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Abstract—In mobile edge computing, a mobile or IoT device
requests a nearby device to execute some functionality and return
back the results. However, the executable code must either be
pre-installed on the nearby device or be transferred from the
requester device, reducing the utility or safety of device-to-device
computing, respectively. To address this problem, we present
a micro-service middleware that executes services on nearby
mobile devices, with a trusted middleman distributing executable
code. Our solution comprises (1) a trusted store of vetted mobile
services, self-contained executable modules, downloaded to de-
vices and invoked at runtime; and (2) a middleware system that
matches service requirements to available devices to orchestrate
the device-to-device communication. Our experiments show that
our solution (1) enables executing mobile services on nearby
devices, without requiring a device to receive executable code
from an untrusted party; (2) supports mobile edge computing in
practical settings, increasing performance and decreasing energy
consumption; (3) reduces the mobile development workload by
reusing services.

I. INTRODUCTION

Mobile and IoT devices often need to make use of external
computational resources. Applications for these devices may
rely on functionality that cannot be implemented using the
resources of a single device. One option for enhancing the
execution capacities of a resource-limited device is to use
cloud-based services [10]. The explosion of sensory data has
given rise to edge computing, processing the collected sensory
data locally at the edge of the network. In mobile edge
computing, devices accomplish many of the computational
tasks by networking with each other directly. This arrangement
also prevents the bandwidth bottleneck of the devices simul-
taneously communicating with a remote cloud-based server.

However, before a device can execute any functionality, it
needs the executable files. Currently, there are two options
for obtaining these files: (1) install them in advance, (2)
transfer them at runtime from the requesting device. The first
option substantially limits the utility of mobile edge com-
puting. Oftentimes, mobile execution environments are highly
dynamic, and it is not even known a priori which devices will
be operated in the vicinity. The second option compromises
security. In terms of potential security vulnerabilities, it would
be too risky to accept executable code from an untrusted
party. In summary, the realities of mobile execution impose
several technical obstacles on mobile and IoT devices sharing
resources with nearby devices:
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o Trust/privacy—the users of nearby devices may be will-
ing to perform a computation on behalf of unfamiliar
clients, but they are unlikely to trust these clients enough
to accept code from them for execution;

o Dynamicity—at the time when the application needs to
make use of an external resource, it is impossible to
predict what kind of mobile devices will happen to be
nearby and what resources they will have at their disposal;

o Heterogeneity—it is impossible to predict which mobile
platforms the available nearby devices will run.

This paper describes the Mobile Service Market (MSM),
a trusted remote store of vetted mobile services, each of
which constitutes a self-contained executable module to be
downloaded to mobile devices and invoked at runtime. The
MSM can solve the problem as follows. When developing
an application, a mobile developer realizes that the device on
which the application will run may not possess the required
functionality. She then browses a mobile services market
(MSM) to find a service with the required functionality. The
developer specifies the requirements for a device that can be
selected at runtime to execute the service. The requirements
are configured by the programmers to indicate the minimal
properties of the device that can be selected to execute the
service. This paper makes the following contributions:

o Micro-mobile services—a service-oriented solution to the
resource scarcity problem of mobile devices.

o Mobile Service Market—a novel system architecture for
hosting and deploying device-to-device mobile services
on demand, thus alleviating the issues pertaining to a lack
of trust/privacy.

o Empirical Evaluation—We rigorously evaluate the effec-
tiveness and performance/energy efficiency of our ref-
erence implementation on a series of micro and macro
benchmarks and applications.

The rest of this paper is organized as follows. Section II
describes device-to-device mobile services in detail. Section
IIT presents our evaluations results. Section IV introduces the
related works, and Section V presents future work directions
and concludes the paper.
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II. MICRO-MOBILE SERVICES

Micro-mobile services' extends the notion of the Service

Oriented Architecture (SOA) for the needs of ad-hoc mobile
execution on nearby devices. Unlike a traditional service that
is hosted at a location identified by a fixed domain name (e.g.,
an IP address), mobile services reside at a mobile service
market and deployed on devices for execution on demand at
runtime. Since the platform on which a mobile service will
be executed is unknown until the runtime, service developers
are expected to provide several equivalent versions for each
service to support execution on all major platforms. Since
mobile services are expected to be executed on devices with
limited resources, service developers have to design their
solution with resource scarcity in mind. The acceptance criteria
for hosting a service in a Mobile Service Market must be
necessarily more stringent than those for accepting mobile
applications to application markets.
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Figure 1: Proposed MSM Architecture.

