
Reliable and Efficient Mobile Edge Computing in
Highly Dynamic and Volatile Environments

Minh Le∗, Zheng Song†, Young-Woo Kwon∗, and Eli Tilevich†
∗Dept. of Computer Science, Utah State University

Email: minh.le@aggiemail.usu.edu, young.kwon@usu.edu
†Software Innovations Lab., Virginia Tech

Email: {sonyyt,tilevich}@cs.vt.edu

Abstract—By processing sensory data in the vicinity of its
generation, edge computing reduces latency, improves responsive-
ness, and saves network bandwidth in data-intensive applications.
However, existing edge computing solutions operate under the
assumption that the edge infrastructure will comprise a set of
pre-deployed, custom-configured computing devices, connected
by a reliable local network. Although edge computing has great
potential to provision the necessary computational resources in
highly dynamic and volatile environments, including disaster
recovery scenes and wilderness expeditions, extant distributed
system architectures in this domain are not resilient against
partial failure, caused by network disconnections. In this paper,
we present a novel edge computing system architecture that
delivers failure-resistant and efficient applications by dynamically
adapting to handle failures; if the edge server becomes unreach-
able, device clusters start executing the assigned tasks by com-
municating P2P, until the edge server becomes reachable again.
Our experimental results with the reference implementation show
high responsiveness and resilience in the face of partial failure.
These results indicate that the presented solution can integrate
the individual capacities of mobile devices into powerful edge
clouds, providing efficient and reliable services for end-users in
highly dynamic and volatile environments.

I. INTRODUCTION

Edge computing exploits data locality by processing mas-

sive amounts of sensory data collected by IoT devices “at the

edge of the network.” IoT devices, mobile devices, and edge

servers process the locally collected data and transmit only

the processed results to the cloud. In addition, edge servers

function as gateways that coordinate the at-the-edge computa-

tion by assigning tasks to the available connected devices for

execution. Traditional edge computing setups operate under

the assumption of having a stable network connection, both

between the edge server and the cloud, as well as between the

local devices and the edge server.

In this paper, we consider edge computing environments

that are highly dynamic and volatile. These environments

are characterized by intermittent network connectivity, device

mobility, and the presence of partial failure. In other words,

the network connections both within the edge cloud and to

the Internet are unstable or even non-existent. Users carrying

the mobile devices involved can move at will, thus potentially

affecting their devices’ reachability to the edge cloud. Any of

the computing devices involved, including the edge servers,

can crash or become unreachable at any time.

The technical solutions presented herein enable reliable

and efficient mobile edge computing in highly dynamic and

volatile environments, such as those exemplified by disaster

recovery scenes, battlefields, or expeditions to the wilderness.

A. Motivating Example

As a concrete example of the problem domain, consider

Figure 1. A team of first responders reports to the location of

a recent disaster. Each responder is supported by a collection

of personal devices, both mobile and wearable. These devices

are heterogeneous, in the sense that they differ in terms of their

hardware resources, operating systems, and platform versions.

A recovery vehicle hosts an edge server that also provides

a WiFi access point (AP). Assume that the edge server’s

processing power is vastly superior to those of the personal

devices, the WiFi AP covers the entire disaster recovery area,

and the Internet connection’s cellular signal is intermittent or

non-existent.

Figure 1: Motivating example: Image Stitching Service: (top)

shows the overall service execution scenario; (bottom) shows

the input images from different responders, the data-graph, and

the stitched panorama.

Enabling the mobile devices and the edge server to cooper-

ate as an edge cloud can greatly assist the responders in their

mission. First, the responders must assess the situation on the

ground and come up with a recovery strategy. To that end, they

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

978-1-5386-2859-1/17/$31.00 ©2017 IEEE 113

need to be able to efficiently map the entire recovery area. This
task is called Image Stitching, a computer vision operation
that glues adjacent pictures of an area together into a single
panoramic image. The pictures are taken by the geographically
dispersed responders using their respective devices, while the
stitched panorama provides a detailed yet holistic view of the
recovery area for the responders to facilitate their immediate
recovery tasks (e.g., “What’s around the corner from me?”).

B. Technical Challenges

To realize the vision of enabling the heterogeneous mobile
devices and the edge server to collaborate as a coordinated
edge cloud, one must address two key technical challenges—
device mobility and partial failure.

