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emissions. This study develops a fundamental understanding of instantaneous driving
decisions, needed for hazard anticipation and notification systems, and distinguishes nor-
mal from anomalous driving. In this study, driving task is divided into distinct yet unob-
served regimes. The research issue is to characterize and quantify these regimes in
typical driving cycles and the associated volatility of each regime, explore when the
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Instantaneous driving decisions regimes change and the key correlates associated with each regime. Using Basic Safety
Driving regimes Message (BSM) data from the Safety Pilot Model Deployment in Ann Arbor, Michigan,
Markov-switching dynamic regressions two- and three-regime Dynamic Markov switching models are estimated for several trips

undertaken on various roadway types. While thousands of instrumented vehicles with
vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communication systems are
being tested, nearly 1.4 million records of BSMs, from 184 trips undertaken by 71 instru-
mented vehicles are analyzed in this study. Then even more detailed analysis of 43 ran-
domly chosen trips (N = 714,340 BSM records) that were undertaken on various roadway
types is conducted. The results indicate that acceleration and deceleration are two distinct
regimes, and as compared to acceleration, drivers decelerate at higher rates, and braking is
significantly more volatile than acceleration. Different correlations of the two regimes with
instantaneous driving contexts are explored. With a more generic three-regime model
specification, the results reveal high-rate acceleration, high-rate deceleration, and cruise/-
constant as the three distinct regimes that characterize a typical driving cycle. Moreover,
given in a high-rate regime, drivers’ on-average tend to decelerate at a higher rate than
their rate of acceleration. Importantly, compared to cruise/constant regime, drivers’ instan-
taneous driving decisions are more volatile both in “high-rate” acceleration as well as
“high-rate” deceleration regime. The study contributes to analyzing volatility in short-
term driving decisions, and how changes in driving regimes can be mapped to a combina-
tion of local traffic states surrounding the vehicle.
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1. Introduction

As a crucial part of technology driven progressive life, automobiles and transportation systems have continued to advance
since its inception decades ago. The advent of rapid technological advancements in recent decades have established the ele-
mental foundation for Cooperative Intelligent Transportation Systems (C-ITS), a.k.a. connected and automated vehicles. This
said, equipping motor vehicles and transportation systems with wireless communication technologies in a bid to establish
cooperative, well informed, and proactive transportation systems is expected to be the next frontier of transportation rev-
olution (Lu et al., 2014; Fagnant and Kockelman, 2015). Specifically, connected and automated vehicle technologies refer to
integrated systems that establish bidirectional wireless connectivity among vehicles itself (vehicle-to-vehicle V2V) and the
infrastructure (vehicle-to-infrastructure V2I) to capture vehicle position, motion, vehicle maneuvering and instantaneous
driving contexts' (Kamrani et al., forthcoming; US-DOT, 2016).

The generated large-scale integrated empirical data from connected and automated vehicles has significant potential in
facilitating deeper understanding of instantaneous driving decisions.? Variations in driving with respect to the ecosystem of
mapped local traffic states in close proximity surrounding the host vehicle can be explored. Important in this respect is the con-
cept of “driving volatility” that captures the extent of variations in driving, especially hard accelerations/braking and jerky
maneuvers, and frequent switching between different driving regimes® (Khattak et al., 2015; Liu and Khattak, 2016; Wang
et al,, 2015; Kamrani et al., forthcoming). However, a fundamental understanding of instantaneous driving decisions is needed
for hazard anticipation and notification systems, and for distinguishing normal from anomalous driving. The research issue is to
explore different regimes of typical driving behavior and how long they last and the key correlates associated with each regime.

As a part of U.S. Department of Transportation’s (USDOT) Real-Time Data Capture and Management Program, Safety Pilot
Model Deployment (SPMD) in Ann Arbor, Michigan features real-world demonstration of connected vehicle safety applica-
tions, technologies, and systems by hosting approximately 3000 vehicles instrumented with V2V and V2I communication
systems (Henclewood, 2014). Altogether, 75 miles of roadway in Ann Arbor, Michigan are instrumented with roadside equip-
ment (RSE) that are capable of communicating with appropriately instrumented vehicles, and devices via advanced commu-
nication and sensor technologies such as dedicated short-range communications (DSRC) (Henclewood, 2014). Furthermore,
data acquisition systems (DAS) are installed in vehicles to facilitate V2V and V2I infrastructure communications. The core
output from DAS are Basic Safety Messages (BSM) that describe (frequency of 10 Hz) vehicle’s instantaneous position (lati-
tude, longitude, and elevation), motion (vehicle speed, longitudinal and lateral acceleration), vehicle maneuvering (acceler-
ation pedal, brake pedal and cruise control) and instantaneous driving contexts (number of objects around host vehicle,
distance to the closest object, and relative speed of the closest object) (Henclewood, 2014; Liu and Khattak, 2016). The avail-
ability of such large-scale high resolution data is successfully used for developing a basis for improved real-time alerts, warn-
ings, and control assistance applications (Liu and Khattak, 2016; Kamrani et al., forthcoming).

By using real-world large-scale data transmitted between connected vehicles and infrastructure, the present study cre-
ates new knowledge for connected vehicle technologies by explicitly investigating time-series instantaneous driving deci-
sions (and the embedded regimes) of connected vehicle drivers at a detailed microscopic level, and mapping such
decisions to instantaneous driving contexts. This analysis is important in sense that driving decisions (e.g., acceleration or
deceleration decisions) primarily depend on surrounding traffic states (Aberg et al., 1997; Haglund and Aberg, 2000;
Choudhury, 2007; Choudhury et al., 2010), and a detailed understanding of driving decisions can significantly help us with
better anticipating hazardous situations and providing warnings and alerts to drivers.

2. Literature review

A careful review of literature reflects the prompt response by government agencies, automotive industry and academia to
such disruptive yet beneficial connected and autonomous vehicles innovation. Recently, the proceedings of 9th University
Transportation Centers (UTC) Spotlight Conference by the Transportation Research Board (TRB) on connected and automated
vehicles reflected the perspectives of several stakeholders in order to assemble a goal oriented road map to achieve maxi-
mum benefits from connected and automated vehicle technologies (Turnbull, 2016). Specifically, efficient and reliable trans-
portation connectivity solutions are being explored for its applicability to address real world safety challenges (Kamrani
et al., forthcoming; US-DOT, 2016; Fagnant and Kockelman, 2015; Hu et al., 2015; Khattak et al., 2015; Kim et al., 2007;
Liu and Khattak, 2016), mobility problems (Zhu et al., 2009; Hu et al., 2015; Zhu and Ukkusuri, 2015; Weber, 2015;
Koulakezian and Leon-Garcia, 2011; Zeng et al., 2012; Kianfar and Edara, 2013; Moylan and Skabardonis, 2015; Genders

! In this study, instantaneous driving contexts refer to the surroundings of host vehicle equipped with V2V and V2I technologies. An example can be how
much a driver constrained is in terms of different objects surrounding the vehicle and the distance of the host vehicle to the surrounding objects.

2 By instantaneous driving decisions, we mean the instantaneous decisions that driver may undertake to navigate the vehicle from one point to another. Such
decisions may include decisions in longitudinal direction such as speeding, braking, high-rate acceleration, and/or high-rate deceleration, or in lateral direction
such as lane change maneuvers. However, throughout the paper, we use the term “instantaneous driving decisions” to refer to driving decisions in longitudinal
direction.

3 In Economics literature, the key variable(s) that characterizes time-series system(s) occasionally exhibit dramatic breaks or abrupt changes in its behavior.
The portions of data profile before and after the abrupt change are typically referred to “regimes” (Hamilton, 2010). In this paper, we refer to the abrupt changes
that may be expected in a typical driving cycle as “driving regimes”.
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and Razavi, 2015), and environmental challenges (Wang et al., 2015; Liu et al., 2015b, 2016; Fagnant and Kockelman, 2015;
Shin et al., 2015; GM, 2015; Weber, 2015; Zeng et al., 2012; Kamalanathsharma and Rakha, 2016). Such emerging applica-
tions together with connected vehicle infrastructure deployment strategies can address potential challenges related to oper-
ations and safety which can in turn benefit state and local transportation agencies (Hill and Garrett, 2011).

Connected and automated vehicle solutions can potentially help in addressing transportation challenges by primarily tar-
geting the human factor involved in surface transportation. In special relevance to transportation safety solutions, several
studies have focused on monitoring driving behavior to develop cooperative collision warning systems (Sengupta et al.,
2007; Yang et al., 2000; Chrysler et al., 2015; Goodall et al., 2016; Osman et al., 2015; Doecke et al., 2015; Lee et al.,
2002, 2004; Abe and Richardson, 2006; Naseri et al.,, 2015). By carefully characterizing driving behavior, the afore-
mentioned studies contributed by developing effective collision warning systems and documented the potential of con-
nected vehicle technologies in addressing major transportation safety challenges (Chrysler et al., 2015; Goodall et al,,
2016; Osman et al., 2015; Doecke et al., 2015). However, the previous studies either utilized driving simulator/algorithm
developments or localized closed course experiments, which may not cover different driving contexts/conditions. Moreover,
the key to success of connected vehicle technologies rely on how well and effective connectivity of vehicles and/or infras-
tructure can perform in real life situations. Important in this regard are the recent innovations that enable realization of
V2V and V2I technologies such as DSRC, Wi-Fi, Bluetooth, and cellular networks (Cheng et al., 2007; Chou et al., 2009;
Sugiura and Dermawan, 2005).

Towards this end, recent studies utilized large scale behavioral data integrated with sensor technologies to introduce the
concept of “driving volatility”, which can be regarded as a measure of driving practice for characterizing instantaneous driv-
ing decisions and more specifically extreme driving behaviors (Wang et al., 2015; Liu et al., 2015b). The studies by Wang
et al. (2015) and Liu et al. (2015b) investigated relationships between driving volatility (for each trip) and factors such as
driver demographics, trip related factors (purpose, duration) and detailed vehicle characteristics such as body type, fuel type,
transmission and power train (Wang et al., 2015; Liu et al., 2015b). Collectively, the potential of individual level driving
volatility in developing advanced traveler information systems, driving feedback devices, and alternative fuel vehicle pur-
chase frameworks for consumers was documented (Wang et al., 2015; Liu et al., 2015b). Likewise, Noble et al. (2014) utilized
naturalistic driving data collected through the Strategic Highway Research Program 2 for developing a vehicle to infrastruc-
ture (V2I) warning algorithm. Specifically, in realistic driving behavior context, Choudhury (2007) and Choudhury et al.
(2010) focused on developing framework for “more realistic” driving lane changing and freeway merging behavior models
that accounted for “unobserved driving plans” behind the observed driving decisions (Choudhury, 2007; Choudhury et al.,
2010). Among other innovative techniques, Hidden Markov Models were introduced to account for “regime-dependence”
in driving decisions in congested and freeway merging scenarios, where the current driving plan depended on all previous
actions (Choudhury, 2007; Choudhury et al., 2010). In addition to simulation validations, empirical vehicle trajectory data
was used to justify the use of regime-dependent plans in microscopic traffic simulator environment (Choudhury, 2007).
While afore-mentioned studies provided valuable information about driving actions (Noble et al., 2014) and extreme driving
events (Wang et al., 2015; Liu et al., 2015b), such extreme events could not be mapped to local traffic conditions due to
unavailability of data. Similarly, the study by Choudhury (2007) focused on lane changing and freeway merging driving deci-
sions, and not micro-level instantaneous driving decisions and the impact of local traffic conditions on instantaneous driving
decisions.

SPMD provides an exciting opportunity by using state-of-the-art technologies to generate Basic Safety Messages (BSMs)
that describe vehicle’s instantaneous position, vehicle maneuvering, and instantaneous driving contexts (Henclewood,
2014). In special relevance to current study, study by Liu and Khattak (2016) extracted critical information from raw BSMs
that captured trip level extreme driving events. An understanding of occurrence of extreme driving events was sought by
identifying its correlates such as trip attributes, vehicle maneuvering and driving context for successful generation of
real-time improved alerts, warnings, and control assistance systems (Liu and Khattak, 2016). While the study by Liu and
Khattak (2016) utilized large-scale BSM data sent and received by vehicles and roadside equipment, the study primarily
focused on conceptualizing trip-level extreme driving events (based on specific thresholds) and did not explore the instan-
taneous driving actions (within the trip) and its associations with instantaneous driving contexts that are taken along a
specific trip.

2.1. Research objective

Given the prevalent gap in connected vehicle literature, the present study builds upon the existing body of connected
vehicle knowledge by focusing on, (1) categorizing time-series based driving tasks* into different regimes using information
contained in BSMs; (2) categorizing the volatility in each regime and the average duration of each regime, and (3) Identifying
the correlates that can be associated with drivers’ tendency to stay in a specific regime and/or to switch between different
regimes. By doing so, a fundamental understanding of instantaneous short-term driving decisions is sought (with respect to dif-
ferent roadway types) and how can we map time-series instantaneous driving behavior to a combination of local traffic states

4 In this paper, the term “driving task” refers to the combination of instantaneous driving decisions that driver may take in the longitudinal direction along an
entire trip. Depending on the context, we use the term driving task interchangeably with the term “driving cycle”.
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such as instantaneous driving contexts. Given the temporal dependency in instantaneous driving decisions, the current study
methodologically contributes by introducing rigorous dynamic Markov switching models for conceptualizing micro-level driv-
ing behavior into different regimes, while mapping correlates to each regime. To the best of our knowledge, for a deeper under-
standing of instantaneous driving decisions, such time-series models together with utilization of large-scale real-world
connected vehicle data have not been used.