As shown in Fig. 1, our solution contains three novel
components: (1) The Mobile Service Market (MSM): an online
service market for hosting and deploying mobile services; (2)
Service Middleware that matches services with suitable de-
vices at runtime as well as manages the communication across
heterogeneous devices; (3) Programming model that provides
a convenient interface for mobile application developers to
choose the needed services and configure their requirements.
We next describe the novel parts of our contribution in turn.

A. Service Market

Figure 1 shows the main components of the MSM archi-
tecture that codifies interactions across three different roles:
service developer, application developer, and mobile user.

The mobile service developer identifies those pieces of
application functionality that can be represented as mobile
services. A service submitted to a service market must adhere
to a format detailed below.

The application developer incorporates mobile services into
their applications. To that end, they need to browse through

IFor brevity, in the rest of the presentation we shall use the terms micro-
mobile services and mobile services interchangeably.
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the catalogs of mobile services of the MSMs that their users
are likely to trust. They select the services that solve the
resource scarcity problem at hand, and are able to change the
constraints of the invoked services for the specific needs of
their applications.

The mobile user will need to configure their device to be
willing to accept the execution of services, dynamically down-
loadable from a given MSM. The middleware will manage the
service’s lifecycle, such as obtaining the latest version of the
service execution package for further invocations.

In essence, the MSM combines the features of application
markets and mobile service repositories. Following the appli-
cation market model makes it possible for users to rely on the
reputation of a given market to have enough trust to allow the
automatic installation and execution of such mobile services.
At the same time, service developers would have to comply
with the service market requirements, which likely would have
to be more stringent than those of application markets.

1) Service Representation: Our design of MSM defines a

typical mobile service as a collection of three elements:
Service Description: uniquely identifies a service as a combi-
nation of service name, version, usage scope, and parameters.
Service Execution Package (SEP): is a self-contained ex-
ecutable package that can be downloaded from the service
market and executed on a mobile device. A service can be
designed for one particular platform, several platforms, or all
platforms by means of JavaScript execution. Platform avail-
ability is one of the selection criteria that mobile developers
need to consider when deciding to use a mobile service in
their applications.
Constraints: are requirements on the device that can be
selected by the runtime to execute a service. Constraints are
defined by service developers, with some of their parameters
configured by application developers for the needs of a given
application. Currently, our reference implementation makes
use of the following constraints:

« Sensor availability: REQ or NREQ. For example, a service
may require a GPS sensor for execution.

Battery threshold: N (%) — device does not respond to a
service execution request if the remaining battery level is
lower than N%.

Expected QoS Level: (N) — the detailed definition of
expected QoS level (FQS) will be given in the next
subsection. Generally speaking, E(QS is a metrics of a
mobile device’s resource status.

Network availability: HIGH, LOW, or N.A.

Number of required devices: N, the number of required
mobile devices to execute a service (e.g, N > 1:
collaborative execution)

B. Service Execution Model (Middleware)

The middleware system provides a communication infras-
tructure for mobile devices, coordinating the execution of
services between clients and servers. In this section, we
explain each component of the middleware system in turn.
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Figure 2: Service Market overview

1) Discovering Available Nearby Devices: To discover
available devices, a client device first sends out a peer discov-
ery message to nearby devices, and then each device replies
with its availability that represents resource capacities. The
following JSON format shows a response message to the peer
discovery message.

JSON : DevicelInfo {
"availability": Boolean, "gps": Boolean,
"network": ["low"|"high"|"off"], "EQS": Double}

where availability indicates whether the device is ready
for any execution; gps shows the availability of GPS;
network shows the network state, which is either high, 1ow
or off; and EQS is used for expressing the level of service
execution capacity, which will determine service quality.

2) Selecting Available Devices: The middleware system’s
ability to select the most suitable devices is crucial for ensuring
high performance and low energy consumption. However, in
opportunistic networks comprising arbitrary mobile devices,
the peer selection problem has been a deep, fundamental
research problem for the last decade [5]. To address this
problem, we introduce a quality- and constraints-based peer
selection mechanism that works as follows. First, after collect-
ing EQS values from nearby devices, the client updates these
values with the latest latency information. Then, if a service
requires only one device, the middleware system selects the
device that has the largest EQS value and meets the other
selection criteria. Otherwise, it selects a number of suitable
devices following the descending order of EQS values. To limit
the number of selected devices to avoid possible performance
or energy efficiency overheads, we use the following strategy:
(1) first filter out low-end mobile devices that have lower
resource capacities than the client (i.e., 20% lower EQS
than the client’s EQS); (2) choose the number of servers
based on following straightforward equation, which is obtained
heuristically.

