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Abstract

Although environmental requirements of seagrasses have been studied for years, reliable metrics for pre-

dicting their response to current or future conditions remain elusive. Eelgrass (Zostera marina L.) populations

of the Chesapeake region lie near the southern limit of their range in the Western North Atlantic, exposing

them to increasing thermal stress as the climate warms. However, CO2 stimulated photosynthesis may offset

some of the negative effects of temperature stress. The combined effects of temperature, CO2, and light avail-

ability controlled by water quality and epiphytes were explored using GrassLight, a bio-optical model that

provided a predictive environment for evaluating the interaction of multiple stressors on eelgrass distribution

and density across the submarine landscape. Model predictions were validated against in situ measures of

spectral diffuse attenuation, eelgrass density, and distribution. The potential for photosynthesis stimulated

by ocean acidification to mitigate the effects of high temperature on eelgrass populations growing near the

southern limit of their distribution was explored. The model accurately reproduced the submarine light envi-

ronment from measured water quality parameters, and predicted their impacts on eelgrass distribution. It

also reproduced the negative effects of warm summer temperatures on eelgrass distributions, and demon-

strated that CO2 increases projected for the next century should stimulate photosynthesis sufficiently to off-

set the negative effects of thermal stress on eelgrass growing in the Chesapeake region, even in the presence

of epiphytes. Thus, improved water quality should facilitate the survival of eelgrass populations in Chesa-

peake region, even in the face of a warming climate.

Seagrass communities are in global decline from environ-

mental change resulting from eutrophication, climate warm-

ing, mechanical disturbance, and loss of trophic diversity

(Orth et al. 2006b; Hughes et al. 2013). Among these factors,

seagrass density and distribution are particularly vulnerable

to deteriorating water column transparency resulting from

nutrient-stimulated algal growth and sediment loading

(Duarte 1991; Nielsen et al. 2002). However, reliable metrics

for predicting seagrass distributions from standard water

quality measures remain elusive, even to the point of sug-

gesting discontinuous responses to light availability in turbid

vs. clear water (Duarte et al. 2007).

The eelgrass (Zostera marina L.) communities of the Ches-

apeake Bay and coastal lagoons of the DelMarVa Peninsula,

U.S.A., have been decimated by a series of natural stressors

(disease, temperature) and anthropogenic deterioration of

water quality since the 1930s that continue to this day (Orth

et al. 2006a). Eelgrass has returned to portions of the Chesa-

peake region characterized by relatively good water quality,

particularly along the eastern shore of Chesapeake Bay and

in the southern coastal bays of the DelMarVa Peninsula

(Orth et al. 2006a). However, many previously vegetated

areas have never recovered, and current bay-wide targets call

for restoring submerged aquatic vegetation (SAV) to the 1 m

isobath, which is at least 2 m shallower than the historic dis-

tribution of SAV in the Chesapeake Bay (Batiuk et al. 1992).

Populations in Chincoteague Bay increased steadily from the

mid-1980s to about 1999 but have remained stable since

then (Wazniak et al. 2007). Eelgrass restoration has been less

successful on the western shores of the coastal bays and has

succeeded only tenuously in bays near urban centers (Isle of

Wight, Assawoman Bay), as well as on the western shore of

Chesapeake Bay where water quality is relatively poor. The

failures of restoration in most locations, coupled with the

recovery plateau in Chincoteague Bay, could be a signal that

SAV is poised to decline in the future (Wazniak et al. 2007).

In addition to water quality, temperature has long been

known to affect eelgrass abundance and productivity, espe-

cially in the Chesapeake region, and climate warming may

further stress light-limited populations (Moore and Jarvis

2008). Eelgrass grows well between 108C and 258C, but*Correspondence: rzimmerm@odu.edu
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temperatures above 258C represent stressful conditions for eel-

grass growth and temperatures near 308C could exceed the

capacity for acclimation, resulting in eelgrass decline (Thayer

et al. 1975; Evans et al. 1986; Zimmerman et al. 1989).

Projecting the response of marine ecosystems to future cli-

mate change requires consideration of the simultaneous impacts

of multiple factors that can have positive and negative effects on

the performance and distribution of key species. Although the

high light requirements of seagrasses have often been attributed

to respiratory demand of nonphotosynthetic roots and rhizomes

(Nielsen et al. 2002), CO2-limitation of leaf photosynthesis con-

tributes substantially to these high light requirements (Beer and

Koch 1996; Zimmerman et al. 1997; Invers et al. 2001). Conse-

quently, elevated concentrations of dissolved inorganic carbon

(DIC) in seawater resulting from anthropogenic increase in

atmospheric CO2 concentration may offset some of the negative

impacts of climate change on seagrass ecosystems (Palacios and

Zimmerman 2007). Although commonly referred to as “ocean

acidification” (OA) because it reduces seawater pH and carbonate

saturation state (Fabry et al. 2008), the process may be viewed

more broadly as “ocean carbonation” (OC) because it also

increases the concentration of dissolved aqueous CO2 [CO2(aq)],

a direct substrate for marine photosynthesis.

This study explored the combined impacts of water quality,

temperature, and CO2 availability on the density and depth

distribution of eelgrass in the Chesapeake region using a bio-

optical model of water quality impacts on submarine light dis-

tribution (Gallegos 1994, 2001) combined with a vertically

resolved model of canopy photosynthesis and whole plant car-

bon balance (Zimmerman 2003b, 2006) that we call GrassLight

(Ver. 2.11). This integrated tool provided mechanistically based

predictors of submarine spectral irradiance and spectral diffuse

attenuation from routine water quality measurements, and

determined seagrass canopy photosynthesis, shoot abundance,

and distribution across the submarine landscape for specified

climates (temperature & CO2 in this case). Our objectives were

to (i) validate model predictions against in situ measures of

spectral diffuse attenuation, as well as eelgrass density and dis-

tribution in the Chesapeake region and (ii) explore the poten-

tial for photosynthesis stimulated by OA/OC to mitigate the

negative impacts of high summer water temperature on eel-

grass populations growing near the southern limit of their dis-

tribution in the temperate North Atlantic.

Theoretical development

Modeling the distribution of downwelling spectral

irradiance from water quality measures

The GrassLight model developed here represents a merger

of radiative transfer efforts to establish water quality criteria

for seagrass survival (Gallegos 2001), with a vertically

resolved model that accounts for the effects of canopy archi-

tecture (height, density, leaf orientation, and optical proper-

ties) on photosynthetic light absorption and whole-plant

carbon balance (Zimmerman 2003b, 2006). A list of model

symbols, their definitions and dimensions are provided in

Table 1. The parenthetic notations k, z, and t indicate wave-

length (k), depth (z), and/or temporal (t) dependence of par-

ticular quantities. A solar irradiance model for cloudless

atmospheres (Gregg and Carder 1990) was used to compute

the downwelling spectral irradiance just beneath the sea sur-

face [Ed(k,0
2)] at local solar noon as a function of date and

location (Latitude, Longitude). Irradiances at depths equiva-

lent to the top of the seagrass canopy [Ed(k,zcan)] were deter-

mined from Ed(k,0
2) according to the Lambert–Beer law:

Ed k; zcanð Þ ¼ Ed k;02ð Þ � exp 2Kd kð Þ � zcan½ � (1)

Spectral diffuse attenuation coefficients for downwelling

plane irradiance [Kd(k)] were calculated from water column

inherent optical properties (IOPs) using the following rela-

tionship developed by (Lee et al. 2005; Lee et al. 2007) using

extensive simulations with the mechanistic radiative transfer

model Hydrolight (Mobley 1989):

Kd kð Þ ¼ 110:005h0ð Þ � at kð Þ14:18 � 120:52 � exp 210:8 � atð Þ½ � � bb kð Þ
(2)

where h0 was the above-water solar zenith angle (degrees).

The wavelength-dependent IOPs were the total absorption

coefficient [at(k),] and the backscattering coefficient [bb(k),],
both dimensionalized as m21. Total absorption [at(k)] is

defined as the absorption spectrum for pure water [aw(k),
(Pope and Fry 1997)] plus all other dissolved and particulate

absorbing components. The non-water absorption coefficient

[at-w(k)] was partitioned into contributions from the follow-

ing dissolved and suspended constituents:

at-w kð Þ ¼ ag kð Þ1a/ kð Þ1ap-/ kð Þ (3)

where ag(k), a/(k), ap-/(k) were the spectral absorption coeffi-

cients due to colored dissolved organic matter (CDOM), phyto-

plankton, and non-algal particulates (NAP5 sediment and

detritus), respectively. The water column IOPs were calculated

from concentrations of water quality constituents using mass-

specific absorption and scattering coefficients (Gallegos 2001;

Biber et al. 2008), with the exception of ag(k), which was repre-

sented as a negative exponential function scaled by the absorp-

tion at 440 nm (Bricaud et al. 1981; Roesler et al. 1989):

ag kð Þ ¼ ag 440ð Þ � exp 2sg k2440ð Þ
� �

(4)

The exponential term sg provided the spectral slope for

absorption by CDOM and was set to 0.0184 for all
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Table 1. List of model symbols, their definitions and dimensions. Parenthetic notation of k and z indicates that the quantity is
wavelength (k) and/or depth (z) dependent.

