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Abstract—In mobile edge computing, a mobile or IoT device
requests a nearby device to execute some functionality and return
back the results. However, the executable code must either be
pre-installed on the nearby device or be transferred from the
requester device, reducing the utility or safety of device-to-device
computing, respectively. To address this problem, we present
a micro-service middleware that executes services on nearby
mobile devices, with a trusted middleman distributing executable
code. Our solution comprises (1) a trusted store of vetted mobile
services, self-contained executable modules, downloaded to de-
vices and invoked at runtime; and (2) a middleware system that
matches service requirements to available devices to orchestrate
the device-to-device communication. Our experiments show that
our solution (1) enables executing mobile services on nearby
devices, without requiring a device to receive executable code
from an untrusted party; (2) supports mobile edge computing in
practical settings, increasing performance and decreasing energy
consumption; (3) reduces the mobile development workload by
reusing services.

I. INTRODUCTION

Mobile and IoT devices often need to make use of external

computational resources. Applications for these devices may

rely on functionality that cannot be implemented using the

resources of a single device. One option for enhancing the

execution capacities of a resource-limited device is to use

cloud-based services [10]. The explosion of sensory data has

given rise to edge computing, processing the collected sensory

data locally at the edge of the network. In mobile edge
computing, devices accomplish many of the computational

tasks by networking with each other directly. This arrangement

also prevents the bandwidth bottleneck of the devices simul-

taneously communicating with a remote cloud-based server.

However, before a device can execute any functionality, it

needs the executable files. Currently, there are two options

for obtaining these files: (1) install them in advance, (2)

transfer them at runtime from the requesting device. The first

option substantially limits the utility of mobile edge com-

puting. Oftentimes, mobile execution environments are highly

dynamic, and it is not even known a priori which devices will

be operated in the vicinity. The second option compromises

security. In terms of potential security vulnerabilities, it would

be too risky to accept executable code from an untrusted

party. In summary, the realities of mobile execution impose

several technical obstacles on mobile and IoT devices sharing

resources with nearby devices:

• Trust/privacy—the users of nearby devices may be will-

ing to perform a computation on behalf of unfamiliar

clients, but they are unlikely to trust these clients enough

to accept code from them for execution;

• Dynamicity—at the time when the application needs to

make use of an external resource, it is impossible to

predict what kind of mobile devices will happen to be

nearby and what resources they will have at their disposal;

• Heterogeneity—it is impossible to predict which mobile

platforms the available nearby devices will run.

This paper describes the Mobile Service Market (MSM),

a trusted remote store of vetted mobile services, each of

which constitutes a self-contained executable module to be

downloaded to mobile devices and invoked at runtime. The

MSM can solve the problem as follows. When developing

an application, a mobile developer realizes that the device on

which the application will run may not possess the required

functionality. She then browses a mobile services market

(MSM) to find a service with the required functionality. The

developer specifies the requirements for a device that can be

selected at runtime to execute the service. The requirements

are configured by the programmers to indicate the minimal

properties of the device that can be selected to execute the

service. This paper makes the following contributions:

• Micro-mobile services—a service-oriented solution to the

resource scarcity problem of mobile devices.

• Mobile Service Market—a novel system architecture for

hosting and deploying device-to-device mobile services

on demand, thus alleviating the issues pertaining to a lack

of trust/privacy.

• Empirical Evaluation—We rigorously evaluate the effec-

tiveness and performance/energy efficiency of our ref-

erence implementation on a series of micro and macro

benchmarks and applications.

The rest of this paper is organized as follows. Section II

describes device-to-device mobile services in detail. Section

III presents our evaluations results. Section IV introduces the

related works, and Section V presents future work directions

and concludes the paper.
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II. MICRO-MOBILE SERVICES

Micro-mobile services1 extends the notion of the Service

Oriented Architecture (SOA) for the needs of ad-hoc mobile

execution on nearby devices. Unlike a traditional service that

is hosted at a location identified by a fixed domain name (e.g.,

an IP address), mobile services reside at a mobile service

market and deployed on devices for execution on demand at

runtime. Since the platform on which a mobile service will

be executed is unknown until the runtime, service developers

are expected to provide several equivalent versions for each

service to support execution on all major platforms. Since

mobile services are expected to be executed on devices with

limited resources, service developers have to design their

solution with resource scarcity in mind. The acceptance criteria

for hosting a service in a Mobile Service Market must be

necessarily more stringent than those for accepting mobile

applications to application markets.

Figure 1: Proposed MSM Architecture.