Computing EQS: Once the client device has collected
all the response messages from nearby devices, the most
favorable devices for the given service execution are selected
in accordance with the EQS value defined in the previous
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section. The EQS value is computed using the resource usage
information including CPU, memory, battery, and network.
An initial EQS value is calculated using the device-specific
information such as CPU, memory and battery, and then
updated with an end-to-end latency on the client device’s side
as follows:

EQS = (CPUapeit + Memavait + Batt avair) X Netrrr

)]

where CPU ppait, Memayaii, and Batt a,qs are the ratios
of available resources, respectively. Netrprr is a round-trip
time it takes to send a peer discovery message and receive a
corresponding response between a client and nearby devices.
Since the round-trip time is only measured on the client side,
each nearby device sends an initial EQS value along with a
response message. Then, the client re-calculates the EQS with
the actual round-trip time. Each resource usage information
can be collected and quantified using standard system APIs.

3) Partitioning Data: Once the list of devices are identified,
the middleware system divides a job into N equal tasks. To
make the data partitioning problem simple, we adopted the
Hadoop’s idea that splits data into multiple chunks of the same
size, so that the devices that have more hardware capacities
will finish their tasks earlier than others and accept more tasks.

4) Service Execution and Fault Handling: The service
execution procedure contains the following steps: (1)the client
send the service execution request to the selected server
devices; (2) the server devicess download the service execution
package from MSM, and execute the SEP; (3) the server
devices send the service execution results back to the client.

Due to the volatile nature of mobile networks, failures
are a constant presence of mobile execution. As a failure
handling strategy for mobile service execution, the Service
Middleware on the client listens to the network-related updates
(e.g., network join/leave events from BroadcastReceiver
class). When there are any failures reported, the middleware,
if possible, will attempt to by resume the service execution
locally at the client for any reported failures. A simple
checksum mechanism is used to verify the integrity of the
execution results.

C. Development Support

1) For Mobile Application Developers: To become a prag-
matic solution to the resource scarcity problem of mobile
devices, device-to-device mobile services must provide a con-
venient programming model to the mobile developers for them
to invoke mobile services in their applications. In our reference
implementation, we experimented with integrating the notion
of mobile services with a modern Integrated Development
Environment (To support custom tools, modern IDEs offer an
extensibility mechanism realized as plug-ins). The provided
IDE plug-in provides three basic functionalities: searching for
mobile services, generating sample code for invoking mobile
services, and specifying service constraints.



2) For Mobile Service Developers: To support the hetero-
geneity across different platforms and devices, mobile services
are written in JavaScript, and are executed by a JavaScript
engine. JavaScript service implementations lack access to
system resources (e.g., local files, networks, sensors etc.).
To make it possible to access local system resources from
JavaScript code, we provide Java interfaces by means of the
Java System Resource interface (JSRI). Next, we describe
how we implemented two different JavaScript engines for the
Android and Windows platforms.

a) Native Mobile Services: To implement the native
version of Service Definition, a programmer must implement
a service execution package using the provided APIs. In
particular, the programmer needs to explicitly provide a service
execution class and data processing class for the service (e.g.,
how to serialize/deserialize data, split or merge partial data
etc.). Then, all the classes are compiled to the DEX format
and put into a JAR file, which is added into Service Execution
Package with the service descriptor and constraints files and
uploaded to Service Market. Once a worker receives a Service
Execution Package, a JAR file is extracted from the package
and loaded by searching a service descriptor in the package.

b) JavaScript-based Mobile Services: To support the het-
erogeneity across different platforms and devices, the Service
Definition must be written in JavaScript, which are executable
on any platforms with compatible JavaScript engines. In
JavaScript-based services, a JavaScript file is deployed as a
service package and then executed by a JavaScript engine. To
support heterogeneous mobile devices, we have developed ex-
ecution engines for Android, Windows, and Linux platforms.

¢) Mobile Services for Android and Windows Platforms:
To execute a service execution package on the Android
platform, the runtime system instantiates a local web server
using NanoHttpd 2, so that any Android device can load the
extracted micro-mobile service written in JavaScript through
a built-in JavaScript engine (i.e., WebView). For the Windows
platform, we implemented our JavaScript engine using default
WebBrowser and local web server?.

III. EVALUATION

We have evaluated the effectiveness of our approach through
a micro-benchmark and four realistic case studies. Specifically,
to evaluate the performance and energy efficiency of each
device in its network environment, we implemented three
non-trivial test cases to ascertain how effective the system
would be in enabling mobile developers to expend a moderate
programming effort to extend the functional capabilities of
their applications.

