60)

then events A and B share no causal future though their

past light cones did overlap after the big bang.

If we further impose the restriction that events A and B

share no past causal with each other or with our worldline,

hence zA, zB � zind > zeh, then by necessity events A and B

will share no causal future, nor will we be able to send a

signal to either event’s worldline before the end of time.

The reason is simple: too little (conformal) time remains

between �0 and �1. Our observable universe has entered

late middle age: as measured in conformal time, the present

time, H�1
0 �0 ¼ 46:20 Gyr, is considerably closer to

H�1
0 �1 ¼ 62:90 Gyr than to the big bang at H�1

0 � ¼ 0.

That conclusion could change if the dark energy that is

causing the present acceleration of our observable universe

had an equation of state different from w ¼ �1. In that

case,�� would vary with time and thereby alter the future

expansion history of our universe.

VI. CONCLUSIONS

We have derived conditions for whether two cosmic

events can have a shared causal past or a shared causal

future, based on the present best-fit parameters of our

�CDM cosmology. We have further derived criteria for

whether either cosmic event could have been in causal

contact with our own worldline since the big bang (which

we take to be the end of early-universe inflation [6,7]); and
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whether signals sent from either A or B could ever reach

the worldline of the other during the finite conformal life-

time of our universe. We have derived these criteria for

arbitrary redshifts, zA and zB, as well as for arbitrary angle

� between those events as seen from Earth. We have also

derived comparable criteria for the shared past and future

causal domains for spatially curved FLRW universes with

k ¼ �1.
For the best-fit parameters of our�CDM cosmology, we

find that if emission events A and B appear on opposite

sides of the sky (� ¼ 180�), then they will have been

causally independent of each other and our worldline since

the big bang if zA, zB > zind ¼ 3:65. More complicated

relationships between zA and zB must be obeyed to main-

tain past causal independence in the case of �< 180�, as
illustrated in Fig. 3(b). Observational astronomers have

catalogued tens of thousands of objects with redshifts

z > 3:65 (see, e.g., [22,23,53]), and we have presented

sample pairs of quasars that satisfy all, some, or none of

the relevant criteria for vanishing past causal overlap with

each other and with our worldline since the time of the big

bang (Fig. 5 and Table I). Likewise, because of nonvanish-

ing dark energy, our observable universe has a finite con-

formal lifetime, �1, and hence a cosmic event horizon.

Our present time �0 is closer to �1 than to � ¼ 0. Events
at a current redshift of z > 1:87 are beyond the cosmic

event horizon, and no signal sent from us today will ever

reach their worldline. Symmetrically, objects currently at

z ¼ 1:87 are just now sending the last photons that will

ever reach us in the infinite future.

Throughout our analysis we have defined � ¼ 0 to be the
time when early-universe inflation ended (if inflation in-

deed occurred). If there were a phase of early-universe

inflation for � < 0 that persisted for at least 
65 e-folds,
as required to solve the flatness and horizon problems

[6,7], then all events within our past light cone would

have past light cones of their own that intersect during

inflation (see Appendix A). Based on our current under-

standing of inflation, however, the energy that drove in-

flation must have been transformed into the matter and

energy of ordinary particles at the end of inflation in a

process called ‘‘reheating’’ [6,7,54,55]. In many models,

reheating (and especially the phase of explosive ‘‘preheat-

ing’’) is a chaotic process for which—in the absence of

new physics—it is difficult to imagine how meaningful

correlations between specific cosmic events A and B,

whose past light cones have not intersected since the

end of reheating, could survive to be observable today.

We therefore assume that emission events A and B whose

only shared causal past occurs during the inflationary

epoch have been effectively causally disconnected

since � > 0.
However, if correlations between inflationary era events

somehow did survive to be observable today via later

emission events at their comoving locations, we could

quantify the shared causal history of such events with the

formalism presented here, extended to include inflation.