As shown in Fig. 1, our solution contains three novel

components: (1) The Mobile Service Market (MSM): an online

service market for hosting and deploying mobile services; (2)

Service Middleware that matches services with suitable de-

vices at runtime as well as manages the communication across

heterogeneous devices; (3) Programming model that provides

a convenient interface for mobile application developers to

choose the needed services and configure their requirements.

We next describe the novel parts of our contribution in turn.

A. Service Market

Figure 1 shows the main components of the MSM archi-

tecture that codifies interactions across three different roles:

service developer, application developer, and mobile user.

The mobile service developer identifies those pieces of

application functionality that can be represented as mobile

services. A service submitted to a service market must adhere

to a format detailed below.

The application developer incorporates mobile services into

their applications. To that end, they need to browse through

1For brevity, in the rest of the presentation we shall use the terms micro-
mobile services and mobile services interchangeably.

the catalogs of mobile services of the MSMs that their users

are likely to trust. They select the services that solve the

resource scarcity problem at hand, and are able to change the

constraints of the invoked services for the specific needs of

their applications.

The mobile user will need to configure their device to be

willing to accept the execution of services, dynamically down-

loadable from a given MSM. The middleware will manage the

service’s lifecycle, such as obtaining the latest version of the

service execution package for further invocations.

In essence, the MSM combines the features of application

markets and mobile service repositories. Following the appli-

cation market model makes it possible for users to rely on the

reputation of a given market to have enough trust to allow the

automatic installation and execution of such mobile services.

At the same time, service developers would have to comply

with the service market requirements, which likely would have

to be more stringent than those of application markets.

1) Service Representation: Our design of MSM defines a

typical mobile service as a collection of three elements:

Service Description: uniquely identifies a service as a combi-

nation of service name, version, usage scope, and parameters.

Service Execution Package (SEP ): is a self-contained ex-

ecutable package that can be downloaded from the service

market and executed on a mobile device. A service can be

designed for one particular platform, several platforms, or all

platforms by means of JavaScript execution. Platform avail-

ability is one of the selection criteria that mobile developers

need to consider when deciding to use a mobile service in

their applications.

Constraints: are requirements on the device that can be

selected by the runtime to execute a service. Constraints are

defined by service developers, with some of their parameters

configured by application developers for the needs of a given

application. Currently, our reference implementation makes

use of the following constraints:

• Sensor availability: REQ or NREQ. For example, a service

may require a GPS sensor for execution.

• Battery threshold: N(%) – device does not respond to a

service execution request if the remaining battery level is

lower than N%.

• Expected QoS Level: (N) – the detailed definition of

expected QoS level (EQS) will be given in the next

subsection. Generally speaking, EQS is a metrics of a

mobile device’s resource status.

• Network availability: HIGH, LOW, or N.A.

• Number of required devices: N, the number of required

mobile devices to execute a service (e.g, N > 1:

collaborative execution)

B. Service Execution Model (Middleware)

The middleware system provides a communication infras-

tructure for mobile devices, coordinating the execution of

services between clients and servers. In this section, we

explain each component of the middleware system in turn.
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Figure 2: Service Market overview

1) Discovering Available Nearby Devices: To discover

available devices, a client device first sends out a peer discov-

ery message to nearby devices, and then each device replies

with its availability that represents resource capacities. The

following JSON format shows a response message to the peer

discovery message.

JSON : DeviceInfo {
"availability": Boolean, "gps": Boolean,
"network": ["low"|"high"|"off"], "EQS": Double}

where availability indicates whether the device is ready

for any execution; gps shows the availability of GPS;

network shows the network state, which is either high, low
or off; and EQS is used for expressing the level of service

execution capacity, which will determine service quality.

2) Selecting Available Devices: The middleware system’s

ability to select the most suitable devices is crucial for ensuring

high performance and low energy consumption. However, in

opportunistic networks comprising arbitrary mobile devices,

the peer selection problem has been a deep, fundamental

research problem for the last decade [5]. To address this

problem, we introduce a quality- and constraints-based peer

selection mechanism that works as follows. First, after collect-

ing EQS values from nearby devices, the client updates these

values with the latest latency information. Then, if a service

requires only one device, the middleware system selects the

device that has the largest EQS value and meets the other

selection criteria. Otherwise, it selects a number of suitable

devices following the descending order of EQS values. To limit

the number of selected devices to avoid possible performance

or energy efficiency overheads, we use the following strategy:

(1) first filter out low-end mobile devices that have lower

resource capacities than the client (i.e., 20% lower EQS
than the client’s EQS); (2) choose the number of servers

based on following straightforward equation, which is obtained

heuristically.

