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ABSTRACT

Isoleucyl-tRNA synthetase (IleRS) is an aminoacyl-tRNA synthetase whose essential
function is to aminoacylate tRNA" with isoleucine. Like some other aminoacyl-tRNA
synthetases, IleRS can mischarge tRNA!® and correct this misacylation through a separate post-
transfer editing function. To explore the biological significance of this editing function, we
created a ileS(T233P) mutant of Bacillus subtilis that allows tRNA" mischarging while retaining
wild-type Ile-tRNA™ synthesis activity. As seen in other species defective for aminoacylation
quality control, the growth rate of the ileS(7233P) strain was not significantly different from
wild-type. When the ileS(7233P) strain was assessed for its ability to promote distinct
phenotypes in response to starvation, the ileS(7233P) strain was observed to exhibit a significant
defect in formation of environmentally resistant spores. The sporulation defect ranged from 3-
fold to 30-fold and was due to a delay in activation of early sporulation genes. The loss of
aminoacylation quality control in the i/eS(7233P) strain resulted in the inability to compete with
a wild-type strain under selective conditions that required sporulation. These data show that the
quality control function of IleRS is required in B. subtilis for efficient sporulation and suggests
that editing by aminoacyl-tRNA synthetases may be important for survival under

starvation/nutrient limitation conditions.
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INTRODUCTION

An essential step for the accuracy of mRNA translation is the charging of tRNAs with
their cognate amino acid. Aminoacyl-tRNA synthetases (aaRS) are the enzymes that catalyze
this reaction, and are a family of ancient proteins that have been conserved throughout evolution,
due to their essential cellular function'. AaRSs aminoacylate tRNAs through a two-step
mechanism: 1) formation of an aminoacyl-adenylate (e.g. lle-AMP by IleRS), and 2)
aminoacylation of tRNA (e.g. Ile-tRNA"). Due to the need for accuracy in protein synthesis,
some aaRSs contain a quality control (QC) function along with their aminoacylation function®.
QC functions can hydrolyze either the aminoacyl-adenylate (pre-transfer editing) or the
aminoacyl bond of charged tRNA (post-transfer editing). While aaRS editing functions are
highly conserved in bacteria, archaea, and eukaryotes, QC is not essential for cellular growth
under most laboratory conditions, and few studies have identified cellular functions that rely on
aaR$ editing’”".

Isoleucine-tRNA synthetase (IleRS) possesses QC functions that discriminate between
isoleucine, the non-cognate amino acid valine, and the non-proteinogenic amino acids, norvaline,
a byproduct of branched-chain amino acid synthesis, and homocysteine (Hcy), a by-product from
degradation of S-adenosylhomocysteine by LuxS in bacteria®. The aminoacylation site of IleRS
is only able to discriminate Ile from Val with an accuracy of ~1/200°. IleRS improves this
accuracy with two QC activities, pre- and post-transfer editing. Pre-transfer editing hydrolyzes

Val-AMP in the synthetic site where aminoacylation also occurs'®"'

, and pre-transfer editing
similarly hydrolyzes Hcy-AMP'?. Post-transfer editing in contrast deacylates Val-tRNA™ in a

domain, the connective peptide 1 (CP1) domain, which is distinct from the site at which
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aminoacylation occurs®'®. Several studies have identified substitutions in CP1 that disrupt post-
transfer editing, but retain close to wild-type levels of aminoacylation activity''*!".

In vivo studies of [leRS mutants have begun to reveal potential cellular functions of QC
by aaRSs. One primary function of quality control is to prevent misincorporation in proteins of
the non-cognate and non-proteinogenic amino acids, such as valine and norvaline, respectively.
Loss of [IeRS QC in E. coli results in decreased growth when the cells are grown in high
concentrations of valine or norvaline'®. The E. coli IleRS QC mutant strain is also more sensitive
to stressful conditions, including high temperatures and antibiotics, although the mechanism by
which these mutant cells increase their sensitivity to stress is unknown'. Loss of quality control
by IleRS may also be beneficial under certain conditions. In E. coli and Acinetobacter baylyi,
loss of [leRS QC functions resulted in an improved growth rate when concentrations of
isoleucine were limiting, but moderate concentrations of valine or norvaline were present' >,
Streptococcus pneumoniae 11eRS naturally lacks a post-transfer editing function, and mischarged
tRNA™ serves as a substrate for peptidoglycan biosynthesis®'. Potentially beneficial is the higher
level of mutations observed in colonies of E. coli IleRS QC-defective cells that are allowed to
age; the full mechanism by which DNA mutations arise in response to loss of quality control is
also unknown®”. Overall, while a number of phenotypes have been described for QC mutants, the
mechanism underlying the observed changes and their broader importance remain unknown.

