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Abstract

Perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops
depends not only on mean net returns, but also on the associated probability distributions and on the risk
preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally produc-
tive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven
biomass yields and prices compared to corn (Zea mays L.) as a benchmark. Next we develop Monte Carlo budget
simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk into
three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal
that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable
and the least risky investment option. It dominates all perennial systems considered across a wide range of
farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk
averse, perennial bioenergy crops have a higher potential to successfully compete with corn under marginal
crop production conditions.
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Introduction

Although annual corn is currently the most important
bioenergy crop in the United States, perennial crops
such as giant miscanthus (Miscanthus x giganteus Greef
& Deuter ex Hodkinson & Renvoize) and switchgrass
(Panicum virgatum L.) have shown the potential system-
atically to produce higher biomass yields (Heaton ef al.,
2008; Dohleman & Long, 2009). Perennial crops repre-
sent long-term investments, due to the initial cost of
crop establishment and the delay before harvestable
biomass is available. While production costs may be
predicted with some confidence, farmers are exposed to
potentially large variability in biomass yield and price
(Bocquého & Jacquet, 2010). To understand the potential
for adoption of bioenergy crops, there is a need to
analyze profitability risk associated with investments in
the production of perennial bioenergy crops relative to
crops that farmers already choose to grow.

A critical factor in adopting new crops, such as bioen-
ergy crops, is their profitability relative to that of
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existing cropping systems. Most farmers will allocate
land to bioenergy crops only if the economic returns
from these crops are at least equal to returns from the
most profitable conventional alternatives (Jain et al.,
2010; James et al., 2010; Kells & Swinton, 2014). The
adoption of new agricultural technologies is also
affected by risk (Ghadim et al., 2005; Marra et al., 2003;
Chavas, et al., 2009). Farmers’ risk attitudes (Just & Zil-
berman, 1983) and perception about the distribution of
future payoffs from the new technology (Marra et al.,
2003), potential sunk costs (Chavas et al., 1994), and the
opportunity cost of switching to a relatively unknown
production system do affect the uptake of emerging
agricultural technologies. An extensive literature models
the investment uncertainty associated with adopting
new agricultural technologies (Price & Wetzstein, 1999;
Khanna et al., 2000; Pietola & Myers, 2000; Carey &
Zilberman, 2002; Isik & Yang, 2004; Odening ef al., 2005;
Koundouri et al., 2006; Tozer, 2009; Schoengold &
Sunding, 2014; Anderson & Weersink, 2014). Yet scant
empirical evidence is available on how investment
uncertainty affects the adoption of bioenergy perennials.
A notable exception is the study by Song et al. (2011)
who model land conversion decisions between tradi-
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tional crops and switchgrass under costly reversibility,
and revenue uncertainty. However, these authors rely
on secondary data and fail to account explicitly for the
effects of crop failure and variable yield trajectories on
investment returns from perennial bioenergy crops.

The agronomic and economic characteristics of bioen-
ergy perennials make them risky choices. Investment in
perennial energy crops is characterized by high establish-
ment cost (Lewandowski et al., 2003), establishment prob-
lems related to extreme climatic and pest events
(Thinggaard, 1997; Clifton-Brown & Lewandowski, 2000),
foregone income while awaiting mature yield (Song et al.,
2011), and considerable removal costs to make land avail-
able for a new crop. Moreover, the risk of investing in
perennial bioenergy crops is aggravated by the absence of
commodity markets or crop insurance for these crops, as
well as limited farming experience with them.

Breakeven budgeting addresses profitability risk by
establishing a lower bound for price or quantity that is
required to cover costs. Various studies have calculated
the average profitability of different biomass feedstock
crops (e.g., Lewandowski et al., 2003; Heaton et al.,
2004). Simple breakeven analysis studies have calculated
the yields and prices at which a producer would cover
costs of production (Mooney et al., 2009). One step more
advanced are comparative breakeven analyses that cal-
culate the yield or price required for a producer to earn
profit at least equal to the return on a reference crop
(Jain et al., 2010; Landers et al., 2012; DeLaporte et al.,
2014; James et al., 2010). These studies rely mostly on
secondary data, and they fail to account explicitly for
risk. All of these studies ignore crop establishment risk
and the temporal distribution of crop yield. Yet the high-
est biomass yielding bioenergy crop—giant miscanthus
—has demonstrated susceptibility to winterkill during
its first year (Kucharik et al., 2013), making establish-
ment risk a serious concern. Moreover, risk associated
with the time delay for perennial crops like giant mis-
canthus and switchgrass to reach harvestable yield may
be substantial (Heaton et al., 2004). Both of these risk fac-
tors supplement conventional year-to-year yield vari-
ability of mature crops in ways that could significantly
affect their profitability appeal to potential adopters.

Past stochastic simulation studies that have calculated
probability distributions of net returns from bioenergy
crops have taken two approaches to the crucial step of
simulating crop yields. In the absence of adequate
data on bioenergy crop yields, one group has relied
upon general crop growth simulation models, such as
ALMANAC and DayCENT (Dolginow et al., 2014; Miao
& Khanna, 2014). These models have the advantage of
being able to simulate crop yield over large regions.
However, they have typically been validated at just a
few individual sites, which may be problematic given

that they lack well-developed parameters for perennial
bioenergy crops. One study (Clancy et al., 2012) statisti-
cally estimates yields of bioenergy crops across time,
using a one-period-lagged, linear and plateau function
and using residuals to simulate the probability distribu-
tion of random variability around expected yields. The
Clancy et al. (2012) study is unique in recognizing the
relevance of winter survival risk in giant miscanthus,
which they assume to be ten percent. Finally, Bocquého
& Jacquet (2010) relied on interview responses and
recorded secondary data for short-term empirical distri-
butions of bioenergy crop yields.

Our research draws on new bioenergy crop yield data
to construct more nuanced, probabilistic, biomass yield
functions for six bioenergy crop systems, linking those
functions to stochastic price predictions through a
stochastic investment budget model. Specifically, this
study makes three contributions to the literature on
economic risk of bioenergy crop production. First, it
uses new multiyear field data on cellulosic biomass pro-
duction to inform comparative breakeven analysis of
perennial bioenergy crops relative to corn with grain
and stover removal. Second, it explicitly considers three
stochastic elements when evaluating bioenergy invest-
ment projects: (i) crop failure risk, (ii) time to maturity
risk, and (iii) variability in mature yields. Third, it
evaluates the economic performance of a broad range of
bioenergy crops that includes not only corn, giant
miscanthus, and switchgrass, but also restored prairie,
native grasses, and early successional vegetation (long-
term fallow). Using data from southern Michigan and
Wisconsin, the modeling approach offers broader
insights about the comparative riskiness of these
bioenergy crops and what drives that risk.

