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Abstract

Although environmental requirements of seagrasses have been studied for years, reliable metrics for pre-
dicting their response to current or future conditions remain elusive. Eelgrass (Zostera marina L.) populations
of the Chesapeake region lie near the southern limit of their range in the Western North Atlantic, exposing
them to increasing thermal stress as the climate warms. However, CO, stimulated photosynthesis may offset
some of the negative effects of temperature stress. The combined effects of temperature, CO,, and light avail-
ability controlled by water quality and epiphytes were explored using GrassLight, a bio-optical model that
provided a predictive environment for evaluating the interaction of multiple stressors on eelgrass distribution
and density across the submarine landscape. Model predictions were validated against in situ measures of
spectral diffuse attenuation, eelgrass density, and distribution. The potential for photosynthesis stimulated
by ocean acidification to mitigate the effects of high temperature on eelgrass populations growing near the
southern limit of their distribution was explored. The model accurately reproduced the submarine light envi-
ronment from measured water quality parameters, and predicted their impacts on eelgrass distribution. It
also reproduced the negative effects of warm summer temperatures on eelgrass distributions, and demon-
strated that CO, increases projected for the next century should stimulate photosynthesis sufficiently to off-
set the negative effects of thermal stress on eelgrass growing in the Chesapeake region, even in the presence
of epiphytes. Thus, improved water quality should facilitate the survival of eelgrass populations in Chesa-
peake region, even in the face of a warming climate.

Seagrass communities are in global decline from environ-
mental change resulting from eutrophication, climate warm-
ing, mechanical disturbance, and loss of trophic diversity
(Orth et al. 2006b; Hughes et al. 2013). Among these factors,
seagrass density and distribution are particularly vulnerable
to deteriorating water column transparency resulting from
nutrient-stimulated algal growth and sediment loading
(Duarte 1991; Nielsen et al. 2002). However, reliable metrics
for predicting seagrass distributions from standard water
quality measures remain elusive, even to the point of sug-
gesting discontinuous responses to light availability in turbid
vs. clear water (Duarte et al. 2007).

The eelgrass (Zostera marina L.) communities of the Ches-
apeake Bay and coastal lagoons of the DelMarVa Peninsula,
U.S.A., have been decimated by a series of natural stressors
(disease, temperature) and anthropogenic deterioration of
water quality since the 1930s that continue to this day (Orth
et al. 2006a). Eelgrass has returned to portions of the Chesa-
peake region characterized by relatively good water quality,
particularly along the eastern shore of Chesapeake Bay and
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in the southern coastal bays of the DelMarVa Peninsula
(Orth et al. 2006a). However, many previously vegetated
areas have never recovered, and current bay-wide targets call
for restoring submerged aquatic vegetation (SAV) to the 1 m
isobath, which is at least 2 m shallower than the historic dis-
tribution of SAV in the Chesapeake Bay (Batiuk et al. 1992).
Populations in Chincoteague Bay increased steadily from the
mid-1980s to about 1999 but have remained stable since
then (Wazniak et al. 2007). Eelgrass restoration has been less
successful on the western shores of the coastal bays and has
succeeded only tenuously in bays near urban centers (Isle of
Wight, Assawoman Bay), as well as on the western shore of
Chesapeake Bay where water quality is relatively poor. The
failures of restoration in most locations, coupled with the
recovery plateau in Chincoteague Bay, could be a signal that
SAV is poised to decline in the future (Wazniak et al. 2007).
In addition to water quality, temperature has long been
known to affect eelgrass abundance and productivity, espe-
cially in the Chesapeake region, and climate warming may
further stress light-limited populations (Moore and Jarvis
2008). Eelgrass grows well between 10°C and 25°C, but
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temperatures above 25°C represent stressful conditions for eel-
grass growth and temperatures near 30°C could exceed the
capacity for acclimation, resulting in eelgrass decline (Thayer
et al. 1975; Evans et al. 1986; Zimmerman et al. 1989).

Projecting the response of marine ecosystems to future cli-
mate change requires consideration of the simultaneous impacts
of multiple factors that can have positive and negative effects on
the performance and distribution of key species. Although the
high light requirements of seagrasses have often been attributed
to respiratory demand of nonphotosynthetic roots and rhizomes
(Nielsen et al. 2002), CO,-limitation of leaf photosynthesis con-
tributes substantially to these high light requirements (Beer and
Koch 1996; Zimmerman et al. 1997; Invers et al. 2001). Conse-
quently, elevated concentrations of dissolved inorganic carbon
(DIC) in seawater resulting from anthropogenic increase in
atmospheric CO, concentration may offset some of the negative
impacts of climate change on seagrass ecosystems (Palacios and
Zimmerman 2007). Although commonly referred to as “ocean
acidification” (OA) because it reduces seawater pH and carbonate
saturation state (Fabry et al. 2008), the process may be viewed
more broadly as “ocean carbonation” (OC) because it also
increases the concentration of dissolved aqueous CO; [COzgq)l,
a direct substrate for marine photosynthesis.

This study explored the combined impacts of water quality,
temperature, and CO, availability on the density and depth
distribution of eelgrass in the Chesapeake region using a bio-
optical model of water quality impacts on submarine light dis-
tribution (Gallegos 1994, 2001) combined with a vertically
resolved model of canopy photosynthesis and whole plant car-
bon balance (Zimmerman 2003b, 2006) that we call GrassLight
(Ver. 2.11). This integrated tool provided mechanistically based
predictors of submarine spectral irradiance and spectral diffuse
attenuation from routine water quality measurements, and
determined seagrass canopy photosynthesis, shoot abundance,
and distribution across the submarine landscape for specified
climates (temperature & CO, in this case). Our objectives were
to (i) validate model predictions against in situ measures of
spectral diffuse attenuation, as well as eelgrass density and dis-
tribution in the Chesapeake region and (ii) explore the poten-
tial for photosynthesis stimulated by OA/OC to mitigate the
negative impacts of high summer water temperature on eel-
grass populations growing near the southern limit of their dis-
tribution in the temperate North Atlantic.

Theoretical development

Modeling the distribution of downwelling spectral
irradiance from water quality measures

The GrassLight model developed here represents a merger
of radiative transfer efforts to establish water quality criteria
for seagrass survival (Gallegos 2001), with a vertically
resolved model that accounts for the effects of canopy archi-
tecture (height, density, leaf orientation, and optical proper-
ties) on photosynthetic light absorption and whole-plant
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carbon balance (Zimmerman 2003b, 2006). A list of model
symbols, their definitions and dimensions are provided in
Table 1. The parenthetic notations 4, z, and t indicate wave-
length (7), depth (z), and/or temporal (f) dependence of par-
ticular quantities. A solar irradiance model for cloudless
atmospheres (Gregg and Carder 1990) was used to compute
the downwelling spectral irradiance just beneath the sea sur-
face [E4(4,07)] at local solar noon as a function of date and
location (Latitude, Longitude). Irradiances at depths equiva-
lent to the top of the seagrass canopy [Eq(/,Zcan)] Were deter-
mined from E4(4,07) according to the Lambert-Beer law:

Eq(%,Zcan) = Eq(4,07) - exp[—Ki(4) + Zcan] (1)

Spectral diffuse attenuation coefficients for downwelling
plane irradiance [K4(1)] were calculated from water column
inherent optical properties (IOPs) using the following rela-
tionship developed by (Lee et al. 2005; Lee et al. 2007) using
extensive simulations with the mechanistic radiative transfer
model Hydrolight (Mobley 1989):

Ka(2) = (1+0.00560) - ar(1)+4.18 - [1-0.52 - exp(—10.8 - a;)] - by(4)

2

where 0, was the above-water solar zenith angle (degrees).
The wavelength-dependent IOPs were the total absorption
coefficient [a¢(4),] and the backscattering coefficient [by(1),],
both dimensionalized as m™'. Total absorption [ay(1)] is
defined as the absorption spectrum for pure water [aw(4),
(Pope and Fry 1997)] plus all other dissolved and particulate
absorbing components. The non-water absorption coefficient
[acw(2)] was partitioned into contributions from the follow-
ing dissolved and suspended constituents:

Arw () = ag(A)+ay(A)+ap-¢(4) 3)

where ag(1), a,(4), ap.4(2) were the spectral absorption coeffi-
cients due to colored dissolved organic matter (CDOM), phyto-
plankton, and non-algal particulates (NAP =sediment and
detritus), respectively. The water column IOPs were calculated
from concentrations of water quality constituents using mass-
specific absorption and scattering coefficients (Gallegos 2001;
Biber et al. 2008), with the exception of a4(4), which was repre-
sented as a negative exponential function scaled by the absorp-
tion at 440 nm (Bricaud et al. 1981; Roesler et al. 1989):

ag(7) = ag(440) - exp[—sy(41—440)] (4)

The exponential term s, provided the spectral slope for
absorption by CDOM and was set to 0.0184 for all
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Table 1. List of model symbols, their definitions and dimensions. Parenthetic notation of 4 and z indicates that the quantity is
wavelength (1) and/or depth (z) dependent.