To address the question of what conditions require quality control for fitness, we choose
to address how loss of QC by IleRS affects the function of the model Gram-positive organism,
Bacillus subtilis. Here, we show that QC by IleRS is required for B. subtilis, to form

environmentally-resistant endospores. These endospores are formed in response to starvation

through a developmental process. This process is initiated by a master regulator, Spo0OA, and



103

104

105

106

gene expression activated by this transcription factor is severely delayed in cells that lacking QC
by I1eRS. Furthermore, the QC-defective IleRS strain was outcompeted by wild-type strains
under conditions involving periodic sporulation and outgrowth, supporting a general role for

quality control by aaRS under starvation or nutrient-limited conditions.
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RESULTS

Cell expressing [1eRS(T233P) are defective for quality control of mischarged
tRNA". IleRS was chosen for this study as it has a well characterized post-transfer editing
activity, and substitutions that disrupt this editing without affecting aminoacylation have been

10,11,23
made

. While several studies have looked at the role of QC by IleRS in E. coli, relatively
few studies have examined the importance of QC in other organisms. As we had previously
proposed that QC maybe more critical under conditions of stress that limit cellular growth’, we
chose to analyze the role of QC by IleRS in B. subtilis, which undergoes several distinct
phenotypic or developmental shifts in response to starvation or slow growth, including the
formation of environmentally-resistant endospores®".

To determine the function of QC by IleRS in B. subtilis, a single point mutation was
introduced into the ileS gene on the chromosome of B. subtilis strain JH642%. The point
mutation introduced causes a substitution of Thr at codon 233 to Pro. This T233P substitution
was chosen because a similar substitution in [1eRS of Escherichia coli was shown to disrupt QC
by this enzyme, and while other substitutions in E. coli IleRS disrupt QC, the T233P substitution

1423 T4 test whether the cells with the

has virtually no effect on aminoacylation activity
ileS(T233P) allele lacked tRNA"™ QC activity, cell lysates of the wild-type ileS and mutant
ileS(T233P) were tested for their ability to charge tRNA" with either the cognate Ile or the non-
cognate amino acids, Val and Leu. Lysates from the ileS(7233P) strain showed Ile-tRNA"
production at a similar rate as lysates from wild-type cells (Fig. 1A), indicating that the
ileS(T233P) mutation did not affect the overall level of Ile-tRNA" formation in cells. Similarly,

the ileS(T233P) lysate showed only low levels of Leu-tRNA"™ production, similar to that seen

with lysates from wild-type cells, and consistent with the Leu not being an aminoacylation
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substrate for either wild-type IleRS or 1leRS(T233P) (Fig. 1C). Production of Val-tRNA"™
however was significantly different between wild-type and ileS(7233P) cell lysates, with the
ileS(T233P) lysate producing significantly more Val-tRNA"™ than the wild-type lysate (Fig. 1B).
Increased Val-tRNA" synthesis for [leRS(T233P) may either indicate improved Val recognition
and/or reduced hydrolysis of either misactivated Val-AMP or mischarged Val-tRNA™ compared
with wild-type. Importantly, whatever the precise mechanism by which the T233P substitution
increased Val-tRNA" synthesis, this did not adversely affect the ability of cells to aminoacylate
tRNA"™ with its cognate amino acid and did disrupt QC by IleRS.