3. Methodology
3.1. Conceptual framework

A key objective of this study is to explore volatility in driving behavior by applying appropriate analytic tools to identify
the correlates of instantaneous driving decisions. At a basic level, instantaneous driving decisions can be categorized into at
least two regimes, and drivers can switch between these regimes over time. The two regimes/states are unobserved yet dis-
tinct, in the sense that in the different regimes, instantaneous driving decision data are generated by separate continuous
processes (Hamilton, 1989). By separate continuous processes we mean that data generation in two regimes along a trip
can be developed by different effects of instantaneous driving contexts and assuming a time-constant association/effect
across a trip irrespective of different regimes may overlay the true data generation process.’

Therefore, for simplicity and illustration, we first categorize instantaneous short-term driving performance into two
regimes. While incorporation of additional regimes is conceptually valid and theoretically possible, doing so significantly
complicates the modeling framework due to computational tractability and regime identification issues (discussed later
in detail). This is evident from the literature where models with more than two regimes are not common and different
time-dependent regime varying processes (such as traffic crashes, economic, or financial data) are usually modelled as a
two-regime processes, e.g. (Hamilton, 1989, 1994; Malyshkina and Mannering, 2009; Malyshkina et al., 2009; Hansen,
1992; Kim and Nelson, 1999) and the references therein. Nonetheless, not in transportation field though, very few studies
have also considered three-regime models for modeling different financial and economic time-series datasets (Hardy,
2001; Kim et al., 2008).

On the other hand, real-world driving is a complex task and we can anticipate existence of more than two regimes, say
three regimes in a typical driving cycle. Thus, as pointed out by the reviewers too, it is plausible to start with a more generic
model specification that may capture common driving regimes, and thus can help in extracting important information
related to instantaneous driving decisions embedded in real-world connected vehicle data.® Having said this, we thoroughly
investigate real-world instantaneous driving decisions in connected vehicle environment based on two and three regime
dynamic Markov switching models.

Next, we investigate associations of instantaneous driving decisions with critical correlates (available in the data) related
to instantaneous driving context such as the number of objects around the host vehicle and distance to the closest object. By
doing so, a fundamental understanding of instantaneous short-term driving decisions is sought (with respect to different
roadway types) and how can we map time-series instantaneous driving behavior, especially driving volatility to a combina-
tion of local traffic states such as instantaneous driving contexts. This is important in the sense that instantaneous driving
contexts, at least at a basic level, can be represented by surrounding vehicles around the host vehicle which may constrain
movement and/or motivate driver to get out of congested situation. Assuming (for now) that the driver’s tendency is to get
out of congested situations, how the driver actually maneuvers the car is an important question which is likely to have
important safety (among others) implications (Liu and Khattak, 2016). Is there frequent switching from acceleration to brak-
ing and vice versa? These behaviors are perhaps more dangerous, compared with other behaviors such as constant speed (Liu
and Khattak, 2016).

As instantaneous driving behavior (across an entire trip) is a time-varying process, we use a Markov regime switching
dynamic regression framework that assumes Markov switching (over time) between two and three (unobserved) regimes
in a typical driving cycle. Note that the regime switching can be based on change in measures of central tendency (averages)
and/or dispersion (variance). Having said this, conceptualizing the driving task into two (or three) different regimes can
potentially account for existence of several unobserved factors that may be associated with driving performance envelope
(Hamilton, 1989). Markov switching models thus can treat driving behaviors in an intuitive manner. As a matter of fact,
two-regime Markov switching models are used successfully in solving problems related to traffic safety, for exhaustive appli-
cations of Markov switching regressions in safety area, interested readers are referred to (Malyshkina et al., 2009; Xiong
et al., 2014; Malyshkina and Mannering, 2009).

Fig. 1 presents the hypothesized behavior during a general trip where “1” refers to regime 1; “2” refers to regime 2 and P
(1-1) indicates the probability that a driver in regime 1 at current time will continue in regime 1 during the next time period.

5 There can be several reasons to anticipate existence of two regimes. Depending on several factors, instantaneous driving decisions (magnitude and
directions of longitudinal accelerations) can vary significantly across the entire trip. Thus, under potentially different conditions (i.e. different instantaneous
driving contexts), drivers may respond differently to staying in the same regime or switching to a different regime.

6 We sincerely thank the two reviewers for suggesting investigation of more than two-regimes in a typical driving cycle. Doing so came at a cost of losing
some data (discussed later in detail), nonetheless, exploration of three regime instantaneous driving behavior models helped us in extracting meaningful
information from the data which was otherwise not possible from the two-regime specification.
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Fig. 1. Behavior conceptualization of instantaneous driving decisions in a “two-regime” Markov switching dynamic regression framework (Note: O = Any
other unobserved regime).

Fig. 1 also illustrates the time-series framework as a Markov regime switching dynamic regression. Assume that a driver is
currently (at time instant t=—1s) in regime 1; the driver at next instant of time (t=0s) can either decide to remain in
regime 1 or to switch to regime 2, given the effects of correlates, i.e. instantaneous driving contexts. If the driver is in regime
2 (or vice versa) at t =0s, the challenge is to predict driver action at next instant of time (indicated by t =1 s) given the
effects of associated covariates.

Following similar concept, Fig. 2 presents a three-regime typical driving cycle based on Markov Switching dynamic
regression framework where “1” refers to regime 1; “2” refers to regime 2; and “3” refers to regime 3. If a driver is currently
(at time instant t = —1 s) in regime 1; the driver at next instant of time (t = 0 s) can either decide to remain in regime 1 or to
switch to regime 2 or regime 3, given the effects of correlates, i.e. instantaneous driving contexts. If the driver is in regime 2
(or vice versa) at t = 0's, the challenge is to predict driver action (to stay in regime 2, or to switch to regime 1 or 3) at next
instant of time (indicated by t =1 s) given the effects of associated covariates.

With the empirical framework of two and three regimes Markov Switching dynamic regression models, the research
questions are:

e What are these regimes in typical driving cycle?

e How much is the volatility each regime?

e When do the regimes change or how long they last?

o Are driver decisions consistent across different trips undertaken by different drivers? Precisely, while allowing for differ-
ential effects of key correlates across two and three regimes, are the correlations constant across the regimes?

Finally, the proposed methodology has the potential to probabilistically predict a driving regime at a specific instant of
time while allowing for the effects of instantaneous driving contexts. This is important in the sense that a change from
one regime to another is not perfectly deterministic due to several unobserved factors. Thus, a time-series model should
account for the probabilistic nature of the process. The proposed conceptual framework is focused on answering the
afore-mentioned critical questions. A detailed description of formulating the given problem in a mathematical framework
is presented in later section.

3.2. Markov-switching dynamic (abrupt-change) regression models

3.2.1. Two-regime dynamic Markov-switching regression models

Markov switching models were recently introduced in traffic crash modeling for addressing different important issues
related to traffic safety, for exhaustive applications of two-regime Markov switching regressions in safety area, interested
readers are referred to (Malyshkina et al., 2009; Xiong et al., 2014; Malyshkina and Mannering, 2009). As instantaneous driv-
ing behavior (across an entire trip) is a time-varying process, we use a Markov regime switching dynamic regression (MSDR)
framework that assumes Markov switching (over time) between two (unobserved) regimes,’ in this case regime 1 and regime
2 for two-regime model. Consider the evolution of driving behavior “y,”, where t =1, 2, ..., T (i.e. the entire duration of the trip)
that is particularly characterized by two regimes/states:

Regime 1: y, =, + Y1 +& (1)

Regime 2:  y, =i, + @y, 1 + & (2)

7 The three-regime MSDR framework is explained later in this section.
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Fig. 2. Behavior conceptualization of instantaneous driving decisions in a “three-regime” Markov switching dynamic regression framework.

where p, and p, are the intercept terms in regime 1 and regime 2 respectively; ¢ is the Autoregressive parameter; and ¢&; is
the white noise with variance 2. The two regime model abrupt shifts in the intercept term (Hamilton, 1994). At times, if the
timing of the switching is known to the analyst, the above models (Egs. (1) and (2)) can be expressed as:

Ye=Sehy + (1 =Sy + DY 4 + & 3)

where s, is 1 if the process (driving behavior cycle) is in regime 1 and 2 if in regime 2. Empirically, the model in Eq. (3) can be
conceptualized as regression with dummy variables and can be estimated with ordinary least squares regression (Hamilton,
1994). However, in the case under consideration, we never know in which regime the process is at current time, or indirectly
s; is unobserved.® This said, Markov-switching regression framework specifies that the unobserved s; follows a Markov chain.

Note that the transition of driving cycle between two regimes can either be abrupt-change (dynamic Markov switching
specification) or gradual adjustment (Autoregressive Markov Switching specification) after the process changes regime.
However, in our case, due to the high resolution (frequency of 10 Hz) of instantaneous driving behavior data (dependent
variable), we allow the driving cycle for a specific trip to switch between two regimes abruptly and not with gradual
adjustment, thus called Markov Switching Dynamic Regression (MSDR) (Hamilton, 1994). This alternatively suggests the
autoregressive term “@” in Eqgs. (1) and (2) equals zero. Thus, in the simplest case, we can express the framework as
regime-dependent abrupt-change intercept term for k regimes (in our case k = 2) as:

Ye=Hy, +& (4)

where p, = 1, whens; =1 (i.e. regime 1) and y, = p, whens; = 2 (i.e. regime 2) and ¢ is the white noise with variance 2.
In the simplest case, with switching in variance term® “¢2” and no explanatory variables, six parameters

Ui, [y, 0%, 03, D15, P, are estimated. Furthermore, the conditional density of driving cycle y, is characterized by a first order
two- state Markov process as:

felse =1,y,4:0) ()

where 6 is a vector of parameters i.e. in simplest case with only intercept terms and regime-specific variances,
0 = 1, Iy, 03, 0%,D1_,,D>_1]- For two regimes, there are two conditional densities, and thus estimation of parameter vector
0 is performed by updating the conditional likelihood using nonlinear filter (Hamilton, 1994), as opposed to linear updates by
Harvey (1990). With a vector of set of explanatory variables “B” along with switching intercepts, the general specification of
MSDR can be written as (Hamilton, 1989):

8 It is important to note that the dependent variable (instantaneous driving decisions in longitudinal direction) is observed, but the regimes (s;) are not
observed. That is, we as analysts do not know a priori what specifically the two-regimes are that characterize a typical driving cycle. We explain this in detail in

9 In addition to switching of intercept term, variances can be regime-dependent (separate variance for two regimes) or regime independent (single variance
for the entire process). The decision to allow switching in variance terms can be based on empirical and/or theoretical evidence. In addition to empirical
justification from data, we posit that the two unobserved regimes are two distinct components of driving behavior and the variance in the evolution of the two
regimes can be significantly different from each other. Thus, constraining the variance term to be regime-independent can potentially hide (as we will show)
the true information embedded in data generation process.
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Ve = U, +Xe o< +Zefs, + & (6)

where y, is the dependent variable, y; is the regime-dependent intercept term, X; is a vector of exogenous variables with
regime-independent coefficients , Z; is a vector of exogenous variables with regime-dependent coefficients g, and & is
independent and identically distributed (i.i.d.) normal error with mean 0 and regime-dependent variance ¢%. In Eq. (6),
as the two regime variables s, are unobservable, the vector of estimable parameters for Eq. (6) shall include
0 =[u;, iy, 02,03,p,_,,D,,] in addition to parameter estimates for regime-dependent and regime-independent explanatory
variables.'®

3.2.2. Three-regime dynamic Markov-switching regression models
The modeling framework can now be extended to a three-regime specification. Consider the evolution of driving behavior

“y.”, wheret=1, 2, ..., T (i.e. the entire duration of the trip) that is particularly characterized by three unobserved regimes/
states:

Ve =Ts T & (7)
where

Ty if sy =1 (regime 1)
T, =1 Ty if s =2 (regime 2) (8)
73 if ¢ = 3 (regime 3)

And, ¢ is the normally distributed white noise with mean 0 and variance 62 ,s; = (Aberg et al., 1997) is an unobservable state

variable governed by a first-order Markov chain. In the simplest case, with switching in variance term “¢2” and no explana-
tory variables, the parameter vector 0 = [i;, iy, i3, 02,03, 0%,D1_1,P1-2,P2—1: P22 P31, P3_o), i.6. twelve parameters are
estimated. Similar to the two-regime models, the three conditional densities (for three regimes) associated with estimation
of parameter vector 0 is performed by updating the conditional likelihood using nonlinear filter (Hamilton, 1994).

With a vector of set of exogenous explanatory variables “W” along with regime-dependent intercepts and variances, the
general specification of a three-regime MSDR can be written as (Hamilton, 1989):

Ye=Ts + Xed+2Zr)5 + & (9)

where y, is the dependent variable, 7, is the regime-dependent intercept term, X; is a vector of exogenous variables with
regime-independent coefficients ¢, Z; is a vector of exogenous variables with regime-dependent coefficients y, and & is

independent and identically distributed (i.i.d.) normal error with mean 0 and regime-dependent variance g%. Given the
inclusion of regime-dependent exogeneous explanatory variables, the estimable parameter vector 6 is now expanded in
Eq. (9).!!