« Image Processing Service: In this service, an image is
split into several parts, and each device then blurs one
image part and sends the result back to the client.

o Internet Sharing Service: A device without Internet
access can access webpages with support from the sur-
rounding internet-enabled devices.

Zhttp://nanohttpd.org/
3https://github.com/ideaconnect/wp8-simple- web-server
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o GPS Sharing Service: GPS location can be obtained
from a nearby device.

Table I shows the testing devices used in the experiments.

Table I: Specifications of the testing devices

Devices CPU RAM | Battery [0}
LG Opt. GK 1.7GHz 2GB 3100mAh | 4.4.2
LG G Stylo 1.2GHz 1GB 3000mAh | 6.0
LG Tribute 1.2GHz 1GB 2100mAh | 4.4
LG G4 1.44GHz | 3GB 3000mAh | 5.1
Galaxy S3 1.4GHz 1GB 2100mAh | 4.4
Asus Zenfone 2 1.7GHz 3GB 2400mAh 5.1
LG G Pad 1.7GHz 2GB 4600mAh | 4.2.2
Lumia 550 1.1GHz 1GB 2100mAh | W. 10

A. Micro-Benchmarks

We measured the service initiation time includes (1) time for
requesting a service and receiving a response message, (2) time
for parsing the service response message and description, time
for downloading the service package (SEP), which is either
a JavaScript or a native version, and (4) time for installing the
downloaded service package. We tested the image processing
service from two different places Asia (Vietnam) and US on
the same specification devices to see how the geographic
distance affects the service retrieval time. Table II shows
the service downloading time for both scenarios. The file
size of native version and JavaScript version is 2.07kb and
1.29kb, respectively. The JavaScript version does not have any
installation time because it is interpreted at runtime while the
native version includes the classloading time.

Table II: Average service initiation time in different locations:
(1) Asia—U.S. and (2) within LAN

JS (1) JS (2)
1153ms 809ms

Native (1)
1775ms

Native (2)
896ms

B. Test Case Results

1) Image Blurring Service: To compare the performance
and energy consumption between a native- and a JavaScript-
based version, we implemented two different versions of the
image blurring service in JavaScript and Java, and then we
selected a low-end device (Galaxy S3) as the client, while
other mid- and high-end devices (LG G4, LG GK, Asus and
Tribute) are nearby devices. As depicted in Figure 3, the
JavaScript-based service could improve the performance by the
maximum 38% when executing the mobile service on multiple
devices, while the native version improved the performance
by 42—68%. The bottom graph of Figure 3 also shows the
similar energy consumption pattern between the two versions.
To process the binary data, the JavaScript version requires
additional processing to convert the binary data of an image
into plain strings which is one of the main reason the native
version outperforms the JavaScript version.

2) Internet Sharing Service: We designed the Internet shar-
ing service to distribute requests including URL, n — number
of devices in the cluster and index — index of a device. Each
device (include the client) downloads the HTML text contents
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of a web-page from the URL, collects its resource URLs
(images, audio, videos etc.) and downloads a batch of URLs
according to its index position of n devices.

Figure 4 shows the experimental result when downloading
HTML pages through nearby devices using the native and
JavaScript versions. Although the native version shows the
better efficiency in both experiments, the differences are
relatively small because the web-page downloading and data
transmission have been processed through the JSR interface,
whereas JavaScript only contributed as the demand and con-
straint solving carrier.

3) GPS Sharing Service: In this experiment, we performed
three GPS test cases on the native version: two for remote GPS
requests and one for local GPS (invoke by itself). For each
case, we used two devices with the same specifications and
fixed them as the client and server to minimize the overloads
throughout the system. Figure 5 shows our experimental
results that GPS Sharing fails to improve performance. Indeed,
with the client having the same resource specs, accessing a
remote GPS sensor and transmitting data back and forth takes
longer than accessing the local GPS sensor. However, when
the local GPS sensor is unavailable, accessing the GPS sensor
of a nearby device provides a viable alternative.
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Figure 5: The performance comparison of the GPS sharing.
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C. Programming Effort

Here we estimated the programming effort required to
use our mobile services infrastructure, which comprises 5K
ULOC of Java and JavaScript to implement the middleware
system and 1K ULOC for our MSM implementation. Since
the same developer was in charge of creating services, both
their cross-platform (in JavaScript) and native (in Java and C#
for Android and Windows Phone, respectively) versions, we
report the combined effort it took to develop the services and
the client code that invokes them. Specifically, we calculated
the total number of uncommented lines of code and an
approximate number of days it took to develop, troubleshoot,
and optimize each case study. The co-author who developed
our case studies is an experienced Software Engineer with
several years of industry experience and prior exposure to
mobile application development both in academic and real-
world settings. The results appear in Table III.