Cells expressing I1eRS(T233P) are defective in sporulation. Having created a mutant
strain of B. subtilis that expresses an QC-defective version of IleRS, we sought to determine
whether i/eS(T233P) cells had any phenotypic differences from wild-type. Any phenotypes
altered in these mutant cells would suggest pathways that are sensitive to QC by IleRS. The
exponential growth rate (ALn ODggo/Atime(min) = standard deviation) in rich medium, Difco
Sporulation Medium (DSM), of wild-type cells and cells expressing [leRS(T233P) were not

significantly different (0.020 +0.002 and 0.021 £0.002, respectively). Similarly, in minimal

medium, the exponential growth rate of these two strains was also not significantly different
(0.011 £0.002 for wild-type cells and 0.010 £0.003 for the ileS(T233P) cells). These data are

consistent with other observations of QC-defective aaRS bacterial strains are not affected for
growth under standard laboratory conditions’.

As the editing function of IleRS is conserved through evolution®, and cells in natural
environments are characterized by slow growth, the wild-type and ileS(7233P) mutant B. subtilis
cells were assessed for their ability to form biofilms and spores, two major phenotypic states

entered by this bacterium under slow-growth conditions**. While wild strains of B. subtilis form
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more robust biofilms, laboratory strain JH642 used in this study is able to form biofilms that
adhere to the wells of a microtiter plate and to form flat, unstructured pellicle biofilms at air-

liquid interfaces>”>°

. Both the ileS(T233P) strain and its isogenic wild-type strain formed
morphologically indistinguishable pellicles that were observed as films of cells at the top of

media in test tubes. In microtiter plates, there was at best a small difference in how the two

strains adhered to the plates, and the 4579 + standard deviation was 1.4 +0.3 for the wild-type
strain and 0.87 +0.02 for the ileS(T233P) strain. These data support a conclusion that the QC by

IleRS is not essential for biofilm formation, although we cannot rule out a more prominent role
for editing in wild strains of B. subtilis.

To assess the ability of the i/eS(7233P) mutant cells to sporulate, these cells and the
isogenic wild-type control cells were grown in DSM and incubated until sixteen hours after entry
into stationary phase. At this time, the frequency of sporulation was determined as the number of
heat-resistant colony-forming units (CFU)/ml relative to the total viable CFU/ml (Table 1).
While the fold difference in the sporulation frequency of wild-type and the ileS(T233P) cells was
variable, ranging from 1.5- to 15-fold, the ileS(T233P) cells showed a statistically significant
(p=0.015) defect in sporulation. The variability in the sporulation phenotype is not unexpected
given the stochasticity in frequency of mischarging of a tRNA.

To determine whether this sporulation defect was specific to growth in DSM, cells were
grown in minimal media containing 0.1% glucose. Cells in this media exhaust glucose and
transition to stationary phase at an ODggo of ~1.0. After 16 hours in stationary phase, the
frequency of sporulation was assayed (Table 1). Similar to DSM conditions, the ileS(7233P)
mutant exhibited a statistically significant (p>0.001) defect in sporulation, except that the

ileS(T233P) cells showed a larger defect in sporulation, ranging from a 4- to 30-fold defect.
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The ileS(T233P) mutant is outcompeted by wild-type cells during cycles of
sporulation. To assess the importance of the QC function of [leRS for B. subtilis, we asked how
well the ileS(T233P) mutant was able to compete with the wild-type strain. We introduced into
the wild-type and ileS(T233P) strains either a thrC::erm allele that encodes erythromycin
resistance (Erm®) or a thrC::cat allele that encodes chloramphenicol resistance (Cm®). Cultures
were inoculated with an equal mixture of both wild-type and ileS(7233P) cells of different
antibiotic-resistance markers. In the repeats of the cultures, the antibiotic-resistance markers
were swapped between the two strains to ensure that any differences observed were due to the
presence of the i/leS(7233P) mutation. The cultures were grown in DSM and passaged through a
cycle of exponential growth, sporulation, and heat-kill of non-sporulated cells. A 1/ 10™ fraction
of the spores that remained after the heat-kill step were used to inoculate the next culture that
was similarly passaged through a cycle of exponential growth, sporulation, and heat-kill of non-
sporulated cells. This was repeated for a total of four cycles. At the end of each cycle, the
percent of the spores that were from wild-type and ileS(T233P) cells was measured through Cm®
and Erm® CFU/ml, as appropriate. For each independent culture started, there was a similar
number of cells of each strain at the end of the first passage, consistent with no significant
differences in the growth rate of these two strains. Subsequently, the number of i/eS(7233P) cells
dropped relative to the number of wild-type cells by the second or third passage, with the level of
ileS(T233P) mutant after the fourth passage being 10°-fold lower than wild-type (Fig. 2).
Interestingly, under these competition experiments, the i/eS(7233P) mutant consistently showed
a greater that 10-fold defect in sporulation (Fig. 2), unlike what was observed for this strain when