Symbol Definition Dimensions

Fundamental quantities

h0 Solar zenith angle, above water degrees

z Water depth m

Dz Vertical thickness of canopy layers m

[Chl a] Phytoplankton pigment concentration mg m23

[TSM] Total suspended matter concentration g m23

Radiometric quantities

Ed(k,z) Downwelling spectral plane irradiance at depth z W m22 nm21

Or

Eu(k,z) Upwelling plane irradiance transmitted through layer z quanta m22 s21 nm21

Water column inherent optical properties (IOPs)

at(k) Total absorption coefficient m21

aw(k) Absorption coefficient for pure water m21

at-w(k) Non-water absorption coefficient m21

ag(k) CDOM (or gilvin) absorption coefficient m21

a/(k) Phytoplankton absorption coefficient m21

ap-/(k) Non-algal particulate (NAP) absorption coefficient m21

a/*(k) Chl-specific phytoplankton absorption, or optical cross-section m2 mg21 Chl a

a*p-/(k) Mass-specific NAP absorption coefficient, or optical cross section m2 g21 DW

bbp(k) Particulate backscattering coefficient m21

bp(k) Particulate scattering coefficient m21

bp*(k) Mass-specific particulate scattering coefficient, or optical cross section m22 g21 DW

Scaling coefficients for water column inherent optical properties (IOPs)

c1, c2 Scaling coefficients for a*p-/(k) m2 g21

sg Spectral slope for ag(k) Dimensionless

sNAP Spectral slope for ap-/(k) Dimensionless

tsa Nonlinearity coefficient for ap-/(k) Dimensionless

t/ Nonlinearity coefficient for a/(k) Dimensionless

tsb Nonlinearity coefficient for bp(k) Dimensionless

g Spectral exponent for bp(k) Dimensionless

Water column apparent optical properties (AOPs)

Kd(k) Water column attenuation of downwelling irradiance m21

Ku(k) Water column attenuation of upwelling irradiance m21

�ldðzÞ Average cosine of downwelling irradiance Dimensionless

�luðzÞ Average cosine of upwelling irradiance Dimensionless

Submerged canopy properties

aL(k) Leaf absorption coefficient m21 of leaf thickness

aepi(k) Leaf epiphytes absorption coefficient m21 of leaf thickness

AL(k) Photosynthetic leaf absorptance Dimensionless

b Nadir bending angle of the submerged plant canopy Degrees or radians

Aepi(k) Leaf epiphyte absorptance Dimensionless

Lpred Predicted leaf area index of the plant canopy for P:R51 m2 leaf m22 seabed

lp(z) Horizontally projected leaf area at depth z m2 leaf m22 seabed

qL(k) Leaf reflectance Dimensionless

qd(k,z) Canopy reflectance of downwelling irradiance Dimensionless

qu(k,z) Canopy reflectance of upwelling irradiance Dimensionless

tL Leaf thickness m
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simulations (Tzortziou et al. 2006). Absorption by NAP was

the product of a mass-specific-absorption spectrum or optical

cross section [a*p-/(k)] multiplied by a measure of the con-

centration of NAP, which we take to be the total suspended

matter (TSM):

a�p-/ kð Þ ¼ c11 c2 � exp 2sNAP k2440ð Þ½ � (5)

ap-/ 440ð Þ ¼ a�p-/ 440ð Þ � TSM½ �tsa (6)

where c1 allowed for some small amount of absorption at

long wavelengths (typically�2% of value at 440 nm, (Bowers

and Binding 2006), c2 scaled the NAP absorption cross-section

at 440 nm, sNAP was the spectral slope of the NAP absorption

cross-section, and tsa allowed for nonlinearity in the relation-

ship with TSM. The chlorophyll specific-absorption spectrum,

a/*(k), was determined by regression of measured phytoplank-

ton absorption against [Chl a] for various sites around Chesa-

peake Bay (Gallegos and Neale 2002; Magnusen et al. 2004):

a/ kð Þ ¼ a�/ kð Þ � Chl a½ �t/ (7)

where the exponent, (t/) controlled the degree of nonlinear-

ity for the relationship between [Chl a] and a/(k) (Bricaud

et al. 1995), although t/ was set to 1 for these simulations.

The particulate scattering spectrum, bp(k), was modeled as

a power function of wavelength centered at 555 nm (Snyder

et al. 2008):

bp kð Þ ¼ bp 555ð Þ � 555

k

� �g

(8)

where g represented the nonlinear spectral exponent, and

was set to 0.5 for these simulations (Snyder et al. 2008). As

with absorption by NAP, the magnitude of scattering at the

reference wavelength (555 nm) was scaled by:

bp 555ð Þ ¼ b�p 555ð Þ � TSM½ �tsb (9)

where b�p (555) was the optical cross-section for backscattering

at 555 nm and the exponent (tsb) allowed for nonlinearity.

Particulate backscattering (bbp) was calculated by multiplying

the particulate scattering coefficient by the backscattering

ratio (bbp/bp), the value of which can be site-specific depend-

ing on the composition of the suspended particles (e.g., min-

eral sediment vs. phytoplankton vs. organic detritus):

bbp kð Þ ¼ bp kð Þ �
bbp 555ð Þ
bp 555ð Þ (10)

Although there is no basis for generalizing the spectral

shape of the backscattering ratio, errors in calculated Kd(k)
resulting from spectral variability in bbp/bp can be minimized

by scaling the overall magnitude of the ratio near the center

(e.g., 555 nm) of the visible spectrum (Snyder et al. 2008).

Modeling marine spectral irradiance through the

submerged plant canopy

A two-flow approach was used to propagate Ed(k,z) down-

ward through the seagrass canopy and to compute the amount

of light absorbed for leaf photosynthesis (Zimmerman 2003b):

Ed k; z21ð Þ ¼ Ed k; zð Þ � 12qd k; zð Þ½ �

� exp 2 aL kð Þ1aepi kð Þ
� �

� tL �
lpðzÞ
ldðzÞ

2Kd k; zð Þ � Dz
� 	

(11)

where Ed(k,z21) represented the spectral downwelling plane

irradiance emerging from the layer at z. The term

[12 qd(k,z)] accounted for the loss of downwelling spectral

irradiance by upward reflection at z, which depended on the

leaf reflectance spectrum [qL(k)] normalized to the horizon-

tally projected silhouette of leaf area at z [lp(z)] and the aver-

age cosine for downwelling irradiance ld zð Þ½ �:

qd k; zð Þ ¼ qL kð Þ � lp zð Þ
ld zð Þ (12)

The computation of lp(z) from leaf morphometrics, shoot

density, and leaf bending angle is detailed in Zimmerman

(2003b, 2006). The amount of light transmitted through

TABLE 1. Continued

Symbol Definition Dimensions

Photosynthetic quantities

PUR(z) Photosynthetically utilized irradiance in layer z Mol photons m22 leaf s21

/p Quantum efficiency of photosynthesis Mol C mol21 photons absorbed

PE Light-saturated photosynthesis Mol C m22 leaf s21

P(z) Light-dependent photosynthesis at depth (z) Mol C m22 leaf s21

Pc(t) Instantaneous whole canopy photosynthesis ¼
X
z

PðzÞ Mol C m22 leaf s21

Pd Daily integrated canopy photosynthesis ¼
X
t

Pc tð Þ Mol C m22 leaf day21

RLeaf, RRoot, RRhizome Respiration rates of leaf, root and rhizome Mol C m22 leaf day21
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layer (z) was controlled by the exponential loss term

2 aL kð Þ � tL1 aepi kð Þ
� �

� lp zð Þ
ld zð Þ2Kd k; zð Þ � Dz

h i
that included both

canopy and water column effects. Canopy effects were

defined by the leaf- and epiphyte-specific absorption coeffi-

cients [aL(k) and aepi(k)], respectively, the leaf thickness (tL),

and the horizontally projected leaf area [lp(z)] at each depth.

Absorption by the epiphyte layer can have a strong spectral

component, particularly when it is dominated by algae

(Drake et al. 2003). However accumulated sediments and

detritus tend to flatten the spectrum, especially in turbid

estuarine environments. For these simulations, epiphytes

were assumed to be neutral density attenuators. Absorption

by epiphytes (aepi) was calculated as a function of epiphyte

density on the leaf surface (mg cm22) based on the data in

fig. 4 of Bulthuis and Woelkerling (1983), but with the

regression forced through the origin (0 epiphyte absorption

at 0 epiphyte density):

aepi ¼ 0:873 � Epi (13)

The value of the average cosine ld zð Þ½ � was approxi-

mated assuming that scattering induced by the canopy was

hemispherically isotropic (bi-Lambertian) about the leaf

surface (Shultis and Myneni 1988) such that ld zð Þ became

increasingly isotropic [i.e., ld zð Þ ! 0:5] in proportion to

the horizontally projected leaf area in each layer through

which the light passed. This caused Kd(k,z) to increase

with depth through the submerged plant canopy (Zimmer-

man 2003b).

On reaching the sea floor, a portion of the light was

reflected back in the upward direction. This reflected light

was then attenuated by the submerged plant canopy and

water column along its path back to the sea surface in a pro-

cess symmetrical to that for downwelling irradiance:

Eu k; zð Þ ¼ Ed k; zð Þ � qd k; z11ð Þ½ �1Eu k; z11ð Þf g � 12qu k; zð Þ½ ��

exp 2 aL kð Þ � tL1 aepi kð Þ
� �

� tL �
lpðzÞ
lu

2Ku kð Þ � Dz
� 	

(14)

The two-flow approach summarized by Eqs. 11 and 14

provided a mechanistic link between in-canopy light fields

and the vertical distribution of the horizontally projected

leaf area index, or biomass, of the canopy, which was a func-

tion of leaf orientation as well as leaf morphology and shoot

density (Zimmerman 2003b).