The responders need to move at will to attend to the
recovery task at hand. This requirement entails that the devices
forming the edge cloud may move to locations not covered by
the limited WiFi AP, thus causing partial failure in the device-
edge server distributed execution. Therefore, another technical
challenge is to provide not only an efficient and reliable edge
cloud architecture, but also resistant to partial failure caused by
device mobility. The device-edge server distributed execution
may operate in a peer-to-peer pattern, if the connection with
the edge server is broken. The available network is likely to
exhibit a high degree of volatility, with fluctuating bandwidth,
latency, and packet loss rates.

For example, to stitch individual images into a single
panoramic view, the individual devices that have captured their
pictures need to send them to the edge server that has the
computational and storage capacities to execute the stitching
algorithm. However, the Image Retrieval service may operate
in a peer-to-peer pattern, if the requested portion of the stitched
map happens to be located on some nearby devices, or if the
connection with the server is broken. The available network
is likely to exhibit a high degree of volatility, with fluctuating
bandwidth, latency, and packet loss rates.

This paper describes a solution that provides reliable and
efficient mobile edge computing in highly dynamic and
volatile environments. Our solution comprises a novel service
architecture that includes the service infrastructure, a trusted
portable store of vetted mobile edge services, each of which
constitutes a self-contained executable module to be down-
loaded to mobile devices and invoked at runtime. In addition,
the coordination of mobile services and the edge server is
orchestrated by our edge server architecture, in a context-
adaptive, failure-resistant fashion.

This paper makes the following contributions:

• Mobile Edge Service Infrastructure—a novel system
component for deploying microservices on demand to
heterogeneous mobile devices at the edge.

• Adaptive Edge Service Architecture—a novel
distributed system architecture that dynamically re-
configures itself to provide resilience to partial failure.

• Empirical Evaluation—We rigorously evaluate the ef-
fectiveness and performance/energy efficiency of our ref-

erence implementation on a series of micro and macro
benchmarks and applications.

The rest of this paper is organized as follows. Section II
describes the proposed system architecture in detail. Section
III presents our evaluations results. Section IV introduces the
related works, and Section V presents future work directions
and concludes the paper.

II. TECHNICAL APPROACH

In this section, we present our novel mobile edge service
architecture, which enables reliability and efficiency in the
face of the following technical challenge: the possibility of the
mobile devices involved moving outside of their reachability
range or failing for other reasons (i.e., partial failure).

To solve the aforementioned technical challenge, the ar-
chitecture organizes mobile devices and edge servers into a
hierarchical structure. All computing nodes, including the edge
server and the set of available mobile devices, are connected
using peer-to-peer communication interfaces, the main and the
backup ones. When partial failure renders the edge server
inaccessible, the backup interface makes it possible for the
mobile devices to communicate with each other directly, with
a cluster of mobile devices providing the edge services.

A. System Architecture

Here we provide an overview of our system architecture;
the specific technical details are covered in the subsequent
subsections, to which we provide forward references.

Our solution comprises a service infrastructure for reliable
and efficient mobile edge computing. To understand how one
can develop distributed mobile applications using this archi-
tecture, let us revisit the motivating example above. In that
example, computing vision operations will be implemented
as mobile microservice. Each service is a self-encapsulated
unit of functionality managed by a service infrastructure. Each
service includes a set of execution constraints that define the
type of an edge computing device that can execute it in a given
environment.

As the responders move around over time, the network
topology of the mobile devices they are carrying is contin-
uously changing. The technical challenge here is to hide the
required underlying re-configurations of the mobile networks
in response to the deployment of services on the continuously
fluctuating—both in size and location—collection of mobile
devices. We address these problems by providing middleware
support for dynamic and volatile environments, whose adaptive
facilities dynamically restructure the patterns of distributed
communication in response to partial failure. Section II-C
discusses the general design of the middleware system, while
Section II-C3 discusses the details of handling partial failure.

B. Mobile Edge Services

Our service infrastructure features of application markets
and mobile service repositories. Following the application
market model enables mobile devices to automatically install
and execute the required mobile edge services, while following

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

114

the service repositories model enables mobile application

developers to implement the required functionalities as service

invocations.

Since the platform on which a mobile edge service will be

executed is unknown until the runtime, service developers are

expected to provide several equivalent versions for each ser-

vice to support execution on all major platforms. An important

design assumption is that of mobile devices possessing limited

resources, with some of the limitations making it impossible

for a given device to execute a given service.