Materials and methods

Conceptual framework

Rational economic decision-makers are assumed to make crop
production choices by choosing crop j to maximize a utility
function (U) that includes the value of net returns across a
range of possible states of nature (i) in light of the decision-
maker’s risk preferences:

N
ManU(NPV,'j, l) = / U(NPV,',-, /l)f(NPV,‘j)dNPV,‘j (1)
i=1

where NPV is the net present value of crop j,j =12, ..., M, A
is a measure of risk aversion, f is year, and T is the final year of
the planning horizon. Location matters as well, but we sup-
press that factor to simplify notation.

When the model in Eqn (1) is applied to the case of growing
bioenergy crops, an individual decision-maker makes crop pro-
duction choices based on cash flows over the time horizon (T)
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for the crop investment. The NPV for cropping system j over a
period of T years is defined as follows:

T
NPV =" . &G 2)

where ¢ is the discount factor, and G;; denotes the gross mar-
gin (cash flow) of crop j cultivated in year t under state of nat-
ure i. Eqn (2) provides the discounted value of annual gross
margins. Because crop prices and yields are stochastic, each
time NPV;; is a random draw representing state i from the
probability distribution of possible discounted investment net
returns.

The appropriate ranking of biomass investment projects will
depend on the investor’s risk preference. For a risk neutral
decision-maker (4 = 0), maximizing Eqn (1) is equivalent to
maximizing the expected net present value. However, most
investors are not indifferent to risk. We adopt an expected util-
ity theory approach to decision-making under risk (Hernstein
& Milnor, 1953; Mongin, 1997). Following a substantial body
of empirical evidence that farmers are risk averse (Pope & Just,
1991, Pannell et al., 2000; Hardaker, 2006), we assume that the
decision-maker exhibits constant absolute risk aversion (CARA;
Pratt, 1964) and that risk preference is embodied in the CARA
function coefficient aversion, 4, that can vary over a range from
risk neutral to highly risk averse.

Crop gross margin risk in the term, Gijt, in Eqn (2) can be
decomposed into three yield quantity factors and one price ele-
ment drive: (i) survival risk, (ii) maturation risk, (iii) yield fluc-
tuation risk in mature crops, and (iv) price risk. Survival risk in

(@

NPV

TN~

N

bioenergy perennials refers to mortality losses following the
first season after planting. Extreme climatic conditions and pest
infestations are common causes. In particular, giant miscanthus
rhizomes have failed to survive the winter when soil tempera-
tures fall below —3.5 °C for a period of 3 days or more (Clif-
ton-Brown & Lewandowski, 2000; Kucharik et al., 2013).
Figure 1 depicts the effect of establishment failure, and delayed
maturity on the NPV of an investment project of perennial
biomass crops. Figure 1 (Panel a) illustrates the effect of crop
failure risk on the NPV of a biomass investment project. The
top graph shows how establishment failure delays the flow of
biomass yield (Y), while the bottom graph shows the conse-
quences for NPV. At ty, crop establishment costs (—I) have been
incurred and therefore the NPV (bottom of both panels) of a
biomass cropping system is negative. In the subsequent period,
the NPV continues to decrease due to a lack of harvestable bio-
mass (and, thus absence of revenues), alongside rising crop
variable costs, such as fertilization and crop protection. Follow-
ing this period, as harvestable biomass becomes available, the
NPV increases, potentially breaking even. Establishment failure
is especially problematic in a crop like giant miscanthus that is
costly to plant.

Maturation risk refers to variability in both the time required
for a perennial crop to reach a plateau of mature yield and the
level of the plateau that is reached. Figure 1 (Panel b) displays
the effect of a delay in achieving a full yield potential on firm’s
returns. The top graph illustrates how random factors may
delay the maturation of a perennial crop causing the biomass

(b)

NPV

Fig. 1 Establishment failure (left) and delayed maturity (right) implications on the NPV of an investment project of bioenergy

perennials.
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yield trajectory to shift from the dashed black linen to the solid
gray line. This delay shifts the NPV accumulation trajectory in
the bottom graph to one that takes longer to break even.
Delayed maturity permanently reduces investment return
because early revenues have higher present value. Maturation
risk can increase both the variance and skewness of the distri-
bution of gross margins.

Finally, as with annual crops, revenue risk is also driven by
regular fluctuations in mature yield and in crop prices. Mature
yields vary due to factors such as climate (Parry and Carter,
1985; Nunez & Trujillo-Barrera, 2014), soil type (Dinkins &
Jones, 2008), and pests (Skevas et al., 2013). Agricultural prices
vary due to changes in markets, which vary spatially from local
to global (Harwood et al., 1999). We next present the empirical
methods used to analyze how these four sources of risk are
likely to affect farmer decisions about adopting bioenergy
crops.

Empirical model

To examine the effect of risk on likely farmer adoption choices,
we compare results from comparative breakeven budgeting to
those from stochastic simulation of investment analysis. Com-
parative breakeven budgeting is a simple, widely used method
that identifies the minimum price or yield needed for revenues
to cover costs (Dillon, 1993). The version used here is adapted
for investment analysis using the NPV method, so it incorpo-
rates discounting of future cash flows to adjust all values to ini-
tial year ‘present” values (Kells & Swinton, 2014). To calculate a
comparative breakeven price, crop yield and opportunity of
not adopting the best alternative crop must be known; to calcu-
late a breakeven yield, crop price and opportunity cost must be
known. To accommodate policy incentives to encourage adop-
tion of bioenergy crops, we do sensitivity analysis with both
direct subsidies and crop insurance.

Stochastic simulation for investment analysis allows devel-
oping probability distributions of NPVs that allow comparison
of bioenergy investment alternatives over a broad range of
yield and price conditions and for decision-makers with differ-
ent levels of risk aversion. We first describe methods for com-
parative breakeven analysis, including incentive policy
scenarios; then, we move to methods for stochastic simulation
and comparison of probability distributions of NPVs.