Photosynthesis of the submerged plant canopy

Calculation of the photosynthetically used radiation

[PUR(z)], which was less than the total irradiance attenuated

by the canopy that included losses due to reflections from

the leaf surface (qd, qu), epiphyte absorption (aepi) and non-

specific leaf absorption that did not contribute to photosyn-

thesis, required spectral integration of the total plane

irradiance (in quantum units) normalized by the photosyn-

thetic absorptance [Ap(k)] of the leaf and the horizontally

projected leaf area [lp(z)]:

PURðzÞ ¼
X
k

Ap kð Þ � lp zð Þ�

"
Ed k; z21ð Þ � 12qd kð Þf g � 12Aepi kð Þ

� �
ld z21ð Þ

1
Eu k; z11ð Þ � 12qu kð Þf g � 12Aepi kð Þ

� �
lu z11ð Þ

#
(15)

PUR(z) was used to drive the instantaneous photosyn-

thetic rate of layer (z) using the cumulative one-hit Poisson

function, which provided a quasi-mechanistic relationship

between photosynthetic yield and the amount of light

absorbed by the leaf (Falkowski and Raven 2007):

P zð Þ ¼ l zð Þ � PE � 12exp 2
/p � PUR zð Þ

PE

� 	
 �
(16)

In this relation, PE was the irradiance-saturated rate of

biomass-specific photosynthesis and /p was the quantum

yield of photosynthesis (1/8 mol C mol21 PUR).

Effect of OC on photosynthesis

Light-saturated photosynthesis (PE) of eelgrass increases in

response to the concentration of DIC in seawater (Zimmer-

man et al. 1997; Invers et al. 2001; McPherson et al. 2015).

In the case of eelgrass, the effect of DIC was quantified using

a modified Michaelis–Menten formulation that accounted

for the combined effects of [CO2(aq)] and [HCO2
3 ] on

irradiance-saturated photosynthesis (PE) (McPherson et al.

2015):

PE ¼ Pm HCO2
3ð Þ �

HCO2
3

� �
Ks HCO2

3ð Þ1 HCO2
3

� � 1Pm CO2ðaqÞð Þ

�
CO2 aqð Þ
� �

Ks CO2 aqð Þð Þ1 CO2 aqð Þ
� � (17)

where Pm HCO2
3ð Þ and Pm CO2 aqð Þð Þ represented the maximum

rate of light- and flow-saturated photosynthesis for the DIC

substrates bicarbonate (HCO2
3 ) and aqueous dissolved carbon

dioxide [CO2(aq)] respectively; Ks HCO2
3ð Þ and Ks CO2 aqð Þð Þ repre-

sented the corresponding half-saturation constants.

Although [CO2(aq)] has a particularly strong effects on eel-

grass leaf photosynthesis, it has no measurable effect on
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eelgrass respiration over the range of concentrations simu-

lated here (Zimmerman et al. 1997).

Modeling the effect of temperature on photosynthesis,

respiration and whole-plant carbon balance

The effect of temperature on leaf photosynthesis is CO2

dependent such that the Q10 for eelgrass PE is<2 in the

present-day ocean, while the Q10 for respiration (R) is about

2.6 (Zimmerman et al. 1989). This causes respiration to rise

more rapidly in response to temperature than carbon-limited

photosynthesis, potentiating negative daily carbon balances

during warm periods. However, OA/OC can reduce the

unbalanced effect of temperature on PE and R because CO2

stimulation of PE increases the photosynthetic Q10 as an

exponential function of [CO2(aq)]:

PhotosyntheticQ10 ¼ 3:6210:796 � ln
CO2 aqð Þ
� �
9:8 3 109

� �
(18)

Although salinity and temperature have considerable

effects on the air-saturated value of [CO2(aq)], their impacts

on Photosynthetic Q10 are dampened by the logarithmic

relationship with [CO2(aq)] such that Q10 can be approxi-

mated as a linear function of pH for salinities between 20

and 35 (PSS) and temperatures between 08C and 308C:

PhotosyntheticQ10 ¼ 3:6220:2 � pH (19)

Temperatures above 308C are likely to have acute negative

effects on plant metabolism, and are beyond the scope of

the present simulation.

Instantaneous whole canopy production [Pc(t)] was calcu-

lated for each temperature, CO2, water quality and depth

scenario by numerical integration of P(z) over all layers (z):

Pc tð Þ ¼
X
z

P zð Þ (20)

Daily production (Pd) of the canopy was calculated by

numerical integration of Pc over the photoperiod determined

by date and location, using a time step of 10 min assuming

the daily variation in [Ed(k,0
2)] was sinusoidal function of

photoperiod (cloudless atmosphere):

Pd ¼
X
t

Pc tð Þ (21)

The resulting photosynthesis rates were used to determine

whole plant carbon balance by normalizing Pd to the daily

(24 h) respiratory demand:

DailyP : R ¼ Pd

Rd
(22)

The Daily P : R provides a convenient index of whole

plant or canopy production. Survival was possible when

Daily P : R�1. Conversely long-term survival was impossible

when Daily P : R<1. Aerobic respiratory demand of leaves,

roots, and rhizomes was scaled to PE at 158C, pCO25400

lAtm (Zimmerman et al. 1989):

RLeaf ¼ 0:2PE (23)

RRoot ¼ 0:5RLeaf (24)

RRhiz ¼ 0:5RRoot (25)

and responded to temperature with a Q10 of 2.6 (Zimmer-

man et al. 1989). For a given temperature regime, nighttime

respiration of roots and rhizomes was reduced to 65% of the

aerobic (daytime) rate to account for the reverse Past�eur

effect observed when these tissues become anoxic (Smith

et al. 1988; Smith 1989). Consequently, daily whole plant

respiration was calculated as the sum of daily respiratory

rates for each of the different tissue components scaled to

the shoot: root ratio (r), which was set to 3.1 for these

simulations:

Rd ¼ 24 � RLeaf

1
D � RRoot 1RRhizð Þ10:65 � ð242DÞ � RRoot 1RRhizð Þ

r


 �
(26)

Rd is relatively insensitive to variations in r between 1 and 4

because leaves represent the majority of the respiratory load

(Zimmerman 2003a).

Analysis of model sensitivity to many of the required

parameters can be found in the publications cited above.

The analysis presented here will concentrate on the sensitiv-

ity of model predictions to the new features created by our

integration of water quality and canopy bio-optics with

whole plant physiology, in particular the ability of this

model to predict (i) Kd(k) from Chl a and TSM, and (ii) the

interactive effects of temperature, CO2 and epiphyte load on

eelgrass carbon balance and subsequent distribution across

the submarine landscape in the context of a changing

climate.

Methods and materials

Selection of field sites for validation of model predictions

The ability of the bio-optical model to predict the distri-

bution of eelgrass across the submarine landscape was
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evaluated at two locations with contrasting histories of SAV

abundance and distribution. The Goodwin Islands, located

at the mouth of the York River (37.21678 N 76.40008 W),

represented a stressful water quality environment for SAV on

the western shore of the Chesapeake Bay. SAV, primarily eel-

grass (Zostera marina L.) and widgeon grass (Ruppia maritima

L.) cover about 120 ha of nearshore sandy habitat to about

1 m depth. Temporal variation in SAV distribution is high at

this site, being affected by low water transparency, epiphyte

load, and periodic thermal stress during warm summers

(Moore 2004; Moore and Jarvis 2008). The second field site

was South Bay (37.26678 N, 75.81678 W), a shallow coastal

lagoon in the lee of Wreck Island on the seaward shore of

the DelMarVa Peninsula that has experienced a highly suc-

cessful eelgrass restoration effort now covering>700 ha

(Orth et al. 2006a). South Bay is tidally flushed by relatively

clean waters of the mid-Atlantic Ocean that renders it less

affected by eutrophication and summer thermal stress than

in the Chesapeake Bay.

Bathymetric and optical characterization of the field sites

Acoustic surveys of both sites were conducted between

May 2011 and October 2011 using a Humminbird Model

998 multibeam sonar/chartplotter system with integrated

GPS receiver mounted to a 5.3 m skiff powered by an out-

board engine. All soundings were corrected to MLW using

local tide heights measured concurrently with the surveys.

Digital elevation models (DEMs), necessary for predictive

modeling of eelgrass distribution across the submarine land-

scape, were generated by interpolation of the sounding

tracks using inverse distance weighting criteria.

Non-water absorption [at(k) – aw(k)] and scattering coeffi-

cients [b(k)] used to parameterize the model were measured

at various stages of the tide and times of day at both sites

between May 2011 and October 2011 using an ac29 sub-

mersible spectrophotometer (WetLabs). Instrument values

were corrected for ambient temperature, salinity, and total

scattering (Pegau et al. 2003). The backscatter coefficient

[bb(555)] was measured using a HydroScat-6 (HOBI Labs) and

corrected for total scattering and absorption (Maffione and

Dana 1997). Diffuse spectral attenuation coefficients [Kd(k)]
were determined according to the Lambert–Beer Law from

simultaneous measures of downwelling spectral irradiance

[Ed(k,z)] offset by a vertical distance of 0.5 m using a

4-channel HydroRAD spectroradiometer system (HOBI Labs).