Symbol Definition Dimensions

Fundamental quantities

0o Solar zenith angle, above water degrees
z Water depth m
Az Vertical thickness of canopy layers m
[Chl a] Phytoplankton pigment concentration mg m3
[TSM] Total suspended matter concentration gm3
Radiometric quantities
E4(%,2) Downwelling spectral plane irradiance at depth z Wm 2 nm™!
Or
E\(2,2) Upwelling plane irradiance transmitted through layer z quantam ™ 2s ' nm™'
Water column inherent optical properties (I0Ps)
ai(2) Total absorption coefficient m!
aw(2) Absorption coefficient for pure water m™!
Grw(A) Non-water absorption coefficient m!
ag(4) CDOM (or gilvin) absorption coefficient m!
ap(4) Phytoplankton absorption coefficient m™!
Ap-¢(4) Non-algal particulate (NAP) absorption coefficient m!
az(A) Chl-specific phytoplankton absorption, or optical cross-section m?mg~' Chla
ap.4(7) Mass-specific NAP absorption coefficient, or optical cross section m? g~ ' DW
bpp(7) Particulate backscattering coefficient m!
bp(7) Particulate scattering coefficient m!
bi(2) Mass-specific particulate scattering coefficient, or optical cross section m2g ' DW
Scaling coefficients for water column inherent optical properties (IOPs)
c1, & Scaling coefficients for a}.4(%) m? g’1
Sg Spectral slope for ag(4) Dimensionless
SNAP Spectral slope for ag_¢(2) Dimensionless
Vsa Nonlinearity coefficient for ap_4(2) Dimensionless
Vo Nonlinearity coefficient for a4(1) Dimensionless
sb Nonlinearity coefficient for by(2) Dimensionless
n Spectral exponent for by(2) Dimensionless
Water column apparent optical properties (AOPs)
Ka(2) Water column attenuation of downwelling irradiance m!
Ku(A) Water column attenuation of upwelling irradiance m!
g(z) Average cosine of downwelling irradiance Dimensionless
y(2) Average cosine of upwelling irradiance Dimensionless
Submerged canopy properties
a () Leaf absorption coefficient m~ ! of leaf thickness
Aepi(7) Leaf epiphytes absorption coefficient m~! of leaf thickness
AL(4) Photosynthetic leaf absorptance Dimensionless
p Nadir bending angle of the submerged plant canopy Degrees or radians
Aepi(4) Leaf epiphyte absorptance Dimensionless
Lpred Predicted leaf area index of the plant canopy for P:R=1 m? leaf m~2 seabed
Ib(2) Horizontally projected leaf area at depth z m? leaf m~? seabed
ou(d) Leaf reflectance Dimensionless
pd(4,2) Canopy reflectance of downwelling irradiance Dimensionless
pu(4,2) Canopy reflectance of upwelling irradiance Dimensionless
t Leaf thickness m
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TABLE 1. Continued
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Symbol

Definition

Dimensions

Photosynthetic quantities

1

PUR(2) Photosynthetically utilized irradiance in layer z Mol photons m~2 leaf s~
p Quantum efficiency of photosynthesis Mol C mol ™" photons absorbed
Pe Light-saturated photosynthesis Mol C m~2 leaf s~
P(2) Light-dependent photosynthesis at depth (2) Mol C m~2 leaf s~
P(t) Instantaneous whole canopy photosynthesis = Z P(z2) Mol C m~2 leaf s~
z
Py Daily integrated canopy photosynthesis = Z Pc(t) Mol C m~2 leaf day ™'

RLeaf/ RRoot/ RRhizome

Respiration rates of leaf, root and rhizome

t Mol C m~2 leaf day ™'

simulations (Tzortziou et al. 2006). Absorption by NAP was
the product of a mass-specific-absorption spectrum or optical
cross section [a*,_4(4)] multiplied by a measure of the con-
centration of NAP, which we take to be the total suspended
matter (TSM):

@ _4(7) = ¢+ ¢, - exp[—snap(A—440)] 5)
p-y(440) = ay,_,(440) - [TSM]"™ ©

where ¢; allowed for some small amount of absorption at
long wavelengths (typically <2% of value at 440 nm, (Bowers
and Binding 2006), c, scaled the NAP absorption cross-section
at 440 nm, syap was the spectral slope of the NAP absorption
cross-section, and v, allowed for nonlinearity in the relation-
ship with TSM. The chlorophyll specific-absorption spectrum,
aj(2), was determined by regression of measured phytoplank-
ton absorption against [Chl g] for various sites around Chesa-
peake Bay (Gallegos and Neale 2002; Magnusen et al. 2004):

a4(7) = a;,(7) - [Chla]” %)

where the exponent, (vy) controlled the degree of nonlinear-
ity for the relationship between [Chl a] and a4(4) (Bricaud
et al. 1995), although v, was set to 1 for these simulations.

The particulate scattering spectrum, b,(4), was modeled as
a power function of wavelength centered at 555 nm (Snyder
et al. 2008): ]

bp(2) = by(555) - (?) (®)

where n represented the nonlinear spectral exponent, and
was set to 0.5 for these simulations (Snyder et al. 2008). As
with absorption by NAP, the magnitude of scattering at the
reference wavelength (555 nm) was scaled by:

bp(555) = by, (555) - [TSM]"™ 9)

where by (555) was the optical cross-section for backscattering
at 555 nm and the exponent (vy,) allowed for nonlinearity.

Particulate backscattering (b,p) was calculated by multiplying
the particulate scattering coefficient by the backscattering
ratio (byp/bp), the value of which can be site-specific depend-
ing on the composition of the suspended particles (e.g., min-
eral sediment vs. phytoplankton vs. organic detritus):

bp(555)

bbp()“) = bP()”) bp(SSS)

(10)

Although there is no basis for generalizing the spectral
shape of the backscattering ratio, errors in calculated Kg4(4)
resulting from spectral variability in byp/b, can be minimized
by scaling the overall magnitude of the ratio near the center
(e.g., 555 nm) of the visible spectrum (Snyder et al. 2008).

Modeling marine spectral irradiance through the
submerged plant canopy

A two-flow approach was used to propagate E4(4,z) down-
ward through the seagrass canopy and to compute the amount
of light absorbed for leaf photosynthesis (Zimmerman 2003b):

Eq(4,2=1) = E4(4,2) - [1=pq(4, 2)]
- exp {—{aL(i)vLaepi()v)} -

Ip(z) .
71(2) Kq(4,z) - Az
(11)

where E4(4,z—1) represented the spectral downwelling plane
irradiance emerging from the layer at z. The term
[1 = p4(4,2)] accounted for the loss of downwelling spectral
irradiance by upward reflection at z, which depended on the
leaf reflectance spectrum [p;(4)] normalized to the horizon-
tally projected silhouette of leaf area at z [I,(z)] and the aver-
age cosine for downwelling irradiance [z4(2)]:

~ Ip(2)
Wz)=p(A) =2 12
pa(4:2) = pr(4) ) (12)
The computation of [,(z) from leaf morphometrics, shoot
density, and leaf bending angle is detailed in Zimmerman

(2003b, 2006). The amount of light transmitted through
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layer (z) was controlled by the exponential loss term
[f{aL(z) At depi(2)} 2 —Kqy(,2) - Az| that included both

Z

canopy and water column effects. Canopy effects were
defined by the leaf- and epiphyte-specific absorption coeffi-
cients [a;(4) and daepi(4)], respectively, the leaf thickness (fy),
and the horizontally projected leaf area [I,(z)] at each depth.
Absorption by the epiphyte layer can have a strong spectral
component, particularly when it is dominated by algae
(Drake et al. 2003). However accumulated sediments and
detritus tend to flatten the spectrum, especially in turbid
estuarine environments. For these simulations, epiphytes
were assumed to be neutral density attenuators. Absorption
by epiphytes (aepi) was calculated as a function of epiphyte
density on the leaf surface (mg cm™?) based on the data in
fig. 4 of Bulthuis and Woelkerling (1983), but with the
regression forced through the origin (0 epiphyte absorption
at 0 epiphyte density):

depi = 0.873 - Epi (13)

The value of the average cosine [f4(z)] was approxi-
mated assuming that scattering induced by the canopy was
hemispherically isotropic (bi-Lambertian) about the leaf
surface (Shultis and Myneni 1988) such that @ (z) became
increasingly isotropic [i.e., @3(z) — 0.5] in proportion to
the horizontally projected leaf area in each layer through
which the light passed. This caused Kg(4,z) to increase
with depth through the submerged plant canopy (Zimmer-
man 2003b).

On reaching the sea floor, a portion of the light was
reflected back in the upward direction. This reflected light
was then attenuated by the submerged plant canopy and
water column along its path back to the sea surface in a pro-
cess symmetrical to that for downwelling irradiance:

Eu(4,2) = {[Ea(4 2) - pa(Z, 2+ 1)[+Eu(Z, z+1)} - [1=py(4, 2)]-
exp *{(ZL(;V) S+ aepi(/l)} -1 - lpﬁ(i) *Ku()») - Az

(14)

The two-flow approach summarized by Egs. 11 and 14
provided a mechanistic link between in-canopy light fields
and the vertical distribution of the horizontally projected
leaf area index, or biomass, of the canopy, which was a func-
tion of leaf orientation as well as leaf morphology and shoot
density (Zimmerman 2003b).