Risk neutral case: Comparative breakeven investment
analysis

Comparative breakeven investment analysis is used to compute
the economic performance of cellulosic biomass feedstock
investment projects. The six biomass investment alternatives
are corn, giant miscanthus, switchgrass, native grasses, restored
prairie, and early successional vegetation (fallow). Revenues
and expenditures are used to calculate annual cash flows for
each cropping system. For convenience in comparing results
between annual and perennial crops, we present all results as
annualized values using the following annuity formula to con-
vert NPVs to annual equivalents (Weston & Copeland, 1986):

_ { NPV @)

1-1/(147nT7

where A is the annual payment, and r is the discount rate. The
time horizon is 6 years, a time horizon sufficient for most
perennial crops to have attained mature yield for 3-4 years
and hence for farmers to judge the appeal of adopting them.
However, there is evidence that the optimal replacement inter-
val of bioenergy perennials such as miscanthus and switch-
grass can exceed 10 years (Pyter et al., 2007). We assume a real
discount rate of 5%, following Erickson et al. (2004). Each crop-
ping system has a different production cycle, with corn result-
ing in harvestable yield each year of the 6-year time horizon,
while the perennial cropping systems experience delays of 1-
2 years before producing harvestable yield.

The appeal of comparative breakeven budgeting for predict-
ing adoption of new crops is that it builds in the opportunity
cost of foregoing new income from the best benchmark crop.
Given that corn is the most widely grown field crop in the Uni-
ted States, we treat it as the benchmark crop—the basis for
comparison. We conduct the comparative breakeven price and
yield analyses to identify the cellulosic biomass prices and
yields that would make perennial crops equally profitable with
corn. The breakeven price analysis takes into account the direct
costs of production, expected yields, and the opportunity cost
of replacing the existing cropping system. Net returns from
corn are assumed to come from harvesting all grain plus 38%
of stover (Brechbill & Tyner, 2008), a level of stover harvest
consistent with maintaining soil organic matter. Following
Kells & Swinton (2014), the comparative breakeven price of a
cellulosic perennial crop to replace corn is as follows:

NPVp + 3, (W)
BE,: = . 4)
= (4% )

where BE, is the comparative breakeven price, NPVp, is the
expected NPV of the ‘defender’ crop (corn), ¢; the expected cost
of producing the new biomass crop, yc, is the expected biomass
yield achieved by the ‘challenger’ bioenergy crop, yp, is the
expected biomass yield of the defender crop, and r and T as
previously defined. The denominator represents the biomass
yield gain of the challenger crop over the defender cropping
system and implies that a new bioenergy crop breaks even in
the comparative sense only if its biomass yield exceeds that of
corn stover.

Comparative breakeven yield identifies the minimum yield
of cellulosic biomass required for a producer to attain annual-
ized investment returns earn equal to corn, given an expected
biomass price. Using the same notation as above, the breakeven
yield Ygg is computed as follows:

NPVp + 3, (gf%)
5
p—ydc, ®)
2 (141)

where adc; is acreage dependent costs (i.e., cost of planting
material, agrochemicals, and machinery-labor), P, is the

Ype =
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expected biomass price, and ydc is yield dependent costs (e.g.,
baling, storage, and bale transportation).

Policy incentives for bioenergy crops: Subsidies and
insurance

As variants of the comparative breakeven investment analysis,
we consider two sets of policy incentives to encourage adop-
tion of perennial bioenergy crops. The first set already exists in
the form of the U.S. Department of Agriculture’s Biomass Crop
Assistance Program (BCAP) (USDA, 2014). The second policy
is based on existing crop revenue insurance that has not so far
been extended to perennial bioenergy crops.

Under BCAP, we examine the impact of three BCAP pay-
ment forms on the investment returns from the bioenergy crop
alternatives. The BCAP payments include the following: (i)
establishment payments, (ii) annual rental payments, and (iii)
matching payments. Establishment payments cover 50 percent
of the costs of establishing dedicated energy crops and the total
payments per acre are capped at $500. Annual rental payments
include a payment (for a maximum of 5 years) based on typical
rental rates for cropland, marginal land or forest land. They are
used to cover the foregone income from the land during the
establishment phase (before the crop reaches economically har-
vestable levels). Matching payments of $20 per ton (for a maxi-
mum of 2 years) are used to mitigate the cost of harvesting and
transporting biomass to a biorefinery. The annual payment is
reduced when a matching payment has been earned.

A second potential type of policy would allow growers of
bioenergy crops to purchase revenue insurance to offset some
of the risk associated with production variability. This study
calculates insurance premiums that would support a policy
that would pay off whenever the NPV did not reach the zero
threshold. Based on the insurance premium approach pre-
sented in Goodwin (1994), a premium that is free of distribu-
tional assumptions and accounts for the time that net revenues
cross the zero threshold can be calculated as follows:

Premium; = ZL] O;i/n (6)
where 0;; = 0 — NPV;; if NPV;; <0, and 0 otherwise. The calcu-
lation of insurance premiums can indicate the cost of reducing
net revenue risk exposure to potential adopters of bioenergy
crops.

Risk averse case: stochastic capital budgeting

The stochastic capital budgeting model introduces the three
forms of yield risk plus price risk into simulation of probability
distributions of NPVs for each bioenergy crop. It also enables
calculation of the monetary value of the certainty equivalent of
each NPV distribution for a range of decision-makers with
CARA risk preferences. The steps involved in building the
stochastic (Monte Carlo) investment analysis model are
detailed below. They include (i) statistical estimation of the
equations for the three forms of biomass yield risk using
appropriate functional forms, (ii) retention of coefficient
standard errors to simulate random coefficient models, (iii)

fitting of parameters to appropriate probability distributions
for additive random errors, (iv) collection of suitable random
price data, (v) synthesis of these components into a stochastic
simulation of NPV distributions by crop, and (vi) analysis of
results as certainty equivalents for risk neutral and risk averse
decision-makers.