Computing EQS: Once the client device has collected

all the response messages from nearby devices, the most

favorable devices for the given service execution are selected

in accordance with the EQS value defined in the previous

section. The EQS value is computed using the resource usage

information including CPU, memory, battery, and network.

An initial EQS value is calculated using the device-specific

information such as CPU, memory and battery, and then

updated with an end-to-end latency on the client device’s side

as follows:

EQS = (CPUAvail +MemAvail +BattAvail)×NetRTT

(1)

where CPUAvail, MemAvail, and BattAvail are the ratios

of available resources, respectively. NetRTT is a round-trip

time it takes to send a peer discovery message and receive a

corresponding response between a client and nearby devices.

Since the round-trip time is only measured on the client side,

each nearby device sends an initial EQS value along with a

response message. Then, the client re-calculates the EQS with

the actual round-trip time. Each resource usage information

can be collected and quantified using standard system APIs.

3) Partitioning Data: Once the list of devices are identified,

the middleware system divides a job into N equal tasks. To

make the data partitioning problem simple, we adopted the

Hadoop’s idea that splits data into multiple chunks of the same

size, so that the devices that have more hardware capacities

will finish their tasks earlier than others and accept more tasks.

4) Service Execution and Fault Handling: The service

execution procedure contains the following steps: (1)the client

send the service execution request to the selected server

devices; (2) the server devicess download the service execution

package from MSM, and execute the SEP; (3) the server

devices send the service execution results back to the client.

Due to the volatile nature of mobile networks, failures

are a constant presence of mobile execution. As a failure

handling strategy for mobile service execution, the Service

Middleware on the client listens to the network-related updates

(e.g., network join/leave events from BroadcastReceiver
class). When there are any failures reported, the middleware,

if possible, will attempt to by resume the service execution

locally at the client for any reported failures. A simple

checksum mechanism is used to verify the integrity of the

execution results.

C. Development Support

1) For Mobile Application Developers: To become a prag-

matic solution to the resource scarcity problem of mobile

devices, device-to-device mobile services must provide a con-

venient programming model to the mobile developers for them

to invoke mobile services in their applications. In our reference

implementation, we experimented with integrating the notion

of mobile services with a modern Integrated Development

Environment (To support custom tools, modern IDEs offer an

extensibility mechanism realized as plug-ins). The provided

IDE plug-in provides three basic functionalities: searching for

mobile services, generating sample code for invoking mobile

services, and specifying service constraints.
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2) For Mobile Service Developers: To support the hetero-

geneity across different platforms and devices, mobile services

are written in JavaScript, and are executed by a JavaScript

engine. JavaScript service implementations lack access to

system resources (e.g., local files, networks, sensors etc.).

To make it possible to access local system resources from

JavaScript code, we provide Java interfaces by means of the

Java System Resource interface (JSRI). Next, we describe

how we implemented two different JavaScript engines for the

Android and Windows platforms.
a) Native Mobile Services: To implement the native

version of Service Definition, a programmer must implement

a service execution package using the provided APIs. In

particular, the programmer needs to explicitly provide a service

execution class and data processing class for the service (e.g.,

how to serialize/deserialize data, split or merge partial data

etc.). Then, all the classes are compiled to the DEX format

and put into a JAR file, which is added into Service Execution
Package with the service descriptor and constraints files and

uploaded to Service Market. Once a worker receives a Service
Execution Package, a JAR file is extracted from the package

and loaded by searching a service descriptor in the package.
b) JavaScript-based Mobile Services: To support the het-

erogeneity across different platforms and devices, the Service
Definition must be written in JavaScript, which are executable

on any platforms with compatible JavaScript engines. In

JavaScript-based services, a JavaScript file is deployed as a

service package and then executed by a JavaScript engine. To

support heterogeneous mobile devices, we have developed ex-

ecution engines for Android, Windows, and Linux platforms.
c) Mobile Services for Android and Windows Platforms:

To execute a service execution package on the Android

platform, the runtime system instantiates a local web server

using NanoHttpd 2, so that any Android device can load the

extracted micro-mobile service written in JavaScript through

a built-in JavaScript engine (i.e., WebView). For the Windows

platform, we implemented our JavaScript engine using default

WebBrowser and local web server3.

III. EVALUATION

We have evaluated the effectiveness of our approach through

a micro-benchmark and four realistic case studies. Specifically,

to evaluate the performance and energy efficiency of each

device in its network environment, we implemented three

non-trivial test cases to ascertain how effective the system

would be in enabling mobile developers to expend a moderate

programming effort to extend the functional capabilities of

their applications.