Absorption coefficients for phytoplankton (a/) and non-

algal particles (ap-/) were measured spectrophotometrically

from bulk water samples captured onto GF/F filters under gen-

tle vacuum. The filtrate was collected directly into acid

washed borosilicate glass vials and subsequently passed

through acid-washed, 0.2 lm polycarbonate filters. CDOM

absorbance of the second filtrate was measured against Nano-

pure water using a Shimadzu UV2401 scanning spectropho-

tometer (10 cm path). CDOM absorbances were corrected for

scattering and converted to absorption coefficients [ag(k), uni-
ts5m21] (Mitchell et al. 2002). Spectral absorption coeffi-

cients of particles collected on the GF/F filters were measured

against a clean filter moistened with Nanopure water using an

integrating sphere attached to the spectrophotometer and cor-

rected for multiple scattering (Cleveland and Weidemann

1993). Non-algal particulate absorption was measured spectro-

photometrically on the same filters after extracting the pig-

ments in 90% methanol for 12 h. Chlorophyll a (Chl a) was

extracted from companion filters using sonication in ice-cold

90% acetone and quantified spectrophotometrically (Jeffrey

and Humphrey 1975). TSM concentrations were determined

by filtering measured volumes of the same bulk water samples

onto preweighed Nucleopore filters (0.2 lm pore size). The fil-

ters were rinsed with deionized water to remove salts, dried at

608C for 5 d and reweighed. The concentration of suspended

mass in the water was calculated by normalizing the mass

captured to the volume filtered.

Projecting eelgrass distributions for different climate

scenarios

The governing equations described above were translated

into Fortran as a set of coupled subroutines with user-

interface that we refer to as GrassLight Ver. 2.11. A 64-bit

executable version of the model was generated for these cal-

culations using the Intel Visual Fortran Compiler (Ver.

12.1.0.2). The original source code, compiled executable

versions for 32-bit and 64-bit Windows operating systems,

and a user guide are freely available from the authors on

request. The GrassLight model was run iteratively to deter-

mine the maximum shoot density where Daily P : R51 for

a range of depths between 0 m and 2 m (MLW) on the

summer solstice for both sites. Temperatures were selected

to simulate a cool summer (258C) below the threshold for

thermal stress and a warm summer (308C) known to cause

thermal stress in eelgrass. CO2 concentrations were simu-

lated for the present day (roughly 2011), mid-century

(roughly 2050), and end-of-century (roughly 2100), based

on IPCC (2013) projections. For all runs, the specified

[CO2(aq)] and pH were determined by CO2SYS (Lewis and

Wallace 1998) using measured values of salinity and alkalin-

ity for both sites, and average pCO2 concentrations for the

present day, mid-century and end-of century [Table 2; IPCC

(2013)]. Optical properties of eelgrass leaves were averaged

from>500 spectral measurements (Cummings and Zimmer-

man 2003; Zimmerman 2003b). The resulting relationship

between depth and eelgrass density produced a unique

“sparse model” for each simulated environment consisting

of a quadratic function that quantified eelgrass density as a

function of water depth. Eelgrass densities predicted from

the sparse model relationships were then mapped across

DEMs of the submarine landscape generated for Goodwin

Islands and South Bay.
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Statistical analyses and field validation of model

predictions

Quantitative relationships among measured variables

were determined using least squares regression routines

implemented in Microsoft Excel (Ver. 14.0.7140.500) and

Analysis of Covariance (ANCOVA) routines implemented

in MathWorks Matlab R2012b (8.0.0.783). Accuracy of

Kd(k) values predicted from measured values of [Chl a],

[TSM] and ag(k) were compared against radiometrically

determined observations of Kd(k) measured by the Hydro-

RAD simultaneously with the collection of water samples

used to measure the water quality parameters. The

wavelength-specific root mean square deviation [RMSD(k),
units5m21] between measured and modeled Kd(k) was cal-

culated as:

RMSD kð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
n

Kd kð Þmeasured 2Kd kð Þmodeled

� �2
n21

vuut
(27)

where n represented the number of spectral observations.

Normalized RMS deviations (NRMSD, dimensionless) were

obtained by dividing RMSD(k) by the range of measured val-

ues at each wavelength:

NRMSD kð Þ ¼ RMSD kð Þ
Kd kð Þmax 2Kd kð Þmin

(28)

Maps of eelgrass distribution produced from a combina-

tion of aerial imagery and ground-based field observations

by the SAV Program, Virginia Institute of Marine Science

(Orth et al. 2012, http://www.vims.edu/bio/sav) were used

to validate GrassLight predictions of eelgrass density and

distribution at both sites for the relatively cool 2011 grow-

ing season. Epiphytes represent a particularly important

structuring element of the eelgrass meadow at Goodwin

Islands and the York River estuary (Neckles et al. 1993;

Neckles et al. 1994; Moore 2004), and we compared the

VIMS map against our model simulation of eelgrass distri-

bution and density that incorporated the effect of a mean

epiphyte load reported by Moore (2004) for the Goodwin

Islands. Epiphytes are less abundant at South Bay (R. J.

Orth pers. comm. and our personal observations); conse-

quently we compared the VIMS map to our cool climate

2011 scenario for that site without epiphytes. ArcGIS shape-

files containing polygons of SAV bed density (VIMS % cover

classes) for 2011 were downloaded from the VIMS website

and converted to a raster matrix of grid points spaced at

10 m intervals. Leaf area indices (Lpred) predicted by Grass-

Light at the same grid points were converted to horizontally

projected estimates of %Cover based on the same geometric

reasoning used to calculate the horizontally projected leaf

area (lp) in each layer of the canopy (Zimmerman 2003b,

2006), in which the bending angle (b) of the canopy

Table 2. Parameter values assigned to each GrassLight simula-
tion. All runs were conducted for the summer solstice (14.5 h
photoperiod) using mean concentrations of Chl a, TSM, and
CDOM absorption [ag(440)] measured at both sites. Tempera-
tures were selected to simulate a cool summer (258C) below the
threshold for thermal stress and a warm summer (308C) known
to cause thermal stress in eelgrass. CO2 concentrations were
simulated for the present day (roughly 2011), mid-century
(roughly 2050), and end-of-century (roughly 2100), based on
IPCC (2013) projections. Concentrations of dissolved aqueous
CO2 and seawater pH were determined from CO2SYS (Lewis
and Wallace 1998) using values of temperature, salinity, alkalin-
ity, and pCO2 indicated below. When not listed, parameter val-
ues for warm simulations were the same as listed for Cool 2011
simulations.

Climate Cool 2011

Warm

2011

Warm

2050

Warm

2100

All simulations

Day Length (h) 14.5

Temperature (8C) 25 30 30 30

pCO2 (lAtm) 400 400 600 870

Pm HCO2
3ð Þ ðrelative unitsÞ 1

Pm CO2ð Þ relative unitsð Þ 6.3

Ks HCO2
3ð Þ ðlmol L21Þ 1400

Ks CO2 aqð Þð Þ ðlmol L21Þ 800

Leaf Epiphyte Load

(mg cm22)

0 and 1.24 from Moore (2004)

Shoot:Root Ratio 3.1

Canopy Orientation 108 from vertical

Goodwin islands

Salinity (PSS) 20

Alkalinity (lEquiv kg21 SW) 1500

pH 8.10 8.11 7.95 7.80

[CO2(aq)] (lmol L21) 12.2 10.8 16.2 23.5

[HCO2
3 ] (lmol L21) 1294 1260 1324 1370

Chl a (mg m23) 9.061.6

TSM (mg L21) 8.462.7

ag(440) (m
21) 0.37260.07

Canopy Height (m) 0.1

Shoot Leaf Area

(m2 shoot21)

0.001

South Bay

Salinity (PSS) 30

Alkalinity (lEquiv kg21 SW) 2200

pH 8.19 8.20 8.00 7.91

[CO2(aq)] (lmol L21) 11.6 10.3 15.4 22.4

[HCO2
3 ] (lmol L21) 1748 1685 1806 1900

Chl a (mg m23) 3.761.0

TSM (mg L21) 6.563.5

ag(440) (m
21) 0.21260.04

Canopy Height (m) 0.25

Shoot Leaf Area

(m2 shoot21)

0.0047
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determines the percent of surface area occupied by eelgrass

when viewed from above:

%Cover ¼ 100 � Lpred � sinðbÞ (29)

The bending angle of the vertically distributed plant can-

opy was set to 108 from vertical for all simulations, which

represents the optimum orientation to maximize whole can-

opy photosynthesis and minimize self-shading (Zimmerman

2003b). The resulting estimates of %Cover were then binned

to the 4 density classes defined by the VIMS SAV Program.

Error matrices were computed to compare the spatial distri-

bution of observed density against the distributions gener-

ated from quadratic sparse models mapped across the DEMs.