Estimation of stochastic biomass yields was performed in
three parts: first, estimation of the chance of crop establishment
failure at each site (giant miscanthus only); second, estimation
of time-to-maturity trajectories for each crop; and third, fitting
of probability distributions for additive random errors. Estima-
tions of time-to-maturity risk and risk in mature yields were
based on 6 years of field experiments from 2008 to 2013 at
Arlington (ARL) in south-central Wisconsin and the Kellogg
Biological Station (KBS) in southwest Michigan. At each site,
there were five plots each of corn, switchgrass, giant miscant-
hus, restored prairie, mixed native grasses, and early succes-
sional vegetation treatments. At ARL, there was winter kill of
giant miscanthus in 2008/2009, and it was not replanted until
2010. In addition, at KBS, switchgrass, native grasses, and
restored prairie all experienced crop failure in 2008 due to
heavy rains and were replanted in 2009. As a result, these
crops have fewer years of data.

Simulation of the probability of winterkill was conducted for
giant miscanthus, based on evidence of plant mortality when
soil temperatures at a depth of 10 cm fall below —3.5 degrees
C. for a duration of three or more days (Kucharik et al., 2013).
Soil temperature data from the University of Wisconsin Exten-
sion Ag Weather network spanning 20 years (August 1994-June
2014) revealed that 9 of 20 years exceeded that threshold at
ARL, for a 45% chance of rhizome winterkill. Soil temperature
data from KBS were not available; instead, data from Michigan
State University’s Enviroweather series collected in East Lans-
ing between January 1996 and December 2014 were used.
Because average soil temperature at 10 cm was not available,
the 10 cm minimum and maximum temperatures were
averaged and 3-day running means were calculated. Two of
nineteen years of data (including 1996) saw soil temperatures
fell below the —3.5 degree threshold, for a 10.5% probability of
winterkill at KBS.

Data from the two sites were used to estimate the trajectory
of biomass yield over the first 6 years, using a set of theoreti-
cally consistent functional forms. The functions evaluated
included Spillman and Mitscherlich, as both increase to a
plateau or upper asymptote, as well as linear and step-to-
plateau functions. The Mitscherlich function and simpler linear
functions performed well for crops that take time to reach
mature yields such as switchgrass, giant miscanthus, and
native grasses. For the crop yield trajectories that were
modeled using the Mitscherlich function, coefficients were
estimated using nonlinear least squares. Table 1 shows the
functional forms and parameter estimates for yield trajectories
of perennial crops at ARL and KBS. The Mitscherlich function
has a marginal product that is unrestricted but nonswitching in
sign, the linear function has a marginal product that is unre-
stricted in sign but constant in value. For further background,
Griffin et al. (1987) review the properties of these functional
forms and their optimality conditions. For these crops that
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Table 1 Yield trajectories of perennial crops at ARL and KBS: functional forms and parameter estimates (explanatory variable

t = 0-5 is years since planting)

Crop (location) Functional form

Maximum (o)

Slope (B, m) Intercept (b) Mean (a)

Mitscherlich
y = oa(l-exp(—pt)

Switchgrass (ARL)

Switchgrass (KBS) Linear n/a

y=0ift=0y=mt+bift>0

9.0392*** (.7983)

0.4521*** (0.0923) n/a n/a

1.6358*** (0.3018)  3.5848*** (0.5647) n/a

Giant miscanthus (ARL) Mitscherlich 15.0085*** (2.7872)  0.8912* (0.4503) n/a n/a
y = a(l-exp(—pt)
Giant miscanthus (KBS) Mitscherlicht 28.8517* (14.2383) 0.2182** (0.1661) n/a n/a

y = a(l-exp(—pt)

Native grasses (ARL) Linear n/a
y=0ift=0y=mt+bift>0

Native grasses (KBS) Linear n/a
y=0ift=0y=mt+bift>0

Early successional (ARL)  Mean value n/a
y=a

Early successional (KBS) ~ Mean value n/a
y=a

Restored prairie (KBS) Step to mean value n/a

y=0ift=0y=aift>0
Restored prairie (ARL)
y=0ift=0y=aift>0

Step to mean value n/a

0.3300% (0.1710) 44244+ (0.4189) n/a

0.7876* (0.4311) 3.2506*** (0.8065) n/a

n/a n/a 2.9843
n/a n/a 2.365

n/a n/a 2.8925
n/a n/a 4.1296

Note: Numbers in parenthesis are standard errors of parameter estimates. ***Significant at 1% level, **significant at 5% level, *signifi-

cant at 10% level.
tDavidson-MacKinnon test was inconclusive.

exhibited time-to-maturity risk, that risk was simulated using
random slope coefficients, where the coefficients were drawn
from normal distributions with mean at the estimated parame-
ter and standard deviation equal to the estimated coefficient
standard error. For early successional vegetation and restored
prairie, yields showed no trend over time, so mean values
suffice. Choices of functional form were based chiefly on theo-
retical consistency and supported by Davidson-MacKinnon
tests (this test is not valid when comparing linear functions vs.
mean values because of collinearity). Although linear yield
functions fail to exhibit the expected diminishing marginal pro-
duct over time, these functions were selected as the best fit for
the native grasses, and they are acceptable for simulations that
are limit to a 6-year time horizon.

In addition to time to maturity risk, yields were assumed to
have an additive random error to account for yearly fluctua-
tions on yield. Table 2 presents the probability distributions of
random additive annual yield disturbance terms that were
drawn from continuous distributions fitted from regression
residuals using the @Risk add-in to Microsoft Excel.

To abstract from current market conditions, biomass prices
were drawn at random from stochastic simulations of corn and
warm season grass prices projected to 2018 that were prepared
for the March 2014 outlook report by Food and Agricultural
Policy Research Institute at University of Missouri (FAPRI-MO)
(Personal communication by Wyatt Thompson to Scott Swinton
by email, Dec. 13, 2014).

The stochastic budgeting model was programmed in
Microsoft Excel and simulated using @Risk. Latin hypercube

Table 2 Probability distributions of additive random annual
crop biomass yield disturbance terms that were drawn using
@Risk

Crop Site Distribution

Giant miscanthus ARL  Logistic (—0.1015, 1.8406)

KBS Normal (0.0702, 4.8657)
Switchgrass ARL  Logistic (0.0212, 0.4584)

KBS ExtValueMin (0.7540, 1.2934)
Restored prairie ARL  Weibull (2.8858, 4.4978) —4.0046*

KBS ExtValue (—0.5164, 0.9432)
Native Grasses ARL ExtValue (—0.5765, 0.9889)

KBS ExtValueMin (1.0837, 1.8946)
Early successional ~ ARL ~ Weibull (1.8545, 2.4424) —2.1731*

KBS ExtValueMin (0.5234, 0.9372)

*Weibull distribution shifted down by value of this constant
(RiskShift parameter in @Risk).

sampling with a sample size of 1000 was used to estimate the
distribution of the stochastic variables for each risky invest-
ment.