• Image Processing Service: In this service, an image is

split into several parts, and each device then blurs one

image part and sends the result back to the client.

• Internet Sharing Service: A device without Internet

access can access webpages with support from the sur-

rounding internet-enabled devices.

2http://nanohttpd.org/
3https://github.com/ideaconnect/wp8-simple-web-server

• GPS Sharing Service: GPS location can be obtained

from a nearby device.

Table I shows the testing devices used in the experiments.

Table I: Specifications of the testing devices

Devices CPU RAM Battery OS
LG Opt. GK 1.7GHz 2GB 3100mAh 4.4.2

LG G Stylo 1.2GHz 1GB 3000mAh 6.0

LG Tribute 1.2GHz 1GB 2100mAh 4.4

LG G4 1.44GHz 3GB 3000mAh 5.1

Galaxy S3 1.4GHz 1GB 2100mAh 4.4

Asus Zenfone 2 1.7GHz 3GB 2400mAh 5.1

LG G Pad 1.7GHz 2GB 4600mAh 4.2.2

Lumia 550 1.1GHz 1GB 2100mAh W. 10

A. Micro-Benchmarks

We measured the service initiation time includes (1) time for

requesting a service and receiving a response message, (2) time

for parsing the service response message and description, time

for downloading the service package (SEP ), which is either

a JavaScript or a native version, and (4) time for installing the

downloaded service package. We tested the image processing

service from two different places Asia (Vietnam) and US on

the same specification devices to see how the geographic

distance affects the service retrieval time. Table II shows

the service downloading time for both scenarios. The file

size of native version and JavaScript version is 2.07kb and

1.29kb, respectively. The JavaScript version does not have any

installation time because it is interpreted at runtime while the

native version includes the classloading time.

Table II: Average service initiation time in different locations:

(1) Asia—U.S. and (2) within LAN

JS (1) Native (1) JS (2) Native (2)
1153ms 1775ms 809ms 896ms

B. Test Case Results

1) Image Blurring Service: To compare the performance

and energy consumption between a native- and a JavaScript-

based version, we implemented two different versions of the

image blurring service in JavaScript and Java, and then we

selected a low-end device (Galaxy S3) as the client, while

other mid- and high-end devices (LG G4, LG GK, Asus and

Tribute) are nearby devices. As depicted in Figure 3, the

JavaScript-based service could improve the performance by the

maximum 38% when executing the mobile service on multiple

devices, while the native version improved the performance

by 42—68%. The bottom graph of Figure 3 also shows the

similar energy consumption pattern between the two versions.

To process the binary data, the JavaScript version requires

additional processing to convert the binary data of an image

into plain strings which is one of the main reason the native

version outperforms the JavaScript version.

2) Internet Sharing Service: We designed the Internet shar-

ing service to distribute requests including URL, n – number

of devices in the cluster and index – index of a device. Each

device (include the client) downloads the HTML text contents
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Figure 3: The performance and energy consumption compar-

ison between the native and JavaScript version of the Image-

processing service

Figure 4: The performance and energy consumption compari-

son between the native and JavaScript version of the Internet-

sharing service

of a web-page from the URL, collects its resource URLs

(images, audio, videos etc.) and downloads a batch of URLs

according to its index position of n devices.

Figure 4 shows the experimental result when downloading

HTML pages through nearby devices using the native and

JavaScript versions. Although the native version shows the

better efficiency in both experiments, the differences are

relatively small because the web-page downloading and data

transmission have been processed through the JSR interface,

whereas JavaScript only contributed as the demand and con-

straint solving carrier.

3) GPS Sharing Service: In this experiment, we performed

three GPS test cases on the native version: two for remote GPS

requests and one for local GPS (invoke by itself). For each

case, we used two devices with the same specifications and

fixed them as the client and server to minimize the overloads

throughout the system. Figure 5 shows our experimental

results that GPS Sharing fails to improve performance. Indeed,

with the client having the same resource specs, accessing a

remote GPS sensor and transmitting data back and forth takes

longer than accessing the local GPS sensor. However, when

the local GPS sensor is unavailable, accessing the GPS sensor

of a nearby device provides a viable alternative.

Figure 5: The performance comparison of the GPS sharing.