Table III: Total lines of code (LOC) and development time for
the case studies.

[ Service [ ULOC [ Time |
[ Image Blurring: Java [ 830 [ 2 days |
| Image Blurring: C# | 920 | 5days |
[ Image Blurring: JavaScript [ 725 [ 3days |
[ Internet Sharing: Java [ 585 [ 2days |
| Internet Sharing: JavaScript | 680 [ 3 days |
[ GPS Sharing: Java [ 545 [ 2 days |

Mobile application developers can use mobile services ei-
ther during new development or as an optimization. If the
source code is not available, one can take advantage of byte-
code engineering and integrate our system with frameworks
such as RetroSkeleton [7] or Rio [4], whose interception
mechanisms capture requests for system resources, making it
possible to specify custom responses without requiring access
to the application’s source code. Using these frameworks, one
can, for example, redirect GPS location requests to nearby
devices without modifying the source code.

D. Discussion

The micro-mobile services make it possible to design
mobile applications that take advantage of complimenting
strengths of nearby devices from the resource allocation
perspective. Developers can orchestrate the execution of an
application’s functionalities on the devices that have the most
suitable and abundant resources for executing them.

This software architecture removes the need to accept
code for execution from nearby devices. Downloading vetted
service code from trusted markets increases the trustworthiness
of the distributed execution model. At the same time, mobile
service developers would have to comply with the service
market requirements, which would have to be more stringent
than those of application markets.

In general, the MSM architecture can potentially lead to a
new type of mobile developers, domain experts who excel
at backend-related tasks and who may not be particularly
interested in developing end-user applications.



Once a service is downloaded, the Internet connection is no
longer required, making it possible to execute device-to-device
services in environments with limited or intermittent wide-area
networks. In fact, this architecture can increase the utilization
of nearby mobile devices in such execution environments.

Finally, by addressing resource scarcity, this architecture
can become a viable solution for orchestrating the execution
of IoT setups, in which each participating device is likely to
posses specialized functionality (e.g., sensor, media capture,
etc.) while lacking general hardware or software resources.

IV. RELATED WORK

This work is related to other complementary efforts that op-
timize mobile applications’ performance and energy efficiency
via remote execution, including special software libraries, code
migration, and computation offloading.

Alljoyn [3] is an open source framework that hides the
complexity of network communications for application pro-
grammers. By providing interoperability between multiple
platforms without any transport layers, Alljoyn makes the
integration and initiation of network communication easy and
straightforward. Before the Wi-Fi Direct technology, many
efforts have focused on optimizing peer-to-peer network based
on existing short-range/wireless communication technologies
available on mobile devices including Bluetooth, Wireless
IEEE802.11 and cellular communication link [9], [11].

In addition, our approach shares objectives and techniques
with one that migrates different code bases into a system.
In particular, code migration can be used to update existing,
legacy systems [8]. Similar to our approach, code migration
mechanisms are mainly used to run code in different mem-
ory spaces (e.g., running C++ code on multi-core systems
[6], running JavaScript code on a server [13], object-level
migration for distributed systems [14], thread-level migration
through middleware [12]). These code migration approaches
have influenced the design of offloading mechanisms in the
mobile computing area.

One can compare our work with cross-platform hybrid
frameworks, such as Apache Cordova (formerly PhoneGap)
[1] and React Native [2]. Cordova uses standard Web tech-
nologies for cross-platform mobile development, while React
Native supports iOS native development with JavaScript. Simi-
larly to our approach, Cordova executes applications in mobile
web browsers on multiple platforms, while React Native in-
troduces a bridge library (i.e., Java System Resource interface
(JSRI) in our approach) to access local system resources from
JavaScript code. Despite also relying on web technologies for
cross-platform execution, our approach differs from Cordova
and React Native. Our approach’s target is heterogeneous
service execution rather than application execution.

V. CONCLUSION

In this paper, we presented a micro-mobile service archi-
tecture and reference implementation that execute services
on nearby mobile devices through device-to-device channels.
Our solution centers around a trusted store of vetted mobile
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services, downloaded to a mobile device and invoked at
runtime, as well as a middleware system for selecting suitable
devices to execute services and managing the invocation of
services across devices. Our experimental evaluation shows
how executing mobile services on nearby devices can improve
performance and reduce energy consumption.
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