Results

Predicting the distribution of downwelling irradiance

from water quality measures

The relationships between IOPs and the standard water

quality monitoring parameters (TSM, Chl a) showed a wide

range of similarities, and a few important differences

between Goodwin Islands and South Bay. Concentrations of

TSM ranged from<5 mg L21 to>15 mg L21 at both sites,

and mean concentrations were not significantly different

between sites. However, the average Chl a concentration was

2.4-fold higher at Goodwin Islands (9.061.64 mg m23) than

South Bay (3.760.45 mg m23), even though the slope of the

Chl a vs. TSM relationship was statistically indistinguishable

between the sites (Fig. 1a; Table 3). Although the regressions

did not have a lot of predictive power (r250.24 for Goodwin

Islands and 0.56 for South Bay), they point to a significant

difference in the composition of suspended particles between

the two sites that may affect the IOP-based parameterizations

required for the bio-optical model. Despite this difference in

Chl a vs. TSM, relations between all optical properties

required to parameterize the optical model were statistically

indistinguishable between sites with the exception of

bbp(555)/bp(555). The relationship between absorption by

non-algal particles [ap-/(440)] and TSM followed a single

power function defined by Eq. 6 (Fig 1b; Table 4; a*p-/
(440)50.074, tsa50.70, r250.69), even though the mean

value of ap-/(440) was significantly higher at Goodwin

Islands (0.3960.03) than South Bay (0.2460.03) (Table 4).

The relationship between total particulate scattering

Fig. 1. Relationships between IOPs, concentrations of TSM and Chl a at the Goodwin Islands (closed circles, all plots) and South Bay (open circles, all
plots). Lines indicate the relationships between plotted variables, as determined by ANCOVA and regression analyses (Table 3). Dashed lines in Fig.

1a,f indicate the relationships among variables for Goodwin Islands. Solid lines in Fig 1a,f indicate significantly different relationships among the same
variables for South Bay. Solid lines in Fig 1b,c,d,e indicate overall relationships between variables when no differences between Goodwin Islands and
South Bay were detected by ANCOVA.
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Table 3. Analysis of Covariance (ANCOVA) summary tables comparing relationships among biogeochemical and optical properties
at Goodwin Islands and South Bay illustrated in Fig. 1, Chl a vs. TSM ANCOVA

Source df Sum Sq. Mean Sq. F Prob> F

Location 1 148.39 148.39 62.13 <0.001

TSM 1 16.69 16.69 6.99 0.014

Location3TSM 1 2.71 2.71 1.13 0.297

Error 24 57.32 2.39

No significant difference in slopes between Goodwin Islands and South Bay.

Term Estimate Std. Err. t Prob>|t|

Intercept 5.071 0.586 8.650 <0.001

South Bay 2.599 0.314 27.861 <0.001

Goodwin Isl. 7.543 0.314 7.861 <0.001

Slope 0.174 0.066 2.637 0.014

Assuming parallel slopes, intercept for Goodwin Islands was significantly higher.

Source df Sum Sq. Mean Sq. F Prob>F

Location 1 148.39 148.39 61.80 <0.001

TSM 1 16.69 16.69 6.95 0.014

Error 25 60.03 2.40

Conclusion: mean Chl a concentration was higher at Goodwin Islands, and constituted a larger fraction of TSM than at South Bay.

Table 4. Analysis of Covariance (ANCOVA) summary tables comparing relationships among biogeochemical and optical properties
at Goodwin Islands and South Bay illustrated in Fig. 1, Non-algal particulate absorption [ap-/(440)] vs. TSM ANCOVA:

Source df Sum Sq. Mean Sq. F Prob>F

Location 1 0.09 0.09 19.80 <0.001

TSM 1 0.20 0.20 46.35 <0.001

Location3TSM 1 0.00 0.00 0.08 0.783

Error 25 0.11 0.00

No significant difference in slopes between Goodwin Islands and South Bay.

Term Estimate Std. Err. t Prob>|t|

Intercept 0.174 0.024 7.143 <0.001

South Bay 0.115 0.013 24.531 <0.001

Goodwin Isl. 0.233 0.013 4.531 <0.001

Slope 0.019 0.003 6.932 <0.001

Assuming parallel slopes, intercept for Goodwin Islands was significantly higher.

Source df Sum Sq. Mean Sq. F Prob>F

Location 1 0.09 0.09 20.53 <0.001

TSM 1 0.20 0.20 48.05 <0.001

Error 26 0.11 0.00

Conclusion: The relationship between ap-/ (440) and TSM was constant across both sites, but mean ap-/(440) was higher at Goodwin Islands.

Zimmerman et al. Predicting eelgrass response to climate change

1790



[bp(555)] and TSM also followed a single power function

described by Eq. 9 for both sites combined (Fig. 1c; Table 5;

b*p(555)51.94, tsb50.59, r250.81). Further, the mean value

of particulate scattering [bp(555)] for Goodwin Islands was not

significantly different from the value at South Bay (Table 5).

The relationship between phytoplankton absorption [a/(675)]

and Chl a produced a single, statistically significant linear rela-

tionship (a/*50.01860.001, Freg5546, df51, 27, p<0.001,

r250.85) common to both sites assuming a 0 intercept

(Fig. 1d). As a result, t/51 for all simulations. The relation-

ship between the non-water absorption coefficient [at-w(555)]

and Chl a produced a single, statistically significant slope

common to both sites, even though Chl a concentrations

were significantly higher at Goodwin Islands than South Bay

(Fig. 1e; Table 6; r250.75). The nonzero intercept of this rela-

tionship provided an estimate of the residual absorption due

to CDOM and non-algal particles. The slope of the relation-

ship between particulate backscattering and total particulate

scattering [bbp(555)/bp(555)], however, was significantly higher

Table 5. Analysis of Covariance (ANCOVA) summary tables comparing relationships among biogeochemical and optical properties
at Goodwin Islands and South Bay illustrated in Fig. 1, TSM vs. bp(555) ANCOVA

Source df Sum Sq. Mean Sq. F Prob>F

Location 1 4.356 4.356 2.943 0.099

TSM 1 37.244 37.244 25.163 <0.001

Location3TSM 1 0.058 0.058 0.039 0.844

Error 24 35.523 1.480

No significant difference in slopes between Goodwin Islands and South Bay.

Term Estimate Std. Err. t Prob>|t|

Intercept 4.217 0.451 9.350 <0.001

Goodwin Isl. 3.787 0.246 21.750 0.092

South Bay 4.647 0.246 1.750 0.092

Slope 0.262 0.051 5.116 <0.001

Assuming parallel slopes, no significant difference in intercepts.

Source df Sum Sq. Mean Sq. F Prob>F

Location 1 11.105 11.105 3.965 0.057

Error 26 72.825 2.801

Assuming the a single relationship, no significant difference in mean values of bp(555).

Conclusion: The relationship between TSM and bp(440) was constant across both sites.

Table 6. Analysis of Covariance (ANCOVA) summary tables
comparing relationships among biogeochemical and optical
properties at Goodwin Islands and South Bay illustrated in Fig. 1,
Chl a concentration vs. Total absorption [agp(555)]
ANCOVA:

Source df Sum Sq. Mean Sq. F Prob>F

Location 1 0.005 0.005 3.71 <0.001

Chl 1 0.033 0.033 25.31 <0.001

Group3Chl 1 0.000 0.000 0.03 0.8619

Error 23 0.030 0.001

Assuming intercepts50, slopes are not significantly different.

Term Estimate Std. Err. t Prob>|t|

Intercept 0.161 0.010 15.825 <0.001

South Bay 0.132 0.010 22.896 0.008

Goodwin Isl. 0.190 0.010 2.896 0.008

But mean [Chl a] is significantly higher at Goodwin Island.

Conclusion: Overall trend is best explained by a single regression line.

Table 7. Analysis of Covariance (ANCOVA) summary tables
comparing relationships among biogeochemical and optical
properties at Goodwin Islands and South Bay illustrated in Fig.
1, Particulate Backscatter Coefficient [bbp(555)] vs. Particu-
late Scattering Coefficient [bp(555)] t-test:

Location Slope Std. Err df T Prob> t

South Bay 0.022 0.001 15 5.85 <0.001

Goodwin Isl. 0.016 0.0005 9

Assuming intercept50, slopes are significantly different.

Conclusion: Particulate backscattering [bbp(555)] represents a signifi-
cantly higher fraction of total scattering [bp(555)] at South Bay, suggest-
ing a higher mineral content for TSM.
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for South Bay than for Goodwin Islands assuming a 0 inter-

cept for both data sets (Fig 1f; Table 7; r250.71 and 0.81 for

Goodwin Islands and South Bay, respectively).

Similarities in relationships among Chl a, TSM and the

optical properties described above allowed us to use a com-

mon set of parameterizations for the water column equa-

tions (Eqs. 1 through 10) required to predict Kd(k) at both

sites, with the exception of bbp(555)/bp(555), which was set

to 0.016 and 0.020 for Goodwin Islands and South Bay simu-

lations, respectively. Resulting spectra of Kd(k) predicted

from the model using specific values of Chl a and TSM from

water samples fell within the 95% confidence limits for

simultaneously measured values of Kd(k) at both sites (Fig.

2a,b, n510 and 14 for Goodwin Islands and South Bay,

respectively). Mean Kd(k) values predicted by the model for

Goodwin Islands were slightly higher than the mean of the

measured values, but the RMS deviation between predicted

and measured values were within 20% across the spectrum

(Fig. 2c). Mean model predictions of Kd(k) for South Bay

showed less bias in the green portion of the spectrum, and

the resulting RMS deviations were also within 20% (Fig.

2b,d). Many of the individually modeled Kd(k) spectra

showed even better agreement with measured values at both

sites, particularly between 450 nm and 650 nm that consti-

tutes most of the light available for photosynthesis in these

systems (Fig. 2e,f).