grown individually (Table 1). These data predict that the ileS(7233P) mutant would go to
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extinction after five cycles and strongly suggests that sporulation is one of the evolutionary
pressures maintaining the QC function of IleRS in B. subtilis.

The QC-defective IleRS mutant is defective in expressing genes activated by the
master regulator of sporulation, Spo0A. A major question from this work is why sporulation
is sensitive to mistakes made by IleRS. The process of sporulation can be divided into distinct
genetic and morphological stages *'. The sporulation defect of the ileS(T233P) could stem from
mistranslation of Ile codons, which could result in a non-functional protein that is required for
sporulation. If a particular protein is negatively affected in the ileS(7233P) strain, we would
predict the ileS(T233P) cells to be specifically delayed at one stage of sporulation, resulting in a
strong reduction in expression of those stage-specific genes. However, mistranslation is
predicted to happen randomly at Ile codons, with each cell having a different mixture of
mistranslated proteins, and as a result each cell in a population could be delayed at a different
stage in sporulation, and we would not observe a strong effect on any particular stage-specific
gene expression at the population level.

To determine whether there is a strong decrease in stage-specific sporulation gene
expression in the ileS(7233P) mutant, we monitored gene expression of SpoOA-controlled genes.
SpoOA is the first transcription factor to become active, through phosphorylation by a
phosphorelay, in the sporulation regulatory cascade™, and if SpoOA-dependent genes have
strongly reduced expression, then all subsequent stage-specific sporulation genes will also have
reduced expression. One of the operons activated by SpoOA is spollE, which encodes the
phosphatase required for activation of the forespore specific sigma factor, Sigma-F *. Thus, we
introduced into our isogenic wild-type and ileS(7233P) mutant a spollE-lacZ fusion. Cells were

grown in DSM, and samples were collected for B-galactosidase assay at time points just prior to
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and for several hours after the entry into stationary phase. As seen in Fig. 3A, while wild-type
cells induced spollE expression one hour after entry into stationary phase, spollE expression was
delayed in the ileS(T233P) cells for five hours, after which point spollE is induced. This late
induction of spollE expression in the ileS(7233P) mutant may explain why sporulation does
occur in the mutant, albeit at a lower efficiency than wild-type cells.

Altered spollE expression in the ileS(7233P) mutant strain strongly suggests that Spo0A
activity is reduced in this mutant strain. To confirm this, we assessed expression of a second
Spo0A-activated promoter, spollG, as a lacZ fusion **. The spolIG operon encodes the mother
cell-specific sigma factor, sigma-E *. Similar to what was seen with spollE expression,
expression of spollG was defective for several hours after entry into sporulation in the

ileS(T233P) strain (Fig. 3B), confirming the general defect in SpoOA-controlled gene expression.
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DISCUSSION

Here, we present the first strain of B. subtilis to lack QC for a mischarged tRNA,
specifically tRNA™. This strain has a point mutation in the endogenous copy of ileS, and whole
cell extracts of this mutant strain mischarged tRNA" with valine unlike the wild-type strain.
While this QC-defective strain showed no defect in exponential growth, it has a significantly
reduced ability to sporulate. The sporulation defect of the QC-defective IleRS strain appears to
be due to weak and/or delayed activation of the first transcription factor in the sporulation
cascade, Spo0OA. Competition through periods of exponential growth, sporulation, and lethal
challenge reveal that the ileS(7233P) strain was rapidly outcompeted by the wild-type strain,
suggesting that starvation conditions that induce sporulation have selected for the maintenance of
the IleRS QC function in B. subtilis.