Certainly, in the standard cosmological view, inflationary

era correlations are observable today as statistical patterns

in the CMB, imprinted by inflationary era quantum fluctu-

ations which seed present day large scale cosmic structure

[6,17]. While the observable spatial densities of galaxies,

clusters, and thus quasars are thought to reflect correlations

set up during inflation, it remains an open question whether

inflationary era events at specific comoving locations—

where quasar host galaxies later formed—could yield an

observable correlation signal between pairs of eventual

quasar emission events at those same comoving locations

billions of years after the inflationary density perturbations

were imprinted.

In closing, we note that all of our conclusions are based

on the assumption that the expansion history of our ob-

servable universe, at least since the end of inflation, may be

accurately described by canonical general relativity and a

simply connected, noncompact FLRW metric. These as-

sumptions are consistent with the latest empirical search

for nontrivial topology, which found no observable signals

of compact topology for fundamental domains up to the

size of the surface of last scattering [56].

Future work will apply our results to astrophysical data

by searching the Sloan Digital Sky Survey database [22,53]

and other quasar data sets comprising more than one

million observed quasars [23] to identify the subset of pairs

whose past light cones have not intersected each other or

our worldline since the big bang at the end of inflation. We

also note that though the results in this paper were derived

for pairs of cosmic events, they may be extended readily

to larger sets of emission events by requiring that each

pairwise combination satisfies the criteria derived here.

Applying the formalism developed here, using best-fit

�CDM parameters, to huge astrophysical data sets will

enable physicists to design realistic experiments of funda-

mental properties that depend upon specific causal rela-

tionships. This is of particular importance for quantum

mechanical experiments that crucially depend on whether

certain physical systems are prepared independently. Many

such experiments implicitly assume preparation indepen-

dence of subsystems even though such systems demonstra-

bly have a fairly recent shared causal past, extending back

only a few milliseconds for Earth-bound systems. This

work will allow experimenters to identify cosmological

physical systems with emission events that have been

causally independent for billions of years, including emis-

sion event pairs that are as independent as the expansion

history of the universe will allow on causal grounds alone,

modulo any shared causal dependence set up during in-

flation. Future experiments which observe such causally

disjoint astronomical sources may allow us to leverage

cosmology to test fundamental physics including dif-

ferent aspects of quantum mechanics, specific models of
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inflation, and perhaps even features of a future theory of

quantum gravity.
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APPENDIX A: INFLATION AND

THE HORIZON PROBLEM

Using Eq. (31) and ~� from Eq. (11), we may solve for

the critical angular separation �̂CMB at the redshift of CMB

formation (zCMB ¼ 1090:43 [17]), when matter and radia-

tion decoupled. For zA ¼ zB ¼ zCMB, and therefore �A ¼
�B ¼ �CMB and �A ¼ �B ¼ �CMB, we find from Eq. (31)

�̂CMB ¼ cos�1

�

1� 2

�
�CMB

�CMB

�
2
�

¼ 2sin�1

�
�CMB

�CMB

�

: (A1)

Using zCMB ¼ 1090:43 and evaluating �CMB and �CMB

using Eqs. (12) and (13), then Eq. (A1) yields �̂CMB ¼
2:31�. Without inflation, CMB regions on the sky that we

observe today with an angular separation �̂CMB > 2:31�

could not have been in causal contact at the time when the

CMB was emitted. Our formalism considers the angle �
between events A and B as seen from Earth. At a given

time, �, the particle horizon subtends an angle � ¼ �=2
as seen from Earth, and hence our result is equivalent

to the one commonly reported in the literature,

�̂CMB ¼ 1:16� [7].

If early-universe inflation did occur, on the other hand,

then the past light cones for such regions could overlap at

times � < 0. We may calculate the minimum duration of

inflation required to solve the horizon problem. The con-

formal time that has elapsed between the release of the

CMB and today is �0 � �CMB. In order to guarantee that all

regions of the CMB that we observe today could have been

in causal contact at earlier times, we require

��infl þ �CMB � �0 � �CMB; (A2)

where ��infl is the duration of inflation in (dimensionless)