Photosynthesis of the submerged plant canopy
Calculation of the photosynthetically used radiation

[PUR(z)], which was less than the total irradiance attenuated

by the canopy that included losses due to reflections from
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the leaf surface (pq4, pu), epiphyte absorption (aep;) and non-
specific leaf absorption that did not contribute to photosyn-
thesis, required spectral integration of the total plane
irradiance (in quantum units) normalized by the photosyn-
thetic absorptance [A,(4)] of the leaf and the horizontally
projected leaf area [I,(2)]:

PUR(z) = ZAP()L) “Ip(2)-

Eq(2,z=1) - {1=pa(2)} - {1-Aepi(1)}
fia(z=1) (15)

+Eu()“7z+1) ) {1_pu()‘)} ) {1_Aepi(/l)}
Ty (z+1)

PUR(z) was used to drive the instantaneous photosyn-
thetic rate of layer (z) using the cumulative one-hit Poisson
function, which provided a quasi-mechanistic relationship
between photosynthetic yield and the amount of light
absorbed by the leaf (Falkowski and Raven 2007):

by - PUR(Z)} }

P(z) =1(z) - Pg - {1—exp {— P (16)

In this relation, P; was the irradiance-saturated rate of
biomass-specific photosynthesis and ¢, was the quantum
yield of photosynthesis (1/8 mol C mol~* PUR).

Effect of OC on photosynthesis

Light-saturated photosynthesis (Pp) of eelgrass increases in
response to the concentration of DIC in seawater (Zimmer-
man et al. 1997; Invers et al. 2001; McPherson et al. 2015).
In the case of eelgrass, the effect of DIC was quantified using
a modified Michaelis-Menten formulation that accounted
for the combined effects of [CO,nq] and [HCO;3;] on
irradiance-saturated photosynthesis (Pg) (McPherson et al.
2015):

[HCO; |
HCO; ) .KS(HCO3’) + [HCOQ]
_ [CO2aq)]

Ks(coz(aq]) + [COZ(aq)]

PE :Pm( Pm(COZ(W)

17)

where P HCO; ) and Pm(COz<aq>) represented the maximum
rate of light- and flow-saturated photosynthesis for the DIC
substrates bicarbonate (HCO;) and aqueous dissolved carbon
dioxide [COy(q)] respectively; K(uco;) and Kco,,,) repre-
sented the corresponding half-saturation  constants.
Although [COy(,q)] has a particularly strong effects on eel-
grass leaf photosynthesis, it has no measurable effect on

1785



Zimmerman et al.

eelgrass respiration over the range of concentrations simu-
lated here (Zimmerman et al. 1997).

Modeling the effect of temperature on photosynthesis,
respiration and whole-plant carbon balance

The effect of temperature on leaf photosynthesis is CO,
dependent such that the Q¢ for eelgrass Pr is<2 in the
present-day ocean, while the Q;q for respiration (R) is about
2.6 (Zimmerman et al. 1989). This causes respiration to rise
more rapidly in response to temperature than carbon-limited
photosynthesis, potentiating negative daily carbon balances
during warm periods. However, OA/OC can reduce the
unbalanced effect of temperature on Py and R because CO,
stimulation of Py increases the photosynthetic Qo as an
exponential function of [COy(q)l:

. [CO2aq)] )
Photosynthetic =3.62+0.796-In| ———= 18
3% Q1o (9.8 X 10° (18)

Although salinity and temperature have considerable
effects on the air-saturated value of [COy(,q)], their impacts
on Photosynthetic Q;¢ are dampened by the logarithmic
relationship with [COgz(q)] such that Qo can be approxi-
mated as a linear function of pH for salinities between 20
and 35 (PSS) and temperatures between 0°C and 30°C:

Photosynthetic Q9o = 3.62—0.2-pH (19)

Temperatures above 30°C are likely to have acute negative
effects on plant metabolism, and are beyond the scope of
the present simulation.

Instantaneous whole canopy production [P.(t)] was calcu-
lated for each temperature, CO,, water quality and depth
scenario by numerical integration of P(z) over all layers (2):

Pe(t) = P(2) 20)

Daily production (Pg) of the canopy was calculated by
numerical integration of P. over the photoperiod determined
by date and location, using a time step of 10 min assuming
the daily variation in [E4(4,07)] was sinusoidal function of
photoperiod (cloudless atmosphere):

Pq =) Pc(t) (21)
t

The resulting photosynthesis rates were used to determine
whole plant carbon balance by normalizing P4 to the daily
(24 h) respiratory demand:
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Daily P : R = 14 22)
Ry

The Daily P : R provides a convenient index of whole
plant or canopy production. Survival was possible when
Daily P : R> 1. Conversely long-term survival was impossible
when Daily P : R< 1. Aerobic respiratory demand of leaves,
roots, and rhizomes was scaled to Pp at 15°C, pCO, =400
uAtm (Zimmerman et al. 1989):

Rieat = 0.2Pg (23)
RRoot = O~5RLeaf (24)
RRhiz = O~5RRoot (25)

and responded to temperature with a Qo of 2.6 (Zimmer-
man et al. 1989). For a given temperature regime, nighttime
respiration of roots and rhizomes was reduced to 65% of the
aerobic (daytime) rate to account for the reverse Pastéur
effect observed when these tissues become anoxic (Smith
et al. 1988; Smith 1989). Consequently, daily whole plant
respiration was calculated as the sum of daily respiratory
rates for each of the different tissue components scaled to
the shoot: root ratio (¢), which was set to 3.1 for these
simulations:

R4 = 24 - Ryeas
. {D- (Rroot + Reniz) + 0.65 - (24 — D) - (Rgoot +RRhiz)} (26)

o

R4 is relatively insensitive to variations in ¢ between 1 and 4
because leaves represent the majority of the respiratory load
(Zimmerman 2003a).

Analysis of model sensitivity to many of the required
parameters can be found in the publications cited above.
The analysis presented here will concentrate on the sensitiv-
ity of model predictions to the new features created by our
integration of water quality and canopy bio-optics with
whole plant physiology, in particular the ability of this
model to predict (i) K4(4) from Chl a and TSM, and (ii) the
interactive effects of temperature, CO, and epiphyte load on
eelgrass carbon balance and subsequent distribution across
the submarine landscape in the context of a changing
climate.

Methods and materials

Selection of field sites for validation of model predictions
The ability of the bio-optical model to predict the distri-
bution of eelgrass across the submarine landscape was
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evaluated at two locations with contrasting histories of SAV
abundance and distribution. The Goodwin Islands, located
at the mouth of the York River (37.2167° N 76.4000° W),
represented a stressful water quality environment for SAV on
the western shore of the Chesapeake Bay. SAV, primarily eel-
grass (Zostera marina L.) and widgeon grass (Ruppia maritima
L.) cover about 120 ha of nearshore sandy habitat to about
1 m depth. Temporal variation in SAV distribution is high at
this site, being affected by low water transparency, epiphyte
load, and periodic thermal stress during warm summers
(Moore 2004; Moore and Jarvis 2008). The second field site
was South Bay (37.2667° N, 75.8167° W), a shallow coastal
lagoon in the lee of Wreck Island on the seaward shore of
the DelMarVa Peninsula that has experienced a highly suc-
cessful eelgrass restoration effort now covering>700 ha
(Orth et al. 2006a). South Bay is tidally flushed by relatively
clean waters of the mid-Atlantic Ocean that renders it less
affected by eutrophication and summer thermal stress than
in the Chesapeake Bay.

Bathymetric and optical characterization of the field sites

Acoustic surveys of both sites were conducted between
May 2011 and October 2011 using a Humminbird Model
998 multibeam sonar/chartplotter system with integrated
GPS receiver mounted to a 5.3 m skiff powered by an out-
board engine. All soundings were corrected to MLW using
local tide heights measured concurrently with the surveys.
Digital elevation models (DEMs), necessary for predictive
modeling of eelgrass distribution across the submarine land-
scape, were generated by interpolation of the sounding
tracks using inverse distance weighting criteria.

Non-water absorption [a.(1) — aw(4)] and scattering coeffi-
cients [b(4)] used to parameterize the model were measured
at various stages of the tide and times of day at both sites
between May 2011 and October 2011 using an ac—9 sub-
mersible spectrophotometer (WetLabs). Instrument values
were corrected for ambient temperature, salinity, and total
scattering (Pegau et al. 2003). The backscatter coefficient
[br(555)] was measured using a HydroScat-6 (HOBI Labs) and
corrected for total scattering and absorption (Maffione and
Dana 1997). Diffuse spectral attenuation coefficients [Kq(1)]
were determined according to the Lambert-Beer Law from
simultaneous measures of downwelling spectral irradiance
[Eq(4,2)] offset by a vertical distance of 0.5 m using a
4-channel HydroRAD spectroradiometer system (HOBI Labs).

