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Foreword by the Cl 2016 Workshop Chairs

Climate informatics is an emerging interdisciplinary field that combines climate science with statistics,
machine learning, and data mining. The Climate Informatics workshop series is a yearly workshop
which started in 2011. The goal of the workshop series is to bring together researchers in these various
areas, to stimulate discussion of new ideas, foster new collaborations, and thereby accelerate discovery
across disciplinary boundaries.

This year's workshop was held on September 21-23, 2016, at the National Center for Atmospheric
Research (NCAR), Boulder, CO. The workshop consisted of a one-day Hackathon event on the topic of
Northern Hemisphere Sea Ice Prediction organized by Balazs Kegl, Camille Marini, and Andrew Rhines
(Wednesday, September 21), followed by two days of the main workshop event (September 22-23). The
main workshop had six invited talks from experts in both climate science and data science: Doug Nychka
(National Center for Atmospheric Research), Pradeep Ravikumar (Carnegie Mellon University), Yulia Gel
(University of Texas at Dallas), Jason Smerdon (Columbia University), Sudipto Banerjee (University of
California at Los Angeles), and Allen Pope (National Snow & Ice Data Center). Furthermore, 34 peer-
reviewed short papers were selected for presentation at the workshop. The short papers are included in
these proceedings and were presented at the workshop as rapid fire spotlight presentations (2 minutes
each) or spotlight presentations (10 mins each, papers by young scientists with strong positive reviews)
and all papers were part of a 2-hour poster session with reception on Thursday, September 22 evening.
The workshop also had a panel discussion focused on the Future of Climate Informatics on Friday,
September 23, and a hiking event for community-building immediately following it.

There were 75 registered participants for the event. Thanks to the support from a NSF grant, we were
able to provide travel fellowships to a total of 25 young career scientists to help cover their travel
expenses to attend the workshop.

This workshop was made possible through the tireless work of the entire organizing committee. We
would like to thank the program committee chairs, Slava Lyubchich and Andy Rhines, for doing an
amazing job in handling the review process, selecting the high quality papers for the workshop, and
helping with organizational details. They often went outside their call of duty to take care of several
aspects of the workshop planning and organization. We thank Wei Ding, the publicity and publications
chair, who has been extremely helpful in getting the word out about the workshop, handling general Cl
communications and for putting together these proceedings. With Wei’s help, word about the CI
workshop reached several communities, and we had numerous first time attendees. We thank Eniko
Szekely, the budget chair, who has handled the budget and travel scholarships. Eniko graciously handled
the complexities of handling the budget, and made sure several of the workshop attendees get their
travel scholarships. All the committee members have worked hard over the past year to create an
exciting program. Finally, we thank the steering committee, Imme Ebert-Uphoff, Claire Monteleoni, and
Doug Nychka, for continually guiding us with various organizational aspects and for helping publish the
Cl2016 Proceedings. They have been extremely generous with their time and guidance, without which
the workshop would not have been possible.

The support team at NCAR, Kathy Peczkowicz and Cecilia Banner, under the guidance of Doug Nychka,
made sure participants did not starve (coffee breaks and reception), and stayed awake (coffee!), made

Vi



sure they had a roof over their head (hotel) and transportation to and from the workshop (bus). They
put together the web page, the workshop hand-outs, and helped us with anything we needed. We also
thank Jennifer Phillips of NCAR for setting up the proceedings in the NCAR OpenSky repository.

We thank all of our sponsors, The National Science Foundation, the National Center for Atmospheric
Research, NVIDIA and STATMOS for their financial support.

Last, but not least, we'd like to thank the most important group of people - the participants - for

contributing to, participating, and continuing to advance the state-of-the-art in climate informatics.

Arindam Banerjee
Jennifer Dy
Cl2016 Workshop Co-Chairs
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Foreword by the Cl 2016 Steering Committee

Each passing day makes it more apparent that the threat of climate change is one of the greatest
scientific and societal challenges of the 21st century. We are fortunate, however, that the amount of
observational and model-simulated climate data has grown at an accelerating rate. This wealth of data
creates a unique opportunity for data scientists (broadly defined, as researchers in machine learning,
data mining, and statistics) to partner with climate scientists in the development of new methods for
interdisciplinary knowledge discovery.

Climate Informatics is an emerging field at the interface of data science and climate science. In 2011,
Claire Monteleoni and Gavin Schmidt launched the International Workshop on Climate Informatics, so
that researchers from the fields of data science and climate science could learn from each other and
start new collaborations. The first workshop was held at the New York Academy of Sciences and based
on the initial success it rapidly evolved into an important annual event for this field. In 2012, the
workshop venue moved to the Mesa Laboratory at the National Center for Atmospheric Research
(NCAR) in Boulder, Colorado. Doug Nychka, director of the IMAGe (Mathematics Applied to Geosciences)
group, and his staff, have hosted the event at NCAR ever since. Overlooking the city of Boulder, and
bordered by stunning cliffs, forests, and park land, this location has provided a wonderful setting for this
workshop, reminding participants of the importance of protecting this planet. Within the first 5 years,
the workshop attracted participants from over 19 countries and 30 U.S. states.

NCAR Mesa Laboratory in Boulder, CO

Photo credit: Copyright University Corporation for Atmospheric Research (UCAR), licensed under a Creative
Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License, via OpenSky.
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We feel very privileged to support the emerging climate informatics community and contribute to its
growth. New collaborations have been formed and new ideas have taken flight, leading to new insights
on climate change. We are looking forward to future workshops and the impact of our interdisciplinary
research community.

The Climate Informatics Workshop Steering committee:
e Claire Monteleoni, George Washington University (co-founder)
e Doug Nychka, NCAR (2012-present)
¢ Imme Ebert-Uphoff, Colorado State University (2013-present)

Information about future workshops and other Cl news can always be found on our website,
www.climateinformatics.org.
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Hackathon and Workshop Agenda

Hackathon, Wednesday, September 21, 2016

9:30

9:45

10:05 - 10:45
10:45-12:30
12:30-1:30
1:30-3:00
3:00—3:15
3:15-5:00
5:00 - 6:00
6:00

Bus pickup at Marriott Courtyard

Bus pickup at Millennium Harvest House (overflow lodging)

Arrival at NCAR Mesa Lab: Registration, Coffee and Introduction

Session 1

Lunch and discussion of initial results

Session 2

Coffee Break

Session 3

Debriefing and closing

Bus departs NCAR for Marriott Courtyard

Cl Workshop, Thursday, September 22, 2016

7:45

8:15-8:45

8:45-9:00

9:00-10:00

Bus pickup at Marriott Courtyard to NCAR

Registration and continental breakfast

Opening Remarks

Invited Talk - Doug Nychka: Extremes in Regional Climate: What to do with 8000
Histograms?
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10:00 - 10:30

10:30-11:30

11:30-12:00

12:00-12:10

12:10-1:30

1:30-2:30

2:30-3:15

3:15-3:45

3:45-4:30

4:30-6:30

6:30

Coffee Break

Invited Talk - Pradeep Ravikumar: Poisson Graphical Models With Rich
Dependence Structures

Spotlight Presentations:
Chintan Dalal: Covariance Structure Analysis of Climate Model Output

Haozhe Zhang: Identifying Precipitation Regimes in China Using Model-Based
Clustering of Spatial Functional Data

Emma Pierson: Detecting and Predicting Beautiful Sunsets Using Social Media
Data

Group Photo

Lunch (Cafeteria serves food from 11:30 am - 1:30 pm, cash only)

Invited Talk - Yulia Gel: Where Statistics and Data Science Meet Climate Risk
Insurance

Poster Highlights, Part 1

Coffee Break

Poster Highlights, Part 2

Reception and Posters

Bus departs NCAR, return to Boulder Courtyard Marriott

Cl Workshop, Friday, September 23, 2016

7:45

8:15 - 8:30

Bus departs Boulder Courtyard Marriott to NCAR

Continental Breakfast

XVi


https://www2.cisl.ucar.edu/events/2016/poisson-graphical-models-rich-dependence-structures
https://www2.cisl.ucar.edu/events/2016/poisson-graphical-models-rich-dependence-structures
https://www2.cisl.ucar.edu/events/2016/covariance-structure-analysis-of-climate-model-output
https://www2.cisl.ucar.edu/events/2016/identifying-precipitation-regimes-china-using-model-based-clustering-of-spatial-functional-data
https://www2.cisl.ucar.edu/events/2016/identifying-precipitation-regimes-china-using-model-based-clustering-of-spatial-functional-data
https://www2.cisl.ucar.edu/events/2016/detecting-and-predicting-beautiful-sunsets-using-social-media-data
https://www2.cisl.ucar.edu/events/2016/detecting-and-predicting-beautiful-sunsets-using-social-media-data
https://www2.cisl.ucar.edu/events/2016/where-statistics-and-data-science-meet-climate-risk-insurance
https://www2.cisl.ucar.edu/events/2016/where-statistics-and-data-science-meet-climate-risk-insurance

8:30-9:30
9:30-10:00
10:00-11:00
11:00-12:00
12:00 -1:00
1:00 - 2:00
2:00-3:00
3:00-3:15
3:15-3:45
3:45-5:15
5:30

Invited Talk - Jason Smerdon: Gigabytes, Megadroughts and Two Kiloyears of
Climate History

Coffee Break

Invited Talk - Sudipto Banerjee: Bayesian Modeling and Inference for High-
Dimensional Spatial-Temporal Data

Spotlight Presentations:

Joanna Slawinska: Spatiotemporal Pattern Extraction with Data-Driven Koopman
Operators for Convectively Coupled Equatorial Waves

Yi Li: A Nonparametric Copula Based Bias Correction Method for Statistical
Downscaling

Guruprasad Nayak: Multiple Instance Learning for Burned Area Mapping Using
Multi-Temporal Reflectance Data

Lunch and Posters (Cafeteria serves food from 11:30 to 1:30pm, cash only)

Invited Talk - Allen Pope: Snow and Ice from Space — how computing helps us
harness Landsat 8 to study our cryosphere

Panel Discussion

Panelists: Sudipto Banerjee, Yulia Gel, Doug Nychka, Allen Pope, Jason Smerdon

Concluding Remarks

Coffee Break

Community-Building via Hiking

Bus departs NCAR, return to Boulder Courtyard Marriott
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Climate Informatics 2016 Hackathon

Balazs Kégl and Andrew Rhines

The Rapid Analysis and Model Prototyping Platform

The Rapid Analysis and Model Prototyping (RAMP) is a versatile management and software tool for
connecting data science to domain sciences, which is the main mission of the Paris-Saclay Center for
Data Science (CDS). It grew organically out of our experience with data challenges, and evolved through
the dozen iterations that we carried out in our research and training activities. The RAMP is developed
as an in-house tool at the CDS, in collaboration with the Center for Scientific Management (CGS) at
Ecole des Mines.

It was originally designed as a collaborative prototyping tool that makes efficient use of the time
of scientists in solving the data analytics segment of high-impact domain science problems. We then
realized that it is equally valuable for training novice data scientists, for networking, for communication,
and as a social science observatory. It has been rapidly becoming a standard educational tool, used in
three UPSaclay data science masters, but also in other programs in Paris and Lille. It has been used
six times at Saclay, and in five hackatons outside Saclay (Paris School of Economics; French National
Museum of Natural History; twice at NCAR, Colorado; Epidemium, Paris).

The RAMP is used in the following operational context. Similarly to a data challenge, the data
provider arrives with a prediction problem and a corresponding data set. An experienced data scientist
then cleans and curates the data and formalizes the problem. This process can take two weeks to six
months, and results in a starting kit, typically an ipython notebook that introduces the domain science
problem, describes the data, and shows a first untuned solution (benchmark). The problem is then set
up using the RAMP software, and a RAMP event is organized with 30-50 data scientists and domain
scientists. The RAMP event usually takes a single day to attract data scientists who do not wish to
engage for a longer period of time learning the domain problem. We have been experimenting with other
formats: data challenges usually take several months, and course projects can take several weeks. When
the data science problem requires the mastering of a specific tool, the RAMP event can be preceded by
a Training Sprint. Part of the Training Sprint can also be devoted to introducing the domain science
problem, otherwise this introduction takes place at the beginning of the RAMP.

In an ongoing project we will stabilize the software tool and gradually open it so RAMP events can
be organized also independently of the CDS core team. We will continue integrating the tool and the
format into training programs. The goal is to make the RAMP a standard tool in data science education.

Hackathon Topic: Predicting Arctic Sea Ice Cover

Arctic sea ice cover is one of the most variable features of Earth’s climate. Its annual cycle peaks at
around 15 million square kilometers in early spring, melting back to a minimum of about 6 million square
kilometers in September. These seasonal swings are important for Earth’s energy balance, as ice reflects
the majority of sunlight while open water absorbs it. Changes in ice cover are also important for marine
life and navigation for shipping.

In recent years, Arctic sea ice cover has declined rapidly, particularly during the September mini-
mum. These changes have outpaced the predictions of climate models, and forecasting extent remains a
formidable challenge. Typically, skillful predictions are limited to 2—5 months in advance, while idealized
experiments suggest that predictions up to two years in advance should be possible [2].

Better tools to predict ice cover are critical for seasonal and regional climate prediction, and would
thus address grand challenges in the study of climate change [1].
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Figure 1: Recent declines in Arctic sea ice cover, courtesy of the National Snow and Ice Data Center.

The CCSM4 simulator

As a surrogate for observational data, the Climate Informatics 2016 RAMP used output from a 1,300
year simulation of the NCAR CCSM 4.0 climate model. The model was run in fully-coupled mode
with interactive ocean, atmosphere, and sea ice. The simulation was also performed in an idealized
pre-industrial mode, where greenhouse gas concentrations and other external forcings are held fixed to
1850 CE levels. This allows us to access a stationary climate over a 1,000+ year period, which makes the
evaluation of the predictor more robust than if we used real measurements that are both non-stationary
and limited to several decades.

The data is a time series of maps, z;, consisting of different physical variables on a regular grid on
the Earth, indexed by lon(gitude) and lat(itude) coordinates. The variables made available are:

ice_area — the Northern Hemisphere sea ice area, in millions of squared kilometers.
ts — surface temperature, most important over the oceans which have a very high heat capacity.

taux — zonal (x-direction) surface wind stress. This is the frictional effect of winds on the sea
surface and sea ice.

tauy — meridional (y-direction) surface wind stress.
ps — surface pressure.

shflx — Surface sensible heat flux, the amount of heat transferred from the surface to the atmo-
sphere.

cldtot — Total cloud cover (fractional), which has strong effects on radiative energy balance at
the surface.
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We stress that these fields are a small subset of the variables that define the model state, representing a
conservative scenario where only certain features can be remotely observed in real time — primarily from
satellites and numerical weather prediction models that can accurately estimate the large scale pressure
and wind patterns. Notably, we excluded several important variables including sea ice thickness and the
temperature and stratification of the ocean mixed layer.

The fields are monthly averages for 1,300 years, giving a total of 15,600 time points. To be conservative
with respect to stationarity, the first 400 years were excluded as the deep ocean takes some time to fully
equilibrate in the model.

The prediction task

The goal was to predict the Northern Hemisphere sea ice area 4 months in advance. Since the most
important prediction is the minimum area in September, we also output the RMSE over predictions in
May, predicting that years (minimum) ice area in September.

The pipeline consists of a time series feature extractor and a predictor. Since the task is regression,
the predictor is a regressor, and the score to minimize will be the root mean square error. The feature
extractor will have access to the whole dataset. It will construct a classical feature matrix where each row
corresponds to a time point. You should collect all information into these features that you find relevant
to the regressor. The feature extractor can take anything from the past, that is, it will implement a
function a; = f (z1,..., 2). Since you will have access to the full data, in theory one could cheat (even
inadvertently) by using information from the future. We implemented a randomized test to find such
bugs, but it is still important to avoid this since it would make the results irrelevant.

Domain-knowledge, results, and lessons for future hackathons

Participants were free to explore any regression technique to improve the prediction. Since the input
dimension is relatively large (2000+ dimensions per time point even after subsampling to 5-degree spatial
resolution) sparse regression techniques were effective in limiting the subset of data that were used.
However, sparse methods also revealed that a surprisingly small subset of the variables were necessary
to obtain the best predictions, often with fewer than 50 dimensions contributing (i.e., 50 unique variable-
location combinations). Surface sensible heat flux in parts of the Arctic was often found to be a key
element, suggesting that it was being used in conjunction with surface temperature to ‘learn’ sea ice
thickness despite it not being provided as an input variable. Nevertheless, even predictions using more
complex methods did not improve substantially over an initial baseline set by simple sparse regression
methods and even a 1-D autoregressive model on sea ice extent alone. It appears likely that the provided
fields placed too stringent a limit on 4-month predictability.

A key goal of climate science is in connecting what is understood from simulations to real-world
observations, which are intrinsically limited to several decades or at most a few centuries. In this
hackathon we addressed predictability within the context of a perfect, stationary model, and it will be
useful to consider future hackathon problems in which generalizability between different climate models
— or from climate models to observations — can be tested.
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Invited Talks

Doug Nychka, National Center for Atmospheric Research
Extremes in Regional Climate: What to do with 8000 Histograms?
Link to presentation

Abstract: As attention shifts from broad global summaries of climate change to more specific regional
impacts there is a need for the data sciences to quantify the uncertainty in regional predictions. A
regional climate model (RCM) is a large and complex computer code based on physics that simulates the
detailed flow of the atmosphere in a particular region from the large scale information of a global
climate model. Part of the value of these simulations is to explore the potential extremes in weather
that are due to natural variation and also to climate change. Here we present an application that
combines logspline density estimates to discern tail behavior in a distribution with spatial methods for
large data sets (LatticeKrig). This is applied to estimate return levels for daily precipitation from a subset
of the North American Regional Climate Change and Assessment Program. Here the regional models
comprise about 8000 grid locations over North America and so pose challenges for the statistical
analysis of functional data. Besides efficient algorithms this application also explores using embarrassing
parallel steps using the Rmpi package on the NCAR supercomputer (Yellowstone).

Pradeep Ravikumar, University of Texas at Austin
Poisson Graphical Models With Rich Dependence Structures
Link to Presentation

Abstract: Undirected graphical models, such as Gaussian, Ising, and discrete/multinomial graphical
models, are widely used in a variety of applications for modeling distributions over a large number of
variables. These standard instances, however, are ill-suited to modeling count data, which are
increasingly ubiquitous in climate studies, and spatial incidence data, as well as other big-data settings
such as genomic sequencing data, user-ratings data, and site visits. Existing proposals for distributions
for multivariate count data have a crucial caveat: the dependence structures they model are largely
restrictive, with solely negative or positive dependencies in some cases.