conformal time. The condition in Eq. (A2) ensures that the

forward light cone from � ¼ 0 at the beginning of infla-

tion, �i, encompasses the entire region of the �CMB hyper-

surface observable from our worldline today. In the

notation of Secs. III and IV, this is equivalent to setting

the time at which the past light cones from the distant CMB

emission events intersect, �AB, equal to the start of infla-

tion, �ðtiÞ, or �AB ¼ �ðtiÞ< 0. See Fig. 10.
From Eq. (16) we find

��infl ¼ �ðtendÞ � �ðtiÞ ¼
1

aend

�
H0

HI

�

½eN � 1�; (A3)

where ti is the cosmic time corresponding to the beginning

of inflation, HI is the value of the Hubble constant during

inflation, and eN ¼ aend=ai � 1, where N is the total

number of e-folds during inflation. We may estimate aend
by assuming instant reheating to a radiation-dominated

phase that persists between aend and aeq ¼ aðteqÞ, where
teq is the time of matter-radiation equality. From Eq. (17)

we have

aend ¼ aeq

�
tend
teq

�
1=2

’ aeq

�
N

HIteq

�
1=2

; (A4)

upon using N ¼ HIðtend � tiÞ ’ HItend during inflation.

We also have aeq=a0 ¼ 1=ð1þ zeqÞ. Using our normaliza-

tion that a0 ¼ aðt0Þ ¼ 1, we find

aend ’
1

ð1þ zeqÞ

�
N

H0teq

�
1=2

�
H0

HI

�
1=2

(A5)

and therefore Eqs. (A2) and (A3) become

N�1=2eN � 1

ð1þ zeqÞ

�
1

H0teq

�
1=2

�
HI

H0

�
1=2

ð�0 � 2�CMBÞ:

(A6)

Using Eq. (13) with ae ¼ aCMB ¼ 1=ð1þ zCMBÞ, we
find �CMB ¼ 0:063 and hence H�1

0 �CMB ¼ 0:91 Gyr;

putting aðt0Þ ¼ 1 in Eq. (13) yields �0 ¼ 3:18 and

hence H�1
0 �0 ¼ 46:20 Gyr. The latest observations yield

zeq ¼ 3391 [17], and hence

teq ¼ H�1
0

Z 1

zeq

dz0

ð1þ z0ÞEðz0Þ ¼ 5:12	 104 yr

¼ 1:61	 1012 sec : (A7)

Recent observational limits on the ratio of primordial tensor

to scalar perturbations constrainHI � 3:7	 10�5Mpl [57],

where Mpl ¼ ð8�GÞ�1=2 ¼ 2:43	 1018 GeV is the re-

duced Planck mass. In ‘‘natural units’’ (with c ¼ ℏ ¼ 1),
1 GeV�1 ¼ 6:58	 10�25 sec ¼ 2:09	 10�41 Gyr, and

hence H0 ¼ 100h km s�1 Mpc�1 ¼ 2:13h	 10�42 GeV,
with current best-fit value h ¼ 0:673. Equation (A6) there-
fore becomes

N � 65:6: (A8)

Inflation will solve the horizon problem if it persists for at

least N ¼ 65:6 e-folds.
As is clear from Fig. 10, if ��infl � �0, then any two

spacetime points within our past light cone from today will

themselves have past light cones that intersect at some time
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since the beginning of inflation. Because �CMB � �0, the
additional number of e-folds of inflation required to satisfy
��infl � �0 rather than Eq. (A2) is �N ¼ 0:04, or N �
65:64. Moreover, if ��infl � �1, then any two spacetime

points within our entire cosmic event horizon will have

past light cones that intersect at some time since the

beginning of inflation. Given �1 ¼ 4:33 (and hence

H�1
0 �1 ¼ 62:90 Gyr), the additional e-folds beyond the

limit of Eq. (A2) required to satisfy ��infl � �1 are �N ¼
0:35, or a total of N � 65:95 e-folds. Hence virtually any

scenario in which early-universe inflation persists long

enough to solve the horizon problem will also result in

every spacetime point within our cosmic event horizon

sharing a common past causal domain.

