
�erying Invisible Objects: Supporting Data-Driven,
Privacy-Preserving Distributed Applications

Yin Liu, Zheng Song, and Eli Tilevich

So�ware Innovations Lab

Virginia Tech

{yinliu,songz,tilevich}@cs.vt.edu

ABSTRACT

When transferring sensitive data to a non-trusted party, end-users

require that the data be kept private. Mobile and IoT application

developers want to leverage the sensitive data to provide be�er

user experience and intelligent services. Unfortunately, existing

programming abstractions make it impossible to reconcile these

two seemingly con�icting objectives. In this paper, we present a

novel programming mechanism for distributed managed execution

environments that hides sensitive user data, while enabling devel-

opers to build powerful and intelligent applications, driven by the

properties of the sensitive data. Speci�cally, the sensitive data is

never revealed to clients, being protected by the runtime system.

Our abstractions provide declarative and con�gurable data query

interfaces, enforced by a lightweight distributed runtime system.

Developers de�ne when and how clients can query the sensitive

data’s properties (i.e., how long the data remains accessible, how

many times its properties can be queried, which data query meth-

ods apply, etc.). Based on our evaluation, we argue that integrating

our novel mechanism with the Java Virtual Machine (JVM) can

address some of the most pertinent privacy problems of IoT and

mobile applications.

CCS CONCEPTS

•Security and privacy → Security services; Privacy protec-

tions; •Applied computing→ Enterprise data management;

KEYWORDS

Data Privacy, Data-Intensive Applications, Programming Abstrac-

tions, Virtual Machine Design

ACM Reference format:

Yin Liu, Zheng Song, and Eli Tilevich. 2017. �erying Invisible Objects:

Supporting Data-Driven, Privacy-Preserving Distributed Applications. In

Proceedings of ManLang 2017, Prague, Czech Republic, September 27–29, 2017,
13 pages.

DOI: 10.1145/3132190.3132206

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

ManLang 2017, Prague, Czech Republic
© 2017 ACM. 978-1-4503-5340-3/17/09. . . $15.00

DOI: 10.1145/3132190.3132206

1 INTRODUCTION

Mobile, IoT, and wearable devices continuously collect increasing

volumes of user data, much of it sensitive. Health monitors track

their owners’ vital signs; smart phones read sensory personal data,

including GPS location, velocity, direction, etc.; IoT devices obtain

their environmental information. When it comes to sensitive data,

there is a fundamental con�ict between end-user requirements and

application developer aspirations. End-users want to make sure

that their sensitive data remains private, inaccessible to non-trusted

parties. Application developers want to leverage the sensitive data’s

properties to provide intelligent applications that provide person-

alized user experiences and intelligent, context-sensitive services.

�ese two objectives are seemingly irreconcilable.

Consider the following three examples of data-intensive applica-

tions that handle potentially sensitive data.

(I.) Mobile navigation applications provide real-time tra�c infor-

mation to their users, who also contribute this information when

using the applications. When providing navigation services, a navi-

gation application continuously uploads to the cloud its device’s

current GPS location and speed, which are then used to estimate

real-time tra�c information. Although this information is uploaded

anonymously, given enough GPS data and speed, a non-trusted

party may be able to learn about the device owner’s daily routine

and abuse this information for nefarious purposes. �erefore, al-

though the contributors may be willing to help estimate real-time

tra�c information, they would not want their GPS location revealed

and recorded.

(II.) A group of friends is looking for a restaurant to dine together.

�eir smartphones maintain their owners’ dining histories. Based

on the dining history of each individual, the edge server at a shop-

ping plaza can suggest which restaurants would be most suitable

for the entire group. However, the individuals may be unwilling to

share their raw dining histories with a non-trusted party.

(III.) A smart building may adjust its temperatures and lighting

levels, as driven by the preferences of its current occupants. Users

wearing personal health trackers and equipped with smartphones

can report their owners’ vitals and building location. �is informa-

tion is one of the key pieces that make a building “smart.” However,

individuals may not want to reveal their vitals and current location

to a non-trusted party.

Please, notice that in all three examples above, intelligent ser-

vices can still be provided while keeping the users’ sensitive data

invisible. To calculate the average reported velocity, the tra�c

monitoring system should not need to be aware of the actual veloc-

ity of each passing vehicle. �is sensitive information can remain

hidden, and only its statistical average calculated and used in pre-

dicting current tra�c conditions. To recommend a restaurant, the

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Yin Liu, Zheng Song, and Eli Tilevich

edge server should not need to know which specific restaurants

the individuals involved have patronized in the past. Instead, it

can suggest a mutually acceptable restaurant, based on each indi-

vidual’s most favored cuisine, statistical information that can be

obtained by querying the dining histories. To intelligently adjust

its environmental settings, a smart building can remain unaware

of the building inhabitants’ actual vitals or exact locations. It only

needs the vital signs’ statistical averages, as reported by each of its

autonomous climate-controlled areas.

We posit that when developing data-intensive, privacy-preserving

applications, developers often need to keep the sensitive data in-

visible, while being able to query that data for various properties.

Both data privacy and the ability to query the data should be guar-

anteed by the runtime system. However, existing programming

mechanisms provide no explicit support for this type of privacy

preservation. In Object-Oriented programming, private fields can
only be accessed by the public methods in the same class. These

methods, however, are free to implement any access policy to sen-

sitive data and even return the values of privately declared fields to

the client. In addition, this method-level protection can be bypassed

via Reflection [6]. If a programming mechanism can guarantee that

the sensitive data will remain invisible, while providing a controlled

way to query the data, this mechanism can support the development

of emerging applications in the mobile and IoT domains, thereby

improving their data privacy.

In this paper, we present Object Expiration (ObEx), a novel pro-

gramming mechanism, supported by a lightweight, portable run-

time system, that possesses all the privacy preservation properties

described above. The key idea behind ObEx objects is that they se-

curely store some sensitive data, to which they never provide access

to their clients. In other words, the sensitive data remains hidden

in the system layer and never revealed to the application that uses

these objects. Although the sensitive data remains invisible, clients

can execute various pre-defined queries (e.g., testing for equality,

comparisons, membership in a range, etc.) against it. However, the

total number of queries and the time limit over which the queries

can be executed are limited by a declarative policy specified when

instantiating ObEx objects. The runtime system ensures that the

specified policy is preserved when ObEx objects are serialized and

transferred across the network. When deep-copying one ObEx

object to another by using serialization, the runtime keeps only

one version of the sensitive data, causing the copies to become

aliases to the same data. When transferring an ObEx object across

the network, the runtime system encrypts its sensitive data, and

starts the expiration timer as soon as the object is unserialized at

the destination site.

This paper makes the following contributions:

(1) We introduce ObEx objects, a programming mechanism

that supports the development of data-driven, privacy-

preserving distributed applications, common in the emerg-

ing mobile, wearable, and IoT domains.

(2) We empirically evaluate ObEx objects in terms of their us-

ability and efficiency with benchmarks and privacy threats.

(3) We present developer guidelines for using ObEx objects in

a given application scenario, as informed by our empirical

observations.

The remainder of this paper is structured as follows. Section 2

further explains how ObEx can be used. Section 3 provides the

technical background for this research. Section 4 details the ObEx

object programming model and the runtime system enabling it.

After discussing how developers can use ObEx in their applications

in Section 5, we describe how we evaluated the effectiveness and

efficiency of ObEx in Section 6. Section 7 discusses related work.

Section 8 presents conclusions and future work directions.

2 USAGE SCENARIO AND USE CASE

In this section, we first present a typical ObEx usage scenario.

Then, we show how using ObEx can effectively reconcile conflicting

requirements of data producers and consumers in a realistic use

case.