The flowchart of the steps performed in implementing the
stochastic capital budgeting analysis appears in Fig. 2. The
stochastic simulation cycles differed between corn, an annual,
and the five perennial bioenergy crops. As shown on the left
side of Fig. 2, each 6-year corn simulation cycle begins with
drawing six corn grain prices and six biomass prices. For each
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Fig. 2 Flowchart of stochastic simulation of 6-year net present values of investment returns.

year (1-6), the model first draws biomass and grain yields; then
with random price and production cost, it calculates annual
cash flow. After 6 years, it calculates the NPV for that period.
The simulation cycle is repeated 1000 times. The simulation
process for perennial bioenergy crops appears on the right side
of Fig. 2. Each 6-year simulation cycle begins with drawing
random biomass prices and coefficients for the random param-
eters yield function. If the crop fails in Year 1, it is replanted. If
it survives, the biomass yield for that year is computed from
the yield function plus an additive random error. Annual cash
flow is the product of random biomass price and the computed
yield, minus expected production cost. As with the corn model,
NPV is calculated after 6 years. Upon completion of the 1000
simulation runs, cumulative distributions are constructed by
ordering outcomes from smallest to largest.

Comparison of the alternative bioenergy crop NPV cumula-
tive distributions for decision-makers who may be risk averse
is performed using stochastic dominance criteria. These criteria
allow ranking of investment prospects by comparing the
empirical distributions of investment returns without requiring
explicit knowledge of individual risk preferences. Common
stochastic dominance criteria are first-degree (FSD) and sec-
ond-degree stochastic dominance (S5D). FSD requires only the
assumption that the decision-maker prefers higher returns to
lower returns, and it covers all risk preferences. SSD requires

the added assumption that the decision-maker is risk averse, so
it omits risk-preferring individuals. Both approaches involve
pairwise comparison of the cumulative distribution functions
(CDF) of NPVs from alternative investment options. When FSD
and SSD cannot identify preferred alternatives, an approach
with more restrictive assumptions but stronger discriminating
power is stochastic efficiency with respect to a function (SERF)
(Hardaker ef al., 2006). Under the assumption that a decision-
maker’s risk preferences are known (as CARA with assumed
coefficients, in this case), certainty equivalent (CE) values can
be calculated as the monetary value that would leave the deci-
sion-maker indifferent between receiving the CE and the entire
CDF from the risky investment. SERF ranks a set of risky alter-
natives in terms of CEs. Following Pratt (1964), we use the neg-
ative exponential constant absolute risk aversion (CARA)
utility function: Ucara(G) = — e, Using this function, the
CE is computed as follows:

X 1 n G
CECARA(G,A)ln(nZe )//1

The CE represents the amount of money a decision-maker
would require to be indifferent between receiving that amount
for certain and receiving a potential result from the risky
investment. When using agronomic experimental data, CARA
is an appropriate utility function because there is no need to

7)
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account for heterogeneity in decision-maker wealth levels.
Following King & Robison (1981) and Cochran et al. (1985), the
risk aversion coefficients used in this analysis range from 0
(risk neutral) to 0.001 (highly risk averse).

Data

The analyses reported here draw bioenergy crop management
practices and yields from the 6-year period 2008-2013 from the
Great Lakes Bioenergy Research Center (GLBRC) Biofuel Crop-
ping System Experiment established at the Kellogg Biological
Station (KBS) at Hickory corners, MI, and at the Arlington
(ARL) Agricultural Research Station in Arlington, WI (see
details at http://data.sustainability.glbrc.org/pages/1.html,
and in Sanford et al., 2016). The cropping system treatments dis-
cussed here include corn (with stover removal), giant miscant-
hus, switchgrass (Cave-in-Rock variety), native grasses, restored
prairie, and early successional. Yield data and output prices are
presented in Table 3. For the breakeven investment analysis,
2018 FAPRI price forecasts for corn are used, while cellulosic
feedstock price is assumed to be $50 mg~'. At $159 Mg’
(=$4 1), the simulated mean corn grain price is lower than the

Table 3 Crop yields and prices in the southern Great Lakes
area in 2008-2013 (basis for comparative breakeven investment
analysis)

Yield*
(Mg ha™) .
—— Output pricet
Crop Location Mean SD  ($ Mg™)
Corn grain ARL 12.65 1.61 159
KBS 9.82  3.19
Corn stover ARL 588  1.40 50
KBS 262 158
Switchgrass ARL 488 321 50
KBS 408  3.46
Giant miscanthus ~ ARL 593  6.75 50
KBS 11.02 816
Native grasses ARL 424 230 50
KBS 295 293
Early successional ~ ARL 299 1.23 50
KBS 237 110
Restored prairie ARL 344 211 50
KBS 189 1.6l

*Yield data are from field trials at the Great Lakes Bioenergy
Research Center (GLBRC), intensive research sites at the
University of Wisconsin agronomic research station at Arling-
ton (ARL) in south-central Wisconsin and at the Kellogg Bio-
logical Station (KBS) in Hickory Corners, Southwest Michigan.
+Corn grain price is the average (FAPRI) 2018 price forecast for
corn. The respective corn grain price in $ bu™' is 4. The bio-
mass price is derived from rounding to the nearest $5 Mg’
both the average (FAPRI) 2018 price forecast for dry biomass
from warm season grass and the Michigan State University
T.B. Simon power plant purchases of switchgrass and restored
prairie biomass from GLBRC in 2013 (based on coal-equivalent
BTU content).

observed price during 20082013 ($196 Mg~ (=$5 bu™)
(National Agricultural Statistics Service). The $159 price was
chosen for this analysis because 1) the observed price is an his-
toric high that appears not to be indicative of likely future val-
ues and 2) using the same price as for the stochastic simulation
analysis later in the paper allows direct comparison of results.
The cellulosic feedstock price was selected because it is close to
the rounded average of the 2018 Food and Agricultural Policy
Research Institute (FAPRI) price forecasts for warm season grass
(i.e., $50.79 mg ) and the Michigan State University T.B. Simon
power plant energy biomass purchases (of switchgrass and
restored prairie) from GLBRC in 2013 (i.e., $51.14 Mg’T)‘