Using mean concentrations of TSM and Chl a, and mean

values for CDOM absorption [ag(440)] measured in

2011(Table 2), the depth distributions of spectral quantum

irradiance at Goodwin Islands and South Bay were calculated

Fig. 2. Measured (solid line) and modeled (dashed line) Kd(k) spectra for (a) Goodwin Islands and (b) South Bay, respectively. Dotted lines indicate

95% confidence intervals around the measured values. RMS deviations for measured vs. modeled spectra for (c) Goodwin Islands and (d) South Bay,
respectively. Absolute deviations from measured values (m21) are indicated by the solid lines. Normalized deviations from measured values (dimen-

sionless) are indicated by the dashed lines. Predicted Kd(k) spectra plotted against measured values for (e) Goodwin Islands and (f) South Bay, respec-
tively. Diagonals (dashed lines) represent lines of perfect agreement (slope51, intercept50). Colors indicate wavelength range of the individual data
points. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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for local solar noon on the summer solstice (Fig. 3).

Although the irradiance spectra were dominated by green

wavelengths (500–600 nm) at both sites, higher absorption

by Chl a and CDOM at the Goodwin Islands resulted in a

higher mean Kd(k), and consequently lower spectral irradiances

at all depths, relative to South Bay (Fig. 3a vs. 3b). Differences

were most pronounced in the blue (400–500 nm) and red

(650–700 nm) regions of the spectrum, and the differences

increased with depth such that the blue region of the spectrum

that is most efficient in driving photosynthesis was nearly two-

fold higher at South Bay than at Goodwin Islands at a depth

of 0.5 m and more than sixfold higher at 2 m (Fig. 3c).

Sensitivity of eelgrass carbon balance to climate warming

and OA/OC

Equations 16 through 26 determined the combined

effects of temperature and pCO2 on the daily integrated

photosynthesis required to satisfy the minimum respira-

tory demand of whole plants (Fig. 4). Requirements were

scaled in terms of Hsat equivalents, which represented the

duration (in hours) of irradiance-saturated photosynthesis

(PE) required to meet the daily respiratory demand. At a

temperature of 108C, and 2011 pCO2 levels, the respira-

tory load required the photosynthetic equivalent of 5 h

of Hsat. A temperature of 308C, which may be experienced

during warm summers, increased the Hsat requirement to

about 9 h. However, a pCO2 concentration of 870 lAtm,

which approximates the median IPCC (2013) projection

for the end of the 21st Century, raised PE sufficiently to

reduce the daily Hsat requirement at 308C to about 4.8 h,

thereby lowering the effect of temperature on whole-

Fig. 3. Depth profiles of spectral irradiance at noon on the summer sol-
stice for (a) Goodwin Islands and (b) South Bay, respectively, derived from

mean water column Kd(k) (Fig. 2a,b). (c) Quantum ratio of irradiance
spectra (South Bay/Goodwin Islands) plotted as functions of wavelength
and depth. Orientations of the wavelength and depth axes were reversed

relative to Fig. 3a,b to enhance visual clarity. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

Fig. 4. Combined effects of ambient temperature and CO2 concentra-
tion on the daily photosynthetic requirement to maintain positive whole-

plant carbon balance, determined from Eqs. 16–21. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]
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plant carbon balance. These relationships provided the

metabolic basis for simulating the integrated bio-optical

impact on eelgrass carbon balance to different climate

scenarios.

Projecting the effects of climate warming and OA/OC

onto future eelgrass distributions

Maximum sustainable shoot densities (Lpred where Daily

P : R51) predicted for the summer solstice decreased with

depth in a slightly nonlinear fashion that was well described

by a quadratic function for each simulated environment

(Table 8; Fig. 5). In the absence of leaf epiphytes or OA/OC,

and with a cool water column (258C), GrassLight predicted

the submarine light environment of Goodwin Islands to sup-

port an eelgrass LAI of 10.4 at 0 m depth (intercept, Table

8), with a depth limit for survival of 1.4 m (MLW) (Fig. 5a).

Mapping this relationship across the submarine landscape

provided by the DEM produced a broad swath of moderately

dense eelgrass meadow along the north and eastern shores

of the Goodwin Islands, and a rather sharp demarcation

where depths exceeded sustainable limits (Fig. 6a). Unvege-

tated (light blue) areas in close proximity to the shoreline

were shallower than 0 m MLW and considered unfavorable

for eelgrass colonization. The model predicted a very narrow

band of vegetation along the western shore of Goodwin

Islands where the water deepens rapidly into a navigation

channel separating the study site from the mainland. An epi-

phyte density of 1.24 mg cm22 leaf, based on average values

for the Goodwin Islands eelgrass (Moore 2004), reduced the

maximum sustainable LAI by 48% to 5.9 and shoaled the

depth limit for eelgrass survival by 40% to 0.9 m (MLW)

(Table 8; Fig 5b). This decreased the overall eelgrass density

around the island and shoaled the deep edge of the meadow

relative to the model scenario without epiphytes (Fig. 6a vs.

6b). In the absence of epiphytes, increasing the temperature

to 308C reduced the supportable eelgrass density by 30% and

reduced the depth limit for survival by 20% relative to the

cool water simulations (Fig. 6a vs.6c). Elevated temperature

reduced eelgrass distribution in the presence of epiphytes by

about 20% and the depth limit by 10% relative to the cool

water simulation with epiphytes (Figs. 5a vs. 5b, 6b vs. 6d).

Raising the pCO2 to a mid-century level of 600 lAtm (sea-

water pH 7.95) nearly compensated for the negative effects

of thermal stress, increasing the supportable shoot density

and depth distribution to within 5% of the present-day cool

environment with and without epiphytes (Figs. 5a vs.5b, 6a

vs. 6e, 6b vs. 6f). Simulating an end-of-century pCO2 level

(870 lAtm, seawater pH 7.8) under warm summer conditions

Table 8. Quadratic regression coefficients [Maximum Leaf Area Index (L) vs. Depth (z)] and colonization depth limits for each simu-
lation used to create the eelgrass distribution maps (Figs. 6, 7). The resulting vertical distribution of L(z) for each simulation is plotted
in Fig. 5.

GrassLight Input Parameters

Sparse Model Polynomial Regression Coefficients, Depth Limits, Areal

Coverage, and Median Density

pCO2

(lAtm)

Temperature

(8C)

Epiphytes

(mg cm22)

x2

slope

x

slope

Biomass

Intercept

[L(0)]

Depth

Limit

(m MLW)

Total

Area

(ha)

Median

L (m2 m22)

Goodwin Islands

400 25 0 1.06 28.95 10.4 1.4 188 6.2

400 30 0 0.76 27.80 8.7 1.2 183 5.0

600 30 0 1.05 28.79 9.9 1.3 186 5.8

870 30 0 1.49 29.93 11.0 1.4 188 5.7

400 25 1.24 1.66 28.15 5.9 0.9 154 2.6

400 30 1.24 1.16 27.19 4.8 0.8 140 2.0

600 30 1.24 1.69 27.99 5.5 0.9 149 2.4

870 30 1.24 2.06 28.74 6.2 0.9 156 2.7

South Bay

400 25 0 0.60 26.76 9.6 1.7 968 6.1

400 30 0 0.39 25.90 8.0 1.5 948 5.1

600 30 0 0.50 26.64 9.4 1.6 960 6.0

870 30 0 0.78 27.35 10.0 1.7 971 6.3

400 25 1.24 0.81 26.24 5.8 1.1 775 3.6

400 30 1.24 0.56 25.53 4.7 0.9 695 3.5

600 30 1.24 0.81 26.24 5.5 1.0 740 3.0

870 30 1.24 1.01 26.64 5.9 1.1 766 3.6
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Fig. 5. Maximum sustainable shoot density (defined as Daily P : R51) plotted as a function of depth for average water quality conditions and differ-

ent climate (temperature and pCO2) scenarios indicated by the legend. (a) Goodwin Islands with no epiphytes. (b) Goodwin Islands with epiphytes.
(c) South Bay with no epiphytes. (d) South Bay with epiphytes.

Fig. 6. Combined effects of ambient temperature and pCO2 on the distribution and density of eelgrass (tan to green colors) across the submarine
landscape overlaid on the DEM (blue colors) at Goodwin Islands. Conditions for each simulation are indicated on the plots. Unvegetated light blue
areas close to shore represent intertidal regions shallower than 0 MLW, which we considered too shallow for successful eelgrass colonization. Density

classes were selected to match the classes defined by the Virginia Institute of Marine Science SAV Program (http:/web.vims.edu/bio/sav/). [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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extended the sustainable density and depth distribution just

beyond the present day cool water simulations with and

without epiphytes (Figs. 5a,b, 6g,h).

In the absence of any climate impacts on temperature

and CO2 availability, the lower diffuse attenuation coeffi-

cients of South Bay produced a range of eelgrass densities

similar to those predicted for Goodwin Islands but the depth

limit (1.7 m) was 21% deeper (Table 8; Fig. 5a vs. 5c). Map-

ping this distribution across the submarine landscape of

South Bay revealed a broad area of potential seagrass habitat

encompassing 968 Ha between Wreck Island that separates

South Bay from the Atlantic Ocean and the archipelago of

marsh islands that define the western edge of South Bay (Fig.