3.3. Markov chains

A discrete time Markov chain (DTMC) is assumed during switching mechanism of driving cycle between two regimes i.e.
the probability distribution of s.,; depends only on current regime s; and not on the previous evolution of driving behavior'?
i.e. St 1,5t 2,... (Tauchen, 1986). This is commonly referred to a two-state Markov chain and is fairly a standard in applications
of Markov Switching models (Hamilton, 1994, 2010; Malyshkina et al., 2009; Xiong et al., 2014). Higher order Markov chains
where the realization of the future state may depend on current state and previous history brings in high complications to
the model estimation process (Kim et al., 2008), and are thus not common in Markov switching applications'®. Also, the

10 In our case, we posit that the effects of explanatory variables (i.e. number of objects around host vehicle and distance to closest object) can be different with
respect to two regimes. Thus, X; (vector of regime independent exogeneous variables) is zero. As a result, the vector of estimable parameters for Eq. (6) is
0= [, [ty,0%,02,P1_2,DP2—1, Bsi—1. Bs,—2), where B _;, B, _, are regime dependent vectors of estimable parameters for exogenous variables.

" The parameter vector 6 for the three-regime MSDR framework has at least 15 parameters to be estimated, i.e.
0= [,ul,,uz,,uyyslzl,yst:Z‘*,’5[13,a%,o'%,aéphl,p]ﬂz,pzalA,pzﬁz,p%l,pbz], where y,_q, 75,2, 75,3 are regime dependent vectors of estimable parameters
for exogenous variables in the three-regime MSDR model.

12 Another option can be to specify the models in continuous time. However, the advantage of DTMCs is that they have a mathematically easy formal
description. A concern, however, can be that modeling continuous process is hard using a time-discrete paradigm. In other words, a uniform step must be
artificially introduced, which will always result in errors and abstraction. However, in our case, we are not artificially introducing a time-step. Despite that
driving cycle is a continuous process, we observe the driving decisions at discrete time intervals (t = 1, 2, 3, and so on.). Due to the very high data resolution of
SPMD connected vehicle data, it is unlikely that drivers will make instantaneous driving decisions and perform frequent regime switching within one second.
Also, the basic formulation of Markov property shows that observing a continuous-time Markov chain at regular time intervals gives a discrete-time Markov

13 An alternative and indirect way of extending the first-order Markov chain property can be to formulate a model specification where the evolution of
response outcome may depend on the value of switching mean at its current state and lagged value, and this in turn will lead to four conditional densities
where the new state variable is a four-state Markov chain. This specification is mathematically equivalent to Markov Switching Autoregressive framework as
shown in Eqgs. (1) and (2) and is typically used to model low frequency data (Hamilton, 1994; Kim, 1994). Keeping in view the extant literature, Markov
switching dynamic regressions are used in the current study given the high resolution of instantaneous driving data (Stata, 2016; Hamilton, 2010).
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first-order Markov chain seems a natural and intuitive starting point and, as mentioned in Hamilton (2010), is clearly preferable
to acting as if the shift from regime 1-2 (or vice versa) was a perfectly deterministic event. Permanence, if any, of the shift
between the regimes would be represented by p, , (in two regime case) equal 1, and any intra-regime probability of less than
one (as we will see later) would indicate lack of permanence which the Markov formulation accommodates. Furthermore, if the
regime change in instantaneous driving decisions reflects a change in instantaneous driving contexts, the prudent hypothesis
would seem to be to allow the possibility for the regime to change back again when instantaneous driving context changes,
and this suggests that p, , < 1 is a more natural formulation for thinking about the regime changes than the deterministic
P, = 0 (Hamilton, 2010; Kim et al., 2008). Having said this, assuming s; to be an irreducible and aperiodic Markov chain orig-
inating from its ergodic distribution 7 = (7, ...... , ), the probability that s; belongs to, j € (1,2) (where 1, 2 refers to regime 1
and 2) for two regime model and j € (1,2,3) (where 1, 2, and 3 refers to regime 1, 2, and 3) in three regime model depends on
the most recent realization of driving behavior, s; 1, and thus can be formulated as (Hamilton, 1994):

Pr(s; = jlsi-1 = i) = py (10)
Thus, all possible transitions from one regime to another, in a two-regime model, can be collected in 2 x 2 transition
matrix while governing the evolution of Markov chain as:
p_ |:plal Plﬁz}
D21 P22

While, the transition probabilities of switching from one regime to another in a three-regime model can be collected in a
3 x 3 transition probability matrix as:

P11 Pi—2 P13
P=|p, 4 Dy Das (12)
D3—1 P32 D33

(11)

3.4. Likelihood function with latent states/regimes

Using the Markov chain property, the conditional density of y, can be formulated using Eq. (5) for two or three regime
models. However, in order to obtain marginal density of y,, we weigh the conditional densities (one for each regime) by their
respective probabilities, as explained in (Hamilton, 1994; Goldfeld and Quandt, 1973; Frithwirth-Schnatter, 2006):

k

Fi10) = filse =i,y 1:0)Pr(sc = i.0) (13)

i=1
Over here, let us introduce a k x 1 vector of conditional densities as:
fOlse =1;y._1;0
Ve = | f(Velse = 2;y:4;0 (14)
filse =k;y, 1;0

where k is number of regimes respectively. To construct the final likelihood function, the probability that s, takes on specific
value (either 1 or 2 for a two-regime model or 1, 2, or 3 for a three-regime model) using the data through time “t” and model
parameters 0 should be estimated. While utilizing the data until time “t”, let Pr (s; = i;y,; #) denote the conditional proba-
bility of observing s, = 1, then the resulting likelihood is:

_ fYelse = 1,Ye 1;0)Pr(se = Y, 1;0)

Pr(s; =1i;y,;0) = 15
(5 =Eye0) TO e 1:0) 1>
The likelihood can then be estimated through iterating Eqgs. (16) and (17) as'*:
Nt\r * V¢
Nyp = 16
t|t 1 (Nm,l *Vt) ( )
Rep1e = PRy (17)

where 1 is k x 1 vector of constants i.e. 1s. The reduced likelihood representation is thus obtained as'®:

14 To achieve final likelihood function, we transform conditional probabilities for two regimes i.e. Pr(s; = i;y,; ) and Pr(s,_1 = i;y,; ) to k x 1 vector as Ry and

15 Characterization of maximum likelihood estimates has been performed through implementation of Expectation Maximization (EM) algorithm (Dempster
et al.,, 1977). Due to the nonlinear equation structure for estimating parameter vector 0, it is practically not possible to solve them analytically, and as such,
iterative algorithm is used to finding the maximum likelihood estimates. Each iteration of this algorithm consists of two simple steps: An E-step, in which a
conditional expectation is calculated over a pre-defined density surface, and an M-step, where the conditional expectation is maximized. For a detailed
discussion about EM algorithm in context of aperiodic ergodic Markov chains, interested readers are referred to Hamilton (1994).
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T
L(0) = > _logf(y.ly.1:0) (18)
t=1

where

FWYe_1;0) = 1" (Rgeor = V)

3.5. Predictions/regime prediction

To be able to predict the unconditional probability of a driving cycle in a specific regime at time “t”, we use conditional
transition probabilities and the Markov structure of the model. Specifically, the log-likelihood function has a recursive struc-
ture (Frithwirth-Schnatter, 2006) that initiates from the unconditional state probabilities Xyjo. Thus, the unconditional prob-
abilities are estimated as:

= (AA) 'Ae, (19)
where A is (k + 1) x k matrix formulated as:
I,.—P
A= (20)

And I, denotes k x k identity matrix, and e, denotes kth column of I, respectively.

4. Data description - data acquisition systems

The data were extracted from the Data Acquisition System (DAS), which was part of Safety Pilot Model Deployment
(SPMD) in Ann Arbor, Michigan. The key objectives of SPMD include evaluation of how drivers adapted to the utilization
of connected vehicle technology, providing opportunity to explore real-world effectiveness of connected vehicle safety appli-
cations in multi-modal driving conditions (Henclewood, 2014). This study focuses on using the SPMD large-scale connected
vehicle sanitized mobility data to understand instantaneous driver decisions in a broader ecosystem of instrumented vehi-
cles and infrastructure on different roadway functional classifications.

As part of DAS, BSMs contain instantaneous (frequency of 10 Hz) information packets describing host vehicle’s motion
and location information, including vehicle performance (speed and acceleration), vehicle operation (brake and accelerator
pedal application), and instantaneous driving contexts (number of objects around host vehicle and distance to the closest
object) respectively (Henclewood, 2014). This information is stored in BSMs that are instantaneously sent and received by
instrumented vehicles and roadside equipment (Henclewood, 2014). Table 1 summarizes the detailed description of key data
variables whereas detailed description of all other data sources is available in SPMD Data Handbook (Henclewood, 2014).
One-day sample data (04/11/2013) has been used for this study which contains approximately 1.4 million records
(1,399,084) of basic safety messages, from 184 trips undertaken by 71 instrumented vehicles. Specifically, the sum of all trip
durations is approximately 38.8 h, whereas the average duration per trip is 12 min respectively. From roadway type stand-
point, the overall trips are undertaken on combination of freeways, state routes, and local routes respectively.

For this study, a probability based random-sampling procedure is conducted to randomly select 43 trips (out of 184 trips)
for further analyses.'® In the probability based simple random-sampling, random number generator (RNG) was used to gener-
ate unique indexes (ranging between 0 and 1) for each of the 184 trips and equal probability was assigned to each of the trip (i.e.
probability of selecting each trip was same across the data matrix). Next, a sample of 43 trips is randomly extracted from the
original data matrix (containing 184 trips) without replacement.

To facilitate more meaningful analysis, the entire vehicle trajectories for 43 randomly selected trips were visualized in
Google Earth to identify the roadway functional classification on which the trips were undertaken. As such, significant efforts
went into classifying the trips with respect to roadway type. For the sampled 43 trips, four trips are undertaken on freeway
and state routes, 2 trips on US state routes, 14 trips on freeways, 18 trips on local roads, and 5 trips on state and local routes.
Altogether, the 43 trips are undertaken by 34 vehicles whereas few vehicles undertook two or more than two trips.

The connected vehicle data used in this study are reliable and was error-checked. We linked the microscopic trip data
(collected at a frequency of 10 Hz) with a trip-summary file that contains trip-level information, from each instrumented
vehicle, and for each trip taken during the study period. The columns in the two files matched well in terms of trip start
and end times, vehicle ID and trip ID, distance traveled, average speed, and trip duration. Such concordance increases our
confidence in the data.

As stated earlier, the current study focuses on exploring the relationship between driving regimes and most critical cor-
relates i.e. instantaneous driving contexts. This said, descriptive statistics are presented in Table 2 only for instantaneous

16 A total of 43 randomly selected trips were categorized and modeled at the microscopic level in this study. Analyzing the entire database of 184 trips was
not done since it would be very labor intensive (in terms of categorizing) and computationally burdensome (in terms of modeling). Also, it is important to note
that the 43 randomly chosen trips account for 52% of the total one-day BSM sample (714,340 BSM packets out of 1,399,084 packets).
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Table 1
Variable descriptions from DAS SPMD, Ann Arbor, Michigan. Source: SPMD Data Handbook (Henclewood, 2014)
Variable Description
Position Altitude A GPS-based estimate of height above sea level (height above the reference ellipsoid that
approximates mean sea level)
Latitude Current degree of latitude at which the vehicle is located
Longitude Current degree of longitude at which the vehicle is located
Motion Speed (host vehicle) Current vehicle speed, as determined from the vehicle’s transmission
Longitudinal Longitudinal acceleration measured by an Inertial Measurement Unit (IMU)
Acceleration
Lateral Acceleration Lateral acceleration measured by an IMU
Vehicle Accelerator Pedal Reflects the amount the accelerator pedal is displaced with respect to its neutral position
Maneuvering Brake Pedal Indicates whether the brake light is on or off
Cruise Control Indicates whether cruise control is active/engaged
Turn Signal Provides information regarding the state of the vehicle turn signals
Driving Context Number of objects Number of identified objects, as determined by the Mobileye sensor
Distance to the closest Position of the closest object, relative to a reference point on the host vehicle, according to the
object Mobileye sensor

driving decisions (response variable) and instantaneous driving contexts (explanatory variables) respectively. In Table 2, the
explanatory variables are as follow:

1. Objects indicator: 1 if number of objects around host vehicle >3, 0 otherwise. While we tried different possible catego-
rizations and also used this variable as discrete in the model specifications, the cutoff point of 3 targets provided the most
comparable and empirically better (based on AIC) results (Wali et al., 2017). This categorization also helps in comparing
the effects of nearby targets on driving regimes across different trips undertaken on different roadway types.