The loss of QC by IleRS in B. subtilis leads to a delay in expression of sporulation genes
controlled by Spo0OA, the first transcription factor that is activated in the sporulation cascade.
Spo0A also regulates genes involved in other processes including biofilm formation *°, but the
ileS(T233P) strain exhibited a less than two-fold defect in the ability to form biofilms, much
smaller than the defect observed for sporulation. Phosphorylation of Spo0OA is the rate-limited

36,37

step for the initiation of sporulation™’, and expression of sporulation genes requires a higher

38,39

level of phosphorylated SpoOA than biofilm genes™ ", suggesting that the ileS(T233P) strain
may be defective in forming high levels of phosphorylated SpoOA. Spo0OA is activated by
phosphorylation through a phosphorelay™, and there are several known negative regulators of
this phosphorelay. Future research will address what step along this SpoOA activation pathway is
affected in the i/eS(7233P) mutant or whether there is a SpoOA-independent mechanism that is

affecting the expression of these spoll genes. Understanding how B. subtilis controls sporulation

has allowed researchers to identify how cells sense cell cycle problems, which are amplified by

12
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checkpoints that delay sporulation, including DNA replication, chromosome partitioning, and

tricarboycylic cycle metabolism*'**

, and research into how loss of QC by IleRS affects
sporulation could reveal a novel checkpoint. It is not known at this time if the requirement of QC
for sporulation is specific to IleRS or whether loss of QC by other aaRSs will similarly disrupt
sporulation in B. subtilis. Intriguingly, the ileS gene of B. subtilis and other endospore-forming
species is adjacent to a gene, yly4, required for spore germination®.

What causes sporulation to be so sensitive to the loss of QC by IleRS? IleRS could
encounter conditions that promote a higher rate of mischarging of tRNA™ in stationary phase,
through a higher ratio of non-cognate Val to cognate Ile. Alternatively, the rate of mischarging,
and subsequent mistranslation, may be identical between exponential growth and stationary
phase, and a protein(s) involved in sporulation may be particularly sensitive to mistranslation. A
further possibility is that there is a higher ratio of charged to uncharged tRNA' as a result of loss
of QC by IleRS, and this altered ratio may delay activation of the sporulation pathway. E. coli
cells expressing an editing-defective form of the phenylalanine tRNA synthetase (PheRS), have a
higher ratio of charged to uncharged tRNA"™ under amino acid starvation and are unable to
mount a stringent response™’. In B. subtilis, the stringent response is induced by uncharged
tRNAs and has been shown to activate sporulation®’. The higher ratio of charged to uncharged
tRNA"™ in B. subtilis may also affect the putative ILE-T-Box (i.e. riboswitch) of ileS, which
could alter the levels of IleRS and possibly exacerbate the problems caused by loss of QC **7.
Biosynthesis of Ile and other branched-chain amino acids (BCAA) is not predicted to be directly
affected in the [leRS QC-defective mutant, as aaRS are highly specific for their cognate tRNA

and the BCAA biosynthesis operon ilvBHC-leudBCD is controlled by tRNA"" and a LEU-T-

Box*®. Future experiments to address the potential models outlined here for why quality control
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by I1eRS is critical for sporulation, but not exponential growth, will require measuring cellular
amino acid pools, the level of the stringent response alarmone, ppGpp, mistranslation, and
charged tRNA"™ in actively growing and sporulating cells.

Sporulation by B. subtilis is a developmental process induced by starvation, specifically

limitation for carbon, nitrogen, or phosphorous *-!

, and it is the major state in which B. subtilis
is isolated from the environment **. Cells lacking QC by IleRS are rapidly outcompeted by wild-
type cells under conditions requiring sporulation, which strongly argues that sporulation is the
physiological condition that selects for the maintenance of QC by IleRS in B. subtilis. These data
further suggest that the primary role of QC by IleRS in other species, and possibly QC by other
aaRSs, may be in allowing survival of cells that have a severely reduced growth rate. Consistent
with this, QC by alanine tRNA synthetase (AlaRS) was shown to be required in terminally
differentiated mouse neuronal cells and cardiomyocytes, non-growing or slowly-growing cell
populations >**. Intriguingly, QC by some aaRSs has been lost from mitochondria and
Mycoplasma species, many of which are intracellular parasites °*>. This latter finding suggests
that, in the absence of changing environmental conditions, QC by aaRSs may not be required and
is consistent with the suggestion of the work presented here that QC is required by cells that
must transition from rapid growth to slow-growth/stationary phase induced by nutrient
limitation.