C. Adaptive Edge Service for Reliability and Efficiency

Our middleware provides efficient communication support

for mobile microservices, coordinating their executions be-

tween heterogeneous edge computing participants, such as the

edge server and mobile devices. In addition to the commu-

nication support, due to the dynamic and volatile nature of

wireless networks, the middleware provides a novel failure

handling mechanism, activated in cases of service execution

failures or network disconnections.

Edge Node

Cluster
Head

Cloud Node

Full Edge Service Peer-to-peer Service

Cluster
Head Data & Control

Channel

Control
Channel

Figure 2: Edge cloud architecture.

Figure 2 gives an overview of the system architecture. The

primary service execution model is client-server executing

microservices at the edge server, as long as it is reachable.

However, when the network or edge server becomes unavail-

able, mobile services are executed by means of nearby mobile

devices in a peer-to-peer model. Then, as soon as the network

connection between the edge server and mobile devices is

restored, the service execution model is switched back to the

client-server model.

1) Service Execution: Although our system architecture

consists of two communication models: the client-server model

and the peer-to-peer model, we use an adaptive system archi-

tecture on top of the topic-based publish/subscribe middle-

Algorithm 1 Service request algorithm.

1: function SELECTDEVICES(client)
2: workerList ← getAvailableWorkers() � Include worker on edge
3: if (workerList.edgeAvailable()) then � Edge server is used
4: client.offloadToEdge()
5: else � P2P is used
6: broker ← client.offloadToP2P()
7: sortedDRLs[] ← sort(workerList.DRLs) � Descending order
8: maxCombine ← 0
9: availWorkerList[] ← null

10: for all (DRLi ∈ sortedDRLs) do � Find max (i ×DRLi)
11: if (maxCombine < (i×DRLi)) then
12: availWorkerList

add←−− workerList[i]

13: maxCombine ← (i×DRLi)
14: end if
15: end for
16: if (maxCombine < DRLclient) then � Prefer local execution
17: broker.runAtLocal(client)
18: else � Job is distributed to the selected workers
19: broker.sendToWorkers(availWorkerList)
20: end if
21: end if
22: end function

ware [12] with three main constituent components: Broker,

Worker and Client.
The broker hosted on either an edge server or mobile

devices plays a critical role in executing mobile services,

including (1) receiving service execution requests from clients;

(2) looking up and downloading execution packages from

a service repository; (3) selecting workers based on their

resource availability and capacity; (4) delivering service execu-

tion packages to the selected workers; (5) gathering execution

results from the workers and returning them back to the clients.

The worker located on an edge server and all mobile devices

reports its resource availability and capacity to the broker that

assigns tasks by sending service packages to workers and then

execution results are sent back to the broker.

The client requests mobile service execution to the broker

and waits for the result from the broker. If the broker cannot

handle incoming new service requests due to the limited

number of available workers, the client immediately cancels

the service execution request and executes it locally.

When the edge server is available and the communication

model is the client-server model, the edge server functions

both as the broker and the worker. When the edge server

is not available, the mobile device which is the cluster head

works as the broker, and the other mobile devices in the cluster

are taken as available workers. For a client device, it ignores

the differences in the network communication model, and

only needs to coordinate with the available broker. If partial

failure happens (e.g., no available workers), the broker returns

“execution error” to the client device, and the client device

executes the service locally.

2) Optimal Device Selection: The result of executing a

service remotely is often dominated by the hardware configu-

ration of the service execution device, as well as its network

conditions such as bandwidth/delay characteristics [10]. Thus,

our approach finds an appropriate number of devices for the

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

115

current service execution environment to provide the best
execution results with respect to performance. In the following
discussion, we describe our service request algorithm in detail.

Our service request algorithm determines the best service
execution model between an edge server and peers, and finds
the most favorable devices based on the service execution
capacity of each device. For the service execution capacity,
we define the Device Responsiveness Level (DRL) metric,
which is expressed as follows: DRL =

∑
i=1,M Ci × CRi

,
where Ci is the CPU speed of core i (Ci = CPUi); CRi

is the remaining percentage of the CPU core; and M is the
number of cores. To find the most favorable mobile devices
in a P2P network, a Broker selects N devices by comparing
their DRL values with the client’s DRL, divides a job into N
equal pieces1, and sends them to the corresponding workers
through the following steps:

• Assume that we have D devices. First, we sort the
available devices based on their processing power (DRL)
in the decreasing order. Here, we have a list of devices
D = {d = 1, 2, ...D}, with their DRL {DRLd | ∀d ∈
D}, DRLd1 ≥ DRLd2,∀d1 < d2 ∈ D.