Can we devise multivariate distributions that can capture rich dependence structures between count-
valued variables? We address this question via a series of multivariate extensions of the univariate
Poisson distribution, providing a new class of Poisson graphical models. We also provide tractable
schemes with guarantees for learning our class of Poisson graphical models from data, and demonstrate
the performance of our methods by learning simulated networks as well as a network from microRNA-
Sequencing data.

Joint work with Eunho Yang, Genevera Allen, Zhandong Liu, David Inouye, Inderjit Dhillon.
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Yulia Gel, University of Texas at Dallas
Where Statistics and Data Science Meet Climate Risk Insurance
(Presentation not recorded)

Abstract: Last few years were particularly volatile for the insurance industry in North America and
Europe, bringing a record number of claims due to severe weather. According to the 2013 World Bank
study, annual average losses from natural disasters have increased from $50 billion in the 1980s to
about $200 billion nowadays. Adaptation to such changes requires early recognition of vulnerable areas
and the extent of the future risk due to weather factors. Despite the well documented impact of climate
change on the insurance sector, there exists a relatively limited number of studies addressing the effect
of the so-called “"normal" extreme weather (i.e., higher frequency, lower individual but high cumulative
impact events) on the insurance dynamics. In this talk we discuss utility and limitations of statistical and
machine learning procedures to address modelling and forecasting of such weather-related insurance
losses and the potential impact of uncertainty quantification on the insurance sector and policy holders.

Jason Smerdon, Columbia University
Gigabytes, Megadroughts and Two Kiloyears of Climate History
Link to Presentation

Abstract: Paleoclimatology spans many different timescales and incorporates a vast array of natural
archives that serve as proxies for past climate variability and change. Among the time periods of study,
the Common Era (CE; the last two thousand years) contains the most abundant collection of high-
resolution (seasonal to annual) proxy records spread globally across land and sea. The CE is also
becoming an increasingly common target for transient simulations using fully-coupled climate and earth
system models. The abundance of proxy records and the growing number of climate simulations, in
conjunction with the fact that the CE is a period when natural forcing occurred under background
conditions that were not too different from today, make it a compelling and critical period of focus.

A consequence of the large amounts of proxy archives and the expanding number of model simulations
is the growing need for techniques that facilitate data inquiry, comparison and ensemble
characterization across the large collection CE datasets. This talk will highlight two principal examples in
the study of CE climate: 1) the reconstruction of hemispheric and global climate fields using a now large
body of regression and missing data methods; and 2) data-model comparisons between spatiotemporal
hydroclimate reconstructions and ensembles of coupled model simulations. These two examples will be
explored in the context of how they have been approached to date and the opportunities that they offer
for new approaches within climate informatics.
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Sudipto Banerjee, University of California Los Angeles
Bayesian Modeling and Inference for High-Dimensional Spatial-Temporal Data
Link to Presentation

Abstract: With the growing capabilities of Geographic Information Systems (GIS) and user-friendly
software, statisticians today routinely encounter geographically referenced data containing observations
from a large number of spatial locations and time points. Over the last decade, hierarchical spatial-
temporal process models have become widely deployed statistical tools for researchers to better
understanding the complex nature of spatial and temporal variability. However, fitting hierarchical
spatial-temporal models often involves expensive matrix computations with complexity increasing in
cubic order for the number of spatial locations and temporal points. This renders such models
unfeasible for large data sets. In this talk, | will present some approaches for constructing well-defined
spatial-temporal stochastic processes that accrue substantial computational savings. These processes
can be used as "priors" for spatial-temporal random fields. Specifically, we will discuss and distinguish
between two paradigms: low-rank and sparsity and argue in favor of the latter for achieving massively
scalable inference. We construct a well-defined Nearest-Neighbor Gaussian Process (NNGP) that can be
exploited as a dimension-reducing prior embedded within a rich and flexible hierarchical modeling
framework to deliver exact Bayesian inference. Both these approaches lead to algorithms with floating
point operations (flops) that are linear in the number of spatial locations (per iteration). We compare
these methods and demonstrate their use in a number of applications and, in particular, in inferring on
the spatial-temporal distribution of air pollution in continental Europe using spatial-temporal regression
models in conjunction with chemistry transport models.

Allen Pope, National Snow & Ice Data Center
Snow and Ice from Space — how computing helps us harness Landsat 8 to study our cryosphere
Link to Presentation

Abstract: The polar regions and the wider cryosphere are quickly evolving harbingers of worldwide
change, driving shifts in water resources and global sea level rise. Therefore, it is important that we
measure and monitor snow, glaciers, and ice sheets in a consistent and repeatable manner over time.
The spatial, temporal, and radiometric resolution of Landsat 8 support a quantitative measure of polar
change over decameter spatial scales and weekly to seasonal timescales. To date, Landsat 8 has
collected over three years of imagery of exceptional data. In this presentation, | will provide a tour of
various applications of Landsat 8 to study the cryosphere, each of which has been facilitated by
cyberinfrastructure — in particular | will discuss dust deposition on snow in Colorado, supraglacial lake
monitoring in Greenland, measurement of Antarctic-wide ice velocities, and progress on the building of
a Landsat 8 mosaic of Antarctica. Each of these has been facilitated by new practices in research
computing, opening a new world of cryospheric research.
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BAYESIAN MODELS FOR CLIMATE
RECONSTRUCTION FROM POLLEN RECORDS

Lasse Holmstrom!, Liisa Ilvonen!, Heikki Seppi?®, Siim Veski®

Abstract—We report progress in using Bayesian multi-
nomial regression models to reconstruct the past cli-
mate from fossil pollen records. Three model variants
and associated example reconstructions are described:
a single-core reconstruction, a multi-core reconstruction
with spatial dependence, and a single-core reconstruction
with time uncertainty.

I. BACKGROUND

Instrumental records of past climate variation often
cover only the last 100-200 years. In contrast, climate
proxies can provide a continuous record of climate
change extending thousands of years into the past [1].
The data needed for paleoclimate reconstruction consist
of a “training set” of the modern values of the climate
variable of interest together with the associated modern
proxy data, as well as a past record of the same proxy.

We consider temperature reconstruction from lake
sediment pollen compositional data. The basic idea is
time-for-space substitution where the unknown tempo-
ral variation of past temperature is mimicked by the
varying modern temperatures in a large geographical
area that covers a wide range of environmental condi-
tions. Data from modern training lakes are used to cap-
ture the relationship between the pollen abundances of
various plants and the temperature. Then this relation-
ship and sediment core pollen abundances are used to
reconstruct the unknown past temperatures. For useful
reviews on climate reconstruction methodologies, see
[2], [3] and [4]. Bayesian approaches to pollen-based
reconstructions are discussed in [5] and [6] proposes
a unifying Bayesian framework for the paleoclimate
reconstruction problem.

Corresponding author: L Holmstrom, lasse.holmstrom@oulu.fi
Department of Mathematical Sciences, University of Oulu, Finland
2Department of Geosciences and Geography, University of Helsinki,
Finland, ®Institute of Geology, Tallinn University of Technology

II. RECONSTRUCTION MODELS
A. Reconstruction from a single core

Detailed Bayesian modelling for past environmental
reconstruction was first proposed in [7], [8], and [9].
The Bum model of [8] can be viewed as a Bayesian
version of some earlier reconstruction techniques, such
as the weighted-averaging and Gaussian logit models
[10], [11]. A modification of Bum, the Bayesian hier-
archical multinomial regression model referred to as the
Bummer was described in [7]. The Bummer model was
further discussed and modified in [12], [13], [14] and
[15].

To describe the original Bummer model, let us de-
note temperature by x and pollen abundance by y.
Superscripts m and f are used to indicate modern
(training) values of a variable and f is used for their
past (fossil) values. Thus, z* for example denotes
current temperature at training lake ¢ and yZ]; denotes the
abundance of pollen taxon j in sample ¢ of the sediment
core. Let the vector y;" include the observed pollen
taxon abundances in training lake ¢. The multinomial
model assumes that

yit =iyt i) ~ Mult(yf, pit),

where p* = (pi},...,p}) and p}} is the probability
that a random pollen grain from lake 7 represents taxon
k. The taxon occurrence probabilities are drawn from
a Dirichlet distribution,

(p;rll"“’pz?‘.rzn’a’ﬁ’ﬁy) NDiriChlet()\?l?iL"'" Zl)’

where AJ7,..., Al?' represent unimodal Gaussian re-
sponses of pollen to temperature,

X5 = apexp {—[(B — o)/} -

Analogous models are assumed for past quantities but
the taxon-specific parameters oy (scaling factor), S
(optimum temperature), and ~; (tolerance) are taken
to be the same both for training and fossil data. The
idea is that the response for taxon k is high when the
temperature (z;" or :1:{ ) in the environment is close
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Fig. 1. The basic multinomial regression model (Bummer). Squares
denote data and circles are model parameters. Capital letters indicate
aggregate quantities, Y™ = [yT",...,yn'] with n the number of
training lakes etc.

to the taxon’s optimal temperature [, and low when
it is not. The randomness of the multinomial proba-
bilities models the fact that other factors besides the
temperature can affect the pollen abundances. Figure 1
is a graphical representation of the basic multinomial
regression model.

The original Bummer assumed a Gaussian iid prior
for the past temperatures a:{ but we use a smoothing
prior elicited from a numerical climate simulation of
the annual mean temperature for the area where the
core lakes are located. Prior temporal smoothness is
imposed by assuming that

R P

T =T + ﬁ(tz+1 ti)ei, i=1,...,N,
where :n{ ~ N(p, 1), p is the current temperature, the
g;’s are iid standard Gaussian variables, and ¢;’s are the
ages of the core sediment samples (the chronology).
In principle, 9:{ = u, and the prior variance 1 can
be thought to describe e.g. measurement error. The
parameter x > 0 controls the smoothness of sample
paths and a vague prior for it is elicited from a 1150
year long NCAR numerical climate model simulation
of mean annual temperature for northern Europe [16],
restricted to the core chronology ages.

(1)

B. Multiple cores

Next, let us consider reconstruction from several
cores simultaneously [14]. More reliable reconstruc-
tions should result by taking into account not only tem-
poral correlations along each core but also the spatial
correlation between cores. The sediment layer ages of
the cores are first combined into a single chronology
by forming their union and the reconstruction for each

Fig. 2. The spatio-temporal model for reconstructions from several
cores simultaneously. A spatial linear trend is modeled by covariates
& and the associated parameters w. The parameter v is associated
with the spacial covariance matrix. Union chronology is denoted by
t.

core is based on this union chronology. Denoting by N
the number of distinct dates in the union chronology,

let x! = [xf;,...,ng]T denote the unknown past
temjperatures for core ¢ = 1,...,C, and let X/ =
[(x])T, ..., (x2)T]T be the concatenated vector of past

temperatures for all cores. Then the spatio-temporal
prior for the past temperatures is

}(f|2 ~ N(p,X),

where g = [y, .., pel”s pe = [He, - pd” € RY
and p. is the modern temperature at the location of core

c. The covariance matrix X is assumed to be separable,
CNxCN
¥ =Cs®Cpr e R¥VXEN

where Cg is spatial covariance and Cr is temporal
covariance defined by (1). The spatial dependency is
modeled with a linear trend and additive isotropic noise
characterized by a parametric exponential covariance
function. Priors for the spatial dependency model pa-
rameters are elicited by considering the known mean
annual temperatures in the part of northern Europe
where the training lakes are located and training data
contributes to the estimation of these parameters. A
graphical representation of the spatio-temporal model
is depicted in Figure 2.

C. Including time uncertainty

In reality, the precise ages t; of the core sediment
layers are not known. In fact, we only know their depths

in the core and only a small number of the depths have
2
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Fig. 3. The model with time uncertainty. In the Bchron module,
d stands for sample depths, 7 for radiocarbon dates and 1 for
age-depth model parameters. x*™ is the NCAR climate model
simulation.

Fig. 4. The locations of training (dots) and core lakes (stars): 1 =
Arapisto, 2 = Flarken, 3 = Raigastvere, 4 = Rduge. Color indicates
current annual mean temperature.

been dated with radiocarbon analysis. Estimates for the
ages of the remaining sediment samples are obtained
by applying some interpolation method. In order to get
a more realistic idea of the overall credibility of the
results, the uncertainty associated with the core chronol-
ogy should be factored in to the estimation process.
We do this in [17] in a way similar to [18] by adding
a separate chronology module based on the Bchron
age-depth model [19]. Realizations of chronologies are
generated by Bchron and for each random chronology a
reconstruction is made using the multinomial regression
model. The model with time uncertainty is depicted in
Figure 3.

ITI. RESULTS

The data included 173 training and four core lakes in
Finland, Sweden and Estonia (Figure 4). 104 different
pollen taxa were counted from the sediment samples.

Two independently made temperature reconstructions
are shown in Figure 5 and Figure 6 shows reconstruc-
tions from the same cores but with spatial dependence
between all four cores included in the model. Both
types of reconstructions exhibit the well-known features
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Fig. 5. Temperature reconstructions from individual cores for
two lakes. Time on the horizontal axis is in years before present
(BP). Red: posterior mean. Blue: WA-PLS. Yellow/gray: point-
wise/simultaneous 95% credible intervals.
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Fig. 6. Spatio-temporal temperature reconstructions. The black line
marks the oldest date in the core chronology.

of Holocene temperature history but spatial correlation
(and shared environmental parameters) makes the latter
reconstructions more similar which can be considered
an improvement given that the lakes are located in
the same general area. The rate of early warming
leading to the Holocene is also more plausible in the
spatio-temporal reconstructions and they also match the
standard WA-PLS reconstructions better.

Figure 7 shows part of the reconstruction for lake
Rduge when time uncertainty is included in the model.
The posterior mean temperature is very smooth and for

example misses the well-known cold episode around
3
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7. Rduge temperature reconstruction with time uncertainty.
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8. Lake Rouge posterior distributions (histograms based on

6000 sample points) of timing of the 8200 BP cold event (left) and
length of warming leading to the Holocene (right).

8200 years before present. This episode does show in

the

individual posterior sample temperature histories but

their timing varies and therefore the episode disappears
from the posterior mean. On the other hand, including
time uncertainty allows one to analyze for example the
uncertainty in the timing of this episode and the length
of initial Holocene warming (Figure 8).
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(3]

(4]

(3]
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Abstract—Modern climate data sets, including paleo-
reconstructions, long-term weather monitoring records,
and remote sensing data, contain a wealth of space-time
information that leads to a variety of challenges related to
data storage, management, and analysis. This has sparked
an interest in dynamic space-time clustering algorithms
that are particularly suitable for the analysis of large data
streams. The trend-based clustering algorithm TRUST
allows segmentation of space-time processes in real time,
but requires the user to set multiple tuning parameters,
and this step is usually performed in a subjective manner.
Here we propose a data-driven automatic approach to
simultaneously select the tuning parameters based on
a penalized loss function. We focus on the two most
important parameters of the TRUST algorithm, which de-
fine short-term closeness of observations across locations
and long-term persistence of such closeness within an
analyzed time window. We demonstrate the performance
of the enhanced clustering procedure using simulated
time series, and illustrate its applicability using long-term
records of water temperature in Chesapeake Bay.

I. MOTIVATION

Contemporary environmental data sets often exhibit
resolution at disparate spatial and temporal scales.
Moreover, the data structure evolves in space and time,
and thus standard assumptions of covariance separabil-
ity and conventional inference tools for spatio-temporal
processes might be inappropriate for these data.

One of the potential approaches to address this prob-
lem is to cluster environmental data so that groups are
relatively homogeneous but allowed to evolve in space
and time. TRend based clUstering algorithm for Spatio-
Temporal data stream (TRUST) [1] allows dynamic
clustering of spatio-temporal data, based on the sliding
window argument, thus, TRUST is suitable for analysis
of data streams. The algorithm (R code is available from
[2]) uses all available information without aggregation
and allows shapes and number of clusters to change
over time. Hence, the biggest clusters provide insight

Corresponding author: V. Lyubchich, lyubchic@umces.edu
!Pennsylvania State University, USA ?University of Maryland Cen-
ter for Environmental Science, USA 3University of Texas at Dallas,
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into the dominant behavior of the spatio-temporal data,
whereas outlying observations that potentially cause
bias in aggregated data can be classified separately.
A disadvantage of TRUST is the number of tuning
parameters that substantially influence the clustering
performance.

In this paper, we propose a simple and computa-
tionally efficient data-driven approach to select optimal
values of the TRUST tuning parameters using the notion
of stability [3], [4]. We further extend the approach
of [5] and [6] by allowing the automatic selection of
multiple TRUST tuning parameters. While we primarily
focus on TRUST, our approach is also applicable to
optimal selection of tuning parameters in other static
and dynamic clustering algorithms. We validate our
approach with Monte Carlo simulations and illustrate its
utility for analysis of the Chesapeake Bay water quality
monitoring data.

II. METHOD

Consider a set of geo-referenced data recorded at
N locations during a period 1" and stored in a matrix
X7« n. Each row of this matrix is a layer or a snapshot,
and p consecutive rows constitute a slide [1]. TRUST
identifies trend clusters in the data based on homogene-
ity measures for short-term (slide-level) and long-term
(window-level) clustering. Assume that data arrive in
slides (e.g., monthly data come in yearly chunks of
p = 12) and windows include w slides (e.g., the number
of considered years).

The key feature of TRUST is that a number of
clusters K and shapes of clusters are not fixed a-priori
and can vary over time and space, which is achieved by
adapting a sliding-window model to multiple spatially
distributed data sources. The TRUST algorithm consists
of the two main steps. The first step is to identify trend-
clusters over the slide time (i.e., slide-level clustering),
based on closeness (homogeneity) of sources within a
layer, where a level of homogeneity is controlled by
a threshold 4. Hence, the most important role in the
TRUST slide-level clustering is played by the tuning
parameter ¢§: that is, & defines how close two time
series should be in a slide in order to be clustered
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together [1]. The second step is to approximate trend-
clusters by combining the slide-level trend cluster sets
(i.e., window-level clustering). This is acheived by
grouping time series that have been clustered together
at least € x w number of instances within a window of
w slides. Thus, the parameters ¢ and ¢ are the dominant
parameters to control clustering performance of the
TRUST algorithm (see earlier study by [5] on sensitivity
of TRUST in respect to §). With a smaller ¢, only a
few time series can be clustered together, which leads
to a larger number of small clusters at the slide level.
A higher € requires more time series to belong to the
same slide-level cluster (for instance, under the extreme
condition of ¢ = 1, time series are to be classified as
one cluster for all w slides). Hence, a higher ¢ also
leads to a larger number of small clusters but now at
the window level.