Absorption coefficients for phytoplankton (as) and non-
algal particles (ap.,) were measured spectrophotometrically
from bulk water samples captured onto GF/F filters under gen-
tle vacuum. The filtrate was collected directly into acid
washed borosilicate glass vials and subsequently passed
through acid-washed, 0.2 um polycarbonate filters. CDOM
absorbance of the second filtrate was measured against Nano-
pure water using a Shimadzu UV2401 scanning spectropho-
tometer (10 cm path). CDOM absorbances were corrected for
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scattering and converted to absorption coefficients [ag(/), uni-
ts=m~'] (Mitchell et al. 2002). Spectral absorption coeffi-
cients of particles collected on the GF/F filters were measured
against a clean filter moistened with Nanopure water using an
integrating sphere attached to the spectrophotometer and cor-
rected for multiple scattering (Cleveland and Weidemann
1993). Non-algal particulate absorption was measured spectro-
photometrically on the same filters after extracting the pig-
ments in 90% methanol for 12 h. Chlorophyll a (Chl a) was
extracted from companion filters using sonication in ice-cold
90% acetone and quantified spectrophotometrically (Jeffrey
and Humphrey 1975). TSM concentrations were determined
by filtering measured volumes of the same bulk water samples
onto preweighed Nucleopore filters (0.2 um pore size). The fil-
ters were rinsed with deionized water to remove salts, dried at
60°C for 5 d and reweighed. The concentration of suspended
mass in the water was calculated by normalizing the mass
captured to the volume filtered.

Projecting eelgrass distributions for different climate
scenarios

The governing equations described above were translated
into Fortran as a set of coupled subroutines with user-
interface that we refer to as GrassLight Ver. 2.11. A 64-bit
executable version of the model was generated for these cal-
culations using the Intel Visual Fortran Compiler (Ver.
12.1.0.2). The original source code, compiled executable
versions for 32-bit and 64-bit Windows operating systems,
and a user guide are freely available from the authors on
request. The GrassLight model was run iteratively to deter-
mine the maximum shoot density where Daily P : R=1 for
a range of depths between 0 m and 2 m (MLW) on the
summer solstice for both sites. Temperatures were selected
to simulate a cool summer (25°C) below the threshold for
thermal stress and a warm summer (30°C) known to cause
thermal stress in eelgrass. CO, concentrations were simu-
lated for the present day (roughly 2011), mid-century
(roughly 2050), and end-of-century (roughly 2100), based
on IPCC (2013) projections. For all runs, the specified
[COz@aq] and pH were determined by COZ2SYS (Lewis and
Wallace 1998) using measured values of salinity and alkalin-
ity for both sites, and average pCO, concentrations for the
present day, mid-century and end-of century [Table 2; IPCC
(2013)]. Optical properties of eelgrass leaves were averaged
from > 500 spectral measurements (Cummings and Zimmer-
man 2003; Zimmerman 2003b). The resulting relationship
between depth and eelgrass density produced a unique
“sparse model” for each simulated environment consisting
of a quadratic function that quantified eelgrass density as a
function of water depth. Eelgrass densities predicted from
the sparse model relationships were then mapped across
DEMs of the submarine landscape generated for Goodwin
Islands and South Bay.
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Table 2. Parameter values assigned to each GrassLight simula-
tion. All runs were conducted for the summer solstice (14.5 h
photoperiod) using mean concentrations of Chl a, TSM, and
CDOM absorption [a4(440)] measured at both sites. Tempera-
tures were selected to simulate a cool summer (25°C) below the
threshold for thermal stress and a warm summer (30°C) known
to cause thermal stress in eelgrass. CO, concentrations were
simulated for the present day (roughly 2011), mid-century
(roughly 2050), and end-of-century (roughly 2100), based on
IPCC (2013) projections. Concentrations of dissolved aqueous
CO, and seawater pH were determined from CO2SYS (Lewis
and Wallace 1998) using values of temperature, salinity, alkalin-
ity, and pCO, indicated below. When not listed, parameter val-
ues for warm simulations were the same as listed for Cool 2011
simulations.

Warm Warm Warm

Climate Cool 2011 2011 2050 2100
All simulations

Day Length (h) 14.5

Temperature (°C) 25 30 30 30

pCO, (uAtm) 400 400 600 870

Pm(HC03 ) (relative units) 1

Pm(co,) (relative units) 6.3

K.nco; ) (umolL™") 1400

K,(COyy) (HMOILTT) 800

Leaf Epiphyte Load 0 and 1.24 from Moore (2004)

(mg cm™?)
Shoot:Root Ratio 3.1

Canopy Orientation 10° from vertical

Goodwin islands

Salinity (PSS) 20
Alkalinity (uEquiv kg~' SW) 1500
pH 8.10 8.11 7.95  7.80
[COzaqy] (umol L7 12.2 10.8 16.2 235
[HCO3] (umol L™1) 1294 1260 1324 1370
Chla (mgm™3) 9.0*1.6
TSM (mg L") 8.4+27
ag(440) (m™") 0.372+0.07
Canopy Height (m) 0.1
Shoot Leaf Area 0.001
(m? shoot ™)
South Bay
Salinity (PSS) 30
Alkalinity (uEquiv kg~ SW) 2200
pH 8.19 8.20 8.00 7.91
[CO20q] (umol L™T) 11.6 10.3 154 224
[HCO3] (umol L) 1748 1685 1806 1900
Chla (mgm™3) 3.7+1.0
TSM (mg L") 6.5+3.5
ag(440) (m™") 0.212 +0.04
Canopy Height (m) 0.25
Shoot Leaf Area 0.0047

(m? shoot ™)

Predicting eelgrass response to climate change

Statistical analyses and field validation of model
predictions

Quantitative relationships among measured variables
were determined using least squares regression routines
implemented in Microsoft Excel (Ver. 14.0.7140.500) and
Analysis of Covariance (ANCOVA) routines implemented
in MathWorks Matlab R2012b (8.0.0.783). Accuracy of
Kg4(2) values predicted from measured values of [Chl a],
[TSM] and ag(4) were compared against radiometrically
determined observations of K4q(4) measured by the Hydro-
RAD simultaneously with the collection of water samples
used to measure the water quality parameters. The
wavelength-specific root mean square deviation [RMSD(2),
units = m~ '] between measured and modeled K4(2) was cal-
culated as:

Z [Kd (;“)measured —Kq (;L)modeled} ’
RMSD(2) = L

] (27)

where n represented the number of spectral observations.
Normalized RMS deviations (NRMSD, dimensionless) were
obtained by dividing RMSD(/) by the range of measured val-
ues at each wavelength:

~ RMSD(2)
 Ka(2)max — Ka(2)

Maps of eelgrass distribution produced from a combina-
tion of aerial imagery and ground-based field observations
by the SAV Program, Virginia Institute of Marine Science
(Orth et al. 2012, http://www.vims.edu/bio/sav) were used
to validate GrassLight predictions of eelgrass density and
distribution at both sites for the relatively cool 2011 grow-
ing season. Epiphytes represent a particularly important
structuring element of the eelgrass meadow at Goodwin
Islands and the York River estuary (Neckles et al. 1993;
Neckles et al. 1994; Moore 2004), and we compared the
VIMS map against our model simulation of eelgrass distri-
bution and density that incorporated the effect of a mean
epiphyte load reported by Moore (2004) for the Goodwin
Islands. Epiphytes are less abundant at South Bay (R. ]J.
Orth pers. comm. and our personal observations); conse-
quently we compared the VIMS map to our cool climate
2011 scenario for that site without epiphytes. ArcGIS shape-
files containing polygons of SAV bed density (VIMS % cover
classes) for 2011 were downloaded from the VIMS website
and converted to a raster matrix of grid points spaced at
10 m intervals. Leaf area indices (Lyq) predicted by Grass-
Light at the same grid points were converted to horizontally
projected estimates of %Cover based on the same geometric
reasoning used to calculate the horizontally projected leaf
area (Ip) in each layer of the canopy (Zimmerman 2003b,
2006), in which the bending angle (f) of the canopy

NRMSD (1) (28)

max min
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Fig. 1. Relationships between IOPs, concentrations of TSM and Chl a at the Goodwin Islands (closed circles, all plots) and South Bay (open circles, all
plots). Lines indicate the relationships between plotted variables, as determined by ANCOVA and regression analyses (Table 3). Dashed lines in Fig.
1a,f indicate the relationships among variables for Goodwin Islands. Solid lines in Fig 1a,f indicate significantly different relationships among the same
variables for South Bay. Solid lines in Fig 1b,c,d,e indicate overall relationships between variables when no differences between Goodwin Islands and

South Bay were detected by ANCOVA.

determines the percent of surface area occupied by eelgrass
when viewed from above:

% Cover = 100 - Lyreq - sin(p) (29)

The bending angle of the vertically distributed plant can-
opy was set to 10° from vertical for all simulations, which
represents the optimum orientation to maximize whole can-
opy photosynthesis and minimize self-shading (Zimmerman
2003b). The resulting estimates of %Cover were then binned
to the 4 density classes defined by the VIMS SAV Program.
Error matrices were computed to compare the spatial distri-
bution of observed density against the distributions gener-
ated from quadratic sparse models mapped across the DEMs.