2.1 Typical Usage Scenario

Consider a scenario of collecting and making use of some sensitive

data. The data is sensitive in the sense that it contains some private

information that should not be revealed to outside parties. The

role of a data producer is to collect or generate some sensitive data.

The role of a data consumer is to make use of the sensitive data’s

properties (without having the ability to access the data) to provide

some intelligent services. As owners of sensitive data, producers

also determine which access policy should be applied to the data, so

as to preserve user privacy while permitting consumers to leverage

some properties of the sensitive data.

Figure 1: Typical Usage Scenario.

Data producers and data consumers operate in an environment

of mutual distrust. Producers would not share sensitive data with

consumers, both to preserve user privacy and to comply with pri-

vacy regulations. Consumers would not trust the results of any

operations performed by producers over the data. Consumers need

to be able to compute over the sensitive data on their own, as their

computational procedures constitute their intellectual property (IP),

which is not to be revealed to the producers.

Figure 1 shows a process of developing a distributed data-intensive

application that preserves data privacy by means of ObEx. The pro-

cess starts with the introduction of sensitive data into the system

(step 1). The data is then stored in an ObEx object. When instantiat-

ing the object, the access policy determined by the producer (step 2)

is passed as a parameter to the constructor (step 3). Then, the ObEx

runtime system serializes, encrypts, and transfers the ObEx object

to the data consumer, which is a non-trusted party that should be

�erying Invisible Objects ManLang 2017, September 27–29, 2017, Prague, Czech Republic

unable to access the sensitive data (step 4). Serializing data into

a binary string, Step 4 can be easily embedded into the data mar-

shaling/unmarshaling processes of standard web services. When

the ObEx object arrives to the non-trusted party’s site, the ObEx

runtime decrypts and unserializes the transferred object, making

it ready for client queries (step 5). �e access policy dictates the

type of queries, their number, and the total time over which they

can be made. �e runtime enforces the policy by keeping track of

the queries made and the time elapsed (step 7). Once either of the

thresholds is reached, the runtime reliably clears the sensitive data

associated with the ObEx object (step 8 and 9). Once the data is

cleared, all subsequent queries result in a runtime exception, raised

by the ObEx runtime.

Applicability. ObEx enhances the built-in language protection

facilities to secure data privacy by controlling how sensitive data is

accessed
1
. As such, ObEx integrates naturally with other security

schemes (e.g., network secure protocols) to further protect data

privacy. ObEx requires that: (1) Both the operating system and the

JVM are trusted; (2) �e intelligent service providers are trusted;

providers o�ering the ObEx API themselves are non-malicious.

2.2 Use Case

A recent sociological study analyzed the integration and behavioral

pa�erns of people who have recently moved to live in the city of

Shanghai [20]. For the study, China Telecom supplied anonymized

metadata from 698 million of traces of all its Shanghai customers.

In this demographic study, researchers analyzed the provided call

traces and concluded that city “locals” and “migrants” behaved dis-

similarly with respect to their daily itineraries and calling pa�erns.

It was surprising how many behavioral pa�erns the researchers

were able to infer, given that the provided metadata only included

the age, sex, and call traces of the phone customers. For example,

while the locals tend to communicate with people of their own age,

the migrants tend to communicate with people of various ages. As

a result, by analyzing the age of one’s contacts in the trace, one can

determine whether the subject is likely to be a migrant.

�e study also raised some questions from civil libertarians,

which worry that by disclosing even anonymized data about phone

customers, phone companies enable third parties to learn sensitive

information about people’s lives, thus violating their privacy. Please,

notice, however, that the researchers, which were given access

to the anonymized metadata, can be considered a trusted party,

someone who would not exploit the sensitive data for nefarious

purposes. For these demographic researchers, the sensitive data is

only a tool that enables them to infer the integration pa�erns of

migrants moving to a new city.

However, commercial entities could leverage the age and sex

information to create useful and intelligent applications and ser-

vices, but additional care must be taken to preserve user privacy.

Companies developing IoT and mobile applications can target cer-

tain demographics, in which “possible migrants” would be a large

group with distinct interests and needs. For example, the mobile

ads delivered to this group can prominently feature ‘apartments

for rent’ information. Similarly, newcomers would appreciate more

detailed guidance from navigation applications.

1
data access refers to read access, as non-trusted clients cannot update data

How can one enable so�ware developers to leverage the sensitive

data of the phone company’s customers, while ensuring that the

customers’ privacy is fully preserved? In other words, we want

developers to be able to infer which customers are likely migrants,
without being able to infer their other behavioral pa�erns. Next,

we show how using ObEx can reconcile the objectives of creating

intelligent mobile services and preserving user privacy.

As in the typical scenario described above, the telecoms oper-

ator is the data producer, while the third-party services for the

mobile devices of phone customers are data consumers. �ese

services can provide customized business intelligence to the con-

sumers’ mobile/IoT applications. To realize this requirement, the

data consumers should be able to analyze the age of the contacts of

a smartphone customer, while being unable to access their actual

age values, which can be used to infer sensitive information, such

as the smartphone customer’s own age. Instead, they should be able

to perform statistical analysis on a collection of ages, calculating

its count, average, median, mode, and standard deviation. Assume

that age is represented as an integer. Now, consider how one can

put the aforementioned policy in place by using ObEx. Next, we

describe the three main steps of the process: (1) data collection, (2)

data transfer, and (3) data analysis.

(1) Data Collection �e data collection step wraps sensitive data

in ObEx objects and instructs the ObEx runtime system to transfer

the objects to the consumers. Recall that when creating an ObEx

object, an access policy must be given. In this case, the producer

can de�ne an access policy with the following parameters (two

queries of any kind, 10,000 milliseconds lifetime, all query methods

permi�ed with the exception for sum). �e access policy has to

be consistent with the needs of data consumers; otherwise, the

provided ObEx objects are of no use to the consumers. Section 4

provides details about the ObEx APIs and runtime design.

(2) Data Transfer �e data transfer process is responsible for mov-

ing initialized ObEx objects across the network to the consumer

sites. To that end, the ObEx runtime encrypts and serializes the

sensitive data to a binary stream. �e stream is transferred to the

destination site, at which the runtime unserializes, decrypts, and

reconstructs the stream into an ObEx object instance. �e lifetime

timer starts immediately a�er an ObEx object is reconstructed.

Section 4 describes the ObEx distributed runtime.

(3) Data Analysis �e data analysis process is concerned with

executing queries against the sensitive data protected by ObEx

objects. In this use case, the telecoms provides a collection of

ObEx objects containing the ages of a given customer’s contacts.

Recall that the access policy allows data consumers to invoke any

statistical method with the exception of sum, with only two queries

permi�ed. A mobile app can invoke the average and stdDeviation

methods to obtain the necessary information required to be able to

make a reasonable guess whether the customer is likely a migrant.

Notice, that ObEx provides the necessary information without

revealing the actual ages of the customer’s contacts. Furthermore,

the sensitive information becomes inaccessible a�er 10 seconds,

thus further preventing potential abuse by nefarious parties. Section

4 details the ObEx APIs, while Section 6 discusses the performance

characteristics of our reference implementation.

To sum up, the raison d’être behind ObEx is to resolve the in-

herent con�ict between the user’s privacy needs and the mobile

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Yin Liu, Zheng Song, and Eli Tilevich

developer’s wishes when it comes to managing sensitive data. In

this use case, the ObEx protection ensures that the actual ages of

phone customers are never revealed to non-trusted parties, which

in this case are services supporting mobile applications. �ese ser-

vices can still obtain valuable business intelligence by querying

ObEx objects, without directly accessing the sensitive data. �e

following sections discuss the technical details of the ObEx design,

implementation, and evaluation.