Let K(0,¢) be the number of obtained clusters, and
L(d,¢) be a loss function evaluating homogeneity of
obtained clusters. (For the sake of notations we further
on omit dependence of K on ¢ and e.) A range
of suitable loss functions includes, for instance, the
Rand index, F'-measure [7], the gap statistic [8], the
consensus index [9] as well as various conventional
and robust versions of ANOVA, e.g. Levene’s statistics
for homogeneity of group variances [10] and rank-
based ANOVA [11]. In this paper we consider L(J,¢)
as the residual variance o2(§,¢), where residuals are
the differences between clustered values and the mean
value of the corresponding cluster. Clearly, the result
with zero variance (the lowest loss) is attained at
K = N, which does not meet the goal of clustering.
To avoid the extreme of KX = NN, we can use a
penalized loss function of clustering performance. Here
as a proof of concept, we employ a simple and easily
tractable penalized loss function, which is one of the
most widely adopted information criterions in statistics,
namely, Bayesian information criterion (BIC):

L*(6,e) = (N — K)Ino?(8,e) + K In(N — K).

The idea is to search for arguments d,,; and €,,; that
minimize L*(d,¢) over a suitable range, which allows
to simultaneously select the optimal tuning parameters
(see Algorithm 1).

We set a possible range for 6 based on interquartile
range (IQR), as suggested in [1]. However, IQR calcu-
lated on whole X7« can be very large if differences
between clusters are substantial. Therefore, we calculate
IQR for each time series and use a median Q) R from N
values. Selecting a possible range for € is more straight-
forward, since this proportion changes depending on
how many slides fit a window (see Algorithm 1).

Fig. 1 shows a simulated example of selecting the
optimal parameters based on BIC: d,,; and e, cor-
respond to the darkest cell (minimal BIC) and also
determine the final number of clusters K,,:. Yellow
cells correspond to the combinations of ¢ and ¢ yielding
K =1 and the highest BIC. White cells are with the
combinations yielding K = N, thus, 02(8,¢) = 0 and
L*(d,¢) cannot be computed.

Algorithm 1: Optimized TRUST algorithm.
input :

Data matrix X7, time series in
columns; number of slides in a window
w; number of layers in a slide p.
An N-vector of cluster associations;
optimal d,p¢ and €qps.
1 Let f@]/% be a median interquartile range for the
N time series; o
0 =IQR/N,2IQR/N,...,IQR;
e=1/w,2/w,..., 1,
fori=1,...,length(6) do
for j =1,...,length(c) do
run TRUST algorithm using d; and €;;
calculate L*(d;,¢;) for the TRUST output;
end
end
10 let optimal parameters be those corresponding to
the minimal L*:

output:

o X NN R WN

[Oopt, Eopt] = arg I?igl L*(6,¢);

11 run TRUST algorithm using d,,¢ and €4 to
obtain the final cluster associations.

o

0.8

0.6

0.4

0.2

0.0
0.0

0.5 1.0 15

d

Fig. 1. Selection of dop¢ and €,p¢ based on the lowest BIC (§ and
e corresponding to the red cell). Yellow indicates the highest BIC.

III. SIMULATION STUDY

We validate our approach with synthetic autoregres-
sive (AR) time series. Particularly, we simulate N
AR(1) series with an autoregressive coefficient ¢; =

0.5 and standard normal innovations. A ‘burn-in’ period
6
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TABLE I
PURITY OF CLUSTERING WITH THE OPTIMIZED TRUST
ALGORITHM, FOR THE VARYING MEAN SHIFT, NUMBER OF TIME
SERIES N, AND THEIR LENGTH T

Mean shift
N T w 0 2 4 8
24 36 3 0946 0403 0.899 1.000
60 5 0970 0.544 0.961 1.000
50 36 3 1.000 0411 1.000 1.000
60 5 1.000 0444 1.000 1.000

for simulation of each time series is 300 values. We
form two clusters (J = 2) by adding a mean shift to
half of the simulated time series. Thus, with varying
the number of time series N in the simulations, we
also vary the number of time series in each cluster
(N/2). Similar to [5], we set the shift to be 0, 2, 4,
or 8, where the zero shift means no difference between
clusters and all time series are expected to be clustered
together. The number of Monte Carlo simulations for
each combination of the parameters is 1000.

At each Monte Carlo step, we apply the optimized
TRUST Algorithm 1 with fixed p = 12 layers in a
slide (as we are using monthly data) and a single
window covering all T observations, so the number
of slides in a window (w = T'/p) varies with T". To
evaluate the clustering accuracy, we calculate purity as
the proportion of time series correctly assigned to the
clusters [7]:

J

1
Purity(Q,C) = N Z max lwi N ¢,
b=t

[RRES}

where 2 = {wi,...,wk} is the set of identified clusters
and C = {c1,...,cy} is the set of simulated clusters (in
our simulations, J = 2). That is, within each simulated
cluster 7 = 1,...,J we find the size of the most
populous cluster from the K clusters we identified.
Then, we sum together the J sizes we found and divide
by N.

The results in Table I indicate that the proposed
approach allows us to achieve accurate clustering. The
purity increases with sample size 7', and rapidly rises to
1 with the growing mean shift. Remarkably, the purity
also rises by increasing the number of time series in
each cluster (as we change /N from 24 to 50, the number
of time series in each cluster goes from 12 up to 25).
The results with the mean shift 0 describe the limit
case when all time series belong to a single cluster and,
on average, more than 94.6% of the time series were
correctly assigned to that one cluster.

IV. CHESAPEAKE BAY TEMPERATURE TRENDS

We apply our method to the data set collected by
the Chesapeake Bay Program at 116 bay monitoring
stations throughout Chesapeake Bay and its tributaries.
Water temperature is a key indicator of climate change
in the area and one of the major factors influencing
biological and biogeochemical processes within the
Bay [12]. We used monthly averages of surface wa-
ter temperature over the period 01.1985-12.2014 (30
years) to study the primary spatio-temporal trends using
Algorithm 1.

We pre-processed the data by filtering out the stations
with more than 15% of missing data (97 stations
remained) and filled-in remaining missing values with
an interannual average value for corresponding combi-
nation of month and station. To focus on the temporal
dynamics rather than on individual level differences
between the stations, we scaled the data for each station
to zero mean and unit variance.

The results of applying the clustering Algorithm 1
to surface water temperature are shown in (Fig. 2) and
reveal several interesting patterns. For example, note
that the northern and southern regions of the Potomac
River estuary do not covary, where the southern section
clusters with the temperature dynamics of the adja-
cent main-stem (Cluster 1). This difference could be
due to the strong freshwater influence in the northern
Potomac, which contrasts with the influence of main-
stem Bay on the southern Potomac. Similar differences
between the upper and lower reaches of the Patuxent,
Rappahannock, and York Rivers emphasize the regional
differences in the relative influence of freshwater versus
the main-stem Bay. Another interesting result from the
clustering output is the main-stem clusters separately
in the far north (Cluster 3) from the south (Cluster
1). This could be due to increased ocean influence on
the south region in contrast to freshwater influences
from the Susquehanna River in the north. Finally, the
tributaries of the upper Bay and middle-eastern Bay
cluster together (Cluster 9), where these systems are
characterized by shallow depths and low freshwater
inputs.

In an attempt to gain more information about the
individual clusters we ran a non-parametric WAVK test
[13], [14] to identify possible parametric trends in the
different clusters. The WAVK test on the deseasonalized
scaled data found three nearly significant results (p-
value is slightly above 0.05) in clusters 1, 4, and 10
which could indicate possible significant trends in the
clusters. Further research into the direction (shape) of

these trends may be of interest.
7
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Fig. 2. Clusters of the Chesapeake Bay stations (97 stations total)
based on the dynamics of monthly surface water temperature in
01.1985-12.2014. Cluster 12 contains stations that did not join any
other cluster.

V. CONCLUSION

In conclusion, our method for automatic selection
of tuning parameters has delivered high accuracy of
clustering assignment, including the case of multiple
clusters and the null case of a single cluster. Application
of the new clustering approach to the dynamics of
monthly surface water temperature in the Chesapeake
Bay revealed a number of interesting patterns due to
regional differences in freshwater streams. In the future
we plan to investigate utility of other penalized loss
functions in conjunction with the tuning parameter
selection and extend the proposed clustering approach
to other space-time algorithms.
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Abstract—The detection of anomalies in multivariate
time series is crucial to identify changes in the ecosys-
tems. We propose an intuitive methodology to assess the
occurrence of tail events of multiple biosphere variables.

I. MOTIVATION

Satellite remote sensing measurements provide valu-
able data for monitoring the earth system. In this
direction, international research projects like BACI!
and CAB-LAB? are making a great effort developing
unified, high resolution, and open-access Earth Obser-
vations (EOs). The availability of multivariate EOs time
series covering decadal periods allows the application
of different techniques to detect changes or abnormal
events in an unprecedented way. Anomalies in EOs may
reflect changes in the dynamical system but need to
be distinguished from spurious features such as sensor
changes or processing artefacts, thus, its detection is an
essential task in climate and ecosystem research, [1-3].

By combining different techniques, this study pro-
poses an intuitive approach to assess the occurrences of
multivariate tail events in terrestrial biosphere variables.
This will allow the detection of sensitive regions or
more severe phases during our historical records.

II. DATA DESCRIPTION

A preliminary version of the Earth System Data Cube
developed within the CAB-LAB project? has been used
in this study. The Earth System Data Cube is a practical
way of storing spatio-temporal data. It encompasses
14 atmospheric and biosphere variables from different
sources that expand 2001-2012 with 8-day resolution
and 1° grid of global spatial resolution . We have
used those variables related to biosphere processes [4]:
Fraction of photosynthetic active radiation (Fpar); Leaf
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Friedrich Schiller University of Jena, Germany. 2Max Planck
Institute for Biogeochemistry, Jena, Germany. >Michael Stifel
Center for Data-driven and Simulation Science, Jena, Germany.
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surface temperature (LST); Gross primary productivity
(GPP); Terrestrial ecosystem respiration (TER); Heat
flux (H); and Latent heat flux (LE); (Figure 1).

III. METHODOLOGY

In 2009, [5] classified anomaly detection methods
into 6 groups. One of them is an intuitive strategy based
on statistical modeling, where anomalies are assumed to
be points that are not well represented by a previously
estimated statistical model [6], [7]. Following this idea,
we have selected one location in Mid-Europe and we
initiate our methodology by fitting a univariate Autore-
gressive Moving Average - ARMA(p, ¢) model for each
variable. In order to avoid latter inconsistencies before
fitting the model, the 6 variables have been locally
deseasonalized and normalized (u=0, o=1) although
we are aware that these techniques can mask certain
anomalies. In this particular case, after checking the
autocorrelation of the residuals [8], we have chosen
an ARMA(3,1). By means of the residuals of the
univariate regression models, we identify the extreme
events within the multivariate time series with two
procedures: a) estimating the coexceedances over a
certain threshold and b) estimating the Mahalanobis
distance of the residuals to the mean.
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Fig. 1. Terrestrial biosphere variables at 50.5°N, 12.5°E.
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a) Extreme residuals coexceedances: We define
an extreme residual as one for which its absolute
value lies above the 85% percentile of the residuals
distribution. By considering the absolute value of the
residuals for the selection of extremes we are focusing
on all possible combinations of positive and negative
extremes. Since our data set has 552 observations,
the 15% highest residuals count 83 exceedances for
each variable. Next, we count the number of vari-
ables simultaneously presenting an extreme residual
for each timestep — referred to as coexceedances or
as coincidences [9-13]. Usual thresholds for extreme
events might be 90% for top-tail events and 10% for
bottom-tail events. But we have considered at the same
time positive and negative events, so a 10% cut-off to
the absolute value of the residuals would give us few
observations for a meaningful analysis, therefore we set
the threshold at the 85% percentile. This method apart
from being very intuitive and understandable, allows a
direct interpretation of the extremes detected.

b) Mahalanobis distance: Coexceedances is a
very direct and understandable approach, but it does
not take into account the shape of the joint residuals
distribution. An alternative way to define the extreme
events is based on the Mahalanobis distance [14]. This
metric, also known as Hotellings T2 [15], considers
the mean and the covariance matrix of the distribution
based on a multivariate Gaussian distribution.For the
sake of simplicity, we have used this technique although
the residuals distribution do not follow a multivariate
Gaussian distribution. More complex options would be
the use of Support Vector Data Description (SVDD)
techniques [16] or statistical depth functions [17] but it
is out of the scope of this paper.

Direct comparison of both approaches is difficult as
thresholds and thus number of extreme events have to
be comparable, which is not the key interest of this
study. Anyways, for benchmarking we will focus on
the heatwave in Europe of 2003, which experienced the
warmest summer record so far [18-21].

IV. GLOBAL APPLICATION

We have extended the methodology applied at one
location to all the locations encompassed in the Earth
System Data Cube. For each location, we have locally
deseasonalized and normalized the 6 variables before
fitting an univariate ARMA(3, 1) model. We assume the
same kind of model for all the locations for comparison
reasons, although we are aware that this might be a
strong assumption and will need further investigation.

With the residuals at each location we have: a)
counted the coexceedances over a local threshold at
the 85% percentile and b) estimated the Mahalanobis
distance for all the timesteps considering the local
covariance matrix and a critical distance above which
extremes are significant. This critical distance has been
estimated as the 99% quantile of the x? with 6 degrees
of freedom [22]. Figure 2 presents the percentage of ob-
servations with strong coexceedances (upper plot) and
Mahalanobis distance scores above the critical value
(lower plot). Strong coexceedances are those timesteps
where at least 4 variables present values above its
85% percentile simultaneously. About 30-40% of the
observations with extreme Mahalanobis scores present
coexceedances in at least 4 variables.

This general overview allows us to detect regions
where to focus for applying an attribution scheme trying
to elucidate the role of meteorological drivers behind.
However, it also presents some open issues: in the
northern latitudes (i.e. Russia, Canada and Alaska), the
amount of extreme residuals detected by both methods
is higher to other areas in the globe. This can be related
to the fact that in northern latitudes, biosphere variables
present big changes in its variance along the year. This
heteroscedastic behaviour overestimates the number of
extremes. Additional error sources might be the glob-
ally fixed (p, q) parameters of the ARMA model, trends
in the data or issues related to the projection error from
the satellites. Another alternative might be the use of
models that include the heteroscedasticity in the sea-
sonal cycle like Generalized Autoregressive Conditional
Heteroscedasticity - GARCH models. These issues need
further investigations and we are currently working on
them.

Coming back to the historical event of 2003 in
Europe, Figure 3 represents the results obtained through
both approaches over Europe for a certain timestep:
5t of August 2003. At this time, Europe was under
the extreme conditions of the hottest summer record
since the XVI century [23]. The Mahalanobis distance
represented in Figure 3 clearly shows the pattern of an
extreme event in central Europe. On the other hand, the
coexceedances are detecting 2-3 of 6 variables being
extreme. However, with the coexceedances method it
can be easily seen that LSTD and H are extreme
along mid-Europe while the 2003 heat wave (Figure 4);
showing that variables that are closer to the atmosphere
(LSTD and H) present distinctly different behaviour

than the biosphere one (GPP, TER, LE).
10
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V. DISCUSSION AND CONCLUSIONS

We have presented a method to detect abnormal
events in multivariate time series. The basic idea behind

012

80 =

(b) -150 -100 -50 0 50 100 150

Fig. 2. (a) % of strong coexceedance events (4-6 residuals ex-
tremes). (b) % of Mahalanobis distance above a critical value.

05-Aug-2003

45
20
40

35

30

(b) ~

Fig. 3. (a) Coexceedances on 5th of August 2003. (b) Mahalanobis
distance on 5" of August 2003.

0

Fig. 4. Variables coexceeding on 5" of August 2003. Grey scale-
up to 3 unclassified variables being extreme, purple pixels-extreme
LSTD and H and blue pixels- extreme GPP, LE, TER and H.

our approach is that an anomaly is a point in the time
series which cannot be well represented by a statis-
tical model that describes the entire time series. This
assumption allowed us to investigate the occurrence of
extreme observations in biospheric variables with two
approaches: coexceedances and Mahalanobis distance
of extremal residuals. Both methods present advantages
and disadvantages that make them useful and com-
plementary. The coexceedances approach is a method
very easy to interpret and allows a direct explanation
of the detected extremes. The Mahalanobis distance is
able to provide more information of the multivariate
joint distribution by losing the direct information about
which are the variables exhibited an extreme event.
Multivariate methods allow the detection of insights
unreachable from univariate methods; like the different
behavior between variables closer to atmosphere and
those closer to biosphere shown in the 2003 heat wave.
Future work will be focused on different aspects:

i) A better threshold selection needs to be done to
make both methods comparable;

ii) Resolving the overestimation of extremes in the
northern latitudes;

iii) Regionalization into areas with similar behavior.
Consequently, adapting specific ARMA models for
each similar region;

iv) Attribution scheme. This step is crucial to under-
stand the processes causing abnormal events.
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SPATIO-TEMPORAL GENERATIVE MODELS FOR
RAINFALL OVER INDIA

Adway Mitra'

Abstract—Stochastic Rainfall Generators have been
explored by the water resources community to simulate
daily, monthly or annual rainfall over compact geo-
graphical regions. In this work, we attempt to build a
generative model for rainfall over India, a climatologically
diverse region with substantial effects of orography. We
simulate gridded rain-gauge observations over a 1° — 1°
grid covering most of India, by using a few statistics
estimated from the rain-gauge data as model parame-
ters. We evaluate several generative models by drawing
samples from them, computing summary statistics from
the samples and comparing these with corresponding
estimates from observed data. The challenge is to select
a small set of statistics of the true observed data as input
parameters, while maximizing the estimation accuracy
of other statistics simulated by the generative model. We
consider a sequence of models of increasing sophistication
for this purpose. These sophistications are motivated
by various relationships observed in the data. Results
are compared with CMIP5 models. Applications of this
generative modelling framework, for understanding the
statistical characteristics of spatiotemporal variability,
and for isolating reasons of models’ successes and failures
in reproducing these statistics, are discussed.

I. MOTIVATION

Modelling and analysis of rainfall over India is a
very important problem since rainfall affects the lives
and livelihoods of a billion people, directly or indirectly.
The formulation and evaluation of decisions in various
public and private sector domains needs to take rainfall
into account, and so it is important to have detailed
realistic rainfall simulations. Such simulations can be
provided by General Circulation Models (GCMs), like
the ones in the Coupled Model Intercomparison Project
(CMIP-5), but these models are unable to capture
spatiotemporal variations in rainfall over this region,
since they have not necessarily been tuned for regional
climate. So a dedicated rainfall simulator for India is
necessary, and this is what we have attempted in this

Corresponding author: Adway Mitra, adway.cse@gmail.com
Mnternational Center for Theoretical Sciences, Bangalore, India

work. Since magnitude of rainfall always involves high
uncertainty, such simulators must be stochastic. Earlier
papers related to Indian rainfall prediction and modeling
([1]) have recognized that it has a stochastic component.
The proposed simulator is based on Bayesian genera-
tive processes. Stochastic rainfall simulators have been
studied earlier ([2], [3], [4], [5]), but mostly for small
homogeneous regions unlike a large diverse landscape
like India. Here, we enlist the significant spatiotemporal
statistics of observed data. The aim is then to use some
of these statistics as input parameters for the generative
model, while the remaining parameters are sought to
be estimated from simulation output of the generative
model. Also, reduction of input parameter size makes
models more general. To this end, we investigate a
series of models, and evaluate their simulation results.
To progressively develop more sophisticated generative
models, we include various spatiotemporal statistics that
appear to be fundamental to constructing good models
for our problem (as suggested in [6]). We find that the
proposed models can outperform CMIP5 models on a
wide range of relevant test statistics.