• For each d ∈ D, we calculate the d×DRLd, and select
N = max(d×DRLd),∀d ∈ D. Then, select all devices
from the sorted list that has higher DRL values than d,
and the selected device set is: N ∗ = {1, 2, ..., N}. The
basic intuition behind this arrangement is, considering
that the job will be divided into N equal pieces, the
overall execution time can be estimated as the longest
execution time of executing one piece on each worker,
or say, the execution time on a worker device with the
lowest DRL of all selected workers. If we use I to
represent the job, and I/N to represent the piece on a
worker, the overall execution time can be represented as
t = I

N min(DRLd)
(∀d ∈ N). As we sort the devices based

on their DRL in decreasing order, t = I
N×DRLN

, for the
N th device has the lowest DRL on all selected devices.
Therefore, to minimize the overall execution time, is to
first find a device d to maximize d ×DRLd, and select
all the devices whose DRL is higher or equal to d.

• We further consider the DRL of the client. If
DRLclient ≥ N ×DRLN , which means that executing
the job on the client is faster than executing the job on
the peers, we choose to execute the job on the client;
Otherwise, if DRLclient < N × DRLN , we choose to
distribute the job equally into N pieces, on the selected
workers N ∗.

3) Handling Network and Service Failures: Clients main-
tain two communication channels with an edge server and a
cluster head. By exchanging a heartbeat message between an
edge server and clients, each client can check the availability
of the edge server and network status to both the edge
server and nearby devices. If a client does not receive an
acknowledgement from the edge server due to the network

1To make the data partitioning problem simple, we adopted the Hadoop’s
idea that splits data into multiple chunks of the same size.

disconnection, it informs nearby clients of the network failure
through a cluster head. Then, clients immediately switch their
service execution model to the P2P mode and continue the
failed service execution through a peer-to-peer network.

Algorithm 2 Handling network and service failures.
1: function CHECKHEARTBEAT()
2: openNewHBConn() . open new Heart-beat connection
3: while (Thread.isInterrupted()) do
4: try
5: wait(HEARTBEAT PULSE) . HEARTBEAT PULSE = 3s
6: sendHeartbeatToEdge()
7: resp ← waitForResponse(TIMEOUT) . TIMEOUT = 2s
8: if (resp != null) then
9: notifyOKEvent()

10: else . If unable to receive response
11: notifyFailedEvent()
12: end if
13: catch (NetworkException)
14: try
15: wait(REESTABLISH) . REESTABLISH = 3s
16: closeCurrentHBConn()
17: openNewHBConn() . Reopen heartbeat connection
18: notifyRestoredEvent() . Network has been restored
19: catch (Exception)
20: . When attempt failed again
21: . Silently start a new loop
22: end try
23: end try
24: end while
25: closeCurrentHBConn() . Close current Heart-beat connection
26: end function

Algorithm 2 explains our failure handling strategy. Any
clients maintain one heartbeat communication to the edge
server and they periodically send heartbeat requests to the
server and wait for the response. If the response is not received
within a timeout, a failedEvent will be dispatched to
the holder to notify of the network failure. Once the client
receives failedEvent, it immediately switches its service
execution model to the P2P mode and continues the failed
service execution. By exchanging heartbeat messages with a
the cluster head, the client can also detect a service failure
in the P2P mode and execute the failed service locally.
In the meantime, the client keeps attempting re-connection
to the edge server by sending a heartbeat request. If the
client receives a heartbeat response from the edge server, it
dispatches restoredEvent to the holder and restores the
system to the normal state2.

III. EVALUATION

We evaluate the effectiveness of our approach through a
micro benchmark and realistic case studies. Specifically, we
conduct two test cases to ascertain how efficient and reliable
our system would be in highly dynamic and volatile mobile
edge computing environments3. The testbed for experiments
has been built up with various Android devices featuring WiFi
Direct and one edge server.

2For the details, please see our demo at: http://youtu.be/7dd1EQFb vk
3Our system implementation and evaluations can be found at:

https://github.com/minhld/Pub-Sub-Middleware

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

116

Device CPU RAM Battery OS
Moto G4 Octa 1.5GHz 2GB 3000mAh 6.0.1
G4 Quad 1.5GHz 3GB 3000mAh 5.1
Asus ZF2 Quad 1.7GHz 3GB 2400mAh 5.1
BLU R1 Quad 1.3GHz 1GB 2500mAh 6.0
S3 Quad 1.4GHz 1GB 2100mAh 4.4
Dell PC i7 3.6GHz 8GB N/A Win10

Table I: Devices used in the experiments.