3 BACKGROUND

In this section, we brie�y present several known risks to data pri-

vacy, which motivate our work. �en, we outline the most com-

monly known vulnerabilities of Java objects.

3.1 Risks to Data Privacy

Retaining and transferring the user’s sensitive data without a suit-

able protection mechanism gives rise to a large number of serious

privacy vulnerabilities. Among the top ten mobile security risks, as

per the 2016 report by the Open Web Application Security Project

(OWASP)
2
, are data vulnerability, insecure communication and

unreliable authentication procedures. �e Common Vulnerabilities

and Exposures (CVE) reports a lot of known relevant exploits. For

example, due to the man-in-the-middle a�ack, the Eview EV-07S

GPS Tracker exposes lots of sensitive data, such as the current GPS

location and IMEI numbers, when transmi�ing data over the Inter-

net
3
. In the meantime, users’ location is disclosed on the website

because the Sleipnir Mobile application misapplies Geolocation API

and sends the sensitive data without gaining user permission
4
.

What is worse is that, whether shared legitimately or inappropri-

ately, sensitive data can be stored persistently. A�ackers can then

use that sensitive data to perpetrate a variety of subsequent privacy

exploits.

3.2 Exploits of Java Objects

Several known exploits can compromise Java objects containing

sensitive data. Malicious accesses to Java objects have threatened

a large number of applications
5 6 7

. �e built-in Java language

protection mechanisms, such as object encapsulation and garbage

collection can be insu�cient to defend against particularly elaborate

a�acks, particularly in distributed environments.

3.2.1 Object Encapsulation. One of the fundamental concepts of

object-oriented programming (OOP) is encapsulation, which hides

the sensitive data and behavior from object clients. Moreover, Java

provides access modi�ers to ensure data privacy. By applying the

keyword private to a �eld, programmers expect the �eld not to

be accessible from outside of its declaring class. �e protection af-

forded by Java access modi�ers can be bypassed by using re�ection.

With the right permission, an a�acker can use re�ection to directly

access and modify private �elds and invoke private methods.

To help prevent this a�ack, the security manager mechanism [9]

2
Open Web Application Security Project Mobile Top 10

h�ps://www.owasp.org/index.php/Mobile Top 10 2016-Top 10

3
CVE-2017-5239 h�ps://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5239

4
CVE-2014-0806 h�ps://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0806

5
CVE-2009-1084 h�ps://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1084

6
CVE-2009-2747 h�ps://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2747

7
CVE-2012-0393 h�ps://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0393

has been added to Java, but its e�ectiveness depends on all compo-

nents being properly con�gured, a requirement that can be hard

to ful�ll in complex distributed systems. Proper con�guration and

deployment practices can prevent these a�acks, but they require a

universal adherence. In addition, to customize a security manager,

developers have to overcome a steep learning curve.

3.2.2 Object Life Cycle. When a programming object containing

sensitive data goes out of scope, it becomes available for garbage

collection. �e actual collection time and scope are, however, en-

tirely the prerogative of the collection policy in place. In some

cases, however, waiting for the garbage collector to clear sensitive

data may be insu�cient. Instead, the sensitive data may need to

be reliably cleared a�er reaching a certain threshold, as de�ned by

the speci�ed per-object access policy.

4 DESIGN AND IMPLEMENTATION

In this section, we �rst introduce key design ideas behind ObEx

objects, then we present the technical details of our implementation.

4.1 Design Overview

In the typical usage scenario described above, the inherent con�ict

between data producers and consumers is that the former require

that their sensitive data be kept private, while the la�er wish to

leverage some properties of the private data to provide be�er ser-

vices and build more intelligent applications. �e ObEx mechanism

reconciles these con�icting requirements. It keeps the sensitive

data invisible, but enables non-trusted clients to query the data in

a controlled way. Once the number of queries or the time limit is

exceeded, the ObEx runtime clears the sensitive data, making it

inaccessible for any future operations.

4.1.1 Invisible Data. �e ObEx architecture keeps its sensitive

data in the native layer (managed by the ObEx runtime), never

passing it to the managed code (i.e., bytecode) layer. Hence, the

sensitive data cannot be copied to regular Java objects. �e ObEx

API provides methods for serializing and cloning ObEx objects.

However, these methods’ implementation keeps the sensitive data

secure in the native layer. Application clients can invoke any of

the prede�ned ObEx native query methods allowed by the pol-

icy in place. �us, the data remains invisible and inaccessible to

non-trusted consumers, which derive useful insights about the

data’s properties to enrich the functionality and user experience of

applications and services.

4.1.2 Configurable Expiration Policy. How the sensitive data

can be accessed is dictated by a con�gurable expiration policy

that describes three interconnected limitations: max number of

accesses, time-to-expiration, and available query methods. �e

�rst two limitations determine when the object and its sensitive

data should be cleared. �e last limitation con�rms which query

methods non-trusted clients are allowed to invoke.

In addition to query methods, the ObEx API includes meta-query

methods, through which the developer can discover what type of

data encapsulates a given ObEx object and which query methods

can be invoked on the object. In essence, the meta-query methods

return information about the access policy, whose restrictions have

to be expressed by the producer.

Querying Invisible Objects ManLang 2017, September 27–29, 2017, Prague, Czech Republic

4.1.3 Enforceable Lifecycle. Figure 2 shows the enforceable life-

cycle of ObEx objects. In phase 1, although the sensitive data is

hidden in the native layer, non-trusted clients can query the data

from the managed layer. In phase 2, the object has cleared itself in

the native layer as driven by a given policy, nullifying the data and

disabling all future queries. In phase 3, the object has been com-

pletely garbage collected both in the native layer and the managed

layer. Currently, our approach supports the lifecycle enforcement

in phases 1 and 2. However, in phase 3, the garbage collector only

collects the managed portion of ObEx objects; the native layer’s

sensitive data is cleared based only on the access policy in place.

Most likely the ObEx runtime would clear the sensitive data much

earlier than the managed code’s portion is garbage collected.

Figure 2: Life Cycle of ObEx.

4.2 System Architecture

The ObEx system architecture comprises three interacting compo-

nents, as shown in Figure 3: Programming Interface, Local Runtime,

and Distributed Runtime. The Programming Interface provides con-

trolled programmatic access to ObEx objects. The Local Runtime

is a per-host native library responsible for safekeeping the sensi-

tive data, its lifecycle and operations. The Distributed Runtime

is responsible for transmitting ObEx objects across the network

securely, while also maintaining their specified access policies.

Figure 3: Structure of ObEx.

4.2.1 Programming Interface. Both the sensitive data’s producer

and consumers interact with instances of ObEx objects via their

programming interface. The producer passes an instance of sensi-

tive data to the constructor of class ObEx alongside with its access

policy. Depending on the policy, consumers can invoke different

subsets of the API. These subsets expose various query methods

that include statistical and comparison operations. The sensitive

data remains invisible and inaccessible to consumers.

API Specifics. Figure 4 depicts the main structure of the ObEx

class, which reifies the access semantics specified by declarative

policies. ObEx provides methods for initializing, querying, deep-

copying, and statistical calculations. To control the deep-copying

and serialization behavior of ObEx objects, the class is declared

as Externalizable, taking full control of marshaling its instances.8

The class includes the private field mID, operation methods, and
native method declarations. mID uniquely identifies ObEx objects,
serving as the key that the API methods use when querying sensi-

tive data. To ensure the mID’s uniqueness, its value is the sensitive
data’s digital signature. Conversely, the query methods are sim-

ple wrappers around the native functions that interact with the
local runtime. Specifically, each private native function has a
corresponding public wrapper method.
We designed other classes to support the functionality provided

by ObEx. The abstract class AccessPolicy serves as the base class
for access policies. Figure 4) shows how the API facilitates the im-

plementation of policies via a subclass CustomPolicy. The Methods
enum defines the query methods consumers are permitted to invoke

on the invisible sensitive data. The data producer is also required

to specify the stored sensitive data’s type, which are currently con-

fined to built-in Java primitive types and String. This provision

is necessary to be able to execute all operations on sensitive data

within the native layer, without having to pass the sensitive data

to the managed layer.