IT. DATA AND SPATIO-TEMPORAL STATISTICS

Various statistics can be defined for any spatio-
temporal process by domain experts, depending on the
aspects of the process they are keen to understand. Such
statistics can be computed from the observations or
data-points of the process obtained using sensors. Any
simulation model for the system need not reproduce
every observation, but it should be able to reproduce
statistical values. A simulation can be realistic only if
it is initialized or parameterized realistically. Some of
these statistics are used as input for Stochastic rainfall
generators as parameters of probability distributions
used in the model. The remaining statistics are com-
puted from the simulation output, and compared to the
observation statistics, which gives an evaluation of the
model.

Consider rainfall data of the form Yy, where s
is one grid location, t is a year and m is a month.

13
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Fig. 1. Left: histogram of all-India Annual Mean rainfall over 1901-
2011. Right: histogram of Grid-level Monthly Mean rainfall at a
single random grid point, for month of June over 1901-2011. X-
axis: rainfall in mm/day, Y-xis: frequency. Right plot does NOT
represent all grid-locations and months.

Consider there are observations from S locations, T
years and 12 months each year. The data we use is
1° — 1° daily precipitation for the period 1901-2011
(I' = 111) at S = 357 grid locations over India,
obtained from Indian Meteorological Department. This
data can be converted to grid-wise annual form Y}/, by
computing the average across all 12 months each year,
and to all-India annual form, Y;*™ by further averaging
across all S locations for each year. Similarly, it can
be converted to monthly form th;% by averaging across
all locations. For each of the cases, we can compute
the mean and standard deviation over the T years. The
evaluation statistics are:

1) Mean and standard deviation (u,o), from All-
India Annual mean denoted by {Y,;°™}

2) Mean and standard deviation (fiy,, oy, ), from All-
India Monthly Mean denoted by {V;5}

3) Mean and standard deviation (us, 0s), from Grid-
wise Annual Mean denoted by {Y.

4) Mean and standard deviation (fism,0sm), from
Gridwise Monthly Mean denoted by {Yi, }

In our models we use Gaussian distributions for
monthly or annual rainfall (as in [4]). As the histogram
of all-India Annual Mean shows (Fig. 1), Gaussian is
clearly a good model. For gridwise and monthly means,
the fit is less clear. So we use a Truncated Gaussian
Distribution (truncated at 0) for these cases.

In the literature, spatial correlations in rainfall have
been modeled by Gaussian Processes[3], but these
include a Covariance function which is difficult to
parametrize. Instead, we define spatial patterns 0
and monthly patterns ¢. Each spatial pattern is a
S-dimensional probability distribution, indicating how
total rainfall in a fixed period is distributed across
all the locations. It may be specific to a year or a
month (6,,). A monthly pattern is a 12-dimensional
probability distribution, indicating how the total rainfall
at a location is distributed across the 12 months of
a year. It may be specific to a single grid location

(¢s), or to the entire landmass (spanning S grids).
We can compute representative spatial and monthly-
patterns from the data Yy, and they can be used as
input parameters for some of the models.

These representives can be extracted by the process
of clustering, where for each (¢, m)-pair we compute
a S-dimensional distribution from Y, and carry out
clustering of all the 12 x T spatial pattern vectors,
to get K representative spatial patterns (for any K).
The clustering can be done using spectral cluster-
ing[7], which requires a similarity measure between
every pair of data-points. Since in our case the data-
points are probability distributions, we can use negative-
exponential Kullback-Leibler Divergence- a measure
of similarity between distributions. Similarly, we can
compute represenetative monthly patterns ¢, specific
to each location s.

ITII. SIMPLE MODELS

In this section, we describe a few simple generative
models, where a subset of the statistics described above
are used as model parameters. The first model MO0 is the
basic Point Process model[2], where the rainfall at each
grid-location and month are simulated independently,
using the corresponding mean and standard deviation
(Statistic 4 in the above list). The process is as follows:

o MO: Yo ~ N(tsm,osm)Vs € {1,...,S},m €

{1,...,12},t e {1,...,T}
The parameter complexity of the model is given by
2% 5 %12 = 245, which is quite high. We can alter-
natively simulate the annual rainfall for each location,
and distribute it across all the months as follows:

o MI: Ysjy ~ N (s, 05); Yotm = dsm * Ytsjy
The parameter complexity for the local mean and
standard deviation are now 25, while for the location-
specific monthly patterns it is 125, i.e. 145 in total.

On the other side of the spectrum, we can simulate
the total annual rainfall (M2) or total monthly rainfall
(M3), over the entire Indian landmass, and distribute it
over all the grids using the spatial patterns.

o M2: Y M~ N1, 0); Y, = fm o VM Vg =

Oms * Y;tgz

e M3: Y;ﬁ,gn ~ N(,Uma Um); Yotm = Oms * Y;ffn
For M2, the parameter complexity is 12.S for the month-
specific spatial patterns, 12 for the monthly pattern and
2 for the total annual mean and standard deviation. For
M3, it is 12 % .S for the month-specific spatial pattern
and 24 for the Gridwise Monthly parameters.

When the simulation outputs of these models are

processed and the spatio-temporal statistics mentioned
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above are computed, we find that the standard devi-
ations are captured quite poorly. For example, model
MO gives almost the same value of Y,M* for each year.
Hence ;M0 is quite close to pP474, but oM0 is very
less compared to oPATA  This is because, there are
flood and drought years where several locations simul-
taneously have high or low rain, but this is not captured
if rainfall is simulated independently at the locations.
On the contrary in M2 and M3, all locations in the
country are simultaneously assigned high or low rainfall
in the years when the annual Spatial Mean rainfall is
high or low respectively. This is also not true, as from
the true data we find that not all locations follow the
spatial mean in extreme rainfall years. Also, for M2,M3
standard deviations like 02 and o242 are scaled down
according to #5, making them much smaller than true
values. Thus, these simplistic models are insufficient
and we need to explore more sophisticated models.

IV. ADVANCED MODELS

By analysis of the true data, we observe that there
are some years when many locations receive much
more rain than they usually receive, and in some years,
many locations receive much less rain than usual. We
approximate the annual rainfall in most locations using
tri-modal Gaussian distributions- High (Mode 1), Low
(Mode 2) and Normal (Mode 3). Also, in most years
a large number of locations are in the same mode.
Accordingly, we can assign to each year a type (1,2,3)
based on the mode which most locations are in. Also,
while most locations are in Mode p (1 or 2) in a
year of type p, there are some locations which are in
the opposite mode. Hence, for each location s we can
have a probability distribution s for its mode (s in
year t, conditioned on the year type P, i.e. Bs(q) is
the probability of location s being in mode ¢ in any
year, conditioned on the year being of type p. At each
location, we also need mean and standard deviation
parameters for each mode (jisq,0s4). These can be
either month-specific (M4) or annual (M5) along with
a monthly pattern. In both cases, the complexity for 3-
distributions is 3+ 3% 3 % .S = 3 + 95. Complexity for
the rainfall statistics are 2 * 12 x .S x* 3 = 725 for M4
and 12 % S + 2% .S x 3 = 185 for M5.

o M4 : P~ Qs ~ /Bsp;ifstm ~ N(,U/sqmvo'sqm)

where p= Pt7q = Qst

o« M5 P o~ BiQs ~ BgpiYs o~

N(Usqa Usq)§ Ysim = Yst0sm (0 = P, q = Qst)
Our next insight from the true data is that there are
groups of locations which are in the same mode in the
same year. This is due to the presence of homogeneous

Model MO M2 M3 M4 M5 M6 M7 CMIP5
I 0.02 input input 0.3 0.02 0.02 0.06 0.98
o 0.25 input input 0.18 0.13 0.03 0.03 0.06

Hm 0.01 0.06 0.01 0.03 0.04 0.01 0.08 0.87
om 0.61 0.43 0.42 0.50 0.57 0.44 0.40 0.22
Hs 0.07 0.05 0.02 0.3 0.08 0.05 0.08 1.38
os 0.14 0.63 0.62 0.44 0.06 0.19 0.14 0.39

Hsm input 0.03 0.02 0.36 0.07 0.06 0.15 1.99

Osm input 1.85 1.84 1.25 1.22 1.33 0.60 1.07
PC 248 12S+14 12S+24 81S+3 27S+3 7S+9K 17S+12L -

+3 +9K+3
TABLE T

ERRORS IN SPATIO-TEMPORAL STATISTICS AND PARAMETER
COMPLEXITY (PC) FOR DIFFERENT MODELS

regions having special rainfall characteristics such as
the Western coast, the North-western desert region, the
North-eastern regions, the Tamilnadu coast, the Central
plains etc. We define clusters of locations based on
co-occurring modes, and assign a cluster index Cs to
each location s. Two locations are in the same cluster
if they are in the same mode in most of the years. Such
clusters can be found by Spectral Clustering[7], where
the similarity between any two locations is defined as
the number of years they are in the same mode (see
Fig. 2). So we define cluster-specific conditional mode
distributions, which also reduces parameter complexity.

o MG B ~ B Qe ~ /ka;Yst ~
N(quaasq);}/stm = Yu0sm (p = Piq
Qrt, k= Cs)

The parameter complexity for the (§-distributions now
comes down to 3+ 3% 3x K = 3+ 9K, where K is the
total number of location-clusters. Additionally there is
a complexity .S for the cluster indices of each location,
and 2 x 3 % S = 65 for rainfall statistics.

We observe that most models perform poorly in
reproducing the local monthly standard deviation, but
using this as an input parameter severely increases
complexity. We observe in the true data that there are
clusters of locations having similar values of monthly
standard deviation, and these locations are also spatially
coherent, like the previous set of clusters. So once
again, we perform a clustering of the locations based
on their monthly standard deviation values, using K-
means clustering 12-dimensional vectors of monthly
standard deviation for the locations. Each location is
assigned to a cluster index Dy, and monthly standard
deviations specific to these clusters are used (see Fig.
2). The parameter complexity now is 3 + 9K for the
[-distributions, 35S + 12L for the rainfall magnitude
statistics (L: number of variance-based clusters), 2.S for
Cs, Ds-indices, and 125 for ¢-s.

o« M7 : P B Qre  ~ ka; Yom ~

N(Cbsmﬂsqao'rmq) (p=PF,q= th,k‘ =Cs,r =
Dy)
15
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Fig. 2. A few selected large clusters of grid-points, according to
co-occurring annual modes (left), and monthly standard deviation
(right). Each colour represents one cluster.

V. RESULTS

We run each of the models mentioned above for
T = 111 years (size of the true data), and compute the
spatio-temporal statistics listed in Section II. We report
the absolute error in each of these statistics, with respect
to the values estimated from the true data. We also
compute these statistics from 15 CMIP-5 models which
have been found to be most suitable for Indian rainfall
simulation[8], and compute the average absolute errors
across these models. The results in Table I show the rel-
ative performances. M7 achieves best results on several
statistics while reducing parameter complexity. But it
should be understood that none of these models can be
called “best”, since for each model we make a trade-
off between estimation accuracy of different statistics
and parameter complexity. The choice of model for
simulation will depend on what aspects the simulation
wants to focus on most strongly.

VI. FUTURE WORK

It is possible to use the models M4-M7 for infer-
ence, rather than simulation. Instead of providing the
input parameters of years with low and high rainfall,
and clusters of locations based on mode or monthly
variance, it is possible to use these models on actual
observed data (or data from some other simulation),
and find out these statistics from the data by inference
using Gibbs Sampling and E-M algorithm. This process
may allow us to gain new insights about the data.

We have so far considered the variables for different
months and years to be IID, i.e. the time-series of
different variables are stationary. However at various
locations the mean rainfall has been changing over the
years, due to urbanization, deforestation etc. Moreover,
global warming has already been affecting Indian rain-
fall, and may do so more drastically in future. The
changes are likely to be spatially uneven, and a reliable
simulator must faithfully reflect the spatio-temporal
properties. It should be possible to incorporate such
effects into the proposed rainfall simulator by making
some variables conditionally dependent on variables in

previous years (Markov process). Some variables in the
model can be made dependent on other meteorological
variables, and reanalysis products or GCMs could be
used in combination with such a rainfall generator
for making hindcasts/forecasts of rainfall over a large
region. Furthermore the properties of generative models
might have application as a diagnosis tool for testing
and comparing simulations from GCMs.

Such stochastic rainfall simulators have been used
for studying various policies in other places, for ex-
ample, rainwater harvesting policies in Africa ([9]).
Along these lines, we hope to integrate our stochastic
simulators into other models in future, for hydrological
planning related to water control and conveyance, land-
use management etc.
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A NONPARAMETRIC COPULA BASED BIAS
CORRECTION METHOD FOR STATISTICAL
DOWNSCALING

Yi Li!, Adam Ding', Jennifer Dy?

Abstract—Global Climate Models (GCMs) currently
provide coarse resolution outputs which preclude their
application to accurately assess the effects of climate
change on finer regional scale events that are important
to inform stakeholders in making policy, management, or
infrastructure planning decisions. Statistical downscaling
are methods that use statistical models to infer the
regional-scale or local-scale climate information from
coarsely resolved climate models. One popular approach
for statistical downscaling is the bias correction and
spatial disaggregation (BCSD) method. BCSD utilizes
quantile mapping to perform bias correction between the
coarse resolution climate models to the fine resolution
projection. In this paper, we analyze BCSD from a
copula point of view and show that it is a restricted
form of the copula function. Instead, we propose a
nonparametric copula based BCSD method (NCBCSD)
and empirically show that this more flexible method
provides improved climate projection performance in
terms of mean-squared-error compared to the traditional
BCSD method.

I. INTRODUCTION

Intense and frequent precipitation can have disas-
trous effects to society through the damage of agri-
culture, infrastructure, and economy. Over the past
years there has been a significant increase in frequency
and intensity of regional rainfall around the world [1].
Global Climate Models (GCMs) are used to project
future climate scenarios many years into the future;
however, GCMs only provide climate information at
a coarse scale. Stakeholders need finer regional scale
information to make time critical policy, management
or planning decisions. Climate downscaling approach-
es are used to infer the regional-scale or local-scale
climate information from coarsely aggregated climate
models [2]. Statistical downscaling is a way that uses
statistical methods for this purpose [3] [4] [5].

Predicting climate variables at a finer resolution
from GCMs of local-scale and/or large-scale variables

Corresponding author: Yi Li, li.yi3 @husky.neu.edu ' Department
of Mathematics, Northeastern University. > Department of ECE,
Northeastern University.

is not trivial. Bias correction and spatial disaggregation
(BCSD) [6] is a popular approach for this climate
statistical downscaling task. It is widely used in many
applications [7]. It uses quantile mapping (QM) to
correct the bias from the large scale GCMs to the finer
regional scale.

In this work, we generalize the BCSD method from
the copula point of view. The main contributions of
this work are: (1) We show that the copula between
the GCM and the local scale observations in the
BCSD model achieves the Fréchet-Hoeffding copula
upper bound, which assumes the strongest bivariate
association; (2) We propose a nonparametric copula
bias correction and spatial disaggregation (NCBCSD)
method for statistical downscaling based on kernel
density estimation (KDE). This method generalizes the
BCSD in the way that it captures the joint copula
between the GCM output and the local observation to
be based on data, rather than assuming it to be the
special copula upper bound as in BCSD. Consequently,
NCBCSD has more flexility than BCSD in modeling
the climate dependency structure which leads to higher
accuracy in correcting the bias of the GCM output.

The rest of the paper is organized as follows. Section
Il provides a review on BCSD and introduces our
proposed copula based approach. Section III provides
empirical results on a precipitation data. Finally, we
conclude in Section IV.

II. METHODOLOGY

In this section, we first briefly review the BCSD
model, and then restate this problem from the copula
point of view. Finally, we generalize the model with
nonparametric density estimation with our proposed
nonparametric copula bias correction and spatial dis-
aggregation (NCBCSD) approach.

A. Review on BCSD

The Bias Correction and Spatial Disaggregation
(BCSD) method is a widely used model in statistical
downscaling. It relates the GCM output to the finer
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local scale resolution. The left subfigure in Fig 1 [8]
displays an example GCM output of a climate variable
(mean monthly temperature in January of 1950). Note
that the resolution is at a coarse scale of 2.5° x 2.5

while the right subfigure displays the same climate

. . . . o o
variable in a higher resolution at % X % on land area.

A 8;
) ) 1/3° x 1/8° Grid
o

2.5° x 2.5° Grid

O\
Fig. 1. Two separate datasets of mean monthly temperature in
January 1950. A) Represents a coarse dataset at 2.5° x 2.5°. B) is

10
8
BCSD consists of two main steps. The first step
involves the bias correction of the GCM output with
the local scale information. Let X denote the output
of the GCM, X™* be the bias corrected GCM output,
Y be the local scale observation, and the cumulative
distribution functions (CDFs) of X and Y are F'x and
Fy. In practice, the distributions for X and Y are
observed to be different (biased). See Fig 2 for an
illustration of this bias. BCSD corrects for this bias
by applying quantile mapping (QM), a nonparametric
way to match the distributions of X and Y (Fig 2)

using the following equation
¥ — B (1)

Quantile Mapping

a much higher resolution gridded dataset at %O X on land.

1.0

ECDF
02 04 06 08
L L L L

= GoM

= Obs
T
Preicipitation

Fig. 2. Example of the empirical CDF (ECDF) used in QM of a
climate variable in GCM and observational local scale.

The second step, spatial disaggregation, disaggre-
gates (i.e., downscales) the bias-corrected GCM to
local scale by using a local scaling factor learned
from the historical local data. Local scaling factor is
obtained first to reflect the interaction between the
local station and the global climate status. Let X; be
the GCM output at some future time ¢, similar for
Yi(s) as the future local scale observation at station
s, downscaling of precipitation can be achieved with:

(Y (s))
Yi(s) = X/ X+’ (2)
where (-) is the historical average of the climate data.
B. Copula

From the form of (1), one can observe that it
essentially characterizes a specific relationship between

X and Y with their CDFs, i.e., the coarser resolution
GCM output and the local observation. However, the
joint dependence between two random variables can be
better described with the concept of copula in statistics.
For d random variables X = (X1, -, Xy), their joint
CDF can be decomposed by Sklar’s Theorem [9]:

F(xlv'” ’xd) = C[Fl(xl)"" de(SUd)]v (3)

where Fj(z) = P(X; < z) is the marginal distribution
of X; and C is a copula — a joint distribution on
the d-dimensional unit cube. C'(uy, ..., uq) = P(U; <
Ui, ...,Ug < ug) is the CDF of copula-transformed,
uniformly distributed, variables U; = F;(X;). This de-
composition separates the dependence structure in the
data from the marginals. All dependence information
is contained in the copula only. Fig 3 shows the data
from two distributions with different marginals but the
same dependence structure.