In summary, we have shown for the first time that the quality control function of a tRNA
synthetase is critical for sporulation in B. subtilis. The IleRS QC was required for activating the
genes controlled by the master transcription factor, Spo0OA, and cells lacking IleRS QC were

rapidly lost from a mixed population when a selection for sporulation was applied. These data

suggest that the QC function of tRNA synthetases may be conserved to deal with particular stress
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304  response to nutrient limitation.
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EXPERIMENTAL PROCEDURES

tRNA Preparation. Bacillus subtilis tRNA" was transcribed in vitro as previously
described .

Cell Free Extract Preparation. B. subtilis tRNA-free cell free extracts were prepared as
described **, using strains containing either a wild-type ileS gene or an editing deficient allele of
ileS (ileS(T233P)), except EDTA-free protease inhibitor (Roche) was used during lysis to replace
PMSF. Briefly, the supernatant following ultracentrifugation was loaded onto DEAE Sephacel
(GE) resin. Cell free extracts were quantified using a BCA Protein Assay kit (Thermo Scientific
Pierce).

Aminoacylation Assays. Aminoacylation assays using cell free extracts of wild-type ileS
and ileS(T233P) strains were performed as previously described *'. Each reaction contained 450
ug extract protein, 1070 ng/pL of B. subtilis tRNA", 0.1 mM cognate ["*C]Ile at 200 cpm/pmol
(Moravek Biochemicals), 0.15 mM non-cognate ['*C]Val at 120 cpm/pmol (PerkinElmer), and
0.3 mM non-cognate [ *C]Leu at 120 cpm/pmol (Moravek Biochemicals).

Growth conditions. E. coli and B. subtilis strains were routinely grown in Luria-Bertani
(LB) medium. For sporulation assays, B. subtilis strains were grown in either Difco sporulation
medium (DSM) * or 750 minimal medium with 0.1% glucose ®'. Both E. coli and B. subtilis
strains were grown at 37°C. Antibiotics were used as required at the following concentrations:
ampicillin 100 pg/ml, chloramphenicol 5 pg/ml, erythromycin 0.5 pg/ml, and tetracycline 12.5
pg/ml. The growth rate was measured as the slope of the line from the natural log of the ODggo
readings versus the time of incubation in minutes. Only points in exponential growth were used

for a line fit, and only line fits that gave an R-value greater than 0.99 were considered valid.
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Strain construction. E. coli strain Top10 (Invitrogen) was used for the routine
construction and maintenance of plasmids. The B. subtilis strains used in this study are all
derivatives of the JH642 strain, which contains the trpC2 and pheA I mutations > and were
constructed by transformation of genetically competent cells with chromosomal DNA or
plasmids using standard protocols °. Gene replacement was verified using PCR.

The B. subtilis ileS(T233P) strain was constructed by transformation with a plasmid,
pBL4566, containing the ileS(7233P) gene. The pBL4566 plasmid is a derivative of pJetl.2
(Thermo Fisher) that contains a restriction site for the I-Scel meganuclease ®* and the cat gene
for chloramphenicol resistance. The ileS gene was PCR amplified with primers ileS-F (5°-
GCATGGATCCAAGGAATAAATTCTCTGATTA) and ileS-R (5°-
GCATAGATCTGCATATCGGTCAACTGAACGC) and ligated to pJetl.2 according to the
instructions of the CloneJET PCR Cloning Kit (ThermoFisher Scientific). An I-Scel-cat cassette

was constructed by PCR amplification with pJH101 *

as a template and primers [-Scel-cat-A
(5°-

ATGCCTGCAGTAGGGATAACAGGGTAATTATTGGGCGCTCTTCCGCTAAGCATGCGT

TACCCTTATTATCAAGA) and I-Secl-cat-B (5’ -

ATGCCTGCAGGCGAGTCAGTGAGCGAGGAAGCAAGCATGCGGAGCTGTAATATAAAA

AC), in which the underlined sequence corresponds to the cat gene, the [-Secl site is bold, and
Pstl restriction sites are italicized. Both the [-Scel-cat PCR and the pJetl.2-ileS plasmid were
digested with Pstl and ligated, to yield a pJet-ileS-I-Scel-cat plasmid. This plasmid was
subjected to site-directed mutagenesis using primers T233P-F (5°-
GCATCATCATTTGGACACCAACGCCGTGGACAATT) and its reverse complement (the