Figure 4: Class Diagram of ObEx.

Metadata API. The metadata API appears in Figure 5. The meta-

data provides information about the protection mechanisms of a

given ObEx object. The method names are self-documenting. The

getDescription return a textual representation of the sensitive data

represented by a given ObEx. In the presence of multiple sensitive

8Notice that custom serialization would not reveal the protected sensitive data, as it is
managed in the native layer, which is inaccessible to serialization libraries.

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Yin Liu, Zheng Song, and Eli Tilevich

data feeds, this method can be invoked to differentiate between

them. maxQueriesPermitted returns an ObEx object’s maximum num-

ber of queries, while lifetimeSeconds returns its time-to-expiration.

The isInvocablemethod can be used to determine which query meth-

ods are permitted.

1 public native String getDescription()

2 public native int maxQueriesPermitted()

3 public native int lifetimeSeconds()

4 public native boolean isInvocable(Methods enm)

Figure 5: Query Interface for Metadata.

StatisticalQuery Methods. ObEx supports two types of statistical

queries 9. The first one applies to a single ObEx object, while the

second applies to a collection of ObEx objects. Figure 6 shows

the query methods that can be invoked on a single ObEx instance.

The equals and greater methods can be invoked to compare some

consumer-provided data with the invisible data. For example, an

ObEx object can contain a secret verification code. The consumer

can invoke a limited number of equals method to confirm a user. If

the number of invocations or the specified lifetime is exceeded, the

actual verification code, the sensitive data in this case, will become

inaccessible. Consumers can also learn mathematical boundaries

of the hidden data by invoking the greater method.

1 public native boolean <T> equal(T data)

2 public native boolean <T> greater(T data)

Figure 6: Query Interface for a Single ObEx Object.

For statistical calculations over multiple objects, ObEx provides

a set of statistical methods. These methods are all implemented in

the native layer. Our design assumes that all the ObEx objects trans-

ferred to the same consumer are homogeneous, containing the same

type of data. The data-intensive application in place determines

what data it is (e.g., temperature readings, GPS locations, velocity,

etc.) These generic methods return the statistical calculations as

determined by the sensitive data on which they operate.

1 public static native <T> T sum()

2 public static native <T> T average()

3 public static native int count()

4 public static native <T> T median()

5 public static native <T> T[] mode()

6 public static native <T> T stdDeviation()

7 ...

Figure 7: Query Interface for Multiple ObEx Objects.

Figure 7 shows the query methods that can be invoked on col-

lections of ObEx objects. These methods provide basic statistical

9To prevent information leakage, developers are confined to a fixed set of predefined
queries.

functions, including sum, average, count, median, mode, and stan-

dard deviation. Some of the functions come in multiple flavors. For

example, consumers can both calculate the average of a collection

of invisible data, and also can do so with a given value range.

An important property of these queries is that they only include

unexpired ObEx objects. The expired objects are dynamically re-

moved from the examined collection. Hence, running the same

query in sequence may produce different results. This property can

be leveraged to monitor the currently provided and still available

sensitive data, protected by ObEx objects.

4.2.2 Local Runtime. TheObEx local runtime hides the sensitive

data, enforces the data’s lifecycle, and executes query operations.

Internally, the local runtime organizes the sensitive data by means

of two hash tables, which map ids to data and metadata (Figure 8).

Data consumers interact with ObEx objects by means of their oper-

ations, which are implemented at the native layer. The operations

include initialization, cloning, metadata querying, and statistic cal-

culations. Meanwhile, the execution of these operations is governed

by the ObEx object’s access policy; this policy enforces the object’s

lifecycle. To support all cryptographic functionality in ObEx, our

implementation integrates a third-party C++ library, Crypto++ 10.

For example, this library provides the SHA-256 [16] algorithm, used

to compute a digital signature that serves as a unique id for ObEx

objects. To sum up, it is the local runtime that keeps the sensitive

data invisible, while enabling consumers to query the data, thus

preserving user privacy.

Figure 8: Data Structure of ObEx (Hash Tables).

Privacy Preservation Mechanism. Figure 9 shows how ObEx pre-

serves user privacy by hiding sensitive data, while enabling con-

sumers to leverage the data’s properties. Data producers hand over

the sensitive data that needs privacy protection by creating an

instance of an ObEx object. The sensitive data is passed as a param-

eter to the ObEx constructor, with the ObEx runtime converting

the data to a binary buffer. Consumers can then request a data feed

of ObEx objects from the producer.

10Crypto++ Library 5.6.5 https://www.cryptopp.com/wiki/Main Page

Querying Invisible Objects ManLang 2017, September 27–29, 2017, Prague, Czech Republic

In response to receiving such a request, the producer initiates

a distributed communication, through which the ObEx runtime

securely transfers the sensitive data to the requesting consumer,

passing the sensitive data to its respective ObEx local runtime. The

local runtime maintains the sensitive data at the system level, with

all queries performed by means of native JNI methods. The ObEx

Java methods are simply wrappers over these native methods.
To sum up, this process ensures that the sensitive data guarded

by ObEx remains invisible at the bytecode level. In other words,

the producer’s sensitive data cannot be accessed directly by the

consumers, thus preserving user privacy.

Figure 9: Privacy Preservation Mechanism.

Lifecycle Enforcement. In addition to hiding sensitive data, the

ObEx runtime enforces the data’s lifecycle. That is, the sensitive

data remains queryable only for a specified time period; after this

period has been exceeded, the data becomes inaccessible for any

future queries. To support this lifecycle enforcement policy, the

ObEx runtime implements two different schemes, depending on

whether a given ObEx object guards a single sensitive data item or

a collection of them. These schemes are realized as follows.

(1) Figure 10 shows the lifecycle enforcement process for a single

sensitive data item. First, a data consumer initiates an operation on

an ObEx object (step 1). For example, the consumer wants to check

whether the data equals some value. The runtime then checks the

object’s access policy to determine if (a) the object’s lifetime has

not passed, (b) the operation is permitted, and (c) the max number

of operations has not been exceeded (step 2). If any of these three

conditions is unmet, the runtime nullifies the sensitive data (step

3). Finally, the runtime returns the operation’s result or raises an

exception (step 4).

(2) Figure 10 also shows the lifecycle enforcement process for

multiple sensitive data items. Different from the single item case,

after receiving an invocation (e.g., average) (step 1), the runtime

checks all the ObEx objects in the collection for the conditions

(a), (b), and (c) above (step 2). Then, the objects for which these

conditions are unmet have their sensitive data nullified (step 3).

Later, the operation’s result takes into account only the sensitive

data of unexpired objects; if no objects remain accessible, a runtime

exception is raised (step 4).

Figure 10: ObEx Lifecycle Enforcement Process.

4.2.3 Distributed Runtime. The ObEx distributed runtime is re-

sponsible for transmitting ObEx objects across the network, while

also maintaining their specified access policies. Figure 11 shows the

entire data transfer procedure. For the data consumers’ perspective,

the behavior of ObEx object is similar to a regular Java object. The

process has the following steps: (1) serialize the object to a binary

stream, (2) transfer it to the non-trusted parties via standard web

services over the network, (3) unserialize the binary stream and

reconstruct the object. However, the ObEx distributed runtime is

responsible for serializing / unserializing the objects.