7a). As before, the light blue shading represented intertidal

areas shallower than 0 m (MLW) that we considered unsuit-

able for eelgrass colonization. Incorporating the epiphyte

load used for Goodwin Islands reduced eelgrass density by

40% and the depth distribution by 35% relative to the epi-

phyte free simulation (Table 8; Fig. 5c vs. 5d), causing a

southward contraction of the meadow away from Ship Shoal

Inlet into shallower water and a corresponding reduction in

shoot density in the deeper (mostly north) regions of the

meadow (Fig. 7a vs. 7b). However, the depth distribution of

eelgrass still extended to 1.1 m, 22% deeper than the limit

for epiphyte-covered eelgrass at Goodwin Islands. Warm

water temperature (308C) had a minor effect on the depth

distribution of epiphyte-free eelgrass, and reduced the maxi-

mum sustainable shoot density 16% relative to the cool sim-

ulation (Table 8; Fig. 5c). The warming-induced reduction in

sustainable shoot density thinned the meadow along the

eastern edge of Man and Boy Marsh (Fig. 7a vs.7c) but the

effect was less dramatic than for Goodwin Islands. Epiphytes

and warm water combined to reduce the depth distribution

to 0.9 m and the maximum sustainable LAI to 4.7, relative

to the cool water simulation with epiphytes, resulting in a

general contraction of eelgrass in both the northern and

Fig. 7. Combined effects of ambient temperature and pCO2 on the distribution and density of eelgrass (tan to green colors) across the submarine
landscape overlaid on the DEM (blue colors) at South Bay. Conditions for each simulation are indicated on the plots. Unvegetated light blue areas

close to shore represent intertidal regions shallower than 0 MLW, which we considered too shallow for successful eelgrass colonization. Density classes
were selected to match the classes defined by the Virginia Institute of Marine Science SAV Program (http:/web.vims.edu/bio/sav/). [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Zimmerman et al. Predicting eelgrass response to climate change

1796

http://www.vims.edu/bio/sav


southern regions of South Bay, and a general thinning of the

entire meadow (Table 8; Figs. 5d, 7d). Raising the pCO2 to a

mid-century level of 600 lAtm nearly compensated for the

negative effects of thermal stress both in the absence and

presence of epiphytes, virtually restoring densities and depth

distributions to those of the cool water simulations (Table 8;

Fig. 7e,f). The end-of-century pCO2 simulation (870 lAtm)

under warm summer conditions increased the sustainable

density beyond the cool water simulations by 4% without

epiphytes and by 2% with epiphytes, but did not substan-

tially increase the depth distribution (Table 8; Figs. 5c,d,

7g,h). In all simulations, the central region of South Bay was

remarkably unaffected by warm water, the presence of epi-

phytes or increasing CO2, suggesting that the average water

quality of this coastal lagoon provides a more robust envi-

ronment for eelgrass than Goodwin Islands.

Validating model predictions against in situ observations

Although the impacts of future climate change on eelgrass

distribution projected for these sites cannot be validated in

an absolute sense, we can assess the ability of GrassLight to

predict existing eelgrass distributions at these sites. Model

predictions of eelgrass presence or absence from the Cool

2011 simulation with epiphytes showed a high degree of

fidelity to the 2011 maps generated by the VIMS SAV project

for Goodwin Islands (Fig. 6b vs. 8a). Of the 43,501 pixels

scored for the Goodwin Islands site where depths were 2.0 m

or shallower, there was 99% agreement in terms of eelgrass

presence and 63% agreement in terms of eelgrass absence

(Table 9a). However, the model predicted slightly more vege-

tated pixels than indicated on the VIMS SAV map (11,228

vs. 11,191). Of the 11,228 pixels determined to be vegetated

by both GrassLight and the VIMS SAV map, densities pre-

dicted by GrassLight were consistent with VIMS assignments

18% of the time (diagonal sum51995 pixels, Table 9b). The

greatest discrepancy between modeled and measured den-

sities occurred with the lowest density (Class 1), to which

4752 pixels were assigned by the VIMS map. In contrast

GrassLight predicted only 111 pixels (2%) in Density Class 1,

with most of the remaining pixels assigned to Density

Classes 2 and 3 (Table 9b). Density Class 2 showed better

agreement (25%) between model predictions and the meas-

ured polygons, with most of the disagreement resulting from

model assignments to Class 3. Class 3 comparisons revealed

the best level of agreement (40%) between GrassLight predic-

tions and VIMS observations, with most of the error result-

ing from model assignment of these pixels to Density Class

4. GrassLight assigned 25% of the vegetated pixels in shallow

water to density Class 4, but none were assigned to this

highest density class by the VIMS analysis.

GrassLight predictions of eelgrass distribution at South Bay

for the Cool 2011 climate (without epiphytes) included all

38,508 vegetated pixels derived from the VIMS SAV map

(Table 10a), and generated a similar spatial pattern of distri-

bution (Fig. 7a vs. 8b). Of the 38,508 pixels determined to be

vegetated by both the model and the VIMS SAV maps, den-

sities were consistent with VIMS assignments 54% of the

time (diagonal sum520,944 out of 38,508 pixels, Table

10b). The greatest agreement between modeled and meas-

ured densities occurred with Density Classes 1 and 4, to

which 0 and 20,505 pixels, respectively, were assigned by

both the model and the VIMS SAV polygons. The model

assigned 130 pixels to Density Class 2, compared to the

Fig. 8. 2011 maps of SAV distribution (eelgrass1widgeongrass) (tan to

green colors) generated by the Virginia Institute of Marine Science SAV
program (hppt://web.vims.edu/bio/sav/) for (a) Goodwin Islands and (b)
South Bay overlain on DEMs (blue colors) generated by our bathymetric

surveys. [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]
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VIMS assignment of 5038 and 1198 pixels to Density Class 3

compared to the VIMS assignment of 13,247.

Discussion

The modeling efforts presented here provide a predictive

theoretical environment for evaluating the interactive effects

of water quality, temperature, OA/OC, and epiphyte load on

the eelgrass distribution that can be extremely difficult to

observe in nature when all are changing simultaneously but

with independent trajectories. Although the model structure

presently ignores physiological acclimation to temperature

(Winters et al. 2011; Franssen et al. 2012), it produced eel-

grass distributions and densities similar to those observed at

Goodwin Islands and South Bay in 2011, and showed differ-

ent sensitivities to the effects of warm summer temperatures

on eelgrass distributions at these sites that resulted from dif-

ferences in light attenuation.

The mechanistic linkages between temperature, pCO2,

water quality parameters and submerged plant canopy

Table 9. Error matrices comparing model predictions of a. Eelgrass presence/absence and b. Abundance for the Cool 2011
simulation (including epiphytes) against density classes determined from aerial photography by the VIMS SAV project for the Good-
win Islands, VA. Values indicate the number of pixels for each category, with percentages of column totals in parentheses.

a. Presence/Absence
Measured

Modeled Present Absent Row Sum

Present 11,228 (99%) 12,430 (37%) 23,658

Absent 75 (1%) 22,254 (63%) 21,329

Column Sum 11,303 33,684 44,987

b. Abundance
Measured density

Modeled Density

Class 1 Class 2 Class 3 Class 4

Row Sum<10% Cover 10–40% Cover 40–70% Cover >70% Cover

Class 1 111 (2%) 103 (2%) 25 (1%) 0 239

Class 2 1766 (37%) 1106 (25%) 369 (19%) 0 3241

Class 3 2159 (45%) 2024 (45%) 778 (40%) 0 4961

Class 4 716(15%) 1277 (28%) 794 (40%) 0 2787

Column Sum 4752 4510 1966 0 11228

Table 10. Error matrices comparing model predictions of a. Eelgrass presence/absence and b. Abundance for the Cool 2011
simulation (no epiphytes) against density classes determined by the VIMS SAV project from human interpretation of aerial photogra-
phy for South Bay, Virginia, U.S.A. Values indicate the number of pixels for each category, with percentages of column totals in
parentheses.

a. Presence/Absence
Measured

Modeled Present Absent Row Sum

Present 38,508 (99.9%) 58,186 (88%) 96,694

Absent 48 (0.1%) 8102 (12%) 8150

Column Sum 38,556 66,288 104,844

b. Abundance
Measured density

Modeled Density

Class 1 Class 2 Class 3 Class 4

Row Sum<10% Cover 10–40% Cover 40–70% Cover >70% Cover

Class 1 0 0 0 0 0

Class 2 0 21 (0.4%) 109 (1%) 0 130

Class 3 0 325 (6.6%) 873 (7%) 0 1198

Class 4 128 4737 (93%) 12,265 (93%) 20,050 (100%) 37,180

Column Sum 128 5083 13,247 20,050 38,508
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architecture provided by this radiative transfer approach

extend our predictive ability beyond survival depth limits

(Dennison et al. 1993; Gallegos 2001; Kenworthy et al. 2014)

to the mapping of shoot density across the submarine land-

scape as a function of light quality, as well as light quantity.

The seagrass canopy portion of GrassLight was previously

shown to accurately predict seagrass density and distribution

in Elkhorn Slough, CA, Dumas Bay, WA, and Florida Bay, FL

(Zimmerman 2006; McPherson et al. 2011). This formulation

has also been used to quantify important derived properties,

such as d13C composition, that varies inversely with Hsat and

may serve as a useful indicator of light limitation and

system-level productivity (Hu et al. 2012; McPherson et al.