Results

Predicting the distribution of downwelling irradiance
from water quality measures

The relationships between IOPs and the standard water
quality monitoring parameters (TSM, Chl a) showed a wide
range of similarities, and a few important differences

between Goodwin Islands and South Bay. Concentrations of
TSM ranged from<5 mg L™' to>15 mg L™! at both sites,
and mean concentrations were not significantly different
between sites. However, the average Chl a concentration was
2.4-fold higher at Goodwin Islands (9.0 + 1.64 mg m>) than
South Bay (3.7 + 0.45 mg m ™ ®), even though the slope of the
Chl a vs. TSM relationship was statistically indistinguishable
between the sites (Fig. 1a; Table 3). Although the regressions
did not have a lot of predictive power (* = 0.24 for Goodwin
Islands and 0.56 for South Bay), they point to a significant
difference in the composition of suspended particles between
the two sites that may affect the IOP-based parameterizations
required for the bio-optical model. Despite this difference in
Chl a vs. TSM, relations between all optical properties
required to parameterize the optical model were statistically
indistinguishable between sites with the exception of
byp(555)/b,(555). The relationship between absorption by
non-algal particles [ap.4(440)] and TSM followed a single
power function defined by Eq. 6 (Fig 1b; Table 4; af.,
(440) = 0.074, vg, =0.70, *=0.69), even though the mean
value of aj,(440) was significantly higher at Goodwin
Islands (0.39 = 0.03) than South Bay (0.24 = 0.03) (Table 4).
The relationship between total particulate scattering
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Table 3. Analysis of Covariance (ANCOVA) summary tables comparing relationships among biogeochemical and optical properties
at Goodwin Islands and South Bay illustrated in Fig. 1, Chl a vs. TSM ANCOVA

Source df Sum Sq. Mean Sq. F Prob>F
Location 1 148.39 148.39 62.13 <0.001
TSM 1 16.69 16.69 6.99 0.014
LocationXTSM 1 2.71 2.71 1.13 0.297
Error 24 57.32 2.39

No significant difference in slopes between Goodwin Islands and South Bay.

Term Estimate Std. Err. t Prob>|¢|
Intercept 5.071 0.586 8.650 <0.001
South Bay 2.599 0.314 —7.861 <0.001
Goodwin Isl. 7.543 0.314 7.861 <0.001
Slope 0.174 0.066 2.637 0.014
Assuming parallel slopes, intercept for Goodwin Islands was significantly higher.

Source df Sum Sq. Mean Sq. F Prob>F
Location 1 148.39 148.39 61.80 <0.001
TSM 1 16.69 16.69 6.95 0.014
Error 25 60.03 2.40

Conclusion: mean Chl a concentration was higher at Goodwin Islands, and constituted a larger fraction of TSM than at South Bay.

Table 4. Analysis of Covariance (ANCOVA) summary tables comparing relationships among biogeochemical and optical properties

at Goodwin Islands and South Bay illustrated in Fig. 1, Non-algal particulate absorption [ap.4(440)] vs. TSM ANCOVA:

Source df Sum Sq. Mean Sq. F Prob>F
Location 1 0.09 0.09 19.80 <0.001
TSM 1 0.20 0.20 46.35 <0.001
LocationXTSM 1 0.00 0.00 0.08 0.783
Error 25 0.1 0.00

No significant difference in slopes between Goodwin Islands and South Bay.

Term Estimate Std. Err. t Prob>|{|
Intercept 0.174 0.024 7.143 <0.001
South Bay 0.115 0.013 —4.531 <0.001
Goodwin Isl. 0.233 0.013 4.531 <0.001
Slope 0.019 0.003 6.932 <0.001
Assuming parallel slopes, intercept for Goodwin Islands was significantly higher.

Source df Sum Sq. Mean Sq. F Prob>F
Location 1 0.09 0.09 20.53 <0.001
TSM 1 0.20 0.20 48.05 <0.001
Error 26 0.00

Conclusion: The relationship between a,_, (440) and TSM was constant across both sites, but mean a,.4(440) was higher at Goodwin Islands.
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Table 5. Analysis of Covariance (ANCOVA) summary tables comparing relationships among biogeochemical and optical properties
at Goodwin Islands and South Bay illustrated in Fig. 1, TSM vs. b,(555) ANCOVA

Source df Sum Sq. Mean Sq. F Prob>F
Location 1 4.356 4.356 2.943 0.099
TSM 1 37.244 37.244 25.163 <0.001
LocationXTSM 1 0.058 0.058 0.039 0.844
Error 24 35.523 1.480

No significant difference in slopes between Goodwin Islands and South Bay.

Term Estimate Std. Err. t Prob>|{|
Intercept 4.217 0.451 9.350 <0.001
Goodwin Isl. 3.787 0.246 -1.750 0.092
South Bay 4.647 0.246 1.750 0.092
Slope 0.262 0.051 5.116 <0.001
Assuming parallel slopes, no significant difference in intercepts.

Source df Sum Sq. Mean Sq. F Prob>F
Location 1 11.105 11.105 3.965 0.057
Error 26 72.825 2.801

Assuming the a single relationship, no significant difference in mean values of bp(555).

Conclusion: The relationship between TSM and b,(440) was constant across both sites.

Table 6. Analysis of Covariance (ANCOVA) summary tables
comparing relationships among biogeochemical and optical
properties at Goodwin Islands and South Bay illustrated in Fig. 1,
Chl a concentration vs. Total absorption [ag,(555)]
ANCOVA:

Source df Sum Sq. Mean Sq. F Prob>F
Location 1 0.005 0.005 3.71 <0.001
Chl 1 0.033 0.033 25.31 <0.001
GroupxChl 1 0.000 0.000 0.03 0.8619
Error 23 0.030 0.001

Assuming intercepts = 0, slopes are not significantly different.

Term Estimate Std. Err. t Prob>|t|
Intercept 0.161 0.010 15.825 <0.001
South Bay 0.132 0.010 —2.896 0.008
Goodwin Isl. 0.190 0.010 2.896 0.008

But mean [Chl d] is significantly higher at Goodwin Island.

Conclusion: Overall trend is best explained by a single regression line.

[bp(555)] and TSM also followed a single power function
described by Eq. 9 for both sites combined (Fig. 1c; Table 5;
bj5(555) =1.94, vy, =0.59, ? = 0.81). Further, the mean value
of particulate scattering [b,(555)] for Goodwin Islands was not
significantly different from the value at South Bay (Table 5).
The relationship between phytoplankton absorption [a,(675)]

Table 7. Analysis of Covariance (ANCOVA) summary tables
comparing relationships among biogeochemical and optical
properties at Goodwin Islands and South Bay illustrated in Fig.
1, Particulate Backscatter Coefficient [bp,(555)] vs. Particu-
late Scattering Coefficient [b,(555)] t-test:

Location Slope Std. Err df T Prob>t
South Bay 0.022 0.001 15 5.85 <0.001
Goodwin Isl. 0.016 0.0005 9

Assuming intercept = 0, slopes are significantly different.

Conclusion: Particulate backscattering [bpp(555)] represents a signifi-
cantly higher fraction of total scattering [by(555)] at South Bay, suggest-
ing a higher mineral content for TSM.

and Chl a produced a single, statistically significant linear rela-
tionship (aj=0.018 +0.001, F..; =546, df=1, 27, p<0.001,
r*=0.85) common to both sites assuming a O intercept
(Fig. 1d). As a result, vy =1 for all simulations. The relation-
ship between the non-water absorption coefficient [a.(555)]
and Chl a produced a single, statistically significant slope
common to both sites, even though Chl a concentrations
were significantly higher at Goodwin Islands than South Bay
(Fig. 1e; Table 6; r* =0.75). The nonzero intercept of this rela-
tionship provided an estimate of the residual absorption due
to CDOM and non-algal particles. The slope of the relation-
ship between particulate backscattering and total particulate
scattering [bpp(555)/b,(555)], however, was significantly higher
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Fig. 2. Measured (solid line) and modeled (dashed line) K4(/) spectra for (a) Goodwin Islands and (b) South Bay, respectively. Dotted lines indicate
95% confidence intervals around the measured values. RMS deviations for measured vs. modeled spectra for (c) Goodwin Islands and (d) South Bay,
respectively. Absolute deviations from measured values (m~") are indicated by the solid lines. Normalized deviations from measured values (dimen-
sionless) are indicated by the dashed lines. Predicted K4(/) spectra plotted against measured values for (e) Goodwin Islands and (f) South Bay, respec-
tively. Diagonals (dashed lines) represent lines of perfect agreement (slope = 1, intercept = 0). Colors indicate wavelength range of the individual data
points. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

for South Bay than for Goodwin Islands assuming a O inter-
cept for both data sets (Fig 1f; Table 7; *=0.71 and 0.81 for
Goodwin Islands and South Bay, respectively).