(1) During the serialization, the runtime converts the sensitive

data and the metadata into a binary stream. After encrypting it via

AES algorithm, it returns the result, which can be integrated with

the rest of the serialization process in the managed layer.

(2) During the unserialization, the runtime decrypts the arrived

binary stream. Then, it recalculates the sensitive data’s digital

signature, comparing it with the original object’s id, so as to verify

the integrity and correctness of the ObEx object. Next, hash tables

are set up for efficient lookups. Finally, the runtime restarts the

expiration timer, thus making the reconstructed object available

for queries.

To sum up, the distributed runtime takes charge of the construc-

tion/reconstruction, encryption/decryption, and verification for

ObEx objects. These objects can be transferred alongside regular

Java objects, while securing their sensitive data and corresponding

access policy.

Figure 11: Data Transfer Procedure.

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Yin Liu, Zheng Song, and Eli Tilevich

4.3 Object-Level Privacy Threats and Defense

OOP prescribes that objects should encapsulate both data and be-

havior. Hence, object-level privacy threats try to maliciously gain

access to the data by invoking private methods or deep copying the

entire object. Attackers can use Java reflection API to perpetrate

the first two operations, and can deep-copy objects by serializing

them to a memory buffer and reading them back.

ObEx objects are not vulnerable to the reflective access vul-

nerability, as they keep no sensitive data at the bytecode level.

Deep-copying, on the other hand, can create copies that can be

forwarded to multiple sites, multiplying the specified access privi-

leges. In this experiment, we emulate this copying attack to check

if the ObEx design can defend against it. Figure 12 show how when

deep-copying an ObEx object, only the managed layer’s content

is duplicated, while the sensitive data in the native layer is not. In

other words, the copies alias the same sensitive data. The presence

of aliases has no effect on the sensitive data’s lifecycle.

Figure 12: Process of Deep-Copying ObEx Object.

5 DISCUSSION

To develop an effective application that ensures sensitive data pri-

vacy, the data producer must determine (1) how long the sensitive

data should remain queryable? (2) how many queries should it per-

mit? (3) which queries should be allowed? Obviously the answers to

these questions are application-specific. We discuss each question,

demonstrating the issues involved with a concrete example.

5.1 Time-to-Expiration

To define a reasonable lifetime value for sensitive data, a data pro-

ducer must consider: (1) whether the sensitive data should be ob-

served in real-time, and (2) for how long the access to the data

should be granted to consumers.

As an example demonstrating the first question, consider in-

telligent navigation applications, which require in-time GPS data

to compute current traffic information. That is, only the latest

data is valuable, while the outdated data should be excluded from

the statistical calculations. Meanwhile, the frequency of real-time

data arrival can determine the lifetime as well. For example, if a

health tracker provides heartbeats every 30 seconds, the lifetime of

> 90,000 milliseconds would enable calculating the averages of 3

consecutive heartbeats.

As an example demonstrating the second question, consider

sending a hidden verification code, which should expire in 30 sec-

onds; or limiting access to the license of commercial software to

one hour; or leasing a marketing dataset for 24 hours. Hence, the

actual business properties of sensitive data determine the lifetime

value that data producers should assign to the data’s ObEx object.

5.2 Max Number of Accesses

Statistical privacy provides mathematical formulæ to help deter-

mine the max number of accesses that preserves user privacy [11].

However, the number of accesses can be determined via business

analysis in many cases. We further explicate this issue in section 2.

Statistical Model. Recall the motivating use case, in which a

person communicating with contacts of similar age is likely to

be a local. By knowing the average and standard deviation of a

customer’s contacts, enterprises can infer whether the customer

is likely a local or migrant. If a customer is already determined to

be a local, this fact can be leveraged to also learn the customer’s

age by continuously invoking methods greater or equal. Next, we

describe two different algorithmic approaches that a malicious data

consumer can exploit to guess a customer’s age, a data item whose

privacy we want to preserve.

(1) Binary Search. Binary search can find an integer between

0...n in log2 n comparisons. Assume that a customer’s age can
range between 1 and 100, while the age’s probability distribution is

unknown in advance. By using binary search, one can guess the

age’s value in log2 100 ≈ 6.6 queries. Thus, to reduce the risk of

leaking the age information to non-trusted parties, the producer

should set the maximum number of permitted greater queries to

fewer than 6.

(2) Guessing Entropy. In probability theory, the guessing process

is an “uncertain event” to developers, and the Shannon entropy [15]

can be used to determine the uncertainty of information. Christian

Cachin [1] proposed a guessing entropy for estimating the expected

number of guesses under an optimal guessing strategy. In this paper,

we apply this guessing entropy to determine the number of accesses

data providers should specify in the access policy of an ObEx object.

Let χ be a probability distribution, and x be a specific event that
can be considered as the correct age in our case. Then, let X be the

random variables representing the age guessed by data consumers.

Meanwhile, X has N possible values, and the probability of X is

PX , so that the elements of PX will be p1,p2, ...,pN .
Therefore, our case could be described based on themathematical

notations above: the age (x) has been already stored in the ObEx
object. The developer has collected N possible age values (Xi) with
probabilities p1,p2, ...,pi , ...,pN . Thus, “is Xi equal to x?” will

be the equal querying process of data consumers. In addition, we

assume PX is a monotonically decreasing sequence, which is p1 ≥
p2 ≥ ... ≥ pN−1 ≥ pN . Then, the optimal guessing strategy is to

guess the most likely value first, following the sequence of PX . The

guessing entropy [1] is:

E[G(X)] =
N∑

i=1

pi · i (1)

The formula calculates the expected number of accesses the

developer needs to query an ObEx object to obtain the correct age

under the optimal guessing process.

�erying Invisible Objects ManLang 2017, September 27–29, 2017, Prague, Czech Republic

An Example. An ObEx object represents the hidden age value

as an integer, whose range is 0...100. Assume the local’s age is

25, while a consumer has collected a data set including the possi-

ble age values of 30, 25, 28, 26 with the respective probabilities of

40%, 30%, 20%, 10%. Based on the guessing entropy, the expected

number of equal quires is 40% · 1 + 30% · 2 + 20% · 3 + 10% · 4 = 2.

�erefore, the access policy should set the number of accesses to

less than 2 to reduce the risk of leaking the sensitive age data to

non-trusted parties.

5.3 Permitted�ery Methods

To systematically determine which query methods should be per-

mi�ed on a given ObEx object, data producers should follow the

following procedure:

(1) Inspect Statistical Signi�cance. �e semantics of sensitive data

determines which operations can be meaningfully applied to it. For

example, it would be absurd to allow clients to only compute the

sum of observed individual body temperatures or to compute the

average of GPS locations.

(2) Consider Privacy Requirements. Data producers should limit

query methods to meet the requirement of data privacy. In our use

case, allowing consumers to sum a collection of ages is harmless, but

for �nancial data, this query can reveal sensitive information.

(3) Exclude Composite Methods. Notice that some statistical cal-

culations can be substituted by a combination of several other

operations. For example, one can calculate the average of a collec-

tion by combining sum and count. In this case, if the former method

is inaccessible, then the la�er ones should be excluded as well.

6 EVALUATION

We �rst evaluate various performance characteristics of the refer-

ence implementation of ObEx; we then show how ObEx defends

against a deep-copy a�ack, intended to subvert the ObEx mecha-

nism for protecting sensitive data; �nally, we report on the lessons

learned from the evaluation.

To assess the performance characteristics of ObEx, we �rst mea-

sure the total time it takes to create, serialize, and statistical query

ObEx objects, which encapsulate sensitive data of various sizes.