A. System overhead

In this experiment, we evaluate the system’s overhead by
measuring the execution time of each main component of our
system architecture, which include the client, the broker, and
the worker, both on the edge server-based and the peer-to-peer-
based networks. We (1) pre-install an empty service, which
sleeps for 15 seconds on the edge server and P2P workers
and (2) place mobile devices in a nearby area for fast, stable
WiFi Direct communication. We timestamp the start and end
times of each component executing its job and then aggregate
all the times, excluding the service execution time (i.e., 15
seconds). Figure 3 shows the total overhead time, which can
be disregarded.

 0

 50

 100

 150

 200

 250

 300

Edge Server P2P Network

Ex
ec

ut
io

n
tim

e
(m

s)

Client
Broker

Worker

Figure 3: Aggregate overheads in two different networks.

B. Case Study

To evaluate our system’s implementation in realistic scenar-
ios, we conduct two case studies:

• Image Processing Service: splits an image into several
parts, and each device then blurs one image part and
sends the results back to the client, which merges all
these partial results into a single image.

• Internet Sharing Service: provides Internet connectivity
to nearby devices that lack a cellular data plan. The
service loads a web page in the device’s mobile browser
by engaging surrounding Internet-connected devices.

• Word Counting Service: splits an e-book into several
text parts, and each device then find most frequent words
and sends the results back to the client, which merges all
these partial results and shows the top 50 most frequent
words.

1) Image Processing Service: For this experiment, we
implemented an image blurring service using the Gaussian
convolution. An image is split into N equal parts vertically,
and then each part is sent to a worker. Each worker executes
the Gaussian convolution definition to blur its image part and
sends the result back to be merged into a complete image.

We first requested the service to the edge server, and then
disconnect the network between the edge server and a client,

resulting in switching the service execution model to the P2P
mode. We measured the total execution time of the client that
elapsed between the initiation of the service request and the
arrival of all results. Figure 4 shows that the edge server-based
and P2P-based service execution. Although the edge server-
based service execution outperforms the performance of P2P-
based service executions, as the number of mobile devices
increases, the performance of the P2P-based service model is
also significantly improved.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Edge 1 device 2 devices 3 devices 4 devices 5 devices

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Execution Time (ms)

Total time on client
Execution time of device 1
Execution time of device 2
Execution time of device 3
Execution time of device 4
Execution time of device 5

Figure 4: Image processing: performance comparison of the
edge server- and P2P-based execution model.

Then, to evaluate our peer selection approach, we compared
the estimated execution time with the actual time taken by the
P2P collaboration in five scenarios, which engage between 1
and 5 devices. Figure 5 (left) shows the estimated and actual
lines having the same trend and close values. We found that
this trend approximation also occurs when starting the service
execution from different devices in the P2P network. Figure 5
(right) describes the similar trends on 3 devices with different
resource capacities, when requesting the same service from
different mobile device in the P2P network.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 device 2 devices 3 devices 4 devices 5 devices

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Theoretical execution time
Actual execution time except overheads

Actual total execution time

 0

 1000

 2000

 3000

 4000

 5000

BLU S3 Moto-G4

Ex
ec

ut
io

n
tim

e
(m

s)

2 devices
3 devices
4 devices
5 devices

Figure 5: Image processing: comparison of the estimated exe-
cution time and the actual execution time (top); performance
comparison of different clients in P2P networks (bottom).

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

117

2) Word Counting Service: This service will be used mostly
in the section III-B4. Although a word-counting service would
not represent a typical example targeted by our solution, we
use this canonical computation-intensive scenario to compare
the respective performance and energy efficiency of the edge
server and the P2P networks under multiple configurations.
Figure 6 shows the similar trends as in the image process-
ing service above, indicating that our scheduling algorithm
allocates the optimal number of devices to maximize the
performance and minimize the energy consumption.

Figure 6 shows the similar trends as in the image process-
ing service above, indicating that our scheduling algorithm
allocates the optimal number of devices to maximize the
performance and minimize the energy consumption.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

Edge 1 device 2 devices 3 devices 4 devices

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Total time on client
Execution time of device 1
Execution time of device 2
Execution time of device 3
Execution time of device 4

 0

 200

 400

 600

 800

 1000

 1200

Edge 1 device 2 devices 3 devices 4 devices

En
er

gy
 c

on
su

m
pt

io
n

(u
Ah

) Energy consumption at client

Figure 6: Word-counting: execution time (top) and energy
consumption (bottom) measured at the client when executing
the service at the edge server and peers.