2. Range: indicates the distance of closest object to host vehicle in feet.

4.1. Data aggregation

The SPMD connected vehicle data is collected at a frequency of 10 Hz i.e. 10 BSM packets per second are transmitted
between connected vehicles and the infrastructure. This provides the opportunity to conduct microscopic empirical assess-
ment of real-world driving data and vehicular movements that vary substantially over time (Liu and Khattak, 2016). How-
ever, as the present study focuses on instantaneous driving decisions, it may be difficult to understand the transition
between different regimes, especially within the time frame of one-tenth of a second.!” Thus, we aggregate the data at rel-
atively lower frequency before conducting detailed econometric analysis of instantaneous driving decisions. However, if the
data are aggregated at very lower frequency, it may result in losing short-term extreme or volatile driving decisions (Liu
et al., 2015a), which is also a fundamental focus of the present study. According to the study by Liu et al. (2015a), the feasibility
of detecting micro-driving decisions for 1 Hz sampling data (one BSM per second) is 98.54% where 1.46% of the information
about micro-decisions can be lost (Liu et al., 2015a). Likewise, if the sampling rate is reduced to 0.5 Hz (one BSM per two sec-
onds), 0.2 Hz (one BSM per five seconds), and 0.1 Hz (one BSM per ten seconds), the information loss can be 4.835%, 17.87%, and
35.86% respectively (Liu et al., 2015a). Given these results and the scope of the present study, we have aggregated the data at
1 Hz (one BSM per second) where averages of the values for each specific variable (identified in Table 1) within one-second are
taken.'® This resulted in a total of 71,434 s (i.e. 714,340 BSM packets divided by 10) of real-world connected vehicle driving
data.

5. Results
5.1. Descriptive statistics

The descriptive statistics presented in Table 2 summarizes each sampled trip by providing mean, standard deviation, min-
imum and maximum. The distributions of different driving states for each trip e.g. acceleration/deceleration seem reason-
able. As compared to mean acceleration/deceleration values, the standard deviation is relatively large for almost all the
trips, indicating larger variation in acceleration/deceleration cycles for a given trip. Trips undertaken on freeways (N =12)
are relatively longer with a mean and maximum trip duration of 48.6 and 218.4 min respectively (Table 2). The trips under-
taken on freeways are also observed to be high-speed trips (as compared to those on freeways and state routes) with mean

17 We thank the anonymous reviewer for bringing up this conceptual concern to our attention.

8 Note that we also conducted the entire analyses using original data resolution of 10 Hz. However, doing so did not change our overall inferences regarding
the presence and identification of regimes, and its correlations with explanatory variables in typical driving cycle. Results of the analyses conducted at 10 Hz
data are available from authors upon request.
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Table 2
Descriptive statistics of selected BSM variables.
Trip Acc-Dec Number of Targets Range Average Duration
No. (Mean/SD/Min/Max) (Mean/SD/Min/Max) (Mean/SD/Min/Max) Speed
Freeways & State Routes 1 (—0.0043/0.3623/-3.758/2.241) 0.21/0.40/0/1 0.970/0.540/0.093/1.5 89.79 17.476
2 (0.008/0.286/—-1.5907/2.5759) 0.56/0.49/0/1 0.66/0.47/0.03/1.78 68.25 26.214
3 (—0.0112/0.5322/-3.2444/2.3138) 0.34/0.47/0/1 0.29/0.28/0.02/1.5 72.48 32.768
4 (0.0031/0.2269/-1.5928/1.3693) 0.46/0.49/0/1 0.99/0.51/0.04/2.24 74.82 34.953
US State Routes 1 (—0.0383/0.3348/-1.6694/2.3972) 0.09/0.28/0/1 0.73/0.40/0.03/1.77 53.84 4.369
2 (0.0054/0.6422/-3.60/2.4138) 0.27/0.44/0/1 0.26/0.32/0.02/1.5 49.06 26.214
Freeways 1 (—0.0065/0.4368/-2.921/2.057) 0.72/0.44/0/1 0.35/0.21/0.04/1.59 80.48 19.661
2 (—0.0008/0.6055/—2.6779/2.9166) 0.26/0.44/0/1 0.60/0.51/0.02/1.54 54.61 52.429
3 (—0.0202/0.6539/-4.37/2.9) 0.46/0.49/0/1 0.40/0.45/0.01/1.77 72.02 17.476
4 (—0.0214/0.5873/—-1.9694/2.4472) 0.36/0.48/0/1 0.19/0.15/0.02/1.5 48.65 13.107
5 (0.0102/0.3439/-1.9032/1.7773) 0.37/0.48/0/1 0.99/0.53/0.03/2.17 68.06 26.214
6 (0.0090/0.4562/—1.8164/2.074) 0.47/0.49/0/1 0.80/0.44/0.025/1.78 66.88 19.661
7 (0.0018/0.2914/-2.3003/1.8706) 0.30/0.46/0/1 1.05/0.46/0.11/2.16 81.19 21.845
8 (0.0166/0.5987/-2.1916/2.6777) 0.44/0.49/0/1 0.23/0.22/0.02/1.5 49.2 23.815
9 (—0.0004/0.1863/—-1.6645/1.1566) 0.18/0.39/0/1 0.97/0.52/0.02/2.48 82.1 218.453
10 (—0.0002/0.1861/-1.8511/1.6970) 0.18/0.39/0/1 1.01/0.47/0.03/2.51 76.2 196.608
11 (0.0022/0.4081/-1.9227/2.1484) 0.47/0.49/0/1 0.65/0.47/0.03/1.76 723 26.214
12 (0.0017/0.3481/-2.2309/1.7925) 0.30/0.46/0/1 0.91/0.53/0.06/ 72.9 21.845
Local Routes 1 (0.0064/0.5953/-2.1722/2.0777) 0.16/0.37/0/1 0.71/0.58/0.03/1.68 32.23 13.107
2 (0.0014/0.900/-3.233/2.4674) 0.01/0.11/0/1 0.28/0.39/0.01/1.5 49.69 6.554
3 (—0.0028/0.6322/-2.8555/2.8277) 0.18/0.38/0/1 0.43/0.34/0.02/1.5 28.19 19.661
4 (0.0023/0.6046/—2.100/3.2305) 0.12/0.33/0/1 0.88/0.55/0.02/1.50 33.04 8.738
5 (0.0241/0.6756/—-2.6432/2.0203) 0.18/0.39/0/1 0.27/0.33/0.02/1.5 23.73 10.923
6 (0.0075/0.4854/-1.911/2.7583) 0.09/0.29/0/1 0.80/0.52/0.04/1.77 48.41 13.107
7 (—0.0003/0.612/-2.411/2.7886) 0.17/0.38/0/1 0.44/0.45/0.02/1.5 39.66 15.292
8 (—0.0252/0.5989/-2.3958/1.6883) 0.24/0.42/0/1 0.50/0.53/0.03/1.5 33.88 4.369
9 (0.0067/0.7795/—3.905/3.480) 0.05/0.27/0/1 0.86/0.57/0.02/1.5 40.51 34.953
10 (—0.0061/0.5762/-3.1/2.491) 0.007/0.083/0/1 0.93/0.55/0.02/1.5 46 10.923
11 (0.0105/0.4905/—2.0377/2.0833) 0.06/0.0818/0/1 0.66/0.46/0.03/1.77 57.8 15.292
12 (0.0173/0.5790/-1.7230/2.6367) 0.40/0.49/0/1 0.53/0.46/0.02/1.5 17.5 6.554
13 (—0.0062/0.7026/—-2.7647/2.5694) 0.25/0.43/0/1 0.51/0.50/0.02/1.52 33.1 17.476
14 (0.0231/0.485/-1.8722/1.3777) 0.08/0.27/0/1 0.26/0.13/0.04/1.51 67.4 10.923
15 (0.001/0.6294/-2.4522/2.4110) 0.04/0.19/0/1 0.62/0.51/0.03/2.07 18.7 13.107
State & local Routes 1 (0.0012/0.6672/—2.7908/5.4036) 0.36/0.48/0/1 0.23/0.36/0.01/1.5 31.14 43.691
2 (0.0128/0.5850/—2.6302/3.3680) 0.24/0.42/0/1 0.46/0.45/0.008/1.63 39.85 24.030
3 (—0.0067/0.5509/—-2.5195/2.4934) 0.32/0.47/0/1 0.48/0.41/0.01/1.62 4397 21.845
4 (—0.0045/0.5982/-3.0861/3.1) 0.02/0.16/0/1 1.25/0.43/0.03/1.78 76.74 32.768
5 (0.0070/0.2776/-1.3715/1.7664) 0.07/0.0266/0/1 1.32/0.35/0.14/1.53 73 24.030
Notes:

Acceleration/Deceleration are recorded in units of m/s?; range in hundreds of feet; average speed in miles/h; and duration in minutes.

1. Sample size = 713, 896 BSM records (N = 38 trips)

2. Descriptive statistics for 38 trips are presented as 5 trips were excluded from the analysis due to relatively shorter duration (i.e. less than 2 min) and no
objects around the host vehicle were recorded by Mobile Eye sensor for such trips.

3. Acceleration/Deceleration are recorded in units of m/s?; range in hundreds of feet; average speed in m/h; and duration in minutes.

speed of 78.8 mph and maximum mean speed of 81.19 mph respectively. Next, the average trip duration for trips on freeway
and state routes (N =4) is 27.8 min with maximum trip duration of 34.9 min (Table 2). Intuitively, trips on freeways and
state routes are also high-speed trips with mean speed of 76.33 mph and maximum mean speed of 89.79 mph respectively
(Table 2).

In terms of duration and speed, trips on local roads (N = 15) are observed to be both shorter and slower with average trip
duration of 13.39 min and average speed of 37.98 mph respectively (Table 2). The trips on state and local routes follow sim-
ilar distribution with mean duration of 29.27 min and average speed of 52.94 mph (as compared to average speed of 37.98
mph on local routes) (Table 2). Note that the detailed trip information and the geo-coded trajectories provided in SPMD
(Henclewood, 2014)v are not always from start to end of a trip, owing to issues related to privately identifiable data.

To see if the data is characterized by noise, appropriate visualizations are developed. To clarify the relationship between
speeds and acceleration, distributions of acceleration are visualized against speed in the top panel of Fig. 3. High speeds
(>50-55 mph) are associated with smaller acceleration magnitudes as well as smaller dispersion (or volatility) in accelera-
tion/deceleration values. The top right panel in Fig. 3 shows the density scatter plot where the bandwidth of acceleration/
deceleration values at high speeds is tighter than the bandwidth of acceleration/deceleration values at low speeds. This
seems reasonable as vehicle engines should do more work to maintain the same acceleration at higher speeds to overcome
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increasing air resistance. Therefore, the ability to accelerate a vehicle decreases naturally at higher speeds (Liu and Khattak,
2016; Wang et al., 2015).

To gain further insights regarding data quality, we analyze the distribution of longitudinal vs. lateral accelerations, and
the relationship resembles a lozenge shaped distribution which implies that lateral and longitudinal accelerations (or decel-
erations) do not have large magnitudes simultaneously. Also, the instantaneous driving decisions in longitudinal and lateral
directions seem to be inversely correlated with a Pearson correlation coefficient of —0.22, which is in agreement with pre-
vious literature (Wang et al., 2015). Such concordance again increases our confidence in the data.

5.2. Modeling results

Data are used from 38 trips for further analyses,'® the total duration of which is 19.83 h i.e. it is approximately half of the
trip durations for overall 184 trips. As discussed in Section 4.1, the data is aggregated at a frequency of 1 Hz (i.e., one BSM per
second). Thus, in the present study, the regimes (s;) are same for all 38 trips i.e., regime 1, and regime 2 in two-regime models,
and regime 1, regime 2, and regime 3 in three-regime Markov switching models, and that the regimes (s;) can change every one
second. For ease of discussion, we first systematically present the results of two-regime dynamic Markov-switching models in
Section 5.2.1 followed by presenting results for the three-regime dynamic Markov-switching models in Section 5.2.2.

5.2.1. Two-regime dynamic Markov switching models

We estimated 76 Markov switching regression models to analyze each trip separately, i.e. 38 constant-only instantaneous
driving decision models for each trip and 38 instantaneous driving decision models with all explanatory variables. The anal-
yses are conducted as:

o First, to observe the relationships and correlations, for each trip, we estimated simple Ordinary Least Square (OLS) regres-
sion models for modeling instantaneous driving decisions (response variable) as a function of number of objects around
host vehicle and distance to closest object. Both explanatory variables were statistically significantly associated with
modeling instantaneous driving decisions (response variable) at 95% confidence level.

Second, to capture the evolution of driving behavior followed by time series, constant-only two-regime Markov Switching
Dynamic Regression (MSDR) models were estimated for each trip. In the constant-only models, the intercept terms and
variances®® could switch between regimes. In other words, Eq. (4) was estimated. Constant-only models were developed to
observe two regimes, regime-dependent means and the associated variances or volatilities. Table 3 illustrates the results of
two-regime constant-only models for six trips, whereas Fig. 4 illustrates the summary for constant-only models for all 38
trips. In Table 3, the regime-dependent means and variances are reported. Also, mean transition probabilities®! (1-1,
1-2,2-1,2 - 2)are reported for the selected six trips, where 1 — 1 can be interpreted as estimated transitional prob-
ability of staying in regime 1 in the next period given the driver is observed in regime 1 in current period. Finally, mean dura-
tions of each regime are reported in Table 3 and Fig. 4.

For ease of discussion, we divide 38 trips (after estimating separate models) into two categories: 1) Category 1: trips on
freeways, state routes, and freeway and state routes, and 2) Category 2: trips on local and state routes, and local routes.
Finally, we estimate full two-regime Markov switching dynamic regression models with full specification as of Eq. (6) i.e.
0 = 1y, Uy, O, 0%, D12,DP21, Bs—15 Bs,—2]- In this model, all estimable parameters (u, o, ) can switch between the two
regimes of a specific driving cycle. Regarding regime-dependent variance term for the full models, we estimated models
both with regime-dependent and regime-independent variance terms, and the model that resulted in best fit was selected
(discussed later) (Hamilton, 1994). Table 4 illustrates the results of full models (including regime-dependent explanatory
variables) for the same trips for which constant-only models are presented in Table 3. Furthermore, Tables 5 and 6 sum-
marizes the results of all specified two-regime models, for category 1 and category 2 trips, respectively. For all model
parameters as identified in Eq. (6), to summarize the distribution of estimated parameters for all trips, Table 5 and 6 pre-
sent the mean, minimum, and maximum parameter estimates (favg, fmin, fmax), standard deviation (Std.dev), and sev-
eral percentile values (25thP, 50thP, 75thP, and 90thP), for category 1 and category 2 trips, respectively.