We then measure the total memory consumption at runtime to

determine the actual limit on the number of ObEx objects that can

be created without exhausting the total JVM memory.

6.1 Control Group Choice and Runtime

Environment

�e ObEx object can be considered e�cient if its performance is

competitive with other existing APIs provided by Java platform.

�us, we compare the speed of initializing and serializing ObEx

objects against three Java APIs, which provide relevant functionali-

ties, including SealedObject, SignedObject, and String 11
. We

include SealedObject and SignedObject as other internal protec-

tion mechanisms that improve data privacy. We include String,

as it is the most commonly used object type with similar features

11
Java Platform, Standard Edition 7 API Speci�cation

h�ps://docs.oracle.com/javase/7/docs/api/

(storing a byte stream). To ensure a fair comparison, we con�g-

ure the SealedObject and SignedObject objects with the same

encryption algorithm (i.e., AES and SHA-256) used by ObEx. Table

1 shows the runtime environment used for all experiments.

Table 1: Runtime Environment.

OS ubuntu 16.04 LTS, 64-bit

Memory 11.5 GiB

Processor Intel Core i5-3210M CPU @ 2.50GHz * 4

JDK OpenJDK 1.8.0 131

JVM OpenJDK 64-Bit Server VM

(build 25.131-b11, mixed mode)

6.2 Performance

We compare the respective performance of our subjects in terms of

the total runtime and memory consumption. �e time consumed by

initialization, serialization / unserialization and statistical queries is

measured by means of System.currentTimeMillis. A Java instrumen-

tation package, running an agent monitoring the memory status at

runtime, is used to measure memory consumption.

To determine how the size of sensitive data a�ects performance,

we evaluate a data series of di�erent sizes, ranging from 10 bytes to

1 megabytes. Furthermore, to increase the evaluation’s reliability,

we repeat each measurement for 1,000 times and average the results.

6.2.1 Time consumption.

Instantiation. Instantiation comprises memory allocation, de-

fault value initialization, shared library setup, etc. ObEx invokes a

native function to initialize ObEx objects, which allocates variables

and data structures, generates the metadata (e.g., current time),

calculates the unique object ID, passing it to a �eld in the managed

layer. To measure the time consumed, we record the time before

and a�er creating the object, with Figure 13 showing the results.

As expected, the time consumed increases as sensitive data grows

in size. In contrast to the control group, which experiences a sharp

spike in execution time as the data reaches 1 megabyte in size, ObEx

maintains the average execution time of (11.913ms). Although

ObEx takes longer to initialize for small objects than String and

SealedObject, it maintains stable performance characteristics ir-

respective of the sensitive data’s size.

Serialization / Unserialization. ObEx objects are serialized/unse-

rialized when transferred across the network. Normally, an object

can be serialized to a binary stream and sent to another device or

server. When it arrives to the destination, it is unserialized and

reconstructed to an isomorphic object, with the same data �elds.

When transferring ObEx objects across the network, the runtime

�rst gathers the relevant sensitive data and metadata, and then en-

crypts and combines them into a byte array as part of serialization.

Unserialization reverses the process.

Figure 14 shows the total time consumed by the serialization

process. Due to the time taken by assembling and encrypting

data, the objects in the control group outperform the ObEx objects.

However, for String objects, as the contained data increases in

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Yin Liu, Zheng Song, and Eli Tilevich

Figure 13: Performance of Instantiation.

size, the time consumed grows rapidly. When the data size reaches

1 megabyte, ObEx (31.32ms) surpasses String (49.341ms).
Meanwhile, Figure 15 depicts the time consumed by the un-

serialization process. ObEx outperform both SealedObject and
SignedObject for small data sizes (from 1B to 10KB). For 1MB,

ObEx (16.239ms) only outperforms String (26.23ms).
As part of their serialization/unserialization ObEx objects go

through expensive operations, such as encryption/decryption, con-

struction/reconstruction, digital signature generation, and verifica-

tion, thus losing out to the control group, for which these processes

are not as involved. ObEx still outperforms String. Thus, one can

conclude that ObEx shows satisfying performance characteristics

as compared to the control group.

Figure 14: Performance of Serialization.

6.2.2 Statistical Queries. Here we measure the total time taken

by the statistical calculations a data consumer may want to perform

on the ages of a phone user’s contacts, including average, count,

Figure 15: Performance of Unserialization.

median, mode, and standard deviation. We first randomly generate

age numbers to create a collection of ObEx objects. We then record

the time taken to perform each statistical method. Table 2 shows

that the time increases linearly with the growth of the number of

ObEx objects, when none of the object is nullified. Notice that the

ObEx runtime first checks if an object may have expired before

including its data into a given statistical calculation, thus incurring

additional processing time. As future work, we plan to investigate

how to parallelize the processing of large collections.

Table 2: Time Consumption of StatisticalQueries.

Num Avg Count Median Mode Std.

10 ≈ 0ms ≈ 0ms ≈ 0ms 1ms ≈ 0ms
100 4ms 5ms 4ms 5ms 4ms

1000 543ms 551ms 553ms 554ms 546ms

6.3 Memory Consumption

For data-intensive applications, it is important to ensure that ObEx

is memory efficient. Therefore, we first compare the memory con-

sumed by ObEx and the control group, containing data items rang-

ing between 10 bytes and 1 megabytes in size. We investigate the

upper limit on the number of ObEx objects that can be created in a

single, default configuration JVM.

Runtime allocation. To measure memory consumption, we exe-

cute an agent JAR file containing an implementation of premain-class.

By invoking java.lang.instrumentget.getObjectSize12, we can accu-

rately estimate the runtime memory allocated for each object. How-

ever, this method can only measure the amount of memory con-

sumed by the specified object. In other words, the fields inherited

from superclasses or the actual size of instances in a reference array

12Package java.lang.instrument
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html

�erying Invisible Objects ManLang 2017, September 27–29, 2017, Prague, Czech Republic

will be omi�ed. To address this problem, we sum all object �elds

by recursively traversing them through Java re�ection.

Since ObEx objects run in both the managed and native layers,

we measure the memory consumed in both of them. In the man-

aged (i.e., bytecode) layer, the memory allocated for ObEx is �xed

to 96 bytes in all di�erent cases of sensitive data sizes (Table 3).

�e reason is that only the mID and several interfaces of wrapper

method are stored in the managed layer. In the native layer, ObEx

objects consume the amount of memory proportional to the size of

the sensitive data they contain. Besides, ObEx objects have meta-

data a�ached to them, containing their lifecycle policy, including

creation time, the number of accesses, and data type. We sum the

memory consumed by all these data items and compare the result

with the control group (Table 4).

Table 3 shows that the memory consumed by the ObEx objects

is almost the same as that of SealedObject and SignedObject,

which are proportional to the size of the sensitive data they en-

capsulate. String objects allocate two times as much memory as

the other subjects for the 1MB data size. �ese results indicate

that ObEx never consumes excessive volumes of memory. More

importantly, the ObEx runtime manages the memory allocated for

ObEx objects explicitly rather than relying on garbage collection

as the control group does.

Table 3: Memory Allocation of ObEx.

Data Size native Layer Managed Layer

10 B 94 B 96 B

100 B 184 B 96 B

1 KB 1108 B 96 B

10 KB 10324 B 96 B

100 KB 102484 B 96 B

1 MB 1048660 B 96 B

Table 4: Memory Allocation of ObEx and Control Group.