The Simon power plant payments are meaningful, because
they are based on the energy equivalent of coal, and thus
indicative of what commercial power plants would pay for
delivered biomass for co-firing with coal. For the stochastic
capital budgeting, 2018 FAPRI price forecasts for corn and
warm season grass were used. These prices are calculated from
500 simulated iterations. The average FAPRI price for corn and
warm season grass was $159 Mg' (e, $4bu') and
$51 Mg ™!, respectively. Tables 1 and 2 in the appendix present
the costs of the main inputs used in crop production for each
cropping system and location. These costs include planting
materials, agrochemicals, machinery-labor, and postharvest.
Input cost data come from secondary sources, and when there
was a lack of cost data for Wisconsin or Michigan, cost data
from neighboring states were used. The input cost data used in
the current study represent 20082013 production conditions in
the southern Great Lakes region.

Results

Profitability by cropping system at 2008-2013 prices and
yields

The mean profitability of the bioenergy cropping sys-
tems at KBS in southwest Michigan and ARL in south-
central Wisconsin is presented as annualized NPV in
Figs 3 and 4. In both locations, the profitability of corn
far exceeded that of any of the perennial crop systems
for two primary reasons. First, corn revenues benefit
from two components: the valuable grain product plus
the less valuable cellulosic biomass product. Second,
predicted corn prices at $4 bushel ' are strong com-
pared to historic levels, despite being below the high
levels of 2008-2013. Although agrochemicals are more
costly in corn than any of the other cropping systems,
revenues offset those costs. By contrast, the high cost of
giant miscanthus planting material (rhizomes) is not
fully compensated at current prices, despite the high
biomass yield of giant miscanthus. Due to better soils at
ARL than KBS, all crops except giant miscanthus
yielded better at ARL. However, the relative benefit of
good soils was greater for corn yield than for the
biomass yield of giant miscanthus, switchgrass, and
early successional vegetation—indicating that lower
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productivity at KBS is less pronounced for bioenergy
perennial crops than for corn. The following breakeven
analysis examines just how close each site and cropping Breakeven prices for cellulosic biomass refer to prices

Comparative breakeven prices

system comes to matching the profitability of corn. that producers of continuous corn must receive in order
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to earn equal profit from a cellulosic perennial crop.
Table 4 presents comparative breakeven prices for each
cropping system assuming a corn grain price of
$159 Mg~ ($4 bu™'). The giant miscanthus figures are
underestimates, because they ignore the risk of win-
terkill. Even so, no system can break even at ARL
because the mean corn stover yield there exceeds the
mean biomass yield of any of the perennial bioenergy
crops. At KBS, however, corn stover yields are lower,
and three perennial bioenergy crops have the potential
to break even at a sufficiently high biomass price. Giant
miscanthus, the crop with highest biomass yield, could
match the profitability of corn at a biomass price of
$203 Mg’l. Switchgrass would require $642 Mg’l,
while the native grasses would require the price of a
new, small car for each ton of biomass, because their
mean yield barely exceeded that of corn stover.
Restored prairie and early successional vegetation at
KBS produce less biomass than corn stover and so can-
not break even at any biomass price.

Comparative breakeven yields

Table 4 also presents comparative breakeven yields for
each cropping system at the ARL and KBS sites, assum-
ing a biomass price of $50 Mg~ '. Breakeven yield shows
the minimum yield required for a producer to earn
equal profit to corn. Breakeven yields for all crops are
higher at ARL compared to KBS, due to higher yields of
the corn system at ARL. The crop with the lowest break-
even yield at ARL is early successional vegetation,
which has the lowest costs—just the cost of fertilization
and biomass harvest. Next lowest are the native grasses,
restored prairie, and switchgrass. At KBS, switchgrass

Table 4 Comparative breakeven prices ($ Mg™"), and yields
(Mg ha™") of biomass feedstocks with respect to a corn grain
price of $4.00bu' ($159 Mg '), and biomass price of
$50 Mg ' at ARL and KBS sites

Breakeven
yield as
Breakeven  percent of
Breakeven yields current
prices $ Mg™") (Mg ha™")  yield (%)

Crop ARL KBS ARL KBS ARL KBS
Switchgrass N/A* $642 56 19 1050 362
Giant miscanthus N/A $203 104 67 1654 510

Native grasses N/A $15482 52 32 1119 989
Restored prairie N/A N/A 55 33 1513 1633
Early successional N/A N/A 51 23 1626 882

*N/A denotes that the cropping system cannot break even
since it does not produce as much biomass as corn stover.

has the lowest breakeven yield, followed by early
successional vegetation, native grasses, and restored
prairie. Comparing current yields (Table 3) and breake-
ven yields (Table 4), at the corn and biomass prices
assumed, nearly all of the perennial bioenergy crops
would require a tenfold yield boost to break even with
corn. However, the magnitude of yield gains needed is
much smaller at KBS than at ARL, due to the lower pro-
ductivity of the corn reference system and the relatively
better yields of switchgrass and giant miscanthus at the
KBS site.

BCAP and insurance premium results

The USDA Biomass Crop Assistance Program (BCAP) is
a current policy designed to enhance the profitability of
dedicated bioenergy crops. Figures 5 and 6 compare the
profitability of the bioenergy cropping systems at ARL
and KBS under no BCAP financial assistance and under
four different BCAP scenarios: matching payments for
biomass at time of sale, annual rental payments, estab-
lishment cost share payments, and all three combined.
An important observation is that BCAP payments cannot
bridge the profitability gap between corn and bioenergy
perennials. However, in the ‘all BCAP payments’ com-
bined scenario, the profitability of most bioenergy peren-
nials turned from negative to positive. This was the case
for all bioenergy perennials except giant miscanthus in
both locations. In two cases (early successional vegeta-
tion at KBS and switchgrass and early successional vege-
tation at ARL), individual BCAP payments such as
annual rental and matching payments could also reverse
the expectation of negative profitability.