Similarities in relationships among Chl a, TSM and the
optical properties described above allowed us to use a com-
mon set of parameterizations for the water column equa-
tions (Eqgs. 1 through 10) required to predict K4(4) at both
sites, with the exception of byp(555)/b,(555), which was set
to 0.016 and 0.020 for Goodwin Islands and South Bay simu-
lations, respectively. Resulting spectra of Kg(4) predicted
from the model using specific values of Chl a and TSM from
water samples fell within the 95% confidence limits for
simultaneously measured values of K4(4) at both sites (Fig.
2a,b, n=10 and 14 for Goodwin Islands and South Bay,
respectively). Mean Kg4(4) values predicted by the model for

Goodwin Islands were slightly higher than the mean of the
measured values, but the RMS deviation between predicted
and measured values were within 20% across the spectrum
(Fig. 2c). Mean model predictions of K4(4) for South Bay
showed less bias in the green portion of the spectrum, and
the resulting RMS deviations were also within 20% (Fig.
2b,d). Many of the individually modeled Kg(4) spectra
showed even better agreement with measured values at both
sites, particularly between 450 nm and 650 nm that consti-
tutes most of the light available for photosynthesis in these
systems (Fig. 2e,f).

Using mean concentrations of TSM and Chl a4, and mean
values for CDOM  absorption [ag(440)] measured in
2011(Table 2), the depth distributions of spectral quantum
irradiance at Goodwin Islands and South Bay were calculated
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Fig. 3. Depth profiles of spectral irradiance at noon on the summer sol-
stice for (a) Goodwin Islands and (b) South Bay, respectively, derived from
mean water column Ky(Z) (Fig. 2a,b). (c) Quantum ratio of irradiance
spectra (South Bay/Goodwin Islands) plotted as functions of wavelength
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relative to Fig. 3a,b to enhance visual clarity. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 4. Combined effects of ambient temperature and CO, concentra-
tion on the daily photosynthetic requirement to maintain positive whole-
plant carbon balance, determined from Egs. 16-21. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

for local solar noon on the summer solstice (Fig. 3).
Although the irradiance spectra were dominated by green
wavelengths (500-600 nm) at both sites, higher absorption
by Chl a and CDOM at the Goodwin Islands resulted in a
higher mean Ky(4), and consequently lower spectral irradiances
at all depths, relative to South Bay (Fig. 3a vs. 3b). Differences
were most pronounced in the blue (400-500 nm) and red
(650-700 nm) regions of the spectrum, and the differences
increased with depth such that the blue region of the spectrum
that is most efficient in driving photosynthesis was nearly two-
fold higher at South Bay than at Goodwin Islands at a depth
of 0.5 m and more than sixfold higher at 2 m (Fig. 3c).

Sensitivity of eelgrass carbon balance to climate warming
and OA/OC
Equations 16 through 26 determined the combined
effects of temperature and pCO, on the daily integrated
photosynthesis required to satisfy the minimum respira-
tory demand of whole plants (Fig. 4). Requirements were
scaled in terms of Hs, equivalents, which represented the
duration (in hours) of irradiance-saturated photosynthesis
(Pg) required to meet the daily respiratory demand. At a
temperature of 10°C, and 2011 pCO, levels, the respira-
tory load required the photosynthetic equivalent of 5 h
of Hsae. A temperature of 30°C, which may be experienced
during warm summers, increased the H,; requirement to
about 9 h. However, a pCO, concentration of 870 uAtm,
which approximates the median IPCC (2013) projection
for the end of the 21st Century, raised Py sufficiently to
reduce the daily Hg,: requirement at 30°C to about 4.8 h,
thereby lowering the effect of temperature on whole-

1793



Zimmerman et al.

Predicting eelgrass response to climate change

Table 8. Quadratic regression coefficients [Maximum Leaf Area Index (L) vs. Depth (2)] and colonization depth limits for each simu-
lation used to create the eelgrass distribution maps (Figs. 6, 7). The resulting vertical distribution of L(Z) for each simulation is plotted

in Fig. 5.

Sparse Model Polynomial Regression Coefficients, Depth Limits, Areal

GrassLight Input Parameters

Coverage, and Median Density

Biomass Depth Total
pCO, Temperature Epiphytes 'S Intercept Limit Area Median
(uAtm) °Q) (mg cm™?) slope slope [L(0)] (m MLW) (ha) L (m?*m™2)
Goodwin Islands
400 25 0 1.06 —8.95 10.4 1.4 188 6.2
400 30 0 0.76 —7.80 8.7 1.2 183 5.0
600 30 0 1.05 -8.79 9.9 1.3 186 5.8
870 30 0 1.49 -9.93 11.0 1.4 188 5.7
400 25 1.24 1.66 -8.15 59 0.9 154 2.6
400 30 1.24 1.16 -7.19 4.8 0.8 140 2.0
600 30 1.24 1.69 -7.99 55 0.9 149 2.4
870 30 1.24 2.06 -8.74 6.2 0.9 156 2.7
South Bay
400 25 0 0.60 —6.76 9.6 1.7 968 6.1
400 30 0 0.39 -5.90 8.0 1.5 948 5.1
600 30 0 0.50 —6.64 9.4 1.6 960 6.0
870 30 0 0.78 —7.35 10.0 1.7 971 6.3
400 25 1.24 0.81 —6.24 5.8 1.1 775 3.6
400 30 1.24 0.56 —5.53 4.7 0.9 695 3.5
600 30 1.24 0.81 —6.24 5.5 1.0 740 3.0
870 30 1.24 1.01 —6.64 59 1.1 766 3.6

plant carbon balance. These relationships provided the
metabolic basis for simulating the integrated bio-optical
impact on eelgrass carbon balance to different climate
scenarios.

Projecting the effects of climate warming and OA/OC
onto future eelgrass distributions

Maximum sustainable shoot densities (Lpr.q Where Daily
P : R=1) predicted for the summer solstice decreased with
depth in a slightly nonlinear fashion that was well described
by a quadratic function for each simulated environment
(Table 8; Fig. 5). In the absence of leaf epiphytes or OA/OC,
and with a cool water column (25°C), GrassLight predicted
the submarine light environment of Goodwin Islands to sup-
port an eelgrass LAl of 10.4 at O m depth (intercept, Table
8), with a depth limit for survival of 1.4 m (MLW) (Fig. 5a).
Mapping this relationship across the submarine landscape
provided by the DEM produced a broad swath of moderately
dense eelgrass meadow along the north and eastern shores
of the Goodwin Islands, and a rather sharp demarcation
where depths exceeded sustainable limits (Fig. 6a). Unvege-
tated (light blue) areas in close proximity to the shoreline
were shallower than 0 m MLW and considered unfavorable
for eelgrass colonization. The model predicted a very narrow

band of vegetation along the western shore of Goodwin
Islands where the water deepens rapidly into a navigation
channel separating the study site from the mainland. An epi-
phyte density of 1.24 mg cm ™2 leaf, based on average values
for the Goodwin Islands eelgrass (Moore 2004), reduced the
maximum sustainable LAI by 48% to 5.9 and shoaled the
depth limit for eelgrass survival by 40% to 0.9 m (MLW)
(Table 8; Fig 5b). This decreased the overall eelgrass density
around the island and shoaled the deep edge of the meadow
relative to the model scenario without epiphytes (Fig. 6a vs.
6b). In the absence of epiphytes, increasing the temperature
to 30°C reduced the supportable eelgrass density by 30% and
reduced the depth limit for survival by 20% relative to the
cool water simulations (Fig. 6a vs.6¢). Elevated temperature
reduced eelgrass distribution in the presence of epiphytes by
about 20% and the depth limit by 10% relative to the cool
water simulation with epiphytes (Figs. 5a vs. Sb, 6b vs. 6d).
Raising the pCO, to a mid-century level of 600 uAtm (sea-
water pH 7.95) nearly compensated for the negative effects
of thermal stress, increasing the supportable shoot density
and depth distribution to within 5% of the present-day cool
environment with and without epiphytes (Figs. 5a vs.5b, 6a
vs. 6e, 6b vs. 6f). Simulating an end-of-century pCO2 level
(870 pAtm, seawater pH 7.8) under warm summer conditions
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Fig. 6. Combined effects of ambient temperature and pCO, on the distribution and density of eelgrass (tan to green colors) across the submarine
landscape overlaid on the DEM (blue colors) at Goodwin Islands. Conditions for each simulation are indicated on the plots. Unvegetated light blue
areas close to shore represent intertidal regions shallower than 0 MLW, which we considered too shallow for successful eelgrass colonization. Density
classes were selected to match the classes defined by the Virginia Institute of Marine Science SAV Program (http:/web.vims.edu/bio/sav/). [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Fig. 7. Combined effects of ambient temperature and pCO; on the distribution and density of eelgrass (tan to green colors) across the submarine
landscape overlaid on the DEM (blue colors) at South Bay. Conditions for each simulation are indicated on the plots. Unvegetated light blue areas
close to shore represent intertidal regions shallower than 0 MLW, which we considered too shallow for successful eelgrass colonization. Density classes
were selected to match the classes defined by the Virginia Institute of Marine Science SAV Program (http:/web.vims.edu/bio/sav/). [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

extended the sustainable density and depth distribution just
beyond the present day cool water simulations with and
without epiphytes (Figs. 5a,b, 6g,h).