5.2.2. Three-regime dynamic Markov switching models

As discussed in detail in Section 3.1, real-world driving is a complex task and we can anticipate existence of more than
two regimes, say three regimes in a typical driving cycle. Thus, it is plausible to also investigate a more generic model spec-
ification that may capture common driving regimes, and thus can help in extracting important information related to instan-
taneous driving decisions embedded in real-world connected vehicle data. Having said this, we estimated 76 three-regime

19 As mentioned earlier, detailed analysis is conducted for 38 trips (out of 43 trips) as 5 trips were excluded from the analysis due to relatively shorter
duration (i.e. less than 2 min) and no objects around the host vehicle were recorded by Mobile Eye sensor for such trips.

20 Intuitively, it would be unreasonable to assume that the variance in acceleration be equal to variance in deceleration. Thus, as a first step, two-regime
constant-only models were developed with switching intercept-term only. Next, the variances were also allowed to switch between states. Finally, the model
with switching intercept and variance term was selected as final model if variance terms were observed to be different in two regimes and statistically
significant at 95% confidence level (Hamilton, 1994).

21 Note that (1 > 1)=1-P(1 »2)and P(2 > 1)=1-P(2 - 2).
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Fig. 3. Distributions of speed, longitudinal, and lateral accelerations.

Markov switching regression models to analyze each trip separately, i.e., 38 constant-only three-regime instantaneous driv-
ing decision models for each trip and 38 three-regime instantaneous driving decision models with all explanatory variables
i.e, full specification. The analyses are conducted as:

o Like the two-regime Markov switching models, for ease of discussion in three-regime specification, we divide the trips
(after estimating separate models) into two categories: 1) Category 1: trips on freeways, state routes, and freeway and
state routes, and 2) Category 2: trips on local and state routes, and local routes.

To capture the evolution of driving behavior followed by time series, constant-only three-regime Markov Switching
Dynamic Regression (MSDR) models are estimated for each trip. Specifically, the regimes are not observed i.e., we do
not a priori what are the three assumed regimes in a typical driving cycle. Like the two-regime constant only models,
the intercept terms and variances can switch between the three regimes. In other words, Egs. (7) and (8) are estimated.
Constant-only models are developed to observe the three regimes, regime-dependent means and the associated variances
or volatilities associated with each regime. Table 7 summarizes the results of three-regime constant-only models for all
trips, whereas Fig. 3 graphically illustrates the mean intercepts and the associated volatilities associated with each of the
three regimes for all the trips. For all model parameters in three-regime constant only models, to summarize the distri-
bution of estimated parameters for all trips, Table 7 also presents the mean, minimum, and maximum parameter esti-
mates (Bavg, pmin, pmax), standard deviation (Std.dev), and several percentile values (25thP, 50thP, 75thP, and 90thP),
for category 1 and category 2 trips, respectively®%%>,

Finally, for all the trips, we estimate full three-regime Markov switching dynamic regression models with full specifica-

tion as of Eq. (9) i.e., 0 = [ty fy, 3, Vsi—15 Vs,—2> Vs3> O3> O3, 03, D115 P12s Pa1» Paz» P31» P3)- In this model, all estimable param-
eters (i, 0, 8) can switch between the three regimes of a specific driving cycle. Regarding regime-dependent variance
term for the full models, we estimated models both with regime-dependent and regime-independent variance terms,
and the model that resulted in best fit was selected. Tables 8 and 9 summarizes the results of full three-regime models
(including regime-dependent explanatory variables) for category 1 and category 2 trips, respectively. Also, Tables 8 and 9
present the mean, minimum, and maximum parameter estimates (Bavg, fmin, fmax), standard deviation (Std.dev), and

22 The default algorithm we used for maximizing the likelihood functions for all trips in two-regime as well as in three-regime models is modified or quasi
Newton-Raphson (NR) algorithm. The three-regime constant only models readily converged for 28 trips, however, for four category 1 trips and six category 2
trips, the three-regime constant only models did not converge. For these trips, we also tried other maximization algorithms such as Berndt-Hall-Hall-Hausman
(BHHH), Davidon, Fletcher-Powell (DFP), and Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms, however, the models did not converge. The failure of the
quasi NR optimization (and other optimization methods) imply that the parameters of the specified three-regime models are not identified by the data, and this
is common when attempting to fit a model with too many regimes (Stata, 2016).

23 As such, 10 trips are dropped from the estimation sample which corresponds to 20,669 s (or 0.206 million BSMs) of driving data i.e., 29% of the data in total
sample is dropped for the three-regime constant only models.
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Table 3
Two-regime constant-only Markov switching regression models (six selected trips).
Constant-only Models Freeway Freeway Freeway & State  Freeway & State  Local Local
Route Route Route Route
Acceleration-Regime 1 B 0.149 0.104 1.1297 0.147 0.2568 0.141
z-score 16 5.23 26.01 12.61 6.01 7.93
Deceleration-Regime 2 B -1.019 -1.104 —0.0163 —0.739 —1.412 -1.194
z-score —24.86 5.23 -2.69 -17.04 -11.19 -15.5
Regime 1 - Variance Parameter 8 0.4422 0.467 0.11635 0.377 0.6646 0.453
Std. Error 0.0063 0.014 0.0021 0.007 0.028 0.012
Regime 2 - Variance Parameter 0.5811 0.341 0.1163 0.5323 0.6891 0.443
Std. Error 0.0225 0.035 0.0021 0.0222 0.0715 0.05
Transition prob: 1 — 2 B 0.017 0.0144 0.0926 0.0284 0.0215 0.062
Std. Error 0.0027 0.005 0.0506 0.0048 0.009 0.004
Transition prob: 2 — 2 B 0.8834 0.873 0.9979 0.8682 0.8763 0.866
Std. Error 0.0179 0.04 0.0011 0.0213 0.0473 0.037
Expected Duration: Regime 1 B 58.58 69.12 10.7922 35.096 46.505 61.38
95% Conf. Interval  43.0,79.9 34.6,139.0 4.0,32.8 25.1, 49.0 20.0,109.5 34.4,110.1
Expected Duration: Regime 2 B 8.582 7.891 71.31 7.589 8.08 7.464
95% Conf. Interval 6.3, 11.6 4.3,15.2 59.1, 81.1 55,104 4.0,17.7 44,132
Intercept - Regime 1 Duration - Regime 1
Intercept - Regime 2 Duration - Regime 2
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Fig. 4. Summary of two-regime constant-only Markov switching regression models (all 38 trips).

several percentile values (25thP, 50thP, 75thP, and 90thP), for three-regime category 1 and category 2 trips, respec-
tively.?* Also, regime durations and mean transition probabilities? are reported (as in Eq. (12)) for all the trips, where
for example, 3 — 1 can be interpreted as estimated transitional probability of staying in regime 3 in the next period given
the driver is observed in regime 1 in current period.

6. Discussion

In this section, we discuss the results of two-regime and three-regime dynamic Markov switching models. First, the
results of two-regime (constant only and models including all explanatory factors- Tables 3-6) are discussed followed by
a discussion on three-regime Markov switching models (Tables 7-9).

6.1. Two regime dynamic Markov switching models

6.1.1. Two-regime constant-only models (Table 3 and Fig. 4)
The constant-only models are developed to investigate whether the volatility of entire driving cycle is sensitive to
regimes, i.e. single estimate of variance for the entire driving cycle or is volatility (variance terms) regime dependent?

24 For fully-specified three-regime models (i.e., including regime dependent explanatory variables), the models did not converge for 14 trips (five category 1
trips and nine category 2 trips). As such, 14 trips are dropped for the estimation sample which corresponds to 14,830 s of driving data i.e., 21% of the data in

total sample.

25 Note that P (1 - 3)=(1—P(1 > 1) = P(1 > 2)), P2 > 3)=(1 = P2 > 1) - P(2 > 2)), and P(3 » 3)=(1 = P(3 - 1) — P(3 > 2)).
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Table 4
Two-regime full Markov switching regression models (for six selected trips).
Full Models Freeway Freeway Freeway & State Freeway & State Local Route Local Route
Route Route
Acceleration-Regime 1 Constant (std. error) 0.0666 0.077 1.47 (0.082) 0.161 (0.019) 0.273 0.1172
(0.0159) (0.031) (0.051) (0.025)
Objects indicator (std. 0.146 —-0.083 —0.328 (0.086) 0.030 (0.015) -0.320 0.229
error) (0.020) (0.035) (0.322) (0.056)
Range (std. error) 0.032 0.279 —0.349 (0.106) —0.138 (0.037) —0.084 0.041
(0.017) (0.131) (0.158) (0.021)
Deceleration-Regime 2 Constant (std. error) —1.494 —1.002 —0.051 (0.0124) —0.806 (0.057) -1.603 -1.183
(0.073) (0.094) (0.180) (0.096)
Objects indicator (std. 0.513 —-0.063 0.0154 (0.006) 0.090 (0.051) 1.3707 0.559
error) (0.080) (0.102) (0.614) (0.102)
Range (std. error) 0.162 —0.546 0.041 (0.012) —0.258 (0.099) 0.227 -0.169
(0.073) (0.592) (0.097) (0.129)
Regime 1 - Variance B 0.2265 0.466 0.229 0.402 0.665 0.401
Parameter Std. Error 0.003 0.014 0.004 0.007 0.072 0.011
Regime 2 - Variance B 0.2265 0.338 0.1145 0.201 0.655 0.456
Parameter Std. Error 0.003 0.035 0.002 0.0035 0.072 0.033
Transition prob: 1 — 2 B 0.015 0.013 0.098 0.026 0.0206 0.017
Std. Error 0.002 0.005 0.053 0.004 0.008 0.005
Transition prob: 2 — 2 B 0.846 0.878 0.997 0.845 0.8755 0.899
Std. Error 0.022 0.04 0.001 0.024 0.048 0.027
Table 5
Summary of specified two-regime models for all trips taken on freeways, state routes, and freeway and state routes (Category 1 trips).
Variable Bavg Std.dev Bmin Bfmax 25P 50P 75P 90P
Acceleration - Regime 1 Constant 0.366 0.457 0.013 1.475 0.055 0.129 0.518 1.240
Objects indicator —0.003 0.164 -0.328 0.460 —0.078 0.013 0.062 0.146
Range 0.065 0.218 -0.330 0.608 —0.026 0.017 0.216 0.279
Duration-Acc 49.659 38.157 10.180 150.713 19.100 40.060 72.494 105.312
Sigma-Acc 0.203 0.119 0.074 0.466 0.121 0.150 0.248 0.461
Deceleration — Regime 2 Constant —0.568 0.486 -1.494 —0.052 -0.994 -0.451 -0.109 -0.071
Objects indicator 0.076 0.237 -0.272 0.548 —-0.059 0.034 0.090 0.538
Range 0.095 0.287 —0.546 0.665 0.025 0.064 0.162 0.658
Duration-Dec 80.900 123.787 5.040 462.590 7.119 11.768 152.030 245.900
Sigma-Dec 0.271 0.244 0.074 1.109 0.123 0.178 0.347 0.445
Transition Probabilities 1-1 0.918 0.065 0.802 0.998 0.859 0.915 0.993 0.995
21 0.039 0.029 0.007 0.098 0.013 0.028 0.056 0.085

Notes: Objects indicator: 1 if >3 number of objects, 0 otherwise; Range: Distance to closest object in hundreds of feet; “Sigma” refers to variance of each
regime i.e. o7 for regime-acceleration and o2 for regime-deceleration. 25P, 50 P, 75 P, 90 P refers to 25th, 50th, 75th, and 90th percentile values of
estimated parameters for all trips. favg, fmin, pmax refers to mean, minimum, and maximum parameter estimate for all trips. Std. dev refers to standard
deviation of mean parameter estimates (Bavg).