&

Fig. 3. (A) Bivariate Gaussian data with p = 0.75. (B) The data
with exponential marginal for X. (C) The Gaussian copula. The
first two distributions both have this copula.

Proposition 1 (Distribution of QM): The bias cor-
rected GCM with quantile mapping in the BCSD model
as defined in (1) follows the local distribution.

Proof: The distribution of X* is P(X* < y) =
P(Fy ' (Fx (X)) <y) = Fy(y). u

This implies that the bias corrected GCM with
quantile mapping follows the distribution of Y, which
is the distribution of the upscaled local observation.
Proposition 1 and equation (1) imply that the copula-
transformed variable V' = Fx.(X*) = Fy(X*) =
Fx(X) = U so that the copula between X and X* is
C(u,v) =P(U < u,V <wv) =PU < min(u,v)) =
min(u,v). In the theory of copula [9], we can bound
the copula by max(u + v — 1,0) < C(u,v) <
min(u,v). This implies that quantile mapping (using
X* to predict Y) assumes the strongest association
between the local observation and the GCM on the
copula scale.

Proposition 2 (Copula of OM): The copula func-
tion associated with the quantile mapping in the BCSD
model (1) achieves the Fréchet-Hoeffding copula upper
bound [9] C(u,v) = min(u, v).

C. Nonparametric Copula Based BCSD

Based on the result from Proposition 2, the depen-

dence structure between the GCM output and the local
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observations can be modeled more flexibly by doing
the bias correction step with the joint copula density
(without assuming it to be the Fréchet-Hoeftding upper
bound), which captures the dependence between the
two random variables.

In recent years, there has been growing interest in
the research of modal regression in statistics, such
as [10] [11], which solves the regression problem
through the conditional mode of Y given X, i.e.
mode(Y|X = x), instead of the mean in conventional
regression. The advantage of modal regression is that
it can reveal structure that is missed by the conditional
mean [10].

We incorporate modal regression and the copula
density to perform statistical downscaling and propose
the following modal regression model based on copula,
which can be viewed as a generalization of quantile
mapping in terms of modeling the joint behavior of
the climate variable in GCM and the stations:

mode(Y|X = z) = argmax, fyx (y|z)
= argmax,c(u,v) fy (y),

where U = Fx(X) and V = Fy(Y). Note that
this is a nonparametric model and we do not assume
the parametric or even linear structure (mode(Y'|X =
z) = BTx) of the mode as in [11].

Due to the low dimensionality of the above re-
lationship, a nonparametric kernel density estima-
tion method [12] is appropriate in practice to esti-
mate the densities in (4), which enjoys nice theo-
retical consistency properties. Thus, the copula den-
sity and the marginal density can be estimated as:
o) = b S, K (UK (252, and fy(y) =
LS K(Y5%), where h is the bandwidth, which
controls the smoothness, and K (-) is the kernel func-
tion. In practice, we apply the Gaussian kernel and se-
lect the optimal bandwidth based on the rule-of-thumb
bandwidth estimator [13]: h = (‘g‘;)é ~ 1.066n3,
where ¢ is the standard deviation of the samples. Thus,
the full model is

Y = argmax,é(u, ) fy (y). 5)

4

Intuitively, since this model does not assume the copula
structure as in BCSD (see Proposition 2), and the
model can learn the dependence structure between the
GCM and the local observations based on the data.
Therefore, we expect it to generally perform better than
BCSD when correcting the bias for GCM output.

ITI. NUMERICAL EXAMPLES

In this section, we present a statistical downscaling
task for monthly precipitation based on data from the

south New England Area (—73.15°W to —71.25°W,
and 41°N to 43°N), see Figd. The GCM output is from
the Geophysical Fluid Dynamics Laboratory’s Coupled
Physical Model (CM3). The local station observation
data is from the University of Idaho Gridded Surface
Meteorological Data [14].

Fig. 4. The south New Englano(nl Region (Massachusetts, Con-
necticut, Rhode Island and south New Hampshire) in one GCM
grid with 2880 (60 x 48) local observations.

The left subfigure of Fig 5 presents the bias correc-
tion result for different methods. As we can see, the
upscaled local observation (red) and raw GCM output
(blue) is very different and the bias correction results
with NCBCSD (black) is closer to the observation (red)
than BCSD (blue) in the testing region.

The right right subfigure of Fig 5 plots RMSE: the
square Root of MSE (mean squared prediction errors
that is averaged over the 60 x 48 local stations). The
NCBCSD method (black) yields the lowest RMSE
compared with BCSD (blue) and the raw input of GCM

withant hiac carrection (red)

Bias Correction Downscaling on Testing Set in JAN

I
RMSE

Precipitation(mm)
50 100 150 200 250

o - o
T T T T T T T T T T
2006 2008 2010 2012 2014 2006 2008 2010 2012 2014

Years 2006:2

06:2015
Fig. 5. Bias correction and statistical downscaling results (2006
- 2015) of the south New England Region in January.

IV. CONCLUSION

In this paper, we propose a nonparametric copula
BCSD model for statistical downscaling, which relaxes
the joint dependence structure and generalizes the idea
of quantile mapping in BCSD. Results show that it has
better performance in bias correction and consequently
more accurate projection for statistical downscaling.
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DETECTING AND PREDICTING BEAUTIFUL
SUNSETS USING SOCIAL MEDIA DATA

Emma Pierson!

Abstract—Beautiful sunsets are one of the few pleasures
freely available to everyone, but due to their subjective
nature are difficult to quantitatively study on a large scale.
Here, we use 1.2 million sunset posts on Instagram, a
picture-sharing platform, to detect beautiful sunsets in
10 American cities over 7 months. We show that our
metric of sunset quality correlates with human assessments,
make sunset quality scores publicly available to allow more
systematic study of sunsets, and use this dataset to answer
a number of basic questions. Do some locations have more
beautiful sunsets than others? Are there meteorological
features which predict beautiful sunsets? Does a beautiful
sunset today predict a beautiful sunset tomorrow? Is it
possible to detect beautiful sunsets early enough to notify
people so they can go outside to enjoy them? What visual
features are people responding to when they call a sunset
beautiful? We validate a widely used sunset prediction
model developed by meteorologists, produce an algorithm
which can visually discriminate between beautiful and
mediocre sunsets, and provide a messaging service and web
interface to notify users of beautiful sunsets.

I. MOTIVATION

If beautiful sunsets could be reliably predicted, or
detected in real time, millions of people could enjoy a
free daily light show. In spite of this, beautiful sunsets
have long been more the realm of artists and poets than
of scientists; large-scale, quantitative data is not readily
available, and previous research is sparse and based on
small datasets or general application of physical laws [1],
[2], [3] rather than analysis of large-scale datasets. Our
contribution in this paper is two-fold: we use the image-
sharing website Instagram to collect and make publicly
available what is to our knowledge the first large-scale
dataset on beautiful sunsets, comprising sunset quality
scores in 10 large American cities over 7 months; second,
we use this dataset to derive principles of beautiful sunset
prediction and detection.

Corresponding author: Emma Pierson, epierson@cs.stanford.edu
'Department of Computer Science, Stanford University

II. METHOD

A. Dataset

Instagram is a social media platform with more than
300 million daily users on which people can post im-
ages with tags to describe image content (eg, ‘“beautiful
#sunset”). From October 2015 - May 2016 we used the
Instagram Search API [4] to collect public Instagram
posts tagged with latitude and longitude with tags relating
to sunset: eg “#sunset” and “#instasunset”. To mitigate
cultural differences in Instagram usage, we confined our
analysis to posts within the United States. In total we col-
lected 1.2 million posts, each with a location and sunset
picture. Because reliably detecting spikes in Instagram
activity requires a large number of posts, we focused
our analysis on 10 large American cities: Los Angeles,
New York, Boston, Chicago, Washington DC, Miami,
San Diego, Seattle, Philadelphia, and San Francisco. For
each city ¢, we computed the total number of Instagram
posts n.q within 0.5 degrees of the city on each day d.

Although it is intuitive that more people will take
sunset photographs on days with beautiful sunsets, we
performed three additional tests to validate our metric.
First, we confirmed by hand inspection that images
collected under these tags were sunset-related. Second,
we confirmed that sunset posting activity does spike
dramatically at sunset (Fig. 1A), implying that people are
in fact reacting to local conditions as opposed to posting
previously taken pictures. Third, we had three research
assistants hand-code sunset quality in five cities in our
dataset (Los Angeles, Miami, New York, Seattle, and
Boston) as follows. For each city, we randomly selected
10 sunset pictures from the five days with the highest
Ned, and 10 pictures from days near the median n.g;
we refer to these below as “beautiful” and ‘“‘average”
sunsets. We presented the hand coders with one pair of
sunset pictures at a time — one beautiful sunset, and one
average sunset — in random order, and had them choose
the one they felt had the more beautiful sunset. The
three hand-coders agreed 86% of the time on average,
indicating consensus about what constituted a beautiful
sunset. Hand-coders overwhelmingly preferred sunsets
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from days with high n.; to days with median n.4: in
cases where all three hand-coders agreed, they preferred
the high n.; sunset 80% of the time, and on average
individual hand-coders preferred the high n.4 sunset 75%
of the time. (We suspect that, in fact, the gap between the
high n.; and median n.4 sunsets is even more dramatic;
low-quality pictures on high n.y days appeared to be
due to lack of photographer skill, not sunset quality. We
provide the pictures used in the test in the Supplementary
Information' (SI).) While assessing sunset quality is
a gloriously subjective enterprise which we invite our
readers to partake in, these quantitative checks confirm
that n.qy do offer the first large-scale scores of sunset
quality which correlate with human assessments.

We further increased the utility of our sunset scores
by controlling time-of-year effects and differences in city
size using the following procedure:

1) To account for differences in city size, we divided
each city’s daily count of sunset posts by the mean
number of sunset posts in that city, so each city
had mean n.q = 1.

2) Social media usage varies by weekday and time
of day: a sunset that occurs at 8§ PM on Sunday
may get more posts than one at 4 PM on Tuesday
even if both are of the same quality. To account
for this, we ran a linear regression where the
dependent variable was n.q and the covariates were
a categorical indicator variable for each weekday
and a second-order polynomial in sunset time. (We
used a second-order polynomial because it captured
the fact that the number of posts may increase or
decrease non-linearly in sunset time, but does not
provide too many degrees of freedom, which could
produce overfitting). We set s.q, the normalized
sunset score, equal to the residual: ie, the variation
in sunset quality which time effects did not account
for. (We accounted for city size effects separately,
rather than in our regression, because they are
likely multiplicative rather than additive.)

3) Finally, we computed a binary “beautiful sunset”
indicator variable b.; which was 1 if a sunset
had a score s.q in the top 15% for city ¢ and O
otherwise. We focus our analysis on b.4 rather than
Scq because it is not that important to discriminate
between sunsets at the 20th and 40th percentiles
(neither is worth going outside for); the goal of
interest is to find beautiful sunsets.

Features that correlate with b.; predict that a city
is unusually likely to have a sunset in the top 15%

'All supplementary information is available at http://cs.stanford.
edu/~emmap1/sunsets/supplementary_information.zip

when controlling for time of sunset. While this metric
is interpretable and relevant, future work should also
investigate whether some cities have better sunsets than
others. To facilitate future analysis, we make the dataset
of our sunset quality scores publicly available (SI).

B. Beautiful sunset prediction

As a first illustration of the utility of our dataset, we
evaluated the accuracy of a widely used sunset prediction
algorithm. SunsetWx [5], which predicts sunset quality
using the 4km NAM, is used by more than 20 TV stations
across the country to forecast beautiful sunsets, but its
developers have had to rely on anecdotal reports of sunset
quality as validation [6]. They provided early access to
their API, and we compared their predicted sunset quality
to our sunset quality scores b.4 on 58 days across 10 cities
(a total of 580 datapoints).

SunsetWx computes real-valued sunset quality predic-
tions which it stratifies into “Poor”, “Fair”, “Good”, and
“Great”; very few sunsets are predicted to be “Great”, so
we exclude them from our analysis. We found that Sun-
setWx’s stratified scores have predictive value. b,y = 1
for 6% of sunsets predicted to be “Poor’”’; 15% of sunsets
predicted to be “Fair”, and 31% of sunsets predicted to
be “Good”.

We suspect, however, that predictions from SunsetWx
could be improved if a systematic machine learning
approach was used to develop a predictive algorithm,
since even very simple predictors exhibit comparable
accuracy. For example, using humidity as a univariate
predictor of b.; and running a logistic regression yields
an out-of-sample AUC of 0.72, which is better than the
SunsetWx AUC of 0.67. (AUC [7], or area under the
curve, is a standard measure for assessing performance on
a binary classification task — for example, discriminating
between beautiful and average sunsets — and is defined
as the probability that the model assigns a higher score
to a positive example than to negative example. Higher
AUCs denote better performance.) We thus believe there
is room for improvement, and it is worth noting that
SunsetWx’s prediction algorithm has evolved since we
collected the data for this paper. We believe that the
most successful prediction algorithms will use a large
number of sunset quality scores, such as those we have
collected here, to train and assess a machine learning
algorithm. Prediction algorithms which are tuned and
developed using anecdotal reports of good sunsets are
unlikely to yield optimal performance.

While developing a prediction algorithm that fully uses
meterological data is a topic for future work, we evalu-
ated the predictive utility of 20 weather features using
meteorological data from ForecastlO [8] and p2tlution
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data from the EPA [9]. Days with temperatures above
60 degrees are statistically significantly more likely to
have b.q = 1; so are days with lower cloud cover (with
zero cloud-cover days having the highest probability),
lower humidity, and calm winds (for detailed graphs,
see SI). Interestingly, we also found that higher levels
of pollution correlate positively with b.q, with higher
levels of carbon monoxide and nitrogen dioxide show-
ing statistically significant correlations (p < .01); (we
also assessed ozone and sulfur dioxide, which showed
positive but not statistically significant correlations). This
provides some evidence in the debate between those who
claim that clear skies produce more brilliant sunsets and
those who disagree [3], [10] although it is worth noting
that our analysis is confined to cities and rural, unpolluted
areas may have better sunsets in general, even if cities
have better sunsets on days with more pollution.

We also find that a good predictor of today’s sunset
quality is yesterday’s sunset quality. If yesterday’s sunset
was beautiful, the probability that today’s sunset will
be beautiful is 34%, as compared to 12% if yesterday’s
was not beautiful. We confirm that this is correlation is
primarily due to short-term effects, not to longer-term
time of year effects; the predictive value is much reduced
if a week’s separation rather than a day’s separation is
used.

In Table 1, we compare the predictive power of the
features discussed above. (To reduce noise, we use our
full dataset, rather than just the subset for which we
have SunsetWx data, so the AUCs for these predictions
are not directly comparable to the AUCs for SunsetWx
predictions). For each feature set, we fit a logistic re-
gression model on a train set comprising a random
half of the dataset and assess model performance (mea-
sured by AUC) on a test set comprising the remaining
half. (Using a test set avoids overfitting.) The strongest
weather predictors are humidity and cloud cover, and the
strongest pollution predictors are nitrogen dioxide and
carbon monoxide. We find that weather features are more
predictive than pollution features, and that a combined
model using both weather and pollution features (and
the previous day’s sunset quality) slightly outperforms
weather features alone. It is worth noting that we assess
predictive power using features measured at the time of
sunset, and that a true prediction algorithm would have to
use the values of those features predicted ahead of time,
rather than their measured values.

C. Locations with beautiful sunsets

Merely plotting the density of sunset posts will not
identify locations with beautiful sunsets because Insta-
gram usage is heavily correlated with population density.

Features used in model AUC
Humidity 0.64 £ 0.03
Cloud cover 0.64 £0.03
Temperature  0.57 £ 0.02
Visibility  0.57 + 0.01
Wind speed 0.57 +0.03
Pressure  0.48 £+ 0.02
Nitrogen dioxide  0.58 £ 0.02
Carbon monoxide 0.57 + 0.05
Ozone 0.54 +0.03
Sulfur dioxide 0.53 £+ 0.03
Previous day  0.58 + 0.02
All features combined 0.71 4 0.02
Weather features only  0.69 £ 0.02
Pollution features only  0.64 £ 0.02

Table T
How well does each model predict b.q? AUCs reported are
computed using a held-out test set, with the model fit on a separate
train set. Errors are the standard deviation in AUC over multiple
bootstrapped train sets.
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Fig. 1. A: Instagram sunset posts spike at sunset, while control
posts do not. B: Density of sunset posts (red denotes higher densities)
relative to control posts. C) colors associated with excellent sunsets.
The vertical axis is the fraction of pixels of a particular color which
are sampled from beautiful sunsets (as opposed to mediocre ones); D,
the sunset algorithmically classified as most beautiful in a test set of
227 images.

We mitigate this problem by collecting a second dataset
of Instagram posts with common tags (eg, “friends”
and “smile”) which we refer to as “control” posts; in
Figure 1B, we plot the density of sunset posts relative
to control posts across the United States. Sunset posts
are particularly dense (red areas) near the coasts, in
the mountains, and across much of the western United
States. Results controlling for population density were
qualitatively similar. (Because both methods control only
imperfectly for location-based variation in social media
usage, we used them only for this exploratory analysis
rather than for the analysis in section B above.) 23
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D. Visual features of beautiful sunsets

We next investigated whether we could quantitatively
identify the visual features people associate with beautiful
sunsets. We trained a classifier to classify sunsets as
beautiful or average using a balanced dataset of beautiful
and average sunsets selected as described in section
A. We followed the following procedure: we randomly
sampled 1,000 pixels from each image, computed the
RGB representation of each pixel, and trained a K-
nearest-neighbors classifier [11] to predict whether each
pixel came from a beautiful or average sunset. (We used
k-nearest-neighbors, which classifies a color depending
on what fraction of the pixels nearest to it come from a
beautiful sunset, because it allowed for flexible partitions
of the color cube). In Figure 1C, we plot colors ranked by
how strongly they are associated with beautiful sunsets
(left, upward facing bars) or average sunsets (right,
downward facing bars). The ranking matches intuition:
pinks, purples, oranges, and reds are associated with
beautiful sunsets, while greens and blues are associ-
ated with average sunsets. Strikingly, even this simple
algorithm can classify a sunset as beautiful or average
with accuracy comparable to our research assistants: on
a test set of sunsets not used to train the algorithm,
its AUC - ie, the probability that it assigns a higher
score to a beautiful sunset than to an average sunset —
is 0.70. (As discussed previously, the algorithm is unable
to perfectly classify sunsets in part because photographer
quality varies: some people take bad pictures on beautiful
sunset days, or good pictures on mediocre sunset days.)
In Figure 1D we show the picture in the test set to which
the algorithm assigns the highest probability of being
beautiful. It is easy to think of potential extensions and
applications of this algorithm: it could be used to rapidly
find particularly beautiful sunsets and improved by using
a more sophisticated image-processing algorithm, like a
convolutional neural network [12].