In the absence of any climate impacts on temperature
and CO, availability, the lower diffuse attenuation coeffi-
cients of South Bay produced a range of eelgrass densities
similar to those predicted for Goodwin Islands but the depth
limit (1.7 m) was 21% deeper (Table 8; Fig. 5a vs. 5c). Map-
ping this distribution across the submarine landscape of
South Bay revealed a broad area of potential seagrass habitat
encompassing 968 Ha between Wreck Island that separates
South Bay from the Atlantic Ocean and the archipelago of
marsh islands that define the western edge of South Bay (Fig.
7a). As before, the light blue shading represented intertidal
areas shallower than 0 m (MLW) that we considered unsuit-
able for eelgrass colonization. Incorporating the epiphyte
load used for Goodwin Islands reduced eelgrass density by
40% and the depth distribution by 35% relative to the epi-

phyte free simulation (Table 8; Fig. Sc vs. 5d), causing a
southward contraction of the meadow away from Ship Shoal
Inlet into shallower water and a corresponding reduction in
shoot density in the deeper (mostly north) regions of the
meadow (Fig. 7a vs. 7b). However, the depth distribution of
eelgrass still extended to 1.1 m, 22% deeper than the limit
for epiphyte-covered eelgrass at Goodwin Islands. Warm
water temperature (30°C) had a minor effect on the depth
distribution of epiphyte-free eelgrass, and reduced the maxi-
mum sustainable shoot density 16% relative to the cool sim-
ulation (Table 8; Fig. 5c). The warming-induced reduction in
sustainable shoot density thinned the meadow along the
eastern edge of Man and Boy Marsh (Fig. 7a vs.7c) but the
effect was less dramatic than for Goodwin Islands. Epiphytes
and warm water combined to reduce the depth distribution
to 0.9 m and the maximum sustainable LAI to 4.7, relative
to the cool water simulation with epiphytes, resulting in a
general contraction of eelgrass in both the northern and
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Fig. 8. 2011 maps of SAV distribution (eelgrass + widgeongrass) (tan to
green colors) generated by the Virginia Institute of Marine Science SAV
program (hppt://web.vims.edu/bio/sav/) for (a) Goodwin Islands and (b)
South Bay overlain on DEMs (blue colors) generated by our bathymetric
surveys. [Color figure can be viewed in the online issue, which is avail-
able at wileyonlinelibrary.com.]

southern regions of South Bay, and a general thinning of the
entire meadow (Table 8; Figs. 5d, 7d). Raising the pCO; to a
mid-century level of 600 pAtm nearly compensated for the
negative effects of thermal stress both in the absence and
presence of epiphytes, virtually restoring densities and depth
distributions to those of the cool water simulations (Table 8;
Fig. 7e,f). The end-of-century pCO2 simulation (870 puAtm)
under warm summer conditions increased the sustainable
density beyond the cool water simulations by 4% without
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epiphytes and by 2% with epiphytes, but did not substan-
tially increase the depth distribution (Table 8; Figs. Sc,d,
7g,h). In all simulations, the central region of South Bay was
remarkably unaffected by warm water, the presence of epi-
phytes or increasing CO,, suggesting that the average water
quality of this coastal lagoon provides a more robust envi-
ronment for eelgrass than Goodwin Islands.

Validating model predictions against in situ observations

Although the impacts of future climate change on eelgrass
distribution projected for these sites cannot be validated in
an absolute sense, we can assess the ability of GrassLight to
predict existing eelgrass distributions at these sites. Model
predictions of eelgrass presence or absence from the Cool
2011 simulation with epiphytes showed a high degree of
fidelity to the 2011 maps generated by the VIMS SAV project
for Goodwin Islands (Fig. 6b vs. 8a). Of the 43,501 pixels
scored for the Goodwin Islands site where depths were 2.0 m
or shallower, there was 99% agreement in terms of eelgrass
presence and 63% agreement in terms of eelgrass absence
(Table 9a). However, the model predicted slightly more vege-
tated pixels than indicated on the VIMS SAV map (11,228
vs. 11,191). Of the 11,228 pixels determined to be vegetated
by both GrassLight and the VIMS SAV map, densities pre-
dicted by GrassLight were consistent with VIMS assignments
18% of the time (diagonal sum = 1995 pixels, Table 9b). The
greatest discrepancy between modeled and measured den-
sities occurred with the lowest density (Class 1), to which
4752 pixels were assigned by the VIMS map. In contrast
GrassLight predicted only 111 pixels (2%) in Density Class 1,
with most of the remaining pixels assigned to Density
Classes 2 and 3 (Table 9b). Density Class 2 showed better
agreement (25%) between model predictions and the meas-
ured polygons, with most of the disagreement resulting from
model assignments to Class 3. Class 3 comparisons revealed
the best level of agreement (40%) between GrassLight predic-
tions and VIMS observations, with most of the error result-
ing from model assignment of these pixels to Density Class
4. GrassLight assigned 25% of the vegetated pixels in shallow
water to density Class 4, but none were assigned to this
highest density class by the VIMS analysis.

GrassLight predictions of eelgrass distribution at South Bay
for the Cool 2011 climate (without epiphytes) included all
38,508 vegetated pixels derived from the VIMS SAV map
(Table 10a), and generated a similar spatial pattern of distri-
bution (Fig. 7a vs. 8b). Of the 38,508 pixels determined to be
vegetated by both the model and the VIMS SAV maps, den-
sities were consistent with VIMS assignments 54% of the
time (diagonal sum = 20,944 out of 38,508 pixels, Table
10b). The greatest agreement between modeled and meas-
ured densities occurred with Density Classes 1 and 4, to
which 0 and 20,505 pixels, respectively, were assigned by
both the model and the VIMS SAV polygons. The model
assigned 130 pixels to Density Class 2, compared to the
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Table 9. Error matrices comparing model predictions of a. Eelgrass presence/absence and b. Abundance for the Cool 2011
simulation (including epiphytes) against density classes determined from aerial photography by the VIMS SAV project for the Good-
win Islands, VA. Values indicate the number of pixels for each category, with percentages of column totals in parentheses.

M
a. Presence/Absence easured
Modeled Present Absent Row Sum
Present 11,228 (99%) 12,430 (37%) 23,658
Absent 75 (1%) 22,254 (63%) 21,329
Column Sum 11,303 33,684 44,987
b. Abundance Measured density

Class 1 Class 2 Class 3 Class 4
Modeled Density <10% Cover 10-40% Cover 40-70% Cover >70% Cover Row Sum
Class 1 111 (2%) 103 (2%) 25 (1%) 0 239
Class 2 1766 (37%) 1106 (25%) 369 (19%) 0 3241
Class 3 2159 (45%) 2024 (45%) 778 (40%) 0 4961
Class 4 716(15%) 1277 (28%) 794 (40%) 0 2787
Column Sum 4752 4510 1966 0 11228

Table 10. Error matrices comparing model predictions of a. Eelgrass presence/absence and b. Abundance for the Cool 2011
simulation (no epiphytes) against density classes determined by the VIMS SAV project from human interpretation of aerial photogra-
phy for South Bay, Virginia, U.S.A. Values indicate the number of pixels for each category, with percentages of column totals in

parentheses.
a. Presence/Absence Measured
Modeled Present Absent Row Sum
Present 38,508 (99.9%) 58,186 (88%) 96,694
Absent 48 (0.1%) 8102 (12%) 8150
Column Sum 38,556 66,288 104,844
b. Abundance Measured density

Class 1 Class 2 Class 3 Class 4
Modeled Density <10% Cover 10-40% Cover 40-70% Cover >70% Cover Row Sum
Class 1 0 0 0 0 0
Class 2 0 21 (0.4%) 109 (1%) 0 130
Class 3 0 325 (6.6%) 873 (7%) 0 1198
Class 4 128 4737 (93%) 12,265 (93%) 20,050 (100%) 37,180
Column Sum 128 5083 13,247 20,050 38,508

VIMS assignment of 5038 and 1198 pixels to Density Class 3
compared to the VIMS assignment of 13,247.

Discussion

The modeling efforts presented here provide a predictive
theoretical environment for evaluating the interactive effects
of water quality, temperature, OA/OC, and epiphyte load on
the eelgrass distribution that can be extremely difficult to
observe in nature when all are changing simultaneously but

with independent trajectories. Although the model structure
presently ignores physiological acclimation to temperature
(Winters et al. 2011; Franssen et al. 2012), it produced eel-
grass distributions and densities similar to those observed at
Goodwin Islands and South Bay in 2011, and showed differ-
ent sensitivities to the effects of warm summer temperatures
on eelgrass distributions at these sites that resulted from dif-
ferences in light attenuation.

The mechanistic linkages between temperature, pCO,,
water quality parameters and submerged plant canopy
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architecture provided by this radiative transfer approach
extend our predictive ability beyond survival depth limits
(Dennison et al. 1993; Gallegos 2001; Kenworthy et al. 2014)
to the mapping of shoot density across the submarine land-
scape as a function of light quality, as well as light quantity.
The seagrass canopy portion of GrassLight was previously
shown to accurately predict seagrass density and distribution
in Elkhorn Slough, CA, Dumas Bay, WA, and Florida Bay, FL
(Zimmerman 2006; McPherson et al. 2011). This formulation
has also been used to quantify important derived properties,
such as 4'*C composition, that varies inversely with Hy, and
may serve as a useful indicator of light limitation and
system-level productivity (Hu et al. 2012; McPherson et al.
20159).