The modeling results (Table 3 and Fig. 4) reveal an important finding—that two distinct yet unobserved regimes, acceleration
and deceleration, exist and the empirical data strongly favor Markov switching dynamic regression models.?® Wald tests of
linear restrictions were conducted for all 38 constant-only models (for 38 trips), testing the coefficients for intercepts in two
regimes for equality (null hypothesis). For all 38 trips, with 99.5% confidence, the null hypothesis was rejected in favor of alter-
native hypothesis, i.e. the differences in intercept values in two regimes are non-zero (Kodde and Palm, 1986). The existence of
two distinct regimes in typical driving cycles (both for category 1 and 2 trips) is shown by the mean positive coefficients for
regime 1 (Fig. 4), and mean negative coefficient for regime 2 for the same trips (Fig. 4). Relevant findings are listed below:

26 Note that the two-regimes were unobserved in the sense that we did not assume a priori before estimation that acceleration and deceleration are two
distinct regimes of a typical driving cycle. Instead, we let the Markov switching framework identify two distinct regimes from data. As an example, some
possibilities regarding the two regimes could be, acceleration and deceleration, low and high rate acceleration, low and high rate deceleration, and so on. After
estimating the Markov switching models, we eventually learned that acceleration and deceleration are the two typical regimes that characterize a typical
driving cycle. Similar to the original Hamilton’s Markov switching application to US gross national product data (Hamilton, 1994), we reached this conclusion
based on the positive and negative statistically significant intercept terms in the two regimes (Fig. 4). However, a positive intercept in regime 1 does not
necessary mean that regime 1 is wholly characterized by positive values (i.e., acceleration values). It may be the case that regime 1 (which is identified as
acceleration) still contain acceleration values near to zero or negative values near to zero, however, the average intercept term is positive and which makes us
conclude that on-overage acceleration is regime 1, and vice versa for regime 2 (i.e., deceleration) (Hamilton, 1994). The concept of unobserved yet distinct
regimes will become further clearer in case of three-regime models which are discussed later.
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Table 6
Summary of specified two-regime models for all trips taken on local and state, and local routes (Category 2 trips).
Variable pavg Std.dev Bmin Bmax 25P 50P 75P 90P
Acceleration - Regime 1 Constant 0.344 0.441 —0.006 1.692 0.113 0.174 0.333 1.092
Objects indicator 0.114 0.621 -1.519 2.122 —-0.033 0.058 0.267 0.419
Range 0.031 0.312 -0.814 0.701 —-0.100 0.017 0.102 0.460
Duration-Acc 43.443 33.034 5.558 146.365 19.763 38.103 54.402 80.490
Sigma-Acc 0.337 0.147 0.112 0.615 0.216 0.333 0.429 0.551
Deceleration — Regime 2 Constant -0.776 0.509 -1.604 -0.102 -1.189 —0.802 -0.228 -0.138
Objects indicator 0.019 0.675 -2.167 1371 -0.133 0.117 0.322 0.575
Range 0.109 0.465 -1.077 1.028 —-0.154 0.102 0.328 0.697
Duration-Dec 29.255 42.197 5.472 147.324 8.061 10.342 23.319 110.604
Sigma-Dec 0.424 0.248 0.112 1.018 0.226 0.401 0.538 0.812
Transition Probabilities 1-1 0.912 0.053 0.817 0.993 0.876 0.903 0.955 0.991
21 0.043 0.043 0.007 0.180 0.018 0.026 0.055 0.097

Notes: Objects indicator: 1 if >3 number of objects, 0 otherwise; Range: Distance to closest object in hundreds of feet; “Sigma” refers to variance of each
regime i.e. o7 for regime-acceleration and ¢% for regime-deceleration. 25P, 50 P, 75 P, 90 P refers to 25th, 50th, 75th, and 90th percentile values of
estimated parameters for all trips. favg, fmin, pmax refers to mean, minimum, and maximum parameter estimate for all trips. Std. dev refers to standard
deviation of mean parameter estimates (pavg).

e While Table 3 presents results of Markov switching models for six trips as illustration, similar results were obtained for all
38 sampled trips. By examining the results for all 38 trips in Fig. 4, for category 1 trips, the mean acceleration (for all 18
trips) is 0.307 m/s> as opposed to mean deceleration of —0.547 m/s2. Note that for all sampled trips (38 trips), the coef-
ficients for intercept terms were consistently positive and negative, for the two regimes, indicating the existence of two
distinct regimes in typical driving cycles. Results show that compared to acceleration, drivers decelerate at a higher rate
(intercepts of 0.307 m/s® vs —0.547 m/s?). However, for category 2 trips (Fig. 4), the difference between magnitudes of
mean acceleration (regime 1) and mean deceleration (regime 2) is relatively large, i.e., mean acceleration (for all 20 trips)
is 0.235 m/s® whereas mean deceleration is —0.930 m/s>. This finding indicates that on local routes, drivers may deceler-
ate frequently (and at higher rates) due to presence of traffic controls, i.e., signals, stop signs, and yield signs.
Importantly, for both category 1 and category 2 trips (Fig. 4), deceleration is statistically significantly more volatile than
acceleration, noting mean ¢7 of 0.224 vs. mean ¢3 of 0.301 for category 1 and mean 2 of 0.373 vs mean ¢3 of 0.417 for
category 2 (Fig. 4). One explanation for this important finding can be that drivers react faster to hazardous or difficult
situations, e.g. obstruction or a hard-braking car in front, by decelerating harder as compared to their reaction to more
non-hazardous conditions, e.g., an open road with no other vehicles.

Fig. 4 also summarizes the mean duration that driver stays in each regime. For example, for category 1 trips, on average,
drivers spend more time accelerating (75 s) as compared to decelerating (58 s). Finally, referring to Table 3, as expected, it
can be observed that both regimes i.e. acceleration and deceleration are highly persistent i.e. mean 1 — 1 probabilities of
0.91 and 0.88 for category 1 and 2 trips respectively (Table 3).

6.1.2. Two-regime specified models (Tables 4-6)

The number of objects and distance to the closest object were added as potential regime-dependent explanatory vari-
ables. Like constant-only models, implementation of Markov switching dynamic regression with explanatory variables still
support the existence of two distinct regimes. The results in Table 4 suggest that the associations of explanatory variables are
significantly different and distinct in two regimes. Drivers respond differently to increasing objects in the acceleration
regime as they respond to such a situation during deceleration regime. Wald tests of linear restriction for all 38 trips con-
firmed this finding?’ (Kodde and Palm, 1986).

Note that a positive sign of the mean parameter estimate in the acceleration regime (Table 4) indicates that an increasing
magnitude of acceleration is associated with an increase in explanatory variable, e.g., presence of greater than three objects
around the host vehicle. However, a positive sign of the parameter estimate in the deceleration regime indicates decrease in
absolute magnitude of deceleration with increase in explanatory variable, e.g., presence of more objects. This association is
characterized by a | sign (negative association) in Table 10, which summarizes the associations (accounting for statistical
significance at 95% confidence level) of explanatory variables with two regimes for all trips. A negative sign of parameter
estimates in Table 4 in the deceleration regime indicates increase in absolute magnitude of deceleration (i.e. a negative value
added with negative response value) with unit increase in explanatory variable. This association is conceptualized with T
sign (positive association) in Table 10.

27 Wald tests of linear restrictions for all 38 full models were conducted. Specifically, the coefficients for intercepts and  for explanatory variables in two
regimes were tested for equality (null hypothesis). For all 38 trips, at 99.5% confidence level, the null hypothesis was rejected in favor of alternative hypothesis
i.e. the differences in intercept and f terms in two regimes are non-zero (Kodde and Palm, 1986).
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Table 7
Summary of three-regime constant only models for all category 1 and category 2 trips.
Regimes Parameters pavg Std. Bmin pmax 25P 50P 75P 9a0P
dev
Freeway, State Routes, Freeway & High Rate Acc - Intercept 0.542 0.336 0.065 0.965 0.113 0.639 0.829 0.953
State Routes (N = 14)* Regime 1 Sigma 0.501 0316  0.049 1.245 0.336 0.454 0.672 1.081
(Volatility)
Duration 10.006 3.503  5.903 16.589  6.889 8.833 12913 15.772
High Rate Dec - Intercept -0.666 0414 -1576 -0.129 -0936 -0.646 -0.264 -0.138
Regime 2 Sigma 0.302 0.218  0.049 0.690 0.107 0.282 0.475 0.635
(Volatility)
Duration 7.651 3.241 3.749 15489  4.987 7.143 8.866 14.020
Cruise - Intercept 0.012 0.034  -0.059 0.059 —-0.014 0.022 0.035 0.057
Regime 3 Sigma 0.143 0.080  0.049 0.260 0.066 0.131 0.227 0.254
(Volatility)
Duration 33.991 35978 9.422 138.165 15.717 18.400 41.081 110.321
Local, State and Local Routes High Rate Acc - Intercept 0.792 0.186  0.507 1.237 0.679 0.785 0.867 1.108
(N=14) Regime 1 Sigma 0.544 0.092 0433 0.794 0.480 0.526 0.593 0.713
(Volatility)
Duration 9.566 2,575  5.946 13.139  7.464 8.940 12495 12.908
High Rate Dec - Intercept -0.824 0.216 -1.310 -0.586 -0945 -0.807 -0.624 -0.587
Regime 2 Sigma 0.580 0.096  0.398 0.790 0.532 0.555 0.650 0.749
(Volatility)
Duration 9.050 2.081 5.364 12.895  7.147 9.594 10.588 12.132
Cruise - Intercept 0.014 0.013 —-0.019 0.038 0.007 0.012 0.021 0.033
Regime 3 Sigma 0.137 0.061 0.056 0.312 0.106 0.127 0.160 0.245
(Volatility)
Duration 21.280 14.680 6.472 57.200 11.603 14.377 34.665 47.258

¢ Four category 1 and six category 2 trips are dropped due to failure in convergence of three-regime constant only models. See footnote 23 for details.

Table 8
Summary of specified three-regime models for all trips taken on freeways, state routes, and freeway and state routes (Category 1 trips).
Regimes Parameters Pavg Std. pmin Bmax 25P 50P 75P 90P
dev
Freeway, State Routes, Freeway & High Rate Acc - Intercept 0.693 0.393 0.040 1.239 0.383 0.788 0.943 1.200
State Routes (N = 14)* Regime 1 # of -0.277 0.659 -2.359 0.184 -0.242 -0.075 0.011 0.155
objects
Range -0.104 0.278 -0.549 0.423 -0.334 -0.126 0.027 0.382
Sigma 0.330 0202  0.061 0.676 0.109 0.345 0.512 0.638
(Volatility)
Duration 10.643 4.041 5.930 18.784  7.563 9.972 13.496 17.837
High Rate Dec - Intercept -0.811 0569 -2.326 -0.147 -1.128 -0.686 -0.429 -0.162
Regime 2 # of 0.164 0450  -0.272 1.561 —0.018 0.055 0.216 1.050
objects
Range 0.206 0534 -0.767 1.575 —0.080 0.188 0.430 1.160
Sigma 0.324 0.178  0.061 0.578 0.124 0.387 0.450 0.560
(Volatility)
Duration 8.142 1.950 4983 11.877  7.108 7.806 9.168 11.667
Cruise — Intercept —0.011 0.043 —0.070 0.078 -0.049 -0.001 0.019 0.057
Regime 3 # of -0.001 0.050 -0.144 0.054 -0.010 0.002 0.030 0.053
objects
Range 0.084 0.202 -0.116 0.694 —0.006 0.018 0.089 0.517
Sigma 0.231 0.351 0.049 1.322 0.068 0.134 0.235 0.997
(Volatility)
Duration 37.969 36.668 8.152 128455 16.128 17.742 59.744 113.238
Transition 1-1 0.029 0.039  0.000 0.126 0.002 0.019 0.028 0.114
Probabilities 1-2 0212 0.310  0.030 0.939 0.063 0.100 0.134 0913
251 0.810 0.220 0.084 0.915 0.842 0.871 0.890 0913
252 0.096 0.040  0.002 0.144 0.070 0.106 0.129 0.139
351 0.090 0.250  0.003 0.920 0.010 0.025 0.034 0.567
352 0.823 0335 0.046 0.992 0.938 0.944 0.983 0.991

2 Five category 1 trips are dropped due to failure in convergence of three-regime fully specified models. See footnote 24 for details.

6.1.2.1. Category 1 trips undertaken on freeways, state, and freeway and state routes. The results of full models for category 1
trips are summarized in Table 5, while summary of direction of effects for all trips is presented in Table 10. The results sug-
gest that deceleration is high rate regime (as compared to acceleration) with mean intercept estimate of —0.368 m/s2. Fur-
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Table 9
Summary of specified three-regime models for all trips taken on local and state, and local routes (Category 2 trips).
Regimes Parameters Bavg Std. Bfmin pmax 25P 50 P 75 P 9a0P
dev
Local, State and Local Routes  High Rate Acc - Intercept 0.764 0.156  0.499 0.948 0.612 0.852 0.887 0.936
(N =14y Regime 1 # of objects -0.259 0.690 -1.859 0.251 —0.226  0.005 0.150 0.249
Range -0.121 0.265 -0.825 0.085 -0.188 —-0.025 0.056 0.084
Sigma 0.503 0.125  0.280 0.792 0.459 0.486 0.552 0.754
(Volatility)
Duration 9.756 2874 5.588 13237  7.111 8.985 12.654 13.186
High Rate Dec - Intercept -0.771 0273 -1.039 -0.166 -1.018 -0.789 -0.650 —0.223
Regime 2 # of objects 0.058 0210 -0.221 0.403 -0.167 0.078 0.204 0379
Range 0.013 0450 -1.031 0.808 -0.183  0.059 0.194 0.721
Sigma 0.552 0.098  0.393 0.787 0.497 0.538 0.561 0.758
(Volatility)
Duration 9.345 1.721 6.876 11.947 7.842 9.964 10.727 11.863
Cruise - Regime 3 Intercept 0.020 0.052  -0.006 0.176 —0.001 0.003 0.018 0.145
# of objects -0.079 0.212 -0.697 0.072 —-0.092 -0.005 0.010 0.063
Range -0.022 0.107 -0.335 0.067 —-0.014 0.005 0.019 0.061
Sigma 0.111 0.034 0.054 0.158 0.095 0.111 0.142 0.155
(Volatility)
Duration 17.606 10.541 7.322 37475 10235 14.665 24.588 37.220
Transition 1-1 0.021 0.024  0.000 0.080 0.000 0.020 0.029 0.071
Probabilities 1-2 0.089 0.033  0.033 0.150 0.076 0.083 0.114 0.144
21 0.889 0.021 0.855 0.916 0.872 0.900 0.906 0.916
22 0.062 0.019  0.032 0.086 0.038 0.063 0.078 0.086
351 0.042 0.019  0.021 0.087 0.024 0.040 0.051 0.081
352 0.926 0.035  0.863 0.973 0.902 0.932 0.959 0.973

2 Nine category 1 trips are dropped due to failure in convergence of three-regime fully specified models. See footnote 24 for details

thermore, similar to the results from constant-only models, deceleration is observed statistically significantly more volatile
than acceleration (mean 2 of 0.203 for acceleration vs mean g2 of 0.271 for deceleration) (Table 5).