Size ObEx SealedObject SignedObject String

10 B 190 B 120 B 272 B 40 B

100 B 280 B 200 B 360 B 216 B

1 KB 1204 B 1128 B 1288 B 1960 B

10 KB 10420 B 10344 B 10504 B 19616 B

100 KB 102580 B 102504 B 102664 B 196664 B

1 MB 1048756 B 1048680 B 1048840 B 2014080 B

Memory Limitation of ObEx Objects. As compared with Java ob-

jects, ObEx objects keep the majority of data in the native layer. In

other words, if someone continuously creates an ObEx object with

in�nite expiration time, the runtime memory will be exhausted.

In general, this limitation highly depends on the size of physical

memory. We can observe this phenomenon by creating an ObEx

object with 1 megabytes sensitive data in an in�nite loop, se�ing

the expiration policy to in�nity. Table 5 shows the percentage of

runtime memory consumed by continuously creating ObEx objects.

A�er the number increased near to 10,000, the test environment

hangs without responding. �is result shows that the maximum

possible number of ObEx objects depends on the size of the avail-

able physical memory. Our runtime environment, with 11.5 GiB

physical memory, can support up to 10,000 objects, each containing

1 megabyte of sensitive data.

Table 5: Memory Limitation of ObEx Objects.

Data Size Number of Objects %MEM

1 MB 2000 17.6

1 MB 4000 34.7

1 MB 6000 51.7

1 MB 8000 68.0

1 MB ≈10000 N/A

6.4 Lessons Learned

Despite the privacy-preservation bene�ts of ObEx demonstrated

above, to fully realize its potential, we argue that it should be

supported natively by the JVM. �is native support would help (1)

complicate privilege escalation and library substitution a�acks, (2)

integrate the ObEx life cycle management with garbage collection,

and (3) avoid the dependence on third-party security libraries. We

next explain these expected bene�ts.

6.4.1 Complicating Privilege Escalation and Library Substitution

A�acks. Because the ObEx local runtime is a shared library loaded

by the JVM, privilege escalation (e.g., root account in Linux) can

directly access the sensitive data in memory. In addition, an a�ack

can replace the ObEx runtime with a malicious version at load time.

Integrating with the JVM can increase the integrity of the ObEx

privacy-protection mechanism, as the JVM security mechanism

makes it a hard target for a�ackers
13 14

. Although the highest priv-

ilege a�acks still get unrestricted access to the system, the success

rate of such a�acks is rare for properly administered systems.

6.4.2 Integrating with JVM Garbage Collection. A�er the ObEx

runtime clears sensitive data, the memory allocated for its ObEx

object should become reclaimable immediately. However, to be able

to mark ObEx objects as available for garbage collection requires

JVM integration.

6.4.3 Avoiding Dependencies on Third-Party Security Libraries.

Despite the existence of the JDK package javax.crypto.* 15
, the

ObEx runtime relies on a third-party C++ library (Crypto++), while

integrating with the JVM would allow using its built-in crypto

libraries. To facilitate the proposed integration, we have started

incorporating ObEx into the OpenJDK HotSpot VM. We have al-

ready added the programming interface. We are still working on

integrating our native library. Appendix provides details of this

integration e�ort.

13
JVM Speci�cation h�p://docs.oracle.com/javase/specs/jvms/se7/html/index.html

14
Secure Computing with Java: Now and the Future

h�p://www.oracle.com/technetwork/java/javaone97-whitepaper-142531.html

15
h�ps://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html

ManLang 2017, September 27–29, 2017, Prague, Czech Republic Yin Liu, Zheng Song, and Eli Tilevich

7 RELATED WORK

ObEx is related to several research area, including di�erential pri-

vacy, authentication, access control schemes, self-destruction mech-

anisms, and the internal protection in programming languages.

7.1 Data Privacy

Data privacy research divides between mathematical approaches

and so�ware engineering solutions. In mathematics, Dwork et al.

[2] were �rst to put forward di�erential privacy, a mathematical

solution that prevents a�ackers from maliciously discovering an

individual’s private information. As a protection mechanism, one

can obfuscate the original dataset by generating random noise,

while applying the mathematical frameworks of di�erential privacy

to calibrate and measure the impact of the added noise on the

statistical operations over the dataset [3]. Zhang et al. [23] proposed

how an imperative language can be applied to facilitate the process

of verifying di�erential privacy algorithms.

In so�ware engineering, Gaboardi et al. [7] provided an informa-

tion sharing interface that enables users, without any di�erential

privacy background, to conveniently generate privacy-preserving

datasets that support statistical queries. Meanwhile, Liu et al. [13]

presented a programming framework, Oblivm, a domain speci�c

language that enables programmers to create cryptographic pro-

grams by using a custom compiler that generates code for secure

computation. In addition, Kosba et al. [12] developed “Hawk”, a

blockchain-based contract system that compiles non-secure “Hawk”

programs to those that guarantee the privacy of transactions by em-

ploying cryptography. Furthermore, Miller et al. [14] developed a

tool that can generate secure protocols, enabling clients to security

communicate with a non-trusted server.

7.2 Authentication and Access Control

Holford et al. [10] presented a self-defending object (SDO) that

can authenticate users while invoking a method. An authentica-

tion token is passed as a parameter to the object�s public methods

to be able to examine whether the caller is permi�ed to invoke a

given method. Meanwhile, Venelle et al. [17] provided a Mandatory

Access Control (MAC) model for JVM that limits which methods

can be invoked and which �elds can be accessed. Android features

secures data privacy via a permission system that de�nes which

clients can access which resources [4, 5]. By contrast, ObEx disal-

lows any direct read access for any clients, while enabling them to

query sensitive data.

7.3 Self-Destruction

Vanish is a self-destruction system that periodically destroys ex-

pired access keys, so as to prevent all further access to the encrypted

information [8]. Developing a similar concept, Xiong et al. [19]

proposed an ABE-based secure document self-destruction (ADS)

scheme for cloud-based sensitive documents. Meanwhile, SSDD

o�ers a similar self-destruction scheme for electronic data [21].

However, Wolchok et al. [18] pointed out that a�ackers can com-

promise the Vanish approach by continuously crawling the storage

to gain the keys. An external security framework improves the

Vanish approach to defend against sni�er a�acks, albeit without

being integrated with language runtime [22].

7.4 Language Protection Mechanisms

�e Java standard API provides an internal protection mechanism

for sensitive data via the SignedObject and the SealedObject
mechanisms. �e SignedObject stores a signature, thus protecting

its serializable representation. Without the valid digital signature,

the protected object cannot be extracted. �e SealedObject, on

the other hand, encrypts the original object, encapsulating the

result with a cryptographic cipher. However, once the original

object has been recovered, the sensitive data is no longer protected.

Meanwhile, since the implementation of these mechanisms is solely

in the Java layer, a native library could be used to intercept and

compromise the security mechanisms provided by these objects.

As compared with these works, ObEx relies neither on compiler

nor on encryption. �e runtime reliably destroys the sensitive data,

as prescribed by a declarative access policy. �e policies specify

the lifetime of sensitive data, the types of queries allowed, and the

number of queries permi�ed. In the meantime, ObEx manages

sensitive data entirely in the runtime system, thus rendering the

data invisible. Hence, ObEx is able to improve data privacy in all

managed execution environments, with IoT and mobile applications

being particularly promising as an application area.

8 CONCLUSIONS AND FUTUREWORK

�e advent of mobile, wearable, and IoT devices has generated a

deluge of data, much of which has some privacy restrictions. �ere

is an inherent con�ict between the end users contributing this data

and commercial enterprises. �e end users want to keep their sen-

sitive data private, while the enterprise would like to use this data

to provide intelligent, context-sensitive services and applications.