Figure 7 evaluates the accuracy of Algorithm 1 by compar-
ing its output with the actual measured performance numbers,
summarized in Figure 6. The graph shows that the two
lines follow the same trend, indicating that the algorithm
approximates the actual performance with an acceptable level
of accuracy.

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 device 2 devices 3 devices 4 devices

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Theoretical execution time
Actual execution time except overheads

Actual total execution time

Figure 7: Word-counting: comparison of the estimated execu-
tion time and actual execution time on two different devices.

3) Internet Sharing Service: Next, we study the Internet
sharing service, an example of sharing the nearby devices’

computing resources, including networks, files, sensors (e.g.,
GPS, motion, environmental etc.). We design the Internet
sharing service to distribute requests including URL, n – the
number of devices in the cluster, and index – the index of
a device. Each device (including the client) downloads the
HTML text contents of a web-page from the URL, collects its
resource URLs (images, audio, videos etc.) and downloads a
batch of URLs according to its index position of n devices.

In this experiment, we assume that only one device, lacking
Internet access, sends the same content-downloading request
to an edge server or a cluster head. The first two bars in
Figure 8 show the total execution time measured at different
devices when connecting to the edge server, while the next
five bars show the total execution time on each mobile device
when connecting to different cluster heads. To show how
dissimilar resource capacities lead to different performance
characteristics, we configured our testbed to sequentially select
different devices as the cluster head for each experiment.
Unlike the first two bars, which are almost the same, the cluster
heads have dissimilar resource capacities, with their respective
performance levels fluctuating in the wider range between 37
and 42 seconds, being obviously slower than the edge server.

 25000

 30000

 35000

 40000

 45000

D
1
-E
d
g
e

D
2
-E
d
g
e

C
-H
e
a
d
-1

C
-H
e
a
d
-2

C
-H
e
a
d
-3

C
-H
e
a
d
-4

C
-H
e
a
d
-5

To
ta

l e
xe

cu
tio

n
tim

e
(m

s)

Loading process

Figure 8: Internet sharing performance: the edge server- vs.
P2P-based service execution with different cluster heads.

4) Failure handling: As discussed in Section II-C3, our
failure handling mechanism can switch the remote execution
back and forth between the edge server and the P2P network
in response to the edge server becoming unavailable and
available again, as well as the network getting disconnected
and reconnected. We evaluate the efficiency and effectiveness
of our failure handling mechanism by implementing a word
counting service, a well-known use case of multi-processing
setups, such as Apache Hadoop.

The word counting service searches for 50 most frequently
used words from a textbook. First, a client loads the entire text
from a book and attaches it to the request message. Then, a
broker finds the number of available workers, divides the text
into the same number of parts, and sends them to the workers.

Switching to a P2P network: First, we enable the edge
server, so that the client can offload the word-count service
normally there within 4.3 seconds (Figure 9). Then we repeat
the test but shut the edge server down at the 3rd second;
then the client detects the system failure at around the 5th
second (the timeout for failure detection is 3 seconds) and

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

118

immediately initiates a new offloading session to the P2P
network. The P2P collaboration returns the result within 23
seconds, and the total process takes around 29 seconds. From
this moment, if we offload the service again, the offloading
will be dispatched directly to the P2P and completed within
around 23 seconds.

Figure 9: Execution time of the word-count service measured
in 3 cases: (1) Edge server, (2) P2P network with 1 worker
and (3) Failure handling from the Edge to P2P.

Edge server restoration: In this experiment, we observe and
examine how our system behaves in consecutive scenarios:
(1) run normally on the edge server, (2) detect failure, (3)
switch to P2P, and (4) restore back to the edge when the
network reappears. To this end, we use the same test-bed as
in the above experiments, thus enabling the client to offload a
number of service requests; then we measure the total time of
each request at the client. In this test, the client delivers three
different services: empty, word-count, and image processing
(the image processing service is discussed in Section III-B1).

Figure 10: System performance when requesting multiple ser-
vices (the edge server fails between the 4th and 5th attempts).