E. Real-time sunset notification

Beautiful sunset prediction is difficult because beau-
tiful sunsets are rare: even if an algorithm can identify
days when beautiful sunsets are twice as likely, they are
still quite unlikely. An easier problem may be beautiful
sunset detection: is it possible to detect beautiful sunsets
as they are happening, using real-time social media data?
We present a pilot of such a system, Sunset Nerd:
we have created a website, http://sunsetfinder.herokuapp.
com/, which monitors the real-time number of social
media posts about the sunset in each city and assigns
the sunset a quality score in real time by comparing
to the historical number of sunset posts. We have built

interfaces on Twitter and Facebook Messenger to allow
users to receive beautiful sunset notifications so they
can go outside. We will present results as they become
available.

III. DISCUSSION AND FUTURE WORK

Though the sun sets on our present analysis of beau-
tiful sunsets, many questions await a new dawn — and
future work. Is it possible to use more sophisticated
metereological features, like data on types of clouds,
to improve sunset prediction? Will the real-time sunset
detection system offer useful notifications? These open
questions, and the analyses already performed, illustrate
the utility of large-scale quantitative data in beautiful
sunset prediction and detection.

SUPPLEMENTARY INFORMATION

All supplementary information is available at
http://cs.stanford.edu/~emmap1/sunsets/supplementary_
information.zip.
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OCEANTEA : EXPLORING OCEAN-DERIVED
CLIMATE DATA USING MICROSERVICES

Arne N. Johanson!, Sascha Flogel?, Wolf-Christian Dullo?, Wilhelm Hasselbring®

Abstract—Qcean observation systems gather an in-
creasing amount of climate-relevant time series data. To
interactively explore and analyze such high-dimensional
datasets, we developed the software OceanTEA. Our
open-source tool leverages modern web technology to
support interactive data visualization, spatial analysis
of current patterns, and temporal pattern discovery via
machine learning methods. The microservice architecture
of OceanTEA ensures a maintainable implementation
that seamlessly scales from desktop computers to cloud
computing infrastructure.

I. MOTIVATION

Ocean observation systems, such as the global array
of more than 3000 free-drifting Argo floats belonging
to the Global Ocean Observing System [1] or the
modular ocean laboratory MoLab [2, 3], produce an
increasing amount of time series data. Both statistical
data mining techniques and manual exploration via
visualization are necessary for oceanographers and cli-
matologists to extract scientific knowledge from such
vast datasets. For this purpose, we developed the soft-
ware OceanTEA, which leverages modern web tech-
nology to support scientists in interactively exploring
and analyzing high-dimensional datasets. By relying on
a microservice architecture [4, 5], OceanTEA can not
only be deployed on desktop computers but also on
cloud computing infrastructure with built-in scalability.
Making data available on the web can be useful for
scientists collaborating on exploring a dataset (e.g.,
with limited access within an institute) as well as for
providing interactive visualizations along with journal
or conference publications. Since it has been shown
that papers which feature published data receive higher
citation counts [6], an interactive visualization of such
data with OceanTEA could further improve the impact
of a publication.

Corresponding author: A. Johanson, arj@informatik.uni-
kiel.de 'Software Engineering Group, Kiel University, Germany
2GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany

The OceanTEA source code (along with a live demo
of the tool) is available on GitHub' under the Apache
2.0 license [7].

A tool related to OceanTEA is Ocean Data View
(ODV) [8], which is a proprietary (i.e., closed-source)
desktop-only application used to produce a wide range
of static figures from oceanographic datasets.

II. OCEANTEA

A screenshot of the web interface of OceanTEA
(short for Oceanographic Time Series Exploration and
Analysis) is shown in Figure 1. The user interface
is divided into four views (times series management,
data exploration, spatial analysis, and temporal pattern
discovery), which can be accessed via the tabs at the
top of the page. The data exploration view (Figure 1)
features options to filter the time series to be displayed
according to:

1) study region

2) measurement device

3) measurement parameter (e.g., temperature)

4) depth range (multiple ranges are possible)

Furthermore, measurement stations can directly be se-
lected via an interactive map displaying satellite images
of the Earth’s surface (provided by Google Maps [9]).

OceanTEA supports both univariate time series (e.g.,
temperature measured at a single site) and multivariate
series (e.g., current direction and magnitude in several
depth bins in the water column measured by an acoustic
Doppler current profiler (ADCP)). Multivariate time
series of currents (direction and magnitude) can be
sliced along adjustable depth levels (see the right plot
in Figure 1).

The interactive plots of OceanTEA are implemented
using the CavasPlot [10] library built on top of D3.js
[11]. The user can zoom into the plots and pan the
axes (also by using touch gestures on devices that
support them). At a high zoom level, the individual
data points are displayed and tooltips are shown when

'https://github.com/a-johanson/oceantea
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Figure 1. The data exploration view of OceanTEA.

the user hovers over the points (or touches them). The
plots can be arranged by measurement parameter or by
measurement device. It is possible to synchronize the
axes of multiple plots and to join multiple graphs in a
single plot.

In the management tab, time series can be added
(e.g., from comma-separated values (CSV) files) and
deleted. OceanTEA provides automatic unit conver-
sion according to TEOS-10 [12] for several important
oceanographic parameters (such as from in sifu temper-
ature to conservative temperature).

ITI. MICROSERVICE ARCHITECTURE

The microservice architecture pattern [4, 5] partitions
a software system into a set of so-called microservices.
A microservice is a small, self-contained application
that can be deployed independently and has a single
responsibility [13]. In this context, small means that
its complexity is low enough to be understood by
a small team or even a single developer. That mi-
croservices are self-contained implies that they do not
share code or database schemas with each other. In
particular, each microservice can be implemented us-
ing the programming languages, middleware, and data

storage facilities that suit the task of the service best
(polyglot programming and persistence). As the whole
software system is divided into microservices according
to domain functionality (in the sense of bounded con-
texts in domain-driven design [14]), each service only
has a single functional responsibility. Transaction-less
communication—e.g., via RESTful protocols such as
HTTP—is employed to coordinate tasks between the
individual services.

While microservices incur the drawback of having to
handle the additional complexity of distributed systems
(e.g., ensuring fault tolerance), they provide the advan-
tage of good maintainability and scalability [15]. As
the complexity of a microservice is low, maintaining its
code is easier than that of a large monolithic application
(making it a feasible option to re-implement the whole
service if necessary). Since microservices are self-
contained and can be deployed independently, they can
also be scaled independently as it is required by the
current workload on the software system [15, 16, 17].

Figure 2 shows the microservice architecture of
OceanTEA. The OceanTEA client, which contains the
user interface and runs in the user’s web browser, com-

municates with the server-side part of OceanTEA via
26
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Figure 2. The microservice software architecture of OceanTEA.

an application programming interface (API) gateway.
This gateway masks the complexity of communicating
with different services and offers an integrated API to
the client. The microservices comprising OceanTEA
are divided into three so-called verticals that group
services with related functionality. In the first vertical,
we arranged microservices related to the management
of time series. In the second vertical, we find the service
for the spatial analysis of data, and the third vertical
consists of the service for pattern discovery in time.
Note, that we made use of the polyglot properties of
microservices; for example, we reused an existing C
implementation of TEOS-10 for the conversion mi-
croservice and implemented the multidimensional array
handling of the multivariate time series management in
Python, which allows to express the required slicing of
arrays with a concise syntax.

We utilize Docker [18] to run each microservice in
an isolated container. These containers can directly be
deployed to private or public cloud infrastructure. Via
Docker Machine [19], the same containers can also be
executed on desktop computers running Mac OS X or
Microsoft Windows. For these two platforms, we built
installer applications to make the installation process
user-friendly.

IV. FUTURE WORK

In the future, we plan to extend the spatial analysis
view of OceanTEA with interactive 3D renderings of

data fields in relation to structures on the ocean floor
(work in progress). For the temporal analysis view,
we are working on an implementation that leverages
machine learning methods [20] to identify dependencies
between different (lagged) time series.

OceanTEA will be used to interactively visualize,
explore, and analyze oceanographic time series data for
climate-relevant research concerning ocean physics, bi-
ology, and chemistry in a changing climate system. For
example, OceanTEA is currently employed in studying
the impact of ongoing climate change on cold-water
coral reef ecosystems in order to assess whether factors
such as ocean warming and acidification impact the
physical and biogeochemical boundary conditions of
these reefs [cf. 21]. We implemented an interactive
illustration of modeling results with OceanTEA to
accompany a publication which we prepared in this
context [22]. In this way, our tool can be used to create
dynamic visualizations of figures in papers to add value
to publications reporting on data-driven research right
from the beginning of the peer review process.
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DEPENDENCE OF INFERRED CLIMATE
SENSITIVITY ON THE DISCREPANCY MODEL
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Abstract—We consider the effect of different temporal
error structures on the inference of equilibrium climate
sensitivity! (ECS), in the context of an energy balance
model (EBM) that is commonly employed in analyzing
earth system models (ESM) and observations. We con-
sider error structures ranging from uncorrelated (IID
normal) to AR(1) to Gaussian correlation (Gaussian Pro-
cess GP) to analyze the abrupt 4xCO,; CMIPS5 experiment
in twenty-one different ESMs. For seven of the ESMs,
the posterior distribution of ECS is seen to depend rather
weakly on the discrepancy model used suggesting that the
discrepancies were largely uncorrelated. However, large
differences for four, and moderate differences for the
rest of the ESMs, leads us to suggest that AR(1) is an
appropriate discrepancy correlation structure to use in
situations such as the one considered in this article.

Other significant findings include: (a) When estimates
of ECS (mode) were differrent, estimates using IID were
higher (b) For four of the ESMs, uncertainty in the
inference of ECS was higher with the IID discrepancy
structure than with the other correlated structures, and
(c) Uncertainty in the estimation of GP parameters were
much higher than with the estimation of IID or AR(1)
parameters, possibly due to identifiability issues. They
need to be investigated further.

I. INTRODUCTION

On the one hand, Earth System Models (ESMs)
that comprise of atmosphere-ocean general circulation
models (AOGCMs) coupled to other earth system com-
ponents such as ice sheets, land surface, terrestrial
biosphere, and glaciers are central to developing our
understanding of of the workings of the climate system,
and are proving to be the most comprehensive tool
available to study climate change and develop climate
projections [1]. Concomitantly, simple concepts such
as climate sensitivities—metrics used to characterise
the response of the global climate system to a given
forcing—are central not only to climate modeling, but
also to discussions of the ongoing global warming (e.g.,
see [2], [3]. Nevertheless, the immense computational

Corresponding author: B.T. Nadiga, balu@lanl.gov
Los Alamos National Lab, Los Alamos, NM 87544

'ECS is defined as the realized equilibrium surface warming—
globally-averaged surface air temperature—for a doubling of CO,

infrastructure required and the cost incurred in running
ESMs precludes the direct evaluation of such metrics.

Simple climate models (SCMs) on the other hand
consider only integral balances of important quantities
such as mass and/or energy, are computationally cheap
and can be used in myriad differnt ways (unlike ESMs
that are typically run only in the forward mode). It is for
these reasons that the use of SCMs to estimate climate
sensitivities, both in the context of ESMs and actual
observations, is now well established (e.g., see [4], [5]
and others).

II. METHODOLOGY AND RESULTS

A particular form of an SCM that has been popular
in summarizing integral thermal properties of AOGCMs
and/or ESMs is the anomaly-based upwelling-diffusion
(UD) energy-balance model (EBM) [4]. To briefly de-
scribe such a model, consider a horizontally-integrated
model of the climate system that is partitioned into two
active layers in the vertical. An upper (surface) layer
that that comprises the oceanic mixed layer, atmosphere
and land surface and and a bottom layer that comprises
the ocean beneath the mixed layer. Evolution of the
upper surface heat content anomaly per unit area is
given by

CGOE = F XL (T -T) )
where A\ represents. Exchange of heat between the
surface layer and the ocean beneath is parameterized
by the difference in temperature between the two lay-
ers. Similarly, evolution of the subsurface ocean heat
content anomaly (again per unit area ) is given by

drT.
4= (T, —Ty). )

Cogy =

Such two layer models have been used extensively
to obtain point estimates of ECS of AOGCMs/ESMs
(e.g., see [5], [6], and others). However, and to the
best of our knowledge, the dependence of estimates
of ECS on the assumed temporal structure of the
discrepancy between ESM representation of the surface
air temperature (SAT) and the above EBM’s (Egs. 1 &
2) representation of it has not been investigated:

TEM(t) = TEPM (t) + ¢ 3)

29



'/ C I \Gth International Workshop on Climate Informatics

\ | September 22-23, 2016

\
NADIGA URBAN 201 6 Hosted by the National Center for Atmospheric Research in Boulder, CO
5

bcccsmll

L ESS510 ACCESS13

2 3 4 2 2 3 4
bcccsmllm CNRMCM5

2 3 4 2 2 3 4

B FGOALS 7 L GFDLESM2G._

2 3 i | 2 3 il 3 i |

GFDLESM2M]| i GISSE2H | GISSEZR

2 3 4 2 3 4 3 4

2
2

HadGEM2 inmcmd4 I I! IPSLCMSBLR |
2

Probability Density

— iid normal
—  AR(1) -

— AR(1) + GP|
I -l |
2 3 4 2 3 4 3 4

MIROCS i MPIEGMLR | MPIHSMMR

i e

2 3 4 2 3 4
MRICGCM3 NorESM1M
2 3 4

ECS (K/2 x CO,))

30

Fig. 1. Inferred ECS for the 21 models considered using CMIP5 experiment abrupt4xCOs.



DEPENDENCE OF ECS ON TEMPORAL CORRELATION STRUCTURE

| September 22-23, 2016

'3 6th International Workshop on Climate Informatics
1
(Cl

2016 Hosted by the National Center for Atmospheric Research in Boulder, GO

The equation above arises from the fact that the
anomaly-based EBM considered has no representation
of climate variability, unlike the more comprehensive
ESM that it is used to analyze. We consider three
correlation structures for €;:

1) IID: X(t — s) = o25(t — s)

2) AR(1): ©(t — s) = a2plt=l

3) AR(1)+GP: S(t — s) = o2 exp(—{52L)
where structure AR(1)+GP uses the sum of the covari-
ances indicated in items 2 and 3 above

In the context of globally-averaged SAT (of which
sea surface temperature or SST is a large compo-
nent), we know, e.g., following the work of [7], that
the mixed layer integrates (high-frequency) weather
noise. Thus, SST (and therefore SAT) is expected to
be auto-correlated in time, although the correlations
themselves are highly spatiotemporally variable (e.g,
winter SST anomalies are more persistent than summer
SST anomalies, the tropical Pacific may display larger
persistence than the tropical Atlantic, etc...). However,
such correlations rarely exceed about six months and
we are considering annual-averaged SAT. Physically,
correlations on the interannual time scales are related to
internal climate dynamics (phenomena such as the re-
emergence of the winter mixed layer, delay-oscillations
and others). While a casual inspection of some actual
climate timeseries may suggest the unlikeliness of 11D
variability, it is not the case for the globally-averaged
SAT timeseries in the abrupt4xCOy, CMIP5 experiment
that we analyze, and as we will see later. However,
it should also be noted that if the discrepancies are
actually correlated, then an inference of EBM param-
eters using the IID discrepency structure will result in
estimates of uncertainty that are smaller than actual,
and again as we will see later.

Figure 1 shows the posterior distribution of ECS with
the three error structures (indicated in the legend) for
the 21 ESMs. The prior is shown in the bottom-left
panel. In this figure it is seen that

e For a substantial number of the ESMs, the
three error structures lead to similar estimates
of ECS (CNRMCMS5, MIROCS5, MPIESML/MR,
MPIESMP, MRICGCM3, NorESMI1M)

e When the estimates of ECS are differrent, es-
timates using IID tend to be higher (CCSM4,
FGOALSs2, GFDLESM2G/M, HadGEM2ES, in-
mcm4)

o Differences in ECS estimates from that between
AR(1) and AR(1)+GP tend to be smaller than that
between either and IID

e In a majority of the ESMs considered, IID leads
to smaller estimates of uncertainty in ECS sug-
gesting that the discrepancies in those models are

temporally correlated. The exceptions (CCSM4,

GOALSs2, GFDLESM2G/M), are therfore surpris-

ing and need to be investigated further.
We also note that there was far more uncertainty in the
estimation of GP parameters as opposed to estimateion
of either IID and AR(1) parameters. This is likely due
not only to the shortness of the ESM runs considered
(150 years) from the point of low-frequency variabil-
ity that the GP component was intended to capture,
but may involve issues of identifiability and needs to
be investigated further. However, when such problems
occur, the parameters involved act more as nuisance
parameters and do not prevent reasonable inference of
ECS and other EBM parameters.

III. DISCUSSION

Simple climate models play a valuable role in help-
ing interpret both observations and the responses of
comprehensive ESMs. As such, we used a simple and
popular EBM in a Bayesian framework to interpret the
abrupt4xCOy CMIPS experiment in 21 ESMs, in terms
of their SAT response. We used three different statistical
models to represent the discrepancy in the SAT response
of the ESMs and SCMs. This discrepancy is largely
due to natural variability—an aspect of climate that
represented in the ESMs, but not in the SCMs. For
seven of these models, the posterior distribution of ECS
depended only very weakly on the discrepancy model
used suggesting that the discrepancies were largely
uncorrelated. For four of the models, the differences
were large and for the rest of the models, the differences
were moderate. Significant differences in a majority of
the models, therefore, indicate the existence of temporal
correlations in the discrepancies and the imprtance of
accounting for them in a Bayesian inference framework.

Next, the differences in estimated ECSs were much
smaller for inferences using AR(1) and AR(1)+GP as
compared to differences between inferences using either
of these models and IID. This coupled with the fact that
the uncertainty in the estimation of GP parameters was
much larger than that in the estimation of AR or IID
parameters, leads us to conclude that AR(1) is a good
choice? in situations such as the one considered in this
article.

A number of other issues need to be investigated
further: the higher estimates of ECS when using the 11D
structure for some of the ESMs, the higher uncertainty
in the estimation of ECS when using the IID structure
for some of the ESMs, and the increased uncertainty in
the estimation of GP parameters as compared to that in
the estimation of IID or AR(1) parameters.