In this paper, we argue that innovations in programming tech-

nology can help reconcile these two con�icting agendas: sensitive

data can be kept private, while enterprises can still derive valuable

business intelligence from the data. We show how we designed, im-

plemented, and evaluated ObEx, a novel programming abstraction

that keeps sensitive user data invisible, while controlling its lifecyle

and querying policy. �e ObEx provides programming interfaces

to perform statistical computations, so as to enable developers to

build intelligent mobile and IoT applications.

We have discussed realistic scenarios and use cases that apply

ObEx to preserve data privacy. We have discussed the ObEx design,

implementation, and programming model. Our evaluation also

shows that ObEx exhibits satisfying performance characteristics.

To maximize the positive impact, we advocate that the support of

ObEx objects be incorporated into the Java Virtual Machine and

exposed via a standard API. To that end, we have motivated why

ObEx should be integrated with Java Virtual Machine, as well as

discussed (in Appendix) how the ObEx programming APIs can be

incorporated into OpenJDK HotSpot VM.

To fully realize the promise of ObEx, we plan to investigate the

following questions: (1) To what extent can ObEx reduce the data

leakage and privacy a�acks? (2) How can we apply ObEx to speci�c

domains? (3) How can we e�ciently manage memory and perform

the statistical calculations for a large number of ObEx objects?

Acknowledgements

�is research is supported by the NSF via grants CCF-1649583 and

CCF-1717065. We thank the reviewers for their helpful comments.

�erying Invisible Objects ManLang 2017, September 27–29, 2017, Prague, Czech Republic

REFERENCES

[1] Christian Cachin. 1997. Entropy measures and unconditional security in cryptog-
raphy. Ph.D. Dissertation. Swiss Federal Institute of Technology in Zurich.

[2] Cynthia Dwork. 2008. Di�erential privacy: A survey of results. In International
Conference on �eory and Applications of Models of Computation. Springer, 1–19.

[3] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In �eory of Cryptography
Conference. Springer, 265–284.

[4] Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. �e e�ective-

ness of application permissions. In Proceedings of the 2nd USENIX conference on
Web application development. 7–7.

[5] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and

David Wagner. 2012. Android permissions: User a�ention, comprehension, and

behavior. In Proceedings of the Eighth SOUPS. ACM, 3.

[6] Ira R Forman and Nate Forman. 2004. Java Re�ection in Action (In Action series).

(2004).

[7] Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim, Jonathan Ullman,

Salil Vadhan, and Jack Murtagh. 2016. PSI (): a Private data Sharing Interface. In

�eory and Practice of Di�erential Privacy. New York, NY. h�ps://arxiv.org/abs/

1609.04340

[8] Roxana Geambasu, Tadayoshi Kohno, Amit A Levy, and Henry M Levy. 2009.

Vanish: Increasing Data Privacy with Self-Destructing Data.. In USENIX Security
Symposium. 299–316.

[9] Li Gong and Gary Ellison. 2003. Inside Java (TM) 2 Platform Security: Architecture,
API Design, and Implementation. Pearson Education.

[10] John W Holford, William J Caelli, and Anthony W Rhodes. 2004. Using self-

defending objects to develop security aware applications in Java�. In Proceedings
of the 27th Australasian conference on Computer science-Volume 26. Australian

Computer Society, Inc., 341–349.

[11] Daniel Kifer and Bing-Rong Lin. 2012. An axiomatic view of statistical privacy

and utility. Journal of Privacy and Con�dentiality 4, 1 (2012), 2.

[12] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. 2016. Hawk: �e blockchain model of cryptography and privacy-preserving

smart contracts. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,

839–858.

[13] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.

Oblivm: A programming framework for secure computation. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 359–376.

[14] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. 2014. Authenticated

data structures, generically. In ACM SIGPLAN Notices, Vol. 49. ACM, 411–423.

[15] Claude Elwood Shannon. 2001. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review 5, 1 (2001), 3–55.

[16] Secure Hash Standard. 2002. FIPS PUB 180-2. National Institute of Standards and
Technology (2002).

[17] Benjamin Venelle, Jérémy Bri�aut, Laurent Clévy, and Christian Toinard. 2013.

Security enhanced java: Mandatory access control for the java virtual machine.

In Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),
2013 IEEE 16th International Symposium on. IEEE, 1–7.

[18] Sco� Wolchok, Owen S Hofmann, Nadia Heninger, Edward W Felten, J Alex

Halderman, Christopher J Rossbach, Brent Waters, and Emme� Witchel. 2010.

Defeating Vanish with Low-Cost Sybil A�acks Against Large DHTs.. In NDSS.

[19] Jinbo Xiong, Zhiqiang Yao, Jianfeng Ma, Ximeng Liu, and Qi Li. 2013. A secure

document self-destruction scheme: an ABE approach. In High Performance Com-
puting and Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing (HPCC EUC), 2013 IEEE 10th International Conference
on. IEEE, 59–64.

[20] Yang Yang, Chenhao Tan, Zongtao Liu, Fei Wu, and Yueting Zhuang. 2017. Urban

Dreams of Migrants: A Case Study of Migrant Integration in Shanghai. arXiv
preprint arXiv:1706.00682 (2017).

[21] Fengshun Yue, Guojun Wang, and Qin Liu. 2010. A secure self-destructing

scheme for electronic data. In Embedded and Ubiquitous Computing (EUC), 2010
IEEE/IFIP 8th International Conference on. IEEE, 651–658.

[22] Lingfang Zeng, Zhan Shi, Shengjie Xu, and Dan Feng. 2010. Safevanish: An

improved data self-destruction for protecting data privacy. In Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference
on. IEEE, 521–528.

[23] Danfeng Zhang and Daniel Kifer. 2017. LightDP: Towards automating di�erential

privacy proofs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages. ACM, 888–901.

Appendices

A INTEGRATING THE OBEX

PROGRAMMING INTERFACE INTO

OPENJDK HOTSPOT VM

(I.) Download OpenJDK source code

(II.) Build OpenJDK
(III.) Integrate ObEx Programming Interface

Steps:

(1) Put ObEx programming interface (.java �le) into the classess
folder

16
.

(2) Build the source code for generating header �les that are

needed for native functions
17

.

(3) Match native functions with the header �le (may need to

modify the original native code).

(4) Add the native functions to the mapfile-vers �le
18

.

(5) Rebuild the OpenJDK.

(6) Test

• Use the java,javac command built by step (5)
19

.

• Create tests which use new API and its native func-

tions.

• Compile and run the tests.

16
Folder: ../jdk8u/jdk/src/share/classes/java/security

17
Folder: ../jdk8u/build/linux-x86 64-normal-server-release/jdk/gensrc headers

18
Folder: ../jdk8u/jdk/make/map�les/libjava

19
Folder: ../jdk8u/build/linux-x86 64-normal-server-release/images/j2sdk-image/bin

https://arxiv.org/abs/1609.04340
https://arxiv.org/abs/1609.04340

	Abstract
	1 Introduction
	2 Usage Scenario and Use Case
	2.1 Typical Usage Scenario
	2.2 Use Case

	3 Background
	3.1 Risks to Data Privacy
	3.2 Exploits of Java Objects

	4 Design and Implementation
	4.1 Design Overview
	4.2 System Architecture
	4.3 Object-Level Privacy Threats and Defense

	5 Discussion
	5.1 Time-to-Expiration
	5.2 Max Number of Accesses
	5.3 Permitted Query Methods

	6 Evaluation
	6.1 Control Group Choice and Runtime Environment
	6.2 Performance
	6.3 Memory Consumption
	6.4 Lessons Learned

	7 Related work
	7.1 Data Privacy
	7.2 Authentication and Access Control
	7.3 Self-Destruction
	7.4 Language Protection Mechanisms

	8 Conclusions and Future work
	References
	Appendices
	A Integrating the ObEx programming interface into OpenJDK HotSpot VM