Broadening the utility of this approach to other environ-
ments, particularly for resource management purposes, has
been hindered by the need for reliable estimates of Kg(4).
The efforts published previously relied on direct measures of
Kg4(4) and/or values generated by the commercial radiative
transfer model Hydrolight (Mobley 1989) that required
explicit knowledge of spectral absorption [a(4)] and beam
attenuation [c(2)] coefficients, as well as volume scattering
functions that limited the utility of GrassLight for resource
management purposes. The analysis presented here dem-
onstrated that the semianalytical relationship of Lee et al.
(2005) required very little adjustment for differences in
IOPs to accurately estimate K4(4) for the optically distinct
environments of Goodwin Islands (Chl-dominated) and
South Bay (sediment dominated) from routinely moni-
tored values of [Chl a] and [TSM]. Further, the ability to
predict spectral irradiances, and not just broadband PAR,
provides a pathway for resolving the apparent differences
in perceived light requirements of SAV growing in turbid
vs. clear water (Duarte et al. 2007) that may result from
differences in light quality as well as light quantity (Hu
et al. 2012) or other environmental consequences of eutro-
phication (Krause-Jensen et al. 2011; Kenworthy et al.
2014).

Although the model was parameterized separately with
respect to byp(555)/bp(555) for Goodwin Islands and South
Bay, the 25% difference in the value of the backscattering
ratio affected Kq(1) by < 10% and the eelgrass depth distribu-
tion by <5% (simulations not shown), suggesting that a
common parameterization of the backscattering ratio would
not have adversely affected model accuracy. Using the
parameterizations employed here, including byp(555)/
b, (555) =0.016, the model estimated the spatial distribution
of Kq(4) throughout West Falmouth Harbor, MA with a
mean RMS error of 0.07 m™ 'using water quality estimates of
CDOM absorption, [Chl a] and [TSM], but without specific
knowledge of IOPs or their relations to water quality parame-
ters (del Barrio et al. 2014). However, successful application
of the model to these environments does not guarantee it
will work in all instances, and some effort should be made
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to validate the relationships between 10Ps and water quality
measures when applying the model to new environments.

Water quality plays a well-documented role in controlling
seagrass depth distributions, especially in the Chesapeake
Bay. Although both sites were turbid (buyg=6.8 & 5.4 m™!
for Goodwin Islands and South Bay, respectively) and experi-
enced similar concentrations of TSM, the Goodwin Islands
site was more eutrophic, as indicated by significantly higher
concentrations of Chl a, while the waters of South Bay con-
tained a higher mineral fraction, as indicated by the higher
backscattering ratio (Snyder et al. 2008). However, inorganic
suspended sediment contributes more to scattering than
absorption, reducing its impact on light attenuation relative
to phytoplankton Chl a, which competes directly for light
with eelgrass. This led to higher light attenuation at Good-
win Islands, particularly in the photosynthetically preferred
(blue) part of the spectrum. As a result, reduced transparency
of the water column around Goodwin Islands reduced the
density and depth distribution of light-limited eelgrass at
Goodwin Islands relative to South Bay and rendered the
Goodwin Islands population more vulnerable to thermal
stress and epiphyte loading in a manner consistent with his-
torical observations (Moore and Jarvis 2008; Orth et al.
2010).

The accurate simulation of eelgrass depth distribution and
density across the submarine landscape for present-day con-
ditions at Goodwin Islands and South Bay provides some
confidence in the ability of GrassLight to predict the response
of eelgrass to changing climatic conditions anticipated for
the next century. Model estimates of eelgrass presence/
absence were generally consistent with field observations at
both sites. Model predictions of eelgrass density agreed with
field observations almost half the time, with most errors rep-
resenting assignments to adjacent density classes. The
reduced coherence between the modeled and measured den-
sity class relative to presence or absence resulted, at least in
part, from differences in textural resolution between Grass-
Light predictions that assigned each pixel a unique %Cover
estimate based on its depth, and the observational matrix in
which all pixels were assigned the same density within an
expertly drawn polygon. Visual inspection of the VIMS
images used to generate the polygons (available at http://
www.vims.edu/bio/sav) revealed a considerable degree of tex-
ture with regard to apparent shoot density and patchiness
that were not captured by the polygons. Furthermore, it
must be emphasized that the field observations represent
snapshots of realized plant distributions that may not be in
steady state with respect to the environmental parameters
used to drive GrassLight predictions to light-limited densities.
The Goodwin Islands population has been subjected to a
number of stress events, most recently the extremely warm
summer of 2010 (Moore et al. 2012), and its 2011 distribu-
tion probably was lower than the light-limited potential pre-
dicted by GrassLight. Additionally, the restored eelgrass
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meadow in South Bay is still expanding outward from the
original restoration effort that began in 2000 (Orth et al.
2006a).

The model calculations performed here suggest that epi-
phyte densities reported for Goodwin Islands eelgrass can
reduce the potential density and depth distribution of eel-
grass by about 50% relative to the epiphyte-free simulation,
and their incorporation more accurately predicted eelgrass
distribution and density relative to the field observations.
For these simulations, the epiphyte effect was parameterized
using the data of Bulthuis and Woelkerling (1983) that
strongly attenuate light as a function of epiphyte density in
a spectrally neutral manner. However, considerable variabili-
ty exists in this relationship depending on the taxonomic
and anatomic nature of the epiphytes (e.g., encrusting vs.
upright filamentous) (Brush and Nixon 2002), the degree to
which carbonate structures and sediment particles are incor-
porated into the leaf biofilm and spectral effects (Drake et al.
2003) not considered here. Although our calculations are
consistent with other reports demonstrating the negative
effects of epiphyte loads in the range of 1-3 mg DW cm ™ ?
on leaf photosynthesis (Sand-Jensen 1977; Sand-Jensen and
Borum 1984; Cebrian et al. 1999) there is considerable room
for improvement in modeling this relationship in response
to particular environments. In addition to being stimulated
by eutrophication (Moore 2004; Orth et al. 2006a), epiphyte
densities are also affected by grazing intensity that can vary
with seagrass density/distribution (van Montrfrans et al.
1984; Duffy 2006; Hughes et al. 2013). Thus, environmental
stresses that cause periodic eelgrass die-backs, particularly at
Goodwin Islands, may reduce the biodiversity and trophic
structure of the animal community within the meadow, fur-
ther promoting epiphyte growth and preventing eelgrass
from occupying potential habitat based on water quality
measures alone.

It must be emphasized that these GrassLight predictions
represent steady-state densities based on clear sky light
availability and metabolic carbon balance driven by photo-
synthesis and respiration. Consequently, they should be
viewed as upper (optimistic) limits that do not presently
account for other processes that may directly affect seagrass
abundance, such as acute toxic effects of nutrients in the
water column or porewater (Burkholder et al. 1992), pore-
water sulfide (Holmer et al. 2005; Govers et al. 2014), sedi-
ment grain size, organic matter content and wave exposure
(Koch 2001; Infantes et al. 2009). Although used here to
determine steady-state responses to constant environmental
conditions, the formulations underlying GrassLight can be
implemented to simulate the dynamic temporal response of
eelgrass carbon balance to varying environmental condi-
tions on time scales ranging from seconds to seasons and
years (Zimmerman et al. 1994; Kraemer and Alberte 1995;
Zimmerman et al. 2001). Unlike the open ocean, local met-
abolic processes can produce dramatic, high frequency var-
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iations in the pCO,/pH status of estuarine waters that
overwhelm the equilibrating dynamics of air-sea gas
exchange driving anthropogenic OA (Duarte et al. 2013)
and may be important in explaining the persistence, as well
as the disappearance, of seagrasses in response to changes
in the trophic status of estuarine ecosystems (Howarth
et al. 2014). Further, summer heat stress may occur as a
series of relatively short heat waves, lasting two to three
weeks that exceed the average temperature differences used
here (Bergmann et al. 2010; Winters et al. 2011). Finally,
increased rates of photosynthesis derived from elevated
[CO,] will facilitate the summertime accumulation of car-
bon reserves in plants growing at depths shallower than the
survival thresholds defined here, that enhance winter sur-
vival and flower production in the following spring (Pala-
cios and Zimmerman 2007).

Although declining water quality has been repeatedly
identified as an existential threat to seagrass communities
worldwide, rising water temperature represents a particular
concern for Chesapeake Bay eelgrass located near the
southern limit of their distribution on the Atlantic coast of
North America (Orth et al. 2010). When properly con-
strained and parameterized to accurately reproduce local
conditions, the GrassLight model offers predictive insights
into the performance of eelgrass meadows that can inform
our understanding of ecosystem responses to future cli-
mate change. With respect to the Chesapeake region, our
results suggest that OA/OC projected for the next century
will stimulate photosynthesis sufficiently to offset the neg-
ative effects of temperature on eelgrass survival. Thus, con-
tinued efforts to improve water quality, particularly within
the Chesapeake Bay, should facilitate the survival of eel-
grass despite a warmer climate. Additionally, the reduced
temperature sensitivity exhibited by South Bay popula-
tions in the simulations performed here suggests that
improved water quality may reduce the effects of thermal
stress on populations growing near their southern limits,
even in the absence of CO,-stimulated photosynthesis.
These findings should provide further incentive to improve
coastal water quality in support of SAV habitat restoration
goals.
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