Turning to the estimation results for category 1 trips (Table 5), in the acceleration regime, on average the number of
objects is positively associated with driver propensity to accelerate; note that 50th Percentile g is 0.013 in Table 5. Moreover,
the association between Objects indicator and acceleration-regime is statistically significantly positive for 8 trips, whereas it
is statistically significantly negative for 6 trips®® (Table 10). The difference in associations of Objects indicator (positive for
44.44% and negative for 33.33% of trips) on driver’s propensity to accelerate in the regime 1 may be an outgrowth of drivers
having different perceptions regarding their surrounding and thus may make different decisions that match their preferences.
However, if a driver is observed to be in the deceleration regime, then the Objects indicator (on average) is negatively associated
with driver propensity to decelerate, or indirectly driver is observed to decelerate at a lower rate or even accelerate (i.e.
Bavg = 0.076 in Table 5). For the association between Objects indicator and deceleration-regime, it is statistically significantly
negative for 11 (61.11%) trips, and positive for only 3 (16.66%) trips, and statistically insignificant for 4 (22.22%) trips (Table 10).
Both above findings suggest drivers’ tendency (on-average) to get out of crowded situations (characterized by greater than or
equal to 3 number of objects around host vehicle) by accelerating (if driver is in acceleration regime) or to decelerate at a lower
rate or even accelerate, if a driver is in deceleration regime.

An increase in distance (in feet) to closest object (Range) is associated with an increase in acceleration, noting that
pavg = 0.065 in the acceleration regime (Table 5). Drivers tend to accelerate when they have more space around them
and can freely maneuver their vehicle. Despite the heterogeneity in associations of the Range variable in the
deceleration-regime (Li et al., forthcoming; Ahmed et al., 2017; Khattak et al., 2016; Wali et al., 2017), it is generally statis-
tically significantly negative for 10 trips (55.55%) and positive association for only 5 trips (27.77%) (Table 10).

6.1.2.2. Category 2 trips undertaken on local and state, and local only routes. Table 6 presents specified models for category 2
trips, and the direction of associations for all trips is presented in Table 10. Similar to category 1 trips where deceleration is
the observed high rate regime compared to acceleration, for category 2 trips (i.e. particularly trips on lower functional clas-
sification roads), the mean intercepts for acceleration- and deceleration-regime vary significantly i.e., 0.344 m/s® vs.
—0.776 m/s*. Likewise, deceleration is more volatile than acceleration as indicated by 62 of 0.337 for acceleration and 63
of 0.424 for deceleration (Table 6).

Table 6 shows that parameter estimates for object indicator and range are all significantly different between two regimes
for category 2 trips. The magnitudes of differences are reasonable, and partly attributable to the fluctuating traffic conditions

28 We remind that results presented throughout hold for the two categories of trips, category 1 and 2, and not for specific roadway types per se. For example,
among all the 18 trips in category 1, four trips are undertaken on a mixture of freeway and state routes. Thus, the results presented may not be entirely
generalizable for trips on freeways only.
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due to traffic signals and stop or yield signs on lower classification roads. In the acceleration regime, Object indicator and the
Range variable are associated with an increase in acceleration, with favg of 0.114 and 0.031 for Objects indicator and Range,
respectively (Table 6). The positive associations between objects indicator and acceleration are fairly consistent across sam-
pled trips in sense that for object indicators, the association is positive for 7 (35%) trips and negative for only 2 trips (10%)
and statistically insignificant for the rest of the trips (Table 10). The consistent finding for Object indicator is that drivers (on-
average) prefer to accelerate given more objects around them on local routes. This finding agrees with the one in category 1
trips, showing that drivers (on-average) tend to get out of crowded situations. For trips on local roads, the finding that
increase in Range is associated with drivers’ tendency to accelerate is also intuitive, as larger space around the host vehicle
will enable drivers to maneuver the vehicles freely. However, this finding is not conclusive in the sense that the association
between range and acceleration is positive for 30% of sampled trips whereas it is negative for 25% of the sampled trips, and
this requires further investigation.

In the deceleration regime, the Objects indicator is negatively associated with deceleration, i.e. with three or more objects
around them, drivers on-average tend to accelerate as indicated by pavg of 0.019. This finding is again in agreement with the
ones observed for category 1 trips. Also, in deceleration regime, the negative association between objects indicator and
deceleration holds true for 9 trips while it is positive for only 4 trips (Table 10). Finally, in the deceleration regime, increase
in Range is associated with drivers’ propensity to accelerate, as expected, and the finding seems conclusive in the sense that
drivers in 60% of the sampled trips accelerated with increasing distance to the nearest object (Table 10).

6.2. Three regime dynamic Markov switching models

6.2.1. Three-regime constant-only models (Table 7 and Fig. 5)

The three-regime constant-only models are developed to identify the three regimes in a typical driving cycle, volatilities
associated with each regime, and whether the volatility of entire driving cycle is sensitive to regimes, i.e. single estimate of
variance for the entire driving cycle or is volatility (variance terms) regime dependent?

For Category 1 trips, i.e., trips on freeways, state routes, and freeway and state routes, the modeling results (in Table 7 and
Fig. 5) reveal that the mean intercepts for regime 1, 2, and 3 are 0.542, —0.666, 0.012 respectively. Based on these average
intercept values, and its higher magnitudes, regime 1, 2, and 3 can be conceptualized as high rate acceleration, high rate
deceleration, and constant/cruise state respectively.?**° Moreover, drivers’ on-average tend to decelerate at a higher rate than
their rate of acceleration (Bavg of —0.666 vs 0.542). Note that for all sampled trips (38 trips), the coefficients for intercept terms
were statistically significant, and were consistently positive, negative, and near zero for the three regimes, indicating the exis-
tence of three distinct regimes in typical driving cycles. Regarding the volatility associated with each regime in category 1 trips,
high rate acceleration is the most volatile (62 = 0.501) followed by high rate deceleration (6% = 0.302) and cruise/constant
regime (0% = 0.143). Overall, this finding intuitively suggests that compared to cruise/constant regime, drivers instantaneous
driving decisions are more volatile both in “high-rate” acceleration as well as “high-rate” deceleration regime.

For Category 2 trips, i.e., trips on local, local & state routes, the modeling results (in Table 7 and Fig. 5) reveal that the
mean intercepts for regime 1, 2, and 3 are 0.792, —0.824, 0.014 respectively. Based on these statistics, we identify the three
regimes as high-rate acceleration, high-rate deceleration, and cruise/constant regime. Again, and intuitively, drivers tend to
decelerate at higher rates than their rates of acceleration (Fig. 5). However, in case of category 2 trips, high-rate deceleration
(03 =0.580) is the most volatile regime followed by high-rate acceleration (62 = 0.544), and cruise/constant regime
(02 = 0.137). Also, for category 2 trips, the magnitudes of the high rate acceleration and high rate deceleration regimes
are higher than the corresponding magnitudes for trips on freeways, state routes, and freeway and state routes (Category
1 trips) (Fig. 5). This shows that, given high rate regimes, drivers accelerate and decelerate at higher rates on local roads com-
pared to high rate accelerations and decelerations on freeways.

6.2.2. Three-regime specified models (Tables 8 and 9)

For the specified three-regime models, number of objects surrounding the host vehicle and distance to the closest object
are added as potential regime-dependent explanatory variables. Overall, the results in Tables 8 and 9 support the existence
of three distinct driving regimes for category 1 and category 2 trips, after controlling for context specific explanatory factors.
Like the constant-only three-regime models, the three regimes in specified models can be conceptualized as high-rate
acceleration, high-rate deceleration, and constant/cruise regime (Tables 7 and 8). Also, the correlations between explanatory

29 Note that the mean intercept values for acceleration and deceleration (0.542 and —0.666) in three-regime specification are higher than the mean intercept
values for acceleration and deceleration (0.307 and —0.547) in two-regime specification.

30 Like the two-regime specification, the regimes in three-regime specification are unobserved i.e., by simply observing our dependent variable (column
vector containing acceleration/deceleration values) directly we cannot know a priori what the three regimes are. Note that in the two-regime case, it happened
to be that by directly observing our response outcome, one could have expected acceleration and deceleration as two regimes. However, in case of three
regimes, by visually inspecting the response outcome, it is impossible to infer exactly what the three regimes are and the cut-off points where the regimes
change or switch. There can be several possibilities: e.g., (1) cruise state, low rate acceleration, and high rate acceleration, (2) cruise state, low rate deceleration,
and high rate deceleration, and so on. It is only after application of Markov-switching models that we can mathematically quantify the three regimes by a data-
driven approach, and the average cut-off points associated with each regime from the data at hand. Once the regimes are identified, the correlations between
response outcome in each regime and explanatory factors are modeled separately in each regime. The concept of unobserved regimes in Markov switching
framework is explicitly explained by Hamilton (1994).
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Table 10
Two-regime Markov switching models - summary of direction of effects for all trips.
Roadway Type Driving Regimes Variable T l Not Significant at 95% CL
Freeways & State Routes (N = 18 trips) Acceleration Constant 18 (100%) 0 (0%) 0 (0%)
Objects indicator 8 (44.44%) 6 (33.33%) 4 (22.22%)
Range 10 (55.55%) 5(27.77%) 3 (16.66%)
Deceleration Constant 0 (0%) 18 (100%) 0 (0%)
Objects indicator 3 (16.66%) 11 (61.11%) 4 (22.22%)
Range 2 (11.11%) 11 (61.11%) 5(27.77%)
Local, State & Local Routes (N = 20 trips) Acceleration Constant 19 (95%) 0 (0%) 1 (5%)
Objects indicator 7 (35%) 2 (10%) 11 (55%)
Range 6 (30%) 5 (25%) 9 (45%)
Deceleration Constant 0 (0%) 20 (100%) 0 (0%)
Objects indicator 4 (20%) 9 (45%) 7 (35%)
Range 5 (25%) 12 (60%) 3 (15%)

Note: Row-wise percentages sum up to 100.

factors and instantaneous driving decisions are significantly different and distinct in the three-regime specified models
(Tables 8 and 9). Wald tests of linear restriction for all the trips confirmed this finding where the coefficients for intercepts
and p's for explanatory variables in the three regimes were tested for equality (null hypothesis) and the null hypothesis was
rejected for all the trips at 99.5% confidence level (Kodde and Palm, 1986).

Finally, Table 11 summarizes the correlations (accounting for statistical significance at 95% confidence level) between
explanatory factors and the instantaneous driving regimes. A positive sign of the mean parameter estimate in the high-
rate acceleration regime (Table 8) will indicate drivers’ tendency to accelerate (on-average) with an increase in value of
explanatory variable. However, a positive sign of the parameter estimate in the high-rate deceleration regime (Table 8) will
indicate a decrease in absolute value of deceleration with increase in a value of explanatory value. This association is char-
acterized by a | sign (negative association) in Table 11. Likewise, a negative sign of parameter estimate in the high-rate
deceleration regime (Table 8) will indicate an increase in absolute magnitude of deceleration (i.e. a negative value added
with negative response value) with unit increase in explanatory variable. This association is thus conceptualized with 7 sign
(positive association) in Table 11.

6.2.2.1. Category 1 trips undertaken on freeways, state, and freeway and state routes. Before discussing the results of specified
three-regime models, we note that five category 1 trips and nine category 2 trips were dropped from the sample due to non-
convergence in model estimation. As discussed in Section 5.2.2, 21% of the data in total sample is lost. However, for the trips
for which the individual models converged, the results provide deeper insights (compared to two-regime models) into the
correlation mechanism between instantaneous driving regimes and context-specific situational factors. The key takeaways
are:

e The results of specified three-regime models (Table 8) suggest that in high-rate acceleration regime, the number of
objects surrounding the host vehicle and the distance to the nearest object on average are negatively correlated with dri-
ver’s propensity to stay in high-rate acceleration at next instant of time (Bavg of —0.257 and —0.121 respectively). This
seems intuitive as drivers on average, irrespective of their surroundings, may not stay in high-rate acceleration regime
given that they are already in high-rate acceleration regime, and/or the ability to accelerate more at higher rates may
be limited. Furthermore, the association between objects indicator and high-rate acceleration regime is statistically sig-
nificantly negative for 46.2% (as opposed to positive correlation for 15.4% of trips) of the trips. Likewise, the association
between range and high-rate acceleration is negative for 53.8% of category 1 trips (compared to only 23.1% of trips where
the correlation is positive) (Table 11).