APPENDIX B: HUBBLE SPHERE

AND APPARENT HORIZON

We now demonstrate that object pairs in our Universe

beyond the causal-independence redshift zind > 3:65,
which have no shared causal pasts since inflation, are

also moving away from us at speeds vrec exceeding the

speed of light; although objects with current recession

velocities c < vrec � 1:86c will still have a shared causal

past with our worldline. Calculations assume cosmological

parameters ~� from Eq. (11).

One might assume that objects would lose causal contact

with us and become unobservable if they are currently

receding at speeds faster than light. In reality, astronomers

today routinely observe light from objects in our universe

at redshifts corresponding to superluminal recession veloc-

ities (see [3,58], although see also [59]). Note that general

relativity allows superluminal recession velocities due to

cosmic expansion (vrec ¼ R0 _a� > c), though it also

requires that objects move with subluminal peculiar veloc-

ities (vpec ¼ R0a _�< c). The so-called ‘‘Hubble sphere’’

denotes the comoving distance beyond which objects’

radial recession velocities exceed the speed of light,

vrec > c. As � ! �1 the Hubble sphere asymptotes to the

cosmic event horizon; see Fig. 9.

The radial, line-of-sight recession velocity in a FLRW

metric is given by

vrec ¼ R0 _a� ¼ caEðaÞ
Z 1

a

da0

a02Eða0Þ ; (B1)

upon using Eq. (8) for R0, Eq. (10) for EðaÞ, and Eq. (12)

for �. Equation (B1) can be used without corrections

if the object is at a redshift large enough so that peculiar

velocities are negligible compared to cosmic expansion

(a _� � _a� for z * 0:1 [43]). At a given time, aðtÞ, the
Hubble sphere is located at a comoving distance �hs at

FIG. 10 (color online). Conformal diagram illustrating how inflation solves the horizon problem. Two CMB emission events A and B

are shown on opposite sides of the sky at zA ¼ zB ¼ zCMB. The region bounded by the four filled black squares is the conformal

diagram without inflation, akin to Fig. 1, showing that the past light cones from events A and B (red and blue triangles, respectively) do

not intersect since the big bang at � ¼ 0 (thick black horizontal line). With inflation, the diagram extends to negative conformal times,

� < 0. If inflation persists for at least ��infl ¼ j�ABj � �0 � 2�CMB, then the forward light cone from the start of inflation will

encompass the entire portion of the �CMB hypersurface visible to us today, at �0. If inflation begins even earlier, such that ��infl � �1,
then any two spacetime points within our cosmic event horizon will have past light cones that intersect at some time since the

beginning of inflation.
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which vrec ¼ c. Using Eq. (B1) and R0 ¼ c=H0, the

comoving distance �hs is given by

�hs ¼
H0

_a
¼ 1

aEðaÞ ¼
Z 1

ahs

da0

a02Eða0Þ ; (B2)

where zhs ¼ a�1
hs � 1. Note that by our normalization con-

ventions aðt0Þ ¼ 1 and Eðaðt0ÞÞ ¼ 1; therefore �hs ¼ 1,

which yields zhsðt0Þ ¼ 1:48 for ~� as in Eq. (11). The

current Hubble sphere redshift zhs ¼ 1:48 is thus less

than the current causal-independence redshift, zind ¼
3:65. Using parameters ~� in Eq. (11), we find that objects

at z ¼ 3:65 have recession velocities of vrec ¼ 1:86c, so
objects that are currently receding from us faster than light

in the range c < vrec � 1:86c still have a shared causal

past with our worldline since � > 0.

Another quantity of interest is the apparent horizon

[4,60] or the minimally antitrapped hypersurface [14],

which is located at a line-of-sight comoving distance �ah

given by

�ah ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð _a=H0Þ2 ��k

p ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½aEðaÞ�2 ��k

p

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��a
2 þ�Ma

�1 þ�Ra
�2

p : (B3)

Hence �ah ¼ �hs when �k ¼ 0 (also see [4]). In our flat

universe, the redshifts of the apparent horizon and the

Hubble sphere are thus identical, and since zind > zhs,
objects that have no shared causal past with our worldline

since the big bang, with redshifts z > 3:65> 1:48, are also
by necessity moving superluminally.
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