Figure 10 depicts the overall performance of our system in
each type of service requests with a number of continuous
attempts. Particularly, in the case of word-count service, the
first 4 requests are resolved by the edge server within 4.3
seconds. During the 5th request, the edge server is shut down,
with the client immediately detecting this event and switching
to the P2P execution mode, completing the request in 29
seconds. After that, the upcoming requests from the 6th to
9th requests are resolved by the P2P configuration in 23
seconds on average. When the edge server comes back, the

client reestablishes the connection and pushes the 10th and
subsequent requests to the edge, thus reverting to the original
normal execution mode.

C. Discussion

Our approach offers a number of advantages and has several
limitations that we discuss in turn next.

1) Advantages: Mobile edge services serve as building
blocks, enabling application developers to design mobile ap-
plications that take advantage of the complimenting strengths
of nearby devices from the resource provisioning perspective.
In other words, developers can orchestrate the execution of an
application’s functionalities on the devices whose resources
are the most suitable and abundant for given execution tasks.

This software architecture eliminates the need to accept
executable code from nearby devices by introducing a trusted
third-party intermediary. The introduction of the intermediary
component increases the trustworthiness of the distributed
execution model. However, for this intermediary component
to become widely applicable, multiple stakeholders in the
technology will need to come to an agreement, which may
be hard to accomplish.

Once a service is downloaded to a mobile device, the
Internet connection is no longer required, making it possible
to execute mobile services in environments with limited or
intermittent wide-area networks. In fact, this architecture can
increase the utilization of nearby mobile devices in such
execution environments.

Finally, the ability to address resource scarcity makes this
architecture potentially suitable as a solution for orchestrating
the execution of IoT setups, in which each participating device
is known to posses specialized unique functionality (e.g.,
sensing, media capture, etc.) while lacking general hardware
or software resources.

2) Limitations: The trustworthiness of mobile edge services
hinges entirely on the reputation of the trusted intermediary
component, thus restricting this distributed execution model
to environments that provide such trusted components. In
addition, the high dynamicity of the mobile context increases
the risk that no suitable nearby device may end up being
available for executing a service with a specified set of
requirements. To defend against these risks, mobile developers
need to provide back-up options for executing services, either
with relaxed QoS requirements or using the local resources.

Since one cannot predict what platforms will be run by the
available nearby devices, service developers have no choice
but to provide multiple versions of their services, equipped to
run on all major platforms. This design feature increases the
developer workload, even though JavaScript execution may
provide a reasonable cross-platform solution.

IV. RELATED WORK

The work presented here is related to other complementary
efforts that improve the reliability and efficiency of mobile
distributed execution, including frameworks, peer-to-peer net-
working, code migration, and computation offloading.

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

119

Alljoyn4 is an open source framework that hides the
complexity of network communications for application pro-
grammers. By providing interoperability between multiple
platforms without any transport layers, Alljoyn makes the
integration and initiation of network communication easy and
straightforward. Before the Wi-Fi Direct, many efforts have
focused on optimizing peer-to-peer network based on existing
short-range/wireless communication technologies available on
mobile devices including Bluetooth, Wireless IEEE802.11 and
cellular communication link [5], [11].

In the category of wireless-based P2P communication, be-
fore the Wi-Fi Direct technology, several efforts utilized other
wireless communications to establish P2P networks, such as
media sharing system sin urban transport using Bluetooth
[9], resource sharing using cellular networks [16], and radio
resource sharing over ultra-wideband [3]. Built on top of Wi-Fi
P2P, Rio [1] leverages I/O system devices to capture and share
contents and resources between the existing applications run-
ning on different devices without any modification. Some of
their applications are multi-system photography and gaming,
singular SIM card for multi-devices, music and video sharing.

Another related work direction is code migration to update
existing, legacy systems [4]. Similar to our approach, code
migration mechanisms are mainly used to run code in different
memory spaces (e.g., running C++ code on multi-core systems
[2], running JavaScript code on a server [14], object-level
migration for distributed systems [15], thread-level migration
through middleware [13]). These code migration approaches
have influenced the design of offloading mechanisms in the
mobile computing area.

Finally, our work shares objectives and techniques with
execution offloading [6], [7], well-known mobile application
optimizations that execute the resource-intensive functionality
at cloud-based servers to avoid draining the mobile device’s
battery. In this paper, we generalize these offloading mech-
anisms using two different distributed execution models—
client/server and peer-to-peer communication models.