Crop revenue insurance offers another potential
means to avert negative profitability. Table 5 presents
insurance premiums needed to insure against NPV fall-
ing below zero. Premiums are very low (i.e., $1-2 ha ")
only in the instances where among the 1000 simulations,
the NPV rarely failed to be positive. That occurred only
for corn at ARL and corn and switchgrass at KBS. Insur-
ance premiums are higher at ARL for all crops except
restored prairie; four bioenergy crops there frequently
generated negative annualized NPVs, including giant
miscanthus (100% of cases), switchgrass (98%), native
grasses (88%), and early successional vegetation (75%).
At KBS, only giant miscanthus (98% of cases) and
restored prairie (99% of cases) generated negative annu-
alized NPVs most of the time.

Stochastic simulation results

Up to this point, all results have been based on mean
values, ignoring production and price risk. Summary
statistics from the 1000 stochastic simulations of the six
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Table 5 Insurance premiums (in $ ha™') that would support a
returns) is met

1500

policy that would pay off whenever the zero threshold (in net

Giant miscanthus Switchgrass Native grasses Restored prairie Early successional Corn
ARL 1032 83 45 18 49 2
KBS 626 2 42 136 32 1

bioenergy crops at KBS and ARL are presented in
Table 6. Corn stands out as having the highest mean
profit, as measured by annualized NPV; it also had the
highest maximum at both sites. However, corn presents
a high standard deviation, and its minimum values are

lower than several perennial bioenergy cropping

systems. Giant miscanthus did poorly at both sites
because of winter kill. Over the 20-year simulation per-
iod, giant miscanthus had a 45% chance of winter kill at
ARL and a 10.5% chance at KBS.

First- and second-degree stochastic dominance identi-
fied certain systems as relatively efficient in the sense
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Table 6 Stochastic annualized NPVs of bioenergy crops at ARL and KBS sites, 1000 simulation iterations (in U.S. dollars)

ARL (Arlington, WI)

KBS (Hickory Corners, MI)

Crop Mean SD Median Min Max Mean SD Median Min Max
Corn 943 439 932 —265 2527 328 168 319 —136 830
Switchgrass —83 40 -81 -199 34 99 66 98 —-113 304
Giant miscanthus —830 145 —821 —1175 —361 —623 272 —670 —1148 311
Native grasses —43 39 —40 —153 112 —14 85 —21 —206 276
Restored prairie 94 135 86 —278 503 —136 49 —138 —249 47
Early successional -39 61 —43 —183 215 —-16 55 -23 —130 171

that they were not dominated by any other cropping
system at their site. Corn appeared in the efficient set at
both sites, joined by native grasses and early succes-
sional vegetation at ARL and by switchgrass at KBS.
Giant miscanthus was dominated by all other crops
under one criterion or the other. At ARL it did so
poorly that it lost money even in its best iteration. Con-
sequently, it was strictly dominated under FSD by all of
the other crop systems at ARL. At KBS, giant miscant-
hus was dominated under FSD by switchgrass, and corn
and under SSD by restored prairie, native grasses, and
early successional. The restored prairie treatment also
fared poorly, being dominated at KBS under FSD by
switchgrass, native grasses, early successional vegeta-
tion and corn, as well as dominated at ARL under SSD
by corn. The remaining perennial bioenergy crops
differed in their stochastic dominance results between
the two sites. Although switchgrass was in the efficient
set at KBS, at ARL it was dominated under FSD by
native grasses and early successional. The early succes-
sional vegetation and native grass treatments that were
in the efficient set at ARL were dominated at KBS under
FSD by switchgrass (the FSD and SSD results are not
reported in full detail in this paper, but can be provided
by the authors upon request).

Although corn was accompanied in the FSD and SSD
risk efficient sets by switchgrass at KBS and by native
grasses and early successional vegetation at ARL, corn
was the more profitable system under all but the very
worst outcomes simulated. At ARL, corn was more
profitable than native grasses and early successional
vegetation in over 99.5% of the outcomes. Likewise at
KBS, corn was more profitable than switchgrass 95% of
the time. Only when the higher cost corn crop failed
repeatedly, did it fail to come out ahead of its closest
competitors.

Because more than one cropping system remained in
the risk efficient sets at each site under FSD and SSD,
SERF was used to rank the full set of bioenergy invest-
ment projects at each site. Certainty equivalent (CE) val-
ues for corn and perennial crops are presented for the
range of CARA levels from 0 (risk neutral) to 0.001

(highly risk averse) in Figs 7 and 8. At CARA=0, the
CEs equal the mean expected annualized NPV. The CEs
decline as risk aversion increases (i.e., as CARA values
become larger). In both locations, the locus of CE values
for corn is higher everywhere than that for all bioenergy
perennials, indicating that producers who are both risk
neutral and risk averse over a very wide range of risk
aversion would prefer corn to bioenergy perennials. The
next best alternative investment is restored prairie in
ARL or switchgrass in KBS, but the differences between
perennial crops (except giant miscanthus) are very
small.

On comparing the capital budgeting (i.e., risk neutral
case) and the stochastic budgeting (i.e., risky case)
results, we see both similarities and differences in the
ranking of risky bioenergy investment projects. Corn is
the preferred crop in both the risk neutral and the risky
cases and at both locations. The difference between corn
and bioenergy perennials is consistently higher at ARL
than at KBS, which is attributable to more fertile soils in
the former that result in higher corn yields at ARL. The
most prominent difference when comparing the results
of the risk neutral and the risky case is the change in
the ranking of bioenergy perennials (e.g., early succes-
sional vegetation ranks second in the risk neutral case
in ARL, but when it comes to the risky case, it takes the
third place). Small differences in the profitability of
most bioenergy perennials (except giant miscanthus)
and the fact that stochastic simulation covers a wide
range of states of nature may explain ordering changes
when moving from the risk neutral to the risky case.