2 Additionally, the existence of an analytic inverse for the co-
variance of an AR(1) process makes it faster to compute with as
compared to with a GP.
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COMBINING 15 YEARS OF MICROWAVE SST AND
ALONG-TRACK SSH TO ESTIMATE OCEAN
SURFACE CURRENTS

Pierre Tandeo!, Aitor Atencia?, Cristina Gonzalez-Haro!

Abstract—Ocean surface current is one of the main
oceanographic variables. To estimate and track these
currents, we use satellite measurements of Sea Surface
Height (SSH), but these data are sparse in space and time,
as they are collected along altimeter tracks. However, Sea
Surface Temperature (SST) observations are much more
complete in both space and time, and so the covariance
of SST and SSH can be exploited to use SST datasets to
help fill in the missing information about ocean currents
where SSH data are lacking. Here, we test a new data-
driven methodology combining SST and SSH information
to estimate the ocean surface currents in the Agulhas
current.

I. MOTIVATION

The goal of this study is to estimate the geostrophic
currents at the surface of the ocean using remote
sensing data. In practice, to estimate those currents,
we use satellite measurements of along-track altime-
try to retrieve the Sea Surface Height (SSH) above
geoid. We interpolate these along-track measurements
using an optimal interpolation procedure, taking into
account near past and future along-track data (typically
1 week before and after the current day). Finally, the
geostrophic surface currents are estimated by calculat-
ing the spatial derivative of the SSH interpolated fields.
Resulting currents are given in Fig. 1.

The problem is that along-track SSH measurements
are very sparse in space and time. To improve the
estimation of the surface currents, several works use
the information of proxy variables such as Sea Surface
Temperature (SST), salinity or ocean color also pro-
vided by satellite sensors. The advantage of satellite
tracers like SST is that they have a better spatial and
temporal resolution (typically, 1 to 25 km and hourly
to daily). We distinguish different strategies to estimate

Corresponding author: P Tandeo, pierre.tandeo@telecom-
bretagne.eu Telecom Bretagne, Brest, France 2McGill, Montreal,
Canada
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Fig. 1. Classical surface current retrieval from near past and future
along-track SSH measurements, the 20" of February 2004 in the
Agulhas current (42°E to 46°E and 36°S to 40°S).

the surface currents: (i) optical flow techniques between
consecutive tracer images ([1]), (i) physical properties
to relate tracer information and displacements ([2]),
(iii) statistical correlation between local information of
tracers and displacements ([3]).

Here, we demonstrate the use of a new data-driven
approach to exploit the synergy (i.e., the spatial con-
sistency) between satellite measurements of microwave
SST fields and along-track SSH measurements. The
idea is to apply the analog method (also known as
the nearest neighbor search, see [4]) on a large col-
located SST/SSH database to artificially create pseudo-
observations of along-track SSH from abundant SST.
Details of this new methodology are given below.
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II. REMOTE SENSING DATA

As SST fields, we use optimally interpolated mi-
crowave satellite data provided by Remote Sensing Sys-
tem (RSS), available online at http://www.ssmi.com//.
It combines the signal of three microwave radiometers
(Tropical rainfall measuring missions Microwave Im-
ager, Advanced Microwave Scanning Radiometer Earth
observing system, and WindSAT) which are robust to
the presence of clouds. The spatial resolution is 1/4° x
1/4° and the temporal resolution is daily.

As along-track SSH, we use the Ssalto/Duacs Abso-
lute Dynamic Topography provided by AVISO, avail-
able online at http://www.aviso.altimetry.fr/. It provides
homogeneous observations from several altimetric mis-
sions (including for instance, Topex/Poseidon, Jason,
Envisat). The spatial and temporal coverage of altime-
ters is very sparse compared to the microwave SST
measurements.

In this study, we build a collocated database of
SST and SSH between 1998 and 2014 in the Agulhas
current. For each daily SST snapshot, we associate the
corresponding along-track SSH measurements recorded
in the region of interest the same day. We test our
methodology on 2004 where the maximum of altimeters
were available for the period 1998-2014 (see [5]).

III. METHOD AND PRELIMINARY RESULTS

The method is briefly schematized in Fig. 2. From a
microwave SST image at a given time, we find analog
situations in our SST database. They correspond to the
best correlated situations in term of amplitude and spa-
tial gradients. For instance, we identify £ = 8 nearest
situations from 1998 to 2014. For each of them, we
extract the corresponding collocated along-track SSH
measurements. Then, we aggregate all these selected
along-track data to generate pseudo-observations of
SSH. Finally, as in Fig. 1, we spatially interpolate these
SSH data to retrieve the geostrophic surface currents.

Now, we propose to reconstruct the surface currents
the 15! of September 2004 in the Agulhas current. This
period has been selected due to the high correlation
between SST and SSH at the end of the austral winter
(see [6] and [7]). We perform the experiment dividing
the problem in 1° x 1° small regions in order to
capture the mesoscale dynamics of the current. For each
snapshot of SST, we extract £k = 25 analog situations
with their corresponding collocated along-track SSH
measurements. The surface currents are obtained by
interpolation of all these pseudo-observations as shown
in Fig. 3(a). Result of the classical interpolation and

Fig. 2. From a single snapshot of observed SST the 20" of
February 2004 in the Agulhas current (42°E to 46°E and 36°S to
40°S), we identify k& = 8 analog situations of SST with their cor-
responding along-track SSH measurements, we finally interpolate
them to retrieve the surface currents.

surface current retrieval from true available along-track
SSH is given in Fig. 3(b).

The results indicate an overall good agreement be-
tween the two interpolation methods. The 15 years
of historical data seems large enough to encompass
most of the prominent dynamics of the system. To
validate the procedure, we also compare to the surface
current climatology, corresponding to the mean of the
15 years of altimetric data for the month of September,
given in Fig. 3(c). When comparing to the true SSH
observations, the root mean squared error is reduced
from 0.18 meters for the climatology to 0.12 for the
proposed method. These encouraging results open new
possibilities of using collocated SST/SSH information
to improve the surface currents retrieval or replace
the along-track SSH measurements when they are not
available. This method could be particularly useful
to estimate the mesoscale circulation in large current
systems during the period 1981-1997 where only SST
measurements were available.
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Fig. 3. (a) Proposed surface current retrieval from combination of historical SST/SSH data, (b) classical surface current retrieval from
near past and future along-track SSH measurements and (c) monthly mean surface current climatology, the 15 of September 2004 in the
Agulhas current.
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PREDICTING EXECUTION TIME OF
CLIMATE-DRIVEN ECOLOGICAL FORECASTING
MODELS

Scott Farley! and John W. Williams!»?

Abstract—Species distribution models are climate-
driven ecological forecasting tools that are widely used
to predict species range shifts and ecological responses
to 21st century climate change. As modern and fossil
biodiversity databases improve and statistical methods
become more computationally intensive, choosing the
correct computing configuration on which to run these
models becomes more important. We present a predictive
model for estimating species distribution model execution
time based on algorithm inputs and computing hardware.
The model shows considerable predictive skill and can
inform future resource provisioning strategies. We also
demonstrate a technique for predicting model accuracy
that suggests that inclusion of training data from the fossil
record can enhance the accuracy of distribution models.

I. INTRODUCTION

21st century climate change is expected to signif-
icantly alter species distributions, both at global and
regional scales. Species Distribution Models (SDMs)
are statistical methods that estimate species-specific
responses to climatic gradients, and are widely used
to to predict species presence under future climate
scenarios [1]. While the models are widespread in
the literature, a thorough understanding of algorithm
execution time and accuracy produced by different
input datasets and on different computing hardware
has not yet been established. Here we discuss models
for predicting the accuracy and run time of three
SDMs given these factors. Execution time and accuracy
models can improve computing resource utilization and
identify performance bottlenecks in popular SDM code
repositories.

SDMs can be fit with both modern- and paleo-
climate training data, the scale, size, and resolution of
which has increased rapidly over the last several years.

Corresponding author: S Farley, sfarley2@wisc.edu *University
of Wisconsin-Madison, Department of Geography, Madison, WI
53706 2University of Wisconsin-Madison, Center for Climatic Re-
search, Madison, WI 53706

Emerging databases, such as the Neotoma Paleoecologi-
cal Database (http://neotomadb.org) and the Global Bio-
diversity Information Facility (GBIF, http://gbif.org),
provide biogeographical data for millions of species
worldwide, both in the recent fossil record and for the
modern era. Environmental covariates to species pres-
ences are obtained from widely-available climate model
output, which can provide decadal or sub-decadal tem-
poral resolution for the last 21,000 years. Downscaling
techniques can improve the spatial resolution of gridded
data to scales suitable for regional and sub-regional
study.

While the size and resolution of climatic and biodi-
versity data used to train SDMs increase, the methods
used to learn species’ responses to climatic gradients
are becoming more computationally expensive. Most
competitive SDMs use statistical learning procedures
to estimate the functional relationship between species
presence and climatic patterns. Novel techniques, such
as Bayesian learning have also demonstrated high accu-
racy in this setting [2]. Moreover, many researchers now
model hundreds of species in a single study (e.g., [3]),
or use joint modeling techniques to capture inter-species
interactions [4], resulting in larger modeling workloads.
More powerful computing hardware has the potential to
reduce the execution time of SDMs, particularly those
with high dimensionality, large training sets, and/or
wide spatiotemporal extents. While work has been
done to assess the characteristic complexity of machine
learning models (e.g. big-O notation) [5], less has been
done to characterize the differences in model execution
time of SDM techniques due to different computing
hardware configurations and algorithm inputs. Though
internal variations in memory management make it is
difficult to exactly define model runtime as a function
of hardware [6], models of computer performance that
consider input data and static hardware configuration
may be capable of capturing high-level trends [7], [8].

Here we model algorithm speed using two static
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hardware components capable of improving perfor-
mance: (1) main memory size (i.e., RAM) and (2) the
number computing cores, and two algorithm inputs: (1)
the size of the training data used to fit the model and
(2) the spatial resolution of the output. While differ-
ent learning techniques may have implementation- or
algorithm-specific differences (i.e., tuning parameters,
language differences) that may influence model execu-
tion time, we test several popular R implementations
with experimental variables that extend across model
classes.

We also examine the predictive accuracy gains made
by fitting SDMs with different training data sizes. Re-
cent studies have examined the best practices for using
small numbers of training examples (n < 300), such as
for rare species [9]. However, while very large training
datasets (n > 100,000) are unlikely in the ecological
domain, the fossil record can be used to fit SDMs with
a larger set of training data than the modern era alone
[10], perhaps by several times for some species. While
there is a greater degree of uncertainty associated with
fossil occurrences, their utilization may significantly
enhance SDM skill when included in the fitting process.

II. METHOD

We systematically tested the accuracy and execution
time of three popular species distribution modeling
algorithms on four different training set sizes and four
spatial resolutions on 44 computing configurations (4 x
CPU, 11 x RAM). All experiments were done using the
R programming language on virtual machines hosted
on the Google Cloud Compute platform. Ten replicates
of each combination of hardware and algorithm in-
puts were completed to improve understanding system-
induced variance.

Fossil occurrences for the Picea (spruce) genus over
the last 21,000 years were obtained from the Neotoma
Paleoecological ~ Database  (http://neotomadb.org).
Decadally-averaged climatic covariates for each fossil
occurrence were extracted from 0.5 degree spatial
resolution debiased and downscaled CCSM3 climate
model output for North America [11], and used to fit
the SDMs.

Three SDM algorithms that have shown competitive
predictive skill in the literature were evaluated: (a)
boosted regression trees (GBM-BRT) [12], (b) multi-
variate adaptive regression splines (MARS) [13], (c)
generalized additive models (GAM) [14]. All models
were fit using a randomized training data subset of a
pre-specified size, and then projected onto a climatic
grid for the year 2100. The output grid resolution was
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Fig. 1. Gradient Boosted Regression Tree (left) and Linear (Right)
models of three different SDM modeling algorithms execution time
under different algorithm and hardware parameters.

varied between 0.1 and 1 degree of latitude. SDM ac-
curacy skill was evaluated using an independent testing
set of 20% of the available data using the area under
the receiver operator curve (AUC) statistic.

To predict model execution time, two predictive
models were built for each SDM technique: (a) a
multiple linear regression and (b) a gradient boosted
regression tree model. Models were fit from the set of
experiments (n = 20, 583) using the number of training
examples, CPU cores, memory, and spatial resolution
as predictors of execution time. Model were evaluated
using ANOVA and partial dependence plots, and skill
was estimated using observed-to-predicted correlation
metrics. Predictive models of SDM AUC score were
also developed and fit using a boosted regression tree
approach.

IITI. EVALUATION

Predictive models of SDM execution time demon-
strate considerable skill when evaluated against a hold-
out testing set of observed values. In general, the
boosted regression tree model approach significantly
outperformed the linear models. Regression trees are
able better capture the potential non-linearities of the
experimental dataset and can remove the negative pre-
dictions forecast by the linear model. However, both
sets of models consistently showed % > 0.8 correlation
between observed and predicted values with a mean
prediction error of less than 4 seconds.

Of all six execution time models (2 models x 3
SDMs), the regression tree prediction model of the
MARS SDM performed the best, with a mean error
of —0.457 4 1.895 seconds and an 72 value of 0.936.

The regression tree models for GAM and GBM-BRT
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SDMs both performed well with r? values of 0.892
and 0.880, respectively. The linear models all showed
lower 1> correlation values and had larger prediction
variance and mean prediction errors than their decision
tree counterparts. The best performing linear model
was again for the MARS SDM, with an r? correlation
of 0.876, with a significantly larger mean error of
2.17 £+ 1.73 seconds. Figure 1 shows the observed
and predicted values for each SDM for both of the
prediction models.

Model interrogation using ANOVA (linear model)
and partial dependency plots (GBM model) reveals that
model execution time depends strongly on the number
of training examples used to fit the SDM. In all cases,
the number of training examples and spatial resolution
of the output were shown to be highly significant
(p < 0.001). Computer hardware variables were not
shown to be significant predictors of execution time
for these SDMs. In some cases, additional memory
was shown to reduce model speed, perhaps due to
increased overhead of memory management. Runtime
logs indicate that model execution was bounded by
CPU processing capability, rather than main memory
capacity, suggesting that SDM workflows could be
improved if the algorithms were written to run in
parallel, rather than sequentially.

Models of SDM accuracy suggest that significant
accuracy gains can be achieved by fitting the models
with more than 2000 training examples. All three
SDM algorithms showed a similar pattern of increasing
accuracy as the number of input training examples
increased, though the increase was not linear. Figure 2
demonstrates the accuracy of a GBM-BRT model with
up to 9000 training training examples. The accuracy
prediction model shows an observed-to-predicted 72 of
0.900 and a mean prediction error of 0.001 £ 0.002
AUC. The model strongly suggests that use of the
additional training data available in the fossil record
can significantly enhance SDM accuracy.

Future work will be directed towards larger and
more complex models of climate-species dynamics.
Additional research should also investigate explicitly
parallel machine learning techniques and their feasibil-
ity for SDM studies, as our results show that execution
time is strongly limited by CPU-bound serial learning
techniques.
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SPATIOTEMPORAL ANALYSIS OF SEASONAL
PRECIPITATION OVER US USING CO-CLUSTERING

Mohammad Gorji—Sefidmazgi!, Clayton T. Morrison®

Abstract—Clustering techniques are commonly used
in climate science for clustering in time or space. In
this study, we apply a co-clustering technique for si-
multaneous analysis of spatial and temporal patterns
in precipitation data collected at stations across the
continental US. This approach reveals clusters of stations
with similar precipitation patterns and also clusters of
time where the values of precipitation are similar relative
to location.

I. MOTIVATION

Detecting regions of homogeneous precipitation pat-
terns is essential for modeling the hydrological cycle
and the design and management of water resource
systems. A common requirement by these tasks is the
need to group measurements into meaningful categories
based on historical observations. However, patterns of
precipitation change over time due to internal climate
dynamics and external forces [1]. In fact, the time
and space domains of the climate system are highly
correlated with each other. It is therefore desirable to
find spatial groupings while taking into account related
temporal structure of precipitation measurements.

Clustering techniques have been developed to find
groups of elements that are similar to each other, but
dissimilar to the elements of other groups. Current clus-
tering techniques used in climate science are typically
only used within time [2], [3] or space domains [4],
[5], [6], but not both simultaneously. In time-clustering
techniques, segments of time are detected where the
values of their time series are similar to each other.
Spatial-clustering approaches use the average (or trend)
of measurements in each station to identify the sta-
tions with similar measurement records. Finally, some
spatiotemporal approaches first analyze the temporal
domain (e.g., at each station) and then analyze the
spatial domain (e.g., use GIS data to find spatial patterns
in climate data) [7], [8].

Corresponding author: M. Gorji-Sefidmazgi,
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Co-clustering is a variant of clustering that introduces
the ability to simultaneously cluster along two variables.
Here we seek to simultaneously cluster stations while
also clustering precipitation values over time, producing
co-clusters as subsets of stations that have similar
precipitation patterns over time. By co-clustering, it is
not necessary to calculate the average (or trend) of
precipitation in each station before spatial clustering.
Instead, it is possible to detect clusters of stations with
similar precipitation temporal patterns. Additionally for
each cluster of stations, we will find the clusters of time
where the values of precipitations are similar to each
other.

In this paper, we present the results of applying a
co-clustering algorithm to monthly precipitation data
of 1218 stations in the continental United States. Our
results suggest the method is capable of identifying
interesting spatial patterns in seasonal precipitation.

II. DATA

The dataset used in this study is the bias-adjusted
monthly precipitation time series over 1218 stations
within the continental US derived from United States
Historical Climatology Network (USHCN) database [9].
This dataset can be downloaded from http://cdiac.
ornl.gov/epubs/ndp/ushcn/ushen.html. The precipitation
amounts are in hundredths of inches (e.g., 468 indicates
4.68). In this analysis, we need data for the same time
period for each station. We selected the 64-year time pe-
riod of 1951 to 2014 and calculated the average precip-
itation across each month. We then partitioned the data
by season (January-February—March (JEM), April-
May—June (AMJ), July—August-September (JAS) and
October—November—December (OND)). This results in
4 data sets, one for each season, each represented by a
matrix of 1218 rows (for each station) by 192 columns
(for the three months for the season, across 64 years).

III. METHOD

In this work, use the Spectral Co-clustering algo-
rithm, originally developed for clustering of gene ex-

41


http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html

GORIJI-SEFIDMAZGI

/ \ 6th International Workshop on Climate Informatics
C |  September 22-23, 2016
A ;

2016 Hosted by the National Center for Atmospheric Research in Boulder, GO

pression levels in thousands of genes [10]. This method
has efficient performance, suitable for working with
large matrices.

Let a dataset of samples be represented along two
variable dimensions, M and N (each of m and n
possible variable states, respectively), as a matrix A =
(@ij)mxn- Each value in the matrix, a;;, is indexed by
the ¢-th state of variable M and j-th state of variable V.
Co-clustering then involves simultaneously partitioning
the m states of variable M into K distinct row clusters,
and partitioning the n states of variable N into L
distinct column clusters.

Suppose that the matrix A is co-clustered into (K X
L) sub-matrices. Let P, ;) be the sub-matrix of k-th
row cluster and [-th column cluster, and denote the
average of all values of this sub-matrix as p ). The
quality of this co-cluster is defined as:

€(k,l) = Z ai; — M(k,z)]2-

a;; €Pk 1)

)]

We then define the error, E, of a co-clustering as the
sum of e,y for all of (K x L) sub-matrices. The goal
of a co-clustering algorithm is to find a partition that
minimize F. However, note that a co-clustering solution
with single-row and single-column sub-matrices is a
trivial solution with & = 0. Thus, it is necessary to fix
the values of K and L and then determine the members
of those clusters that minimize F.

The problem remains as to how to choose K and
L. This is still an open model-selection problem, but
here we adopt the method proposed in [11]. First, note
that our error score E will decrease as we increase
K and L no matter how we associate the values in
the cells of matrix A with rows and columns. That is,
this will be true if we choose any random matrix A
whose individual elements are the same as A but whose
locations in the matrix are randomized with respect to
rows and columns. We search for K and L such that E
for the clustering over A is as low as possible but not
lower than the expected value of E across random As.
To incorporate this constraint, we perform a grid search
over different values of (K, L) for A and along with R
randomly sorted matrices Ar, and seek to minimize:

N
S (B - E{E,})?

i=1
For spatiotemporal analysis of precipitation, we seek
row clusters that represent sets of stations that record
similar precipitation and the column clusters that repre-
sent the periods of time where the values of precipita-
tions are similar to each other. We applied the spectral
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Fig. 1: (a) Heatmap of summer precipitation for 1218
stations and 192 time points, prior to clustering. (b)
Heatmap after permuting the rows and columns to
group by clusters, with optimal values of K = 9 and
L = 7. (Note that the row and column indices for (b)
do not correspond to those in (a).) The checkerboard
structure of the sorted matrix (b) can be seen across
the clusters.

co-clustering approach to the four matrices of seasonal
precipitation for K € {2,...,15} and L € {2,...,10}.
For each (K, L), the algorithm was also applied to 100
randomly row- and column-permuted versions of each
matrix to calculate the cost of Equation 2. In this way,
we can find the optimal values of (K, L) for each of
four matrices.

IV. RESULTS

Heatmaps are a common visualization tools for rep-

resenting the quality of co-clustering. The color of
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(d) OND

Fig. 2: Space clusters in seasonal precipitation over US
1951-2014. (a) Winter K = 14, L = 6. (b) Spring
K=2,L=2 (c)Summer K =9, L =7. (d) Autumn
K=2 L=2.

pixels of a rectangular grid represent the magnitude
of the a;; values. After the co-clustering algorithm is
used to cluster row and column indices, the rows and
columns are reordered to group by cluster. In general,
a co-clustering is qualitatively more successful to the
extent that the reordering by clusters results in sub-
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Fig. 3: Indices of 7 time-clusters in a station located
Eureka, CA. Each Time Cluster (indexed along the
y-axis by numbers 1 — 7) has a different pattern of
precipitation. Note that the Time Cluster indices are
categorical indices for naming the cluster, but here we
have also ordered the indices so that they correspond to
the order of the precipitation values (i.e., index 1 is the
lowest precipitation mean (86), index 2 the next lowest
(91), and so on up to index 7, which has the highest
precipitation mean (162).)

matrices whose within-cluster values are more similar
than between clusters, resulting in a “checker board”
pattern [12]. Figure 1 shows the results of applying
the spectral co-clustering algorithm to the summer
precipitation data.

Figure 2 shows the spatial patterns of precipitation
across the four seasons. It can be seen that there are
higher variabilities for precipitations of summer and
winter. Also, the spatial patterns of summer and winter
are similar to each other, although variability increases
toward the east coast during winter, with additional
clusters.

For each one of these spatial clusters there are also
associated temporal clusters. These are periods of time
where the values of precipitation are similar to each
other. As an example, Figure 3 shows the indices
of detected temporal clusters of precipitation for the
station located at Eureka, CA. Each of these 7 time
clusters represents a pattern of precipitation. For the
Eureka, CA station, the average of precipitation in these
7 time clusters are {86,91,99,100,117,136, 162}.
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PREDICTION OF EXTREME RAINFALL USING
HYBRID CONVOLUTIONAL-LONG SHORT TERM
MEMORY NETWORKS

Sulagna Gope', Sudeshna Sarkar!, Pabitra Mitra!

Abstract—A hybrid convolutional-Long Short Term
Memory (LSTM) neural network model has been pro-
posed as a data driven model to predict the amount
of rainfall. The convolutional model takes care of the
spatial features responsible for rainfall and the temporal
variation in the features leading to rainfall is captured
by the LSTM model. We demonstrate the effectiveness of
the model in rainfall prediction tasks in India. Our model
has been found to work better when compared with some
of the standard machine learning models that has been
used for the task.

I. MOTIVATION

Rainfall is a very important natural phenomena which
greatly affects the life and livelihood of people in places
like India. Though heavy rainfall creates a lot of hazards
and losses, little or no rainfall affects cultivation, dries
up rivers and lakes, leading to a shortage of food and
fresh water. Thus rainfall forecasting remains an impor-
tant problem. Accurate rainfall prediction in complex
climatic regions like India has been a difficult task. A
lot of effort has been made to identify the true factors
responsible for it, however the uncertainty in prediction
is still persistent [1][2]. This is because the true mech-
anism of rainfall is not thoroughly known. Different
atmospheric factors interact to bring about rainfall at a
certain place at a certain time. This is a very complex
mechanism which has not yet been solved with the
known equations. Besides, accurate rainfall prediction
models need to capture the local relief and local phe-
nomena. Numerical weather prediction (NWP) models,
which are mathematical models based on the laws of
physics, atmospheric science and fluid motion, have
failed to predict rainfall accurately in certain regions
of the world. Statistical and machine learning based
models have been used to overcome the shortcomings
of the NWP models. Their advantage is that they are

Corresponding author: S Gope, sulagna.student]12@gmail.com
'Indian Institute of Technology Kharagpur, India

portable and can be learned for different regions of the
world. Among statistical models analog methods are
quite popular for precipitation forecasting [3]. When
the analog methods are compared with deterministic
models like MM5 [4] it is found that the deterministic
models overestimates the rainfall whereas the analog
models underestimate it. This calls for further improve-
ment of the technique. Some work have been carried
out on precipitation prediction in India such as [5],
[6], most of which have tried to relate extreme rainfall
with anomalous weather behavior. Though these models
could predict rainfall in general, they have failed to
predict in advance extreme rainfall events.

Recently many advanced machine learning tech-
niques like deep learning have been found to work
well in solving complex tasks. Nayak et al.[7] used
support vector machines to predict extreme or non-
extreme rainfall events. JNK Liu [8] developed a deep
neural network model to predict temperature, dew point,
mean sea level pressure and wind speed in the next
few hours. In [9], [10] deep learning models have used
for different weather prediction tasks. Deep learning
models have been found to work very well in complex
tasks. For instance convolutional neural network [11]
beats the state of the art methods in image recognition
tasks. Convolutional neural network (CNN) works very
well on spatial data where localized features play an
important role. On the other hand recurrent neural
network (RNN) models [12] are effective in dealing
with temporal data and in various sequence generation
tasks. RNN has been modified to use new architectures
like LSTM [13] which overcome certain limitations of
RNN.

In this paper we have built a model for rainfall pre-
diction where the spatial aspect of weather parameters
is taken care of by a CNN model and the variation in
the behavior of the features over time is captured by a
LSTM model.
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II. DATA

Atmospheric features over the entire Indian sub-
continent have been used as predictors for rainfall.
These features include temperature, mean sea level
pressure, precipitable water, relative humidity, U-wind
and V-wind at the surface level. Atmospheric param-
eters like temperature, vertical wind velocity (omega),
relative humidity, u-wind and v-wind are also consid-
ered at the 850-, 600-, 400-hPa pressure levels. All these
parameters have been found to be important factors re-
sponsible for rainfall and are generally used for rainfall
prediction task. The data is collected from the National
Centers for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) reanalysis
data for the Indian subcontinent ranging from 5 degrees
to 40 degrees north latitude and 65 degrees to 100
degrees east longitude. The extreme rainfall data has
been obtained for Mumbai from Indian Meteorology
Department (IMD). The rest of the rainfall data re-
quired for the experiment has been obtained from
APHRODITE. For training the model, we have used
the data from 1969-1999 for the four Indian Summer
Monsoon months. The data from 2000-2008 has been
used for testing. Though the model is used for short-
term prediction only, still a huge amount of historic
data is needed for training, so that the model can learn
the underlying physical process solely from the data,
without any extra domain knowledge. This enables the
model to make better prediction.

III. METHOD

In this work we have first tried to identify the most
significant spatial features from the large set of input
features using a convolutional neural network or CNN
[11]. The significant features identified are then fed to
a LSTM model to solve the rainfall regression problem.

We have first constructed a multi-layered CNN for a
classification task. There are about 21 weather features
over a 15 x 15 grid spatial region, where each grid
has a dimension of 2.5° % 2.5°. Our CNN architecture
consists of three convolutional layer with two pooling
layers in between and finally two simple neural network
layers. We have performed a number of experiments
with different number of layers and found that the
above mentioned configuration gives the best result.
Each convolutional layer transforms one set of feature
maps to another set by convolution with a set of filters.
The feature map h* for a given layer with filters having
weight W and bias b is given by

hfj = tanh((W* * z);; + b¥) (1)

where * is the convolution operator and x is the input
from the previous layer. The feature maps are subsam-
pled using max pooling. The final feature map is then
connected to a sparse neural network layer, which is
then connected to a fully connected NN layer. The fully
connected layer is mapped to the output. In our case
the output for the CNN is binary, indicating extreme
or non-extreme rainfall.In [7], rainfall is classified as
extreme or non-extreme event based on a threshold
amount which is dependent on the region considered.
For example, Mumbai receives very heavy rain every
year during monsoon, thus the threshold for Mumbai
is taken as 75Smm (which is quite high) of accumulated
rain. The same has been done in this work.

The features of each day is fed to the CNN model.
The feature map obtained from the last convolutional
net layer is extracted for each day. The new feature
maps for the past three days is then fed to a single
layer LSTM model. A block diagram of the hybrid
CNN-LSTM model is shown in Fig. 1. We have also
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‘ Single-layered Rainfall
amount
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Fig. 1. Block diagram of our approach
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used AFM for feature extraction followed by Istm for
rainfall estimation. The AFM method finds out the
features which consistently show anomalous behavior
corresponding to extreme rainfall events. Only those
features, which have shown anomalous behaviour for
most of the extreme events, are used out of the full
input feature set is used as input to the Istm for rainfall
estimation.

LSTM is a memory based neural network which is
similar to RNN with a few gates. The LSTM archi-
tecture includes a input gate, forget gate, output gate
and a cell which helps it to selectively retain useful
past information and forget the rest of the unnecessary
information. The equations of the gates are as follows:

iy = o(Waimy + Whihi—1 + b;) (2)

ft = c(Wypze + Whrhe—1 + by) 3)

0r = 0(Waott + Whohi—1 + bo) 4)

¢t = frxci—1 + i * tanh(Wyexy + Wiehi—1 +be) (5)
hi = o * tanh(c;) (6)

The input 7, output o, forget f; gates and the cell ¢;

follow the above equations with different parameters
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and uses sigmoid activation function. They receive the
present input and the previous hidden state as input and
generate an output just like a RNN. The memory cell ¢;
is responsible for combining the previous memory with
the newly generated hidden state. Finally the current
hidden state h; is calculated using the cell state and the
output from the output gate. In our model the feature
maps of the past few days are fed as input and the
amount of rainfall for the next 3 days are obtained.
The model is trained using stochastic gradient descent.

IV. EVALUATION

Our model can predict rainfall in a particular region
based on the weather parameters of that region and its
surroundings. The model performs well in predicting
the total rainfall that will take place in the next 1,
2 and 3 days based on all the weather parameters of
the previous three to five days. We have tested our
model for predicting rainfall during the Indian Summer
Monsoon, over Mumbai, India, since every year this
region receives high rainfall. The 21 weather features
observed over the 2-dimensional space spread over the
Indian sub-continent has been fed to the convolutional
network. We have used daily observations of the fea-
tures as input. The feature map of the last convolutional
layer is used as input to the LSTM network. Our hybrid
model has been compared to a CNN, a hybrid stacked-
autoencoder followed by LSTM (SAE+LSTM) model
and anomaly frequency method [7] of feature extraction
followed by LSTM (AFM+LSTM). The plots of the
true rainfall and the predicted rainfall using AFM-
LSTM and CNN-LSTM hybrid model is shown in
Fig.2 and Fig.3 respectively. In the figures, the red line
indicates the predicted output and blue line indicates the
true output. Due to lack of space we have only included
the plots of results for prediction of rainfall with 1 day
lag.

The performance of the different methods used has
been shown in the Table I in the form of mean square
error and symmetric mean absolute percentage error
(SMAPE) which is calculated as follows:

F
Z|lt |A

where F} is the predicted value and A; is the true
value. The mean square error (mse) does not give a
good measure of curve fitting. We thus use the SMAPE
measure which gives a better indication of fitting. Since
the rainfall values are normalized between O and 1,
the mean square error is low in all the cases. The
AFM followed by LSTM and the CNN followed by
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Fig. 2. Plot of true and predicted rainfall using AFM-LSTM model
with 1 day lag
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Fig. 3. Plot of true and predicted rainfall using CNN-LSTM model
with 1 day lag

TABLE I
COMPARISON OF ERRORS FOR REGRESSION PLOTS OF
DIFFERENT METHODS

1 Day lag 2 Days lag 3 Days lag

Method mse | SMAPE | mse SMAPE | mse SMAPE
AFM+SVR 0.063 | 75.50 0.069 | 77.90 0.08 86.01
SAE + LSTM 0.011 | 50.66 0.017 | 51.55 0.029 | 54.00
CNN 0.016 | 83.00 0.021 | 83.571 0.022 | 84.01
AFM + LSTM | 0.008 | 42.14 0.009 | 42.92 0.010 | 46.73
CNN + LSTM | 0.01 42.48 0.009 | 44.55 0.009 | 44.67
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LSTM gives the least mse and SMAPE. Low value
of SMAPE indicates a better fit. AFM+LSTM method
shows a good fit for low and medium rainfall and
has less false positives. This is probably the reason
why SMAPE has lower value for AFM+LSTM method
than CNN+LSTM. However for high rainfall cases
CNN+LSTM performs better. Thus both the models can
be implemented to get an overall idea of the amount of
rainfall that may occur. Also we find that the SMAPE
of AFM+LSTM exceeds that of CNN+LSTM as the
time lag increases which indicates that CNN+LSTM
model is capable of predicting rainfall in much advance.
Fig 3 also shows a few false positive cases, where
our model predicts high rainfall but actually there is
much less rain. We would like to improve our method,
concentrating more on the feature selection part to
get better results. We have tried the same experiment
using an end-to-end model, however we did not get
good result with it. In future we would like to make a
better end-to-end model, with proper parameter tuning
to address the problem of rainfall prediction and other
severe weather events in advance.
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SPATIOTEMPORAL PATTERN EXTRACTION
WITH DATA-DRIVEN KOOPMAN OPERATORS FOR
CONVECTIVELY COUPLED EQUATORIAL WAVES

Joanna Slawinska!, Dimitrios Giannakis?

Abstract—We study spatiotemporal patterns of convec-
tive organization using a recently developed technique
for feature extraction and mode decomposition of spa-
tiotemporal data generated by ergodic dynamical sys-
tems. The method relies on constructing low-dimensional
representations (feature maps) of spatiotemporal signals
using eigenfunctions of the Koopman operator governing
the evolution of observables in ergodic dynamical sys-
tems. This operator is estimated from time-ordered data
through a Galerkin scheme applied to basis functions
computed via the diffusion maps algorithm. We apply
this technique to brightness temperature data from the
CLAUS archive and extract a multiscale hierarchy of
spatiotemporal patterns on timescales spanning years to
days. In particular, we detect for the first time without
prefiltering the input data traveling waves on temporal
and spatial scales characteristic of convectively coupled
equatorial waves (CCEWs). We discuss the salient proper-
ties of waves in this hierarchy and find that the activity of
certain types of CCEWs is modulated by lower-frequency
signals.

I. MOTIVATION

Clouds are omnipresent throughout the Earth’s atmo-
sphere. They constitute an important part of the climate
system, having potentially large yet uncertain impact
on climate change [1], [2], [3], [4], [5]. Convection
occurs on relatively small and short scales, on the order
of a few tens of kilometers and a few hours at most,
but interacts strongly with other scales and is coupled
with large-scale circulation and moisture [6]. Moreover,
clouds organize themselves in a number of distinctive
mesoscale and synoptic scale convective systems, of-
tenmost embedded within each other and propagating
throughout the tropics [7], [8], [9], [6]. Despite the
considerable economic impact of these systems (e.g.,

Corresponding author: J. Slawinska, joanna.slawinska@nyu.edu
LCenter for Environmental Prediction, Rutgers, The State University
of New Jersey, New Brunswick, NJ, USA. 2Courant Institute of
Mathematical Sciences, New York University, New York, NY, USA.

they provide the majority of precipitation in the tropics
[10], [11]), their predictability with operational models
is limited [12], [13], [14], [15], due to their poorly
understood and multiscale nonlinear nature.

Convectively coupled equatorial waves (CCEWs,
[16]) are typically categorized either as Kelvin,
mixed Rossby-gravity (MRG), east/west inertio-gravity
(EIG/WIG), and equatorial Rossby (ER) waves [16].
This classification relies on theoretical solutions of dry-
wave linear theory and filtering over the correspond-
ing frequency-wavelength band. However, since the
observed spatiotemporal signal corresponds to propa-
gating organized convection coupled nonlinearly with
moist multiscale tropical dynamics, these idealized so-
lutions have a number of discrepancies with the wave
types observed in nature [16], [17], and more advanced
methods for their detection and tracking are being
sought [8], [18]. Wavelet transforms can succesfully
decompose such multiscale structures [19], [20], [21],
yet they do not reduce the dimensionality of the signal
and are not well-suited for objective classification and
nonparameteric modeling of a finite number of spa-
tiotemporal modes.

II. KOOPMAN OPERATOR APPROACH

Here, we demonstrate the potential of a new machine
learning technique for extraction of spatiotemporal fea-
tures (such as CCEWs) that are defined