bold, underlined nucleotide is the introduced mutation), according to directions of Quikchange
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Lightning Site-Directed Mutagenesis Kit (Agilent Technologies). The presence of the mutation
was confirmed by DNA sequencing, and the resulting plasmid was named pBL4566.

To transfer the ileS(T233P) allele on pBL4566 to the chromosome of B. subtilis, a wild-
type strain of B. subtilis, JH642 *°, was transformed with pBL4566, and transformants were
selected on plates containing chloramphenicol. The resulting strain, BL4568, which has
pBL4566 integrated into its chromosome at the i/eS locus, has two alleles of ileS, one wild-type
and one ileS(T233P), flanking the pJetl.2 plasmid backbone and the I-Scel-cat cassette. To
return the chromosome to just one copy of i/eS and remove the pPBL4566 plasmid, the pBKJ223
plasmid that expresses the I-Scel meganuclease °* was transformed into BAL4568, and
transformations were selected on plates containing tetracycline. I-Scel cleaves the chromosome
at the I-Scel restriction site on the pBL4566 plasmid, and repair of this DNA break by
homologous recombination results in a strain that has removed the plasmid sequences and
restored the native ileS chromosomal structure, with the ileS allele present being either wild-type
or ileS(T233P). To screen for cells that have lost the plasmid sequence, transformants were
screened for chloramphenicol sensitivity. The i/eS allele present in the chloramphenicol-sensitive
clones were screened by PCR amplification and DNA sequencing, including the genes to either
side of ileS, yly4 and divIVA. One strain with the ileS(7233P) allele and one with the wild-type
ileS§ allele were selected. To remove pBKJ223 from the desired clones, cells were grown in LB
liquid cultures lacking antibiotic selection. Colonies from these cultures were streak-purified on
LB agar plates and then screened for tetracycline sensitivity. Two tetracycline-sensitive clones,
one wild-type ileS and one ileS(T233P), were named BAL4574 and BAL4571, respectively. To
assay expression of sporulation genes, thrC::(spollE-lacZ, erm) ®°° and SpB::(spollG-lacZ, cat)

67 were introduced into BAL4574 (wild-type) and BAL4571 (ileS(T233P)).
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Sporulation Assays. To assess the ileS(7233P) mutant for sporulation, strains were
assessed for the presence of heat-resistant spores, as previously described®. Briefly, cells were
grown in liquid Difco Sporulation Medium (DSM) until 16 hours after the onset of stationary
phase. At this time, the total viable CFU/ml was measured and then the cultures were heated at
80 °C for 20 minutes, and the heat-resistant CFU/ml was measured as the number of spores
present.

B-Galactosidase Assays. Cells were grown as described above for sporulation assays,
except that samples were harvested throughout the exponential growth phase and several hours
past the entry of the cultures into stationary phase. The cells were then harvested by
centrifugation, and resuspended in Z-Buffer, and B-galactosidase activity was measured as
previously described ®®. B-galactosidase-specific activity is presented as (AA4z0 per minute per
ml of culture per ODggo) *x 1000).

Biofilm formation Assays. Cells were grown for 24 hours in polyvinyl chloride
microtiter plates in Biofilm Growth Medium, a modified LB based medium supplemented with
124 mM potassium phosphate pH 7.0, 15 mM ammonium sulphate, 3.4 mM sodium citrate, 0.01
mM MgSO,, and 0.1% glucose as previously described **>°. After incubation, the wells were
washed twice and subsequently stained with crystal violet. The wells were rinsed to remove any
non-adherent crystal violet and treated with a solubilizing solution of 80% ethanol, 20% acetic
acid; the As7 of the solution was then measured. The 4579 of 16-24 wells were averaged. When
the SEM (standard error of the mean) of the 4570 measurements obtained for the 16-24 wells was
<10% of the mean, the assay was considered valid. Each assay was repeated on at least three
independent occasions, and the averages from all valid assays were averaged to determine the

level of biofilm formation for a strain.