Discussion

This paper supplements standard capital budgeting and
comparative breakeven analysis with stochastic simula-
tion to assess the competiveness of bioenergy perennials
relative to corn with grain and stover removal. Using
data from 2008 to 2013 from two sites in the Great Lakes
Region at Arlington, WI, and Kellogg Biological Station
(KBS) at Hickory Corners, MI, we simulate four stochas-
tic variables that affect investment returns to bioenergy

© 2015 The Authors. Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 8, 1162-1177



1174 T. SKEVAS et al.

1000
800
600
400
200

0

S/ha

[ T D T T Sy S S S S ——

ST o D
200 A XM\ Y )

¥ ¥ o o°

—400
—600

—800

>
QQ
Qr QO Qr Qr Q

o
QQ

SR S
F & ¢
) P P

$ &
) PP

—1000

Coefficient of absolute risk aversion

—a—Corn

—e— Native grasses

—+—Giant miscanthus —s=Switchgrass

Restored prairie --e-- Early successional

Fig. 7 Certainty equivalents for decision-makers who are risk neutral to highly risk averse with constant absolute risk aversion:

stochastic efficiency with respect to a function (SERF) comparison of results from 1000 stochastic simulations of annualized net

returns from bioenergy investment projects at Arlington, WL

1000
800
600
400

200

[ pp——— o

S$/ha
o

Q

>
~200 & FHFFE
Qr Q- O

0 .
-400

-600 —

$ o %
& & &
¥ oY o

- B s 1 ot et okt +

& o {y
N O

-800
-1000

Coefficient of absolute risk aversion

—=— Corn

—e— Native grasses

Restored prairie

—— Giant miscanthus —e— Switchgrass

--e-- Early successional

Fig. 8 Certainty equivalents for decision-makers who are risk neutral to highly risk averse with constant absolute risk aversion:
stochastic efficiency with respect to a function (SERF) comparison of results from 1000 stochastic simulations of annualized net
returns from bioenergy investment projects at Kellogg Biological Station (KBS), MI.

crops: crop failure risk, time to maturity risk, variability
in mature yields, and price risk.

The standard, average capital budgeting analyses
show that the profitability of corn dominates all other
cropping systems at both sites. Corn’s dominance comes
from 1) providing income from both grain and cellulosic

biomass, and 2) its consistently strong yields as an
annual crop (unlike the slow buildup of the perennial
crops). Although BCAP payments can reduce profitabil-
ity losses from adopting perennial bioenergy crops, they
are not sufficient to bridge the profitability gap with
corn. Future research could seek to assess how much
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the gap could be narrowed using policies that provide
farmers with payments for ecosystem benefits related to
perennials.

The comparative breakeven price analysis shows that
corn stover yields are so high at ARL that there is no
biomass price at which perennial bioenergy crops can
match the profitability of corn. Meanwhile, on the
poorer soils of KBS, switchgrass, giant miscanthus, and
native grasses require very high prices to break even
when the price of corn is $4 per bushel. Of the KBS
bioenergy crops, giant miscanthus has the lowest break-
even price. This result is in line with previous literature
that computes breakeven prices for switchgrass and
miscanthus in Ontario (DeLaporte et al., 2014), the
Midwestern United States (Jain et al., 2010), southern
Michigan (James et al., 2010), and Illinois (Khanna ef al.,
2008). However, the breakeven prices for giant miscant-
hus and switchgrass in the current study are higher
than those observed elsewhere. The differences may be
due to the use of secondary yield and production cost
data in those studies vs. primary data in this study. The
comparative breakeven yield results find that perennial
bioenergy crops require tenfold yield gains at ARL to
generate net revenue equal to corn at the prices
assumed, with levels at KBS also very high at three- to
fivefold gains needed for switchgrass and giant miscant-
hus. All values are higher than the significant increases
needed that were predicted by James et al. (2010) for
southern Michigan. Both the comparative breakeven
price and yield analyses demonstrate that although
most perennial bioenergy crops are far from achieving
average profitability comparable to corn at either site,
the potential for bioenergy crops eventually to compete
with corn is greater at KBS, where corn productivity is
lower.

Results of the investment risk analysis were largely
similar. Stochastic efficiency analysis of the investment
returns shows annual corn to be an even more resilient
benchmark than prior profitability studies that ignored
risks of establishment failure and time to maturity of
perennial bioenergy crops. Corn was the only crop in
the risk efficient set under FSD and SSD at both sites.
Under the SERF analysis, corn dominated all other
systems over the entire range of risk aversion levels
simulated at both locations. No other system came close
at ARL in Wisconsin. At KBS in Michigan, switchgrass
came second—within competitive range at the
$50 Mg ! biomass price if corn grain prices were to fall
to by more than half to the $2 per bushel levels of the
1990s and early 2000s. Among the bioenergy perennials,
only switchgrass generated positive profits at KBS most
of the time (94%). In ARL, apart from corn, only
restored prairie generated positive net returns most of
the time (73% of cases).

Although earlier studies found that giant miscanthus
performs better than other bioenergy perennials (Clancy
et al., 2012; Dolginow et al., 2014), we find that in the
U.S. Great Lakes region, it has an extremely high proba-
bility of generating negative investment returns. Our
more negative results were driven by high current
rhizome costs and the high probability of winter kill in
the establishment year in ARL (45%) and lower but still
notable probability of winter kill at KBS (10.5%).

In the absence of changes in agronomic technology or
market prices, the pattern of low investment returns
from perennial bioenergy crops implies a need for large
subsidies to make perennial bioenergy crops equally
attractive with corn, with mean differences ranging
from $75-385 per acre at KBS to $343-717 per acre at
ARL. The bioenergy crops with the lowest subsidy
requirements were switchgrass at KBS and restored
prairie at ARL. One factor mitigating the cost of poten-
tial subsidies required is that the variance of investment
returns for bioenergy perennials is lower than for corn
(except for giant miscanthus in ARL). Another measure
that can increase the attractiveness of bioenergy peren-
nials is BCAP payments. Although these payments
cannot make bioenergy perennials equally attractive to
corn, they can reduce expected losses and (except for
giant miscanthus) the probability of a negative invest-
ment return.

Overall, the results indicate that these perennial
bioenergy crops are currently both less profitable and
riskier than corn for farmers in the Great Lakes region.
However, the lower corn yields on poorer soils at KBS
reduce the revenue gap between corn and most bioen-
ergy perennials, compared to the gap at ARL, where
soils are highly productive. Like Miao & Khanna (2014),
we find that while bioenergy crops remain significantly
poorer investments than corn, their lower opportunity
cost under more marginal crop production conditions
indicates the potential for regional comparative advan-
tages at more marginally productive sites if relative
prices, technological change, or policy advantages were
to favor perennial bioenergy crops. The ranking of
biomass investment projects presented here offers infor-
mation on the comparative riskiness of bioenergy
investment projects in the southern Great Lakes region.
Future research could apply this modeling approach to
assess the comparative riskiness of bioenergy crops in
other regions, where climatic and soil conditions may
have different effects on crop establishment risk and the
temporal distribution of crop yields.
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