C. Programming Effort

Here we estimated the programming effort required to

use our mobile services infrastructure, which comprises 5K

ULOC of Java and JavaScript to implement the middleware

system and 1K ULOC for our MSM implementation. Since

the same developer was in charge of creating services, both

their cross-platform (in JavaScript) and native (in Java and C#

for Android and Windows Phone, respectively) versions, we

report the combined effort it took to develop the services and

the client code that invokes them. Specifically, we calculated

the total number of uncommented lines of code and an

approximate number of days it took to develop, troubleshoot,

and optimize each case study. The co-author who developed

our case studies is an experienced Software Engineer with

several years of industry experience and prior exposure to

mobile application development both in academic and real-

world settings. The results appear in Table III.

Table III: Total lines of code (LOC) and development time for

the case studies.

Service ULOC Time
Image Blurring: Java 830 2 days

Image Blurring: C# 920 5 days

Image Blurring: JavaScript 725 3 days

Internet Sharing: Java 585 2 days

Internet Sharing: JavaScript 680 3 days

GPS Sharing: Java 545 2 days

Mobile application developers can use mobile services ei-

ther during new development or as an optimization. If the

source code is not available, one can take advantage of byte-

code engineering and integrate our system with frameworks

such as RetroSkeleton [7] or Rio [4], whose interception

mechanisms capture requests for system resources, making it

possible to specify custom responses without requiring access

to the application’s source code. Using these frameworks, one

can, for example, redirect GPS location requests to nearby

devices without modifying the source code.

D. Discussion

The micro-mobile services make it possible to design

mobile applications that take advantage of complimenting

strengths of nearby devices from the resource allocation

perspective. Developers can orchestrate the execution of an

application’s functionalities on the devices that have the most

suitable and abundant resources for executing them.

This software architecture removes the need to accept

code for execution from nearby devices. Downloading vetted

service code from trusted markets increases the trustworthiness

of the distributed execution model. At the same time, mobile

service developers would have to comply with the service

market requirements, which would have to be more stringent

than those of application markets.

In general, the MSM architecture can potentially lead to a

new type of mobile developers, domain experts who excel

at backend-related tasks and who may not be particularly

interested in developing end-user applications.
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Once a service is downloaded, the Internet connection is no

longer required, making it possible to execute device-to-device

services in environments with limited or intermittent wide-area

networks. In fact, this architecture can increase the utilization

of nearby mobile devices in such execution environments.

Finally, by addressing resource scarcity, this architecture

can become a viable solution for orchestrating the execution

of IoT setups, in which each participating device is likely to

posses specialized functionality (e.g., sensor, media capture,

etc.) while lacking general hardware or software resources.

IV. RELATED WORK

This work is related to other complementary efforts that op-

timize mobile applications’ performance and energy efficiency

via remote execution, including special software libraries, code

migration, and computation offloading.

Alljoyn [3] is an open source framework that hides the

complexity of network communications for application pro-

grammers. By providing interoperability between multiple

platforms without any transport layers, Alljoyn makes the

integration and initiation of network communication easy and

straightforward. Before the Wi-Fi Direct technology, many

efforts have focused on optimizing peer-to-peer network based

on existing short-range/wireless communication technologies

available on mobile devices including Bluetooth, Wireless

IEEE802.11 and cellular communication link [9], [11].

In addition, our approach shares objectives and techniques

with one that migrates different code bases into a system.

In particular, code migration can be used to update existing,

legacy systems [8]. Similar to our approach, code migration

mechanisms are mainly used to run code in different mem-

ory spaces (e.g., running C++ code on multi-core systems

[6], running JavaScript code on a server [13], object-level

migration for distributed systems [14], thread-level migration

through middleware [12]). These code migration approaches

have influenced the design of offloading mechanisms in the

mobile computing area.

One can compare our work with cross-platform hybrid

frameworks, such as Apache Cordova (formerly PhoneGap)

[1] and React Native [2]. Cordova uses standard Web tech-

nologies for cross-platform mobile development, while React

Native supports iOS native development with JavaScript. Simi-

larly to our approach, Cordova executes applications in mobile

web browsers on multiple platforms, while React Native in-

troduces a bridge library (i.e., Java System Resource interface

(JSRI) in our approach) to access local system resources from

JavaScript code. Despite also relying on web technologies for

cross-platform execution, our approach differs from Cordova

and React Native. Our approach’s target is heterogeneous

service execution rather than application execution.

V. CONCLUSION

In this paper, we presented a micro-mobile service archi-

tecture and reference implementation that execute services

on nearby mobile devices through device-to-device channels.

Our solution centers around a trusted store of vetted mobile

services, downloaded to a mobile device and invoked at

runtime, as well as a middleware system for selecting suitable

devices to execute services and managing the invocation of

services across devices. Our experimental evaluation shows

how executing mobile services on nearby devices can improve

performance and reduce energy consumption.
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