Likewise, given that driver is in high-rate deceleration regime at current instant of time, the results suggest that with
increase in number of objects and distance to the nearest object, drivers on-average are less likely to decelerate further
at next instant of time, or drivers indirectly decelerate at a lower rate or can even accelerate at next instant of time. This
result is intuitive and is reflected by the positive Bavg of 0.058 and 0.013 for object indicator and range respectively
(Table 8). Moreover, the relationship between object indicator and high-rate deceleration is negative for 46.2% of the trips
(compared to 23.1% of trips with positive correlation), whereas the relationship between range and high-rate deceleration
is negative for 61.5% of the trips (compared to only 15.4% of trips with positive association). These findings collectively sug-
gest that in high-rate deceleration regime, drivers (on-average) tend to get out of crowded situations (characterized by
greater number of objects around host vehicle) by decelerating at a lower rate or even accelerate at next instant of time.
Finally, and intuitively, if a driver is in cruise/constant regime at current instant of time, with increasing number of
objects around host vehicle and/or with increasing distance to the nearest object s(he) is more likely to accelerate (on
average) at next instant of time. Moreover, the statistically significant positive associations between range and con-
stant/cruise regime hold for 61.5% of the sampled trips, compared to only 7.7% of the trips where the correlation between
range and cruise/constant regime is negative Table 11).
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Fig. 5. Summary of three-regime constant-only Markov switching regression models (all 38 trips).

Table 11
Three-regime Markov switching models - summary of direction of effects for all trips.
Roadway Type Driving Regimes Variable 1 ! Not Significant

at 95% CL

Freeways & State Routes (N = 13 trips) High Rate Acceleration-Regime 1 Constant 13 (100%) O 0
Objects indicator 2 (15.4%) 6 (46.2%) 5 (38.5%)
Range 3(23.1%) 7 (53.8%) 3(23.1%)

High Rate Deceleration — Regime 2 Constant 0 13 (100%) O
Objects indicator 3 (23.1%) 6 (46.2%) 4 (30.8%)
Range 2 (15.4%) 8 (61.5%) 3(23.1%)
Constant/Cruise around O - Regime 3  Constant 3 (23.1%) 6 (46.2%) 4 (30.8%)
Objects indicator 4 (30.8%) 2 (15.4%) 7 (53.8%)
Range 8 (61.5%) 1(7.7%) 4 (30.8%)

Local, Local & State Routes (N =11 trips)  High Rate Acceleration-Regime 1 Constant 11 (100%) O 0
Objects indicator 2 (18.2%) 4 (36.4%) 5 (45.5%)
Range 1(9.1%) 4(36.34%) 6 (54.5%)

High Rate Deceleration - Regime 2 Constant 0 11(100%) O
Objects indicator 1 (9.1%) 4 (36.3%) 6 (54.5%)
Range 1(9.1%) 6 (54.5%) 4 (36.4%)
Constant/Cruise around 0 - Regime 3  Constant 1(9.1%) 1(9.1%) 9 (81.8%)
Objects indicator 3 (27.2%) 4 (36.3%) 4 (36.3%)
Range 3(27.2%) 2 (18.1%) 6 (54.5%)

6.2.2.2. Category 2 trips undertaken on local, local and state routes.

o Similar to the results for category 1 trips, the results for category 2 trips suggest that in high rate acceleration regime,

increase in both object indicator and range are on-average negatively associated with drivers’ tendency to stay in
high-rate acceleration regime at next instant of time. As discussed earlier, this may be attributed to the fact that vehicle’s
ability to accelerate further may be constrained given that vehicle is already in high rate regime.
For high-rate deceleration regime, our results suggest that increase in number of objects around host vehicle and increase
in distance to the nearest object are both negatively associated with drivers’ tendency to decelerate further at next instant
of time. This is reflected in the average Bs of 0.058 and 0.013 for object indicator and range respectively (Table 9).
Furthermore, the negative association between object indicator and high-rate deceleration regime holds for 36.3% of
the sampled trips whereas the negative association between range and high-rate deceleration regime holds for 54.5%
of the sampled trips (Table 11). Note that the associations between the explanatory factors and high-rate deceleration
regime are positive only for 9.1% of the sampled trips (Table 11).

6.3. Short-term regime predictions

Markov switching models have a flexible structure for predicting unobserved regimes. Driving regimes can be predicted
during each time period (Hamilton, 1993). For details regarding forecasting Markov-switching models by different probabil-
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Fig. 6. Short term prediction of driving regimes.

ity estimation methods, interested readers are referred to (Hamilton, 1993). For demonstration, we use the two-regime
model specification for estimating smoothed probabilities that predict the regimes at each time period using all sample data
(Hamilton, 1993) (Fig. 6). The switching model considers different regime-specific correlations, i.e. instantaneous driving
contexts. Fig. 3 illustrates the key elements of short-term regime predictions for a 25-min trip undertaken on [-94 freeway
in Ann Arbor, Michigan. The first panel illustrates the time-series acceleration/deceleration cycle for the entire trip; the sec-
ond panel illustrates the regime-specific variance; and the last panel illustrates the smoothed probabilities of observing a
process in a specific regime at any instant of time. Note that the lowest magnitudes of variance shown in circles correspond
to the acceleration regime and vice versa, indicating that deceleration regime is more volatile than acceleration. While the
results for all other trips are not presented, they are largely similar.

7. Limitations/future work

The study is based on a limited number of trips. It is important to note that this study analyzes micro time-series instan-
taneous driving decisions during trips, but the application makes it difficult to use the entire large-scale database. Moreover,
to extract critical information at the micro-level, each trip should be analyzed separately with two- and three-regime model
specifications. Utilization of data from all trips for individual analysis is computationally demanding coupled with the dif-
ficulty of interpreting the results in a concise and effective manner. However, once the relationships are established at the
microscopic level, it should be easier to predict short-term decisions. Even though the analyzed trips (N = 43) are randomly
selected, one-day sample data may not be sufficient for conclusive results. While a two-month SPMD sample dataset is avail-
able through the Research Data Exchange (RDE, https://www.its-rde.net/home) website, that data cannot be used due to a
substantial number of missing observations about instantaneous driving contexts, i.e. number of objects surrounding host
vehicles. Also, the model specification is limited, but it can be enhanced by exploring correlates with other variables when
such data become available. Also, we acknowledge that if the “type” of the nearest object could be identified, it could have
helped in extracting richer insights. In future, with availability of more detailed data about the type of nearest object, the
methodology proposed in this study can be extended to understand how different types of nearest objects may influence
the instantaneous driving decisions of host vehicle’s driver.

Another important consideration relates to the positions of the vehicles surrounding the host vehicle. Conceptually, both
greater number of vehicles around the host vehicle as well as the placement/direction of the vehicles surrounding the host
vehicle can influence the drivers’ instantaneous driving decisions. To further elaborate the potential influence of vehicles’
placement surrounding the host vehicle (social envelope) on the instantaneous driving decisions of the host vehicle,
Fig. 7 is presented below (Khattak et al., 2015). For details about social interaction and/or gossip algorithms for modeling
large-scale behavioral systems, see (Karan and Chakraborty, 2016, 2015; Srinivasan et al., 2017). The overall driver behavior
estimation can be conceptualized as a Markov Decision Process (MDP) (Khattak et al., 2015). Throughout a typical driving
task, the driver is required to optimize his/her policy of instantaneous driving decisions (acceleration/deceleration) based
on the number of vehicles surrounding the host vehicle and their placement. For simplicity, assume that the host vehicle
is traveling on a three lanes roadway segment. Fig. 7a illustrates the time complexity of the driver’s policy optimization
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process. Depending on the number of features (slots around the host vehicle where a vehicle can be present or otherwise)
considered, the MDP states grow in the order of 2", where n is the number of features considered. With eight features con-
sidered (Fig. 7a), the possible number of MDP states are 256. Fig. 7c and e present few of the possible MDP states. When the
host vehicle is surrounded by greater number of vehicles, one can expect that the host driver will accelerate (as our analysis
suggests) but only if the slot in front of the host vehicle is empty (Fig. 7c and d). Contrarily, if the host vehicle is in a situation
where the front slot is occupied by another vehicle (Fig. 7e), the driver must decelerate no matter he/she is surrounded by
greater number of objects or otherwise. Due to the data unavailability about the placements of vehicles surrounding the host
vehicle, the driver behavioral models presented in this study cannot capture the influence of “positions” of the surrounding
vehicles on the instantaneous driving decisions of the host vehicle. As more detailed data become available in the future,
accounting for this dimension in the overall driver behavior estimation can yield in more realistic driver behavioral models
in a connected vehicles environment.

8. Conclusion/implications

This study focuses on utilizing large-scale high frequency data generated by data acquisition systems (DAS) that are
installed in vehicles to facilitate V2V and V2I infrastructure communications via state-of-the-art communication and sensor
technologies such as dedicated short-range communications. As part of USDOT Safety Model Pilot Deployment program,
real-world large-scale empirical data transmitted between connected vehicles and infrastructure are used to investigate
instantaneous driving decisions and its variation with respect to the ecosystem of mapped local traffic states in close prox-
imity surrounding the host vehicle. To achieve the objectives, state-of-the-art time-series methods such as Markov-
switching dynamic regression models were applied.

By conducting a detailed analysis of 43 randomly chosen trips that were undertaken on various roadway types, the study
explores important questions related to instantaneous driving decisions in connected vehicle environment. Note that, the
sampled trips account for 52% of the total one-day sample (714, 340 BSM packets out of total N = 1, 399, 084 BSM packets).
To facilitate more meaningful conclusions, the entire vehicle trajectories for 43 randomly selected trips were visualized in
Google Earth to identify the roadway functional classification on which the trips were undertaken. As such, significant efforts
went into classifying the trips with respect to roadway type, and in processing the large-scale connected vehicle data. Alto-
gether, the 43 trips are undertaken by 34 vehicles whereas few vehicles undertook two or more than two trips. The new pro-
posed methodology helps in understanding instantaneous driving decisions in detail, and for providing answers to the
following questions:

e How can driving regimes be characterized in a typical driving cycle?
e What is the level of volatility in each driving regime?
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e When do the regimes change or how long do they last?
o Are driver decisions consistent across trips undertaken by different drivers?
e Do correlates vary across the regimes?

To answer the afore-mentioned questions, Expectation Maximization algorithm based on maximum likelihood was used
for estimating Markov Switching Dynamic Regression models. First, for simplicity, the study categorized instantaneous
short-term driving performance into two unobserved regimes and as such two-regime Markov Switching Dynamic Regres-
sion models were estimated for all trips. The results reveal that acceleration and braking are two distinct regimes in a typical
driving cycle, with braking showing substantially greater volatility. Compared to braking, acceleration regime typically lasts
longer i.e. 75 s (switching time on average) for trips on freeways, state routes, and freeway and state routes. In addition, anal-
ysis reveals that driver decisions are not consistent across different trips as some drivers show greater volatility than others,
especially on local and state, and local roads as expected. Importantly, when more objects surround a vehicle, the tendency is
to accelerate even more if a driver is in acceleration regime, and to accelerate or lower the intensity of their braking if driver
is in braking regime. Lastly, the magnitudes of associations between key correlates and instantaneous driving behavior vary
significantly across the two regimes.

Real-world driving is a complex task and we can anticipate existence of more than two regimes. Thus, we allowed for a
more generic dynamic Markov switching model specification where the instantaneous driving decision process was mod-
elled as a three-regime process. The results suggest existence of three distinct and unobserved regimes, which are identified
as high-rate acceleration, high-rate deceleration, and cruise/constant regime. Moreover, given in a high-rate regime, drivers
on-average tend to decelerate at a higher rate than their rate of acceleration. Importantly, we observed that compared to
cruise/constant regime, drivers instantaneous driving decisions are more volatile both in “high-rate” acceleration as well
as “high-rate” deceleration regime. Finally, the three-regime specification suggested that in high-rate deceleration regime,
drivers (on-average) tend to get out of crowded situations by decelerating at a lower rate or even accelerate at next instant
of time.

The results obtained from this study has important implications. First, the study presents an appropriate analytical frame-
work that can help in understanding instantaneous driving decisions and key correlates. Driving decisions primarily depend
on surrounding traffic states. An in-depth analysis of such factors is important for understanding driver specific behavior and
for developing customized driver based safety applications. For instance, researchers and practitioners can implement the
proposed methodology to connected vehicle data generated by specific driver for several trips. For a specific driver, quantifi-
cation of the associations between instantaneous driving decisions and driving contexts can help us understand driver-
specific instantaneous volatility, and to develop hazard anticipation and notification systems if a driver is observed to deviate
from his/her normal driving patterns. Furthermore, given a specific driver and keeping in view his/her historical instanta-
neous driving decisions with respect to local traffic states, alerts and warnings can be provided well in advance to driver
specifically if he/she is decelerating. Given that deceleration is consistently observed to be more volatile, such alerts and
warnings can potentially help in improving safety and traffic flow disturbances. Finally, an important aspect of developing
such hazard anticipation and notification systems is the need to be able to perform short term driving regime predictions.
Thus, we demonstrate the potential of dynamic Markov switching models in terms of short-term instantaneous regime pre-
diction at specific instances in time. While the current study focused on instantaneous driving decisions in longitudinal
direction only, as part of future work, it would be interesting to develop a methodology for simultaneous analysis of instan-
taneous driving decisions in longitudinal as well as lateral direction. Such a methodology can potentially help in understand-
ing the correlations between instantaneous driving decisions in longitudinal and lateral directions, and how such decisions
can be mapped to surrounding traffic environment.
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