2015).

Broadening the utility of this approach to other environ-

ments, particularly for resource management purposes, has

been hindered by the need for reliable estimates of Kd(k).
The efforts published previously relied on direct measures of

Kd(k) and/or values generated by the commercial radiative

transfer model Hydrolight (Mobley 1989) that required

explicit knowledge of spectral absorption [a(k)] and beam

attenuation [c(k)] coefficients, as well as volume scattering

functions that limited the utility of GrassLight for resource

management purposes. The analysis presented here dem-

onstrated that the semianalytical relationship of Lee et al.

(2005) required very little adjustment for differences in

IOPs to accurately estimate Kd(k) for the optically distinct

environments of Goodwin Islands (Chl-dominated) and

South Bay (sediment dominated) from routinely moni-

tored values of [Chl a] and [TSM]. Further, the ability to

predict spectral irradiances, and not just broadband PAR,

provides a pathway for resolving the apparent differences

in perceived light requirements of SAV growing in turbid

vs. clear water (Duarte et al. 2007) that may result from

differences in light quality as well as light quantity (Hu

et al. 2012) or other environmental consequences of eutro-

phication (Krause-Jensen et al. 2011; Kenworthy et al.

2014).

Although the model was parameterized separately with

respect to bbp(555)/bp(555) for Goodwin Islands and South

Bay, the 25% difference in the value of the backscattering

ratio affected Kd(k) by<10% and the eelgrass depth distribu-

tion by<5% (simulations not shown), suggesting that a

common parameterization of the backscattering ratio would

not have adversely affected model accuracy. Using the

parameterizations employed here, including bbp(555)/

bp(555)50.016, the model estimated the spatial distribution

of Kd(k) throughout West Falmouth Harbor, MA with a

mean RMS error of 0.07 m21using water quality estimates of

CDOM absorption, [Chl a] and [TSM], but without specific

knowledge of IOPs or their relations to water quality parame-

ters (del Barrio et al. 2014). However, successful application

of the model to these environments does not guarantee it

will work in all instances, and some effort should be made

to validate the relationships between IOPs and water quality

measures when applying the model to new environments.

Water quality plays a well-documented role in controlling

seagrass depth distributions, especially in the Chesapeake

Bay. Although both sites were turbid (bavg56.8 & 5.4 m21

for Goodwin Islands and South Bay, respectively) and experi-

enced similar concentrations of TSM, the Goodwin Islands

site was more eutrophic, as indicated by significantly higher

concentrations of Chl a, while the waters of South Bay con-

tained a higher mineral fraction, as indicated by the higher

backscattering ratio (Snyder et al. 2008). However, inorganic

suspended sediment contributes more to scattering than

absorption, reducing its impact on light attenuation relative

to phytoplankton Chl a, which competes directly for light

with eelgrass. This led to higher light attenuation at Good-

win Islands, particularly in the photosynthetically preferred

(blue) part of the spectrum. As a result, reduced transparency

of the water column around Goodwin Islands reduced the

density and depth distribution of light-limited eelgrass at

Goodwin Islands relative to South Bay and rendered the

Goodwin Islands population more vulnerable to thermal

stress and epiphyte loading in a manner consistent with his-

torical observations (Moore and Jarvis 2008; Orth et al.

2010).

The accurate simulation of eelgrass depth distribution and

density across the submarine landscape for present-day con-

ditions at Goodwin Islands and South Bay provides some

confidence in the ability of GrassLight to predict the response

of eelgrass to changing climatic conditions anticipated for

the next century. Model estimates of eelgrass presence/

absence were generally consistent with field observations at

both sites. Model predictions of eelgrass density agreed with

field observations almost half the time, with most errors rep-

resenting assignments to adjacent density classes. The

reduced coherence between the modeled and measured den-

sity class relative to presence or absence resulted, at least in

part, from differences in textural resolution between Grass-

Light predictions that assigned each pixel a unique %Cover

estimate based on its depth, and the observational matrix in

which all pixels were assigned the same density within an

expertly drawn polygon. Visual inspection of the VIMS

images used to generate the polygons (available at http://

www.vims.edu/bio/sav) revealed a considerable degree of tex-

ture with regard to apparent shoot density and patchiness

that were not captured by the polygons. Furthermore, it

must be emphasized that the field observations represent

snapshots of realized plant distributions that may not be in

steady state with respect to the environmental parameters

used to drive GrassLight predictions to light-limited densities.

The Goodwin Islands population has been subjected to a

number of stress events, most recently the extremely warm

summer of 2010 (Moore et al. 2012), and its 2011 distribu-

tion probably was lower than the light-limited potential pre-

dicted by GrassLight. Additionally, the restored eelgrass
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meadow in South Bay is still expanding outward from the

original restoration effort that began in 2000 (Orth et al.

2006a).

The model calculations performed here suggest that epi-

phyte densities reported for Goodwin Islands eelgrass can

reduce the potential density and depth distribution of eel-

grass by about 50% relative to the epiphyte-free simulation,

and their incorporation more accurately predicted eelgrass

distribution and density relative to the field observations.

For these simulations, the epiphyte effect was parameterized

using the data of Bulthuis and Woelkerling (1983) that

strongly attenuate light as a function of epiphyte density in

a spectrally neutral manner. However, considerable variabili-

ty exists in this relationship depending on the taxonomic

and anatomic nature of the epiphytes (e.g., encrusting vs.

upright filamentous) (Brush and Nixon 2002), the degree to

which carbonate structures and sediment particles are incor-

porated into the leaf biofilm and spectral effects (Drake et al.

2003) not considered here. Although our calculations are

consistent with other reports demonstrating the negative

effects of epiphyte loads in the range of 1–3 mg DW cm22

on leaf photosynthesis (Sand-Jensen 1977; Sand-Jensen and

Borum 1984; Cebri�an et al. 1999) there is considerable room

for improvement in modeling this relationship in response

to particular environments. In addition to being stimulated

by eutrophication (Moore 2004; Orth et al. 2006a), epiphyte

densities are also affected by grazing intensity that can vary

with seagrass density/distribution (van Montrfrans et al.

1984; Duffy 2006; Hughes et al. 2013). Thus, environmental

stresses that cause periodic eelgrass die-backs, particularly at

Goodwin Islands, may reduce the biodiversity and trophic

structure of the animal community within the meadow, fur-

ther promoting epiphyte growth and preventing eelgrass

from occupying potential habitat based on water quality

measures alone.

It must be emphasized that these GrassLight predictions

represent steady-state densities based on clear sky light

availability and metabolic carbon balance driven by photo-

synthesis and respiration. Consequently, they should be

viewed as upper (optimistic) limits that do not presently

account for other processes that may directly affect seagrass

abundance, such as acute toxic effects of nutrients in the

water column or porewater (Burkholder et al. 1992), pore-

water sulfide (Holmer et al. 2005; Govers et al. 2014), sedi-

ment grain size, organic matter content and wave exposure

(Koch 2001; Infantes et al. 2009). Although used here to

determine steady-state responses to constant environmental

conditions, the formulations underlying GrassLight can be

implemented to simulate the dynamic temporal response of

eelgrass carbon balance to varying environmental condi-

tions on time scales ranging from seconds to seasons and

years (Zimmerman et al. 1994; Kraemer and Alberte 1995;

Zimmerman et al. 2001). Unlike the open ocean, local met-

abolic processes can produce dramatic, high frequency var-

iations in the pCO2/pH status of estuarine waters that

overwhelm the equilibrating dynamics of air-sea gas

exchange driving anthropogenic OA (Duarte et al. 2013)

and may be important in explaining the persistence, as well

as the disappearance, of seagrasses in response to changes

in the trophic status of estuarine ecosystems (Howarth

et al. 2014). Further, summer heat stress may occur as a

series of relatively short heat waves, lasting two to three

weeks that exceed the average temperature differences used

here (Bergmann et al. 2010; Winters et al. 2011). Finally,

increased rates of photosynthesis derived from elevated

[CO2] will facilitate the summertime accumulation of car-

bon reserves in plants growing at depths shallower than the

survival thresholds defined here, that enhance winter sur-

vival and flower production in the following spring (Pala-

cios and Zimmerman 2007).

Although declining water quality has been repeatedly

identified as an existential threat to seagrass communities

worldwide, rising water temperature represents a particular

concern for Chesapeake Bay eelgrass located near the

southern limit of their distribution on the Atlantic coast of

North America (Orth et al. 2010). When properly con-

strained and parameterized to accurately reproduce local

conditions, the GrassLight model offers predictive insights

into the performance of eelgrass meadows that can inform

our understanding of ecosystem responses to future cli-

mate change. With respect to the Chesapeake region, our

results suggest that OA/OC projected for the next century

will stimulate photosynthesis sufficiently to offset the neg-

ative effects of temperature on eelgrass survival. Thus, con-

tinued efforts to improve water quality, particularly within

the Chesapeake Bay, should facilitate the survival of eel-

grass despite a warmer climate. Additionally, the reduced

temperature sensitivity exhibited by South Bay popula-

tions in the simulations performed here suggests that

improved water quality may reduce the effects of thermal

stress on populations growing near their southern limits,

even in the absence of CO2-stimulated photosynthesis.

These findings should provide further incentive to improve

coastal water quality in support of SAV habitat restoration

goals.
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