V. FUTURE WORK AND CONCLUSION

As a future work, we plan to explore additional diverse
failure handling mechanisms by exposing them as reusable
components, activated in response to the underlying system
behaving abnormally, based on our prior work on hardening
remote services with network volatility resilience [8].

In this paper, we present a service middleware architecture
and reference implementation that execute services reliably
and efficiently on available devices, both mobile and sta-
tionary, accessed via self-adaptive communication channels.
Our solution centers around the characteristics of highly
dynamic and volatile environments, in which the network
connection between the devices forming the edge cloud is
intermittent. The presented solution automatically detects and
handles partial failure of the network, by switching between
client-server and peer-to-peer mobile edge execution modes.

4https://allseenalliance.org/framework

Our experimental evaluation shows that our solution enables
resilient and efficient mobile edge execution over unreliable
networks, typical of highly dynamic and volatile environments,
heretofore not supported by edge clouds.

VI. ACKNOWLEDGMENT

This research is supported in part by the National Science
Foundation through the Grant CCF-1649583.

REFERENCES

[1] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong. Rio: a system
solution for sharing i/o between mobile systems. In Proceedings of the
12th Annual International Conference on Mobile Systems, Applications,
and Services, 2014.

[2] P. Cooper, U. Dolinsky, A. F. Donaldson, A. Richards, C. Riley, and
G. Russell. Offload – automating code migration to heterogeneous
multicore systems. In Proceedings of the 5th International Conference
on High Performance Embedded Architectures and Compilers, 2010.

[3] F. Cuomo, C. Martello, A. Baiocchi, and F. Capriotti. Radio resource
sharing for ad hoc networking with uwb. IEEE J.Sel. A. Commun.,
20(9):1722–1732, Sept. 2006.

[4] W. Emmerich, C. Mascolo, and A. Finkelstein. Implementing incremen-
tal code migration with XML. In Proceedings of the 22nd International
Conference on Software Engineering, 2000.

[5] H. C. Frank H. P. Fitzek. Mobile Peer-to-peer (P2P): A Tutorial Guide.
Wiley, 2009.

[6] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen.
Comet: Code offload by migrating execution transparently. In Proceed-
ings of the 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’12), 2012.

[7] Y.-W. Kwon and E. Tilevich. Energy-efficient and fault-tolerant dis-
tributed mobile execution. In Proceedings of the 32nd International
Conference on Distributed Computing Systems (ICDCS ’12), June 2012.

[8] Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong. DR-OSGi: Hardening
distributed components with network volatility resiliency. In ACM/I-
FIP/USENIX Middleware 2009.

[9] L. McNamara, C. Mascolo, and L. Capra. Media sharing based on
colocation prediction in urban transport. In Proceedings of the 14th
ACM International Conference on Mobile Computing and Networking
(MobiCom), 2008.

[10] T. Nabi, P. Mittal, P. Azimi, D. Dig, and E. Tilevich. Assessing the
benefits of computational offloading in mobile-cloud applications. In
Proceedings of the 3rd International Workshop on Mobile Development
Lifecycle, 2015.

[11] R. M. P. Bellavista, A. Corradi and C. Stefanelli. Context-aware
middleware for resource management in the wireless internet. In IEEE
Transactions on Software Engineering, pages 1086–1099. IEEE, 2003.

[12] M. Rostanski, K. Grochla, and A. Seman. Evaluation of fairness in
message broker system using clustered architecture and mirrored queues.
In T. Czachrski, E. Gelenbe, and R. Lent, editors, Information Sciences
and Systems, pages 407–417. Springer International Publishing, 2014.

[13] E. Truyen, B. Robben, B. Vanhaute, T. Coninx, W. Joosen, and P. Ver-
baeten. Portable support for transparent thread migration in Java. In
Proceedings of the 2nd International Symposium on Agent Systems and
Applications and 4th International Symposium on Mobile Agents, 2000.

[14] T.-L. Tseng, S.-H. Hung, and C.-H. Tu. Migratom.Js: A JavaScript
migration framework for distributed Web computing and mobile de-
vices. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, 2015.

[15] M. Yoshida and K. Sakamoto. Code migration control in large scale
loosely coupled distributed systems. In Procs. of the 4th International
Conf. on Mobile Technology, Applications, and Systems, 2007.

[16] C. H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen. Resource sharing
optimization for device-to-device communication underlaying cellular
networks. IEEE Transactions on Wireless Communications, 10(8):2752–
2763, 2011.

2017 Second International Conference on Fog and Mobile Edge Computing (FMEC)

120