19



397 Growth of pellicle biofilms. Bacterial cells were inoculated at ODgg9 0.025 into Biofilm
398  Growth Medium and grown with shaking until ODgo9 ~1.0. The cells were diluted into fresh

399  Biofilm Growth Medium to an ODggp of 0.01 and 5 ml were added to culture test tubes. The

400 tubes were incubated at 37°C for 48 hours with no shaking, at which times the pellicles were

401  imaged.

402
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592  Table 1: Sporulation Frequency of Wild-Type and [1leRS(T233P) Cells

Wild-Type [1eRS(T233P)
Trial
Viable® Spores” Frequency* Viable® Spores® Frequency®
Difco Sporulation Media
1 5.9x 108 3.5x 10 60 % 3.6x 10 1.3x 10 35 %
2 6.8 x 108 3.8x 10 56% 3.5x 10 1.2x 108 34 %
3 49x10° 3.8x 10 78 % 3.2x 108 1.6 x 10’ 5%
4 46x10° 3.6x 10° 77 % 6.0x 10>  7.1x10’ 12 %
5 3.4x 108 3.5x 10 100 % 3.5x 108 25x107 71 %
Glucose Minimal Media
1 2.7x 108 1.8x 10 67% 1.6x10°  3.4x10° 2.1%
2 2.7x 108 23x 108 85% 1.8x 10 1.3x 10’ 7.2%
3 9.1x 10’ 9.2 x 10’ 100% 1.1x10%  3.1x10’ 27%

593  “Reported are the CFU/ml of the cultures after 16 hours of incubation in stationary phase.

594 " After testing for viable cells, the cultures were heat treated at 80°C for 20 minutes and then
595  plated for CFU/ml counts.

596  ° The frequency of sporulation was calculated as [(spores CFU/ml)/(viable CFU/ml1)*100].

597
598
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Figure 1. The ileS(T233P) strain mischarges tRNA" with valine. Cell extracts of BAL4574
(WT; filled squares) and BAL4571(ileS(T233P); open circles) were assayed for their ability to
aminoacylate tRNA" with '*C versions of isoleucine (A.), valine (B.), or leucine (C.). Plotted is
the average pmoles of the radiolabeled tRNA from three reactions versus the time after the
addition of tRNA" and the radiolabeled amino acid. Error bars are standard error of the mean.
Lines are best fits of the data to a Michaelis-Menton equation, with the exception of WT in
panels B and C, as the basal level of aminoacylation observed could not be fit.
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Figure 2. The ileS(T233P) strain is outcompeted by wild-type cells. Derivatives of BAL4574
(WT; circles) and BAL4571 (ileS(T233P); squares), which carried either erythromycin-resistant
or chloramphenicol-resistant genes, were mixed in equal numbers in DSM and incubated until 16
hours post the onset of stationary phase. At that time, the total CFU/ml (open symbols) was
assessed for both cell types. The cultures were then heated to kill vegetative cells, and the
CFU/ml of spores (filled symbols) was assessed for both cell types. A 1/10™ volume of the
spores was then transferred to a new DSM culture, and the process was repeated for four days.
Plotted is the average CFU/ml of four separate cultures versus the day of the competition. Error
bars are standard error of the mean.
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Figure 3. Expression of a Spo0OA-activitvated gene is delayed in the i/leS(7233P) mutant. Strains
carrying a spollE-lacZ (A.) or spollG-lacZ (B.) fusion were grown in DSM. Samples were
removed periodically, and the B-galactosidase specific activity ((AAa4zo per minute per ml of
culture per ODggo) * 1000) was measured and plotted versus the time the sample was harvested
relative to the time at which stationary phase for the culture commenced. The strains grown in
panel A were BAL4575 (WT; closed squares) and BAL4576 (ileS(T233P); open circles), and
strains grown in panel B were BAL4418 (WT; closed squares) and BAL4419 (ileS(T233P); open
circles). The data shown are representative of at least three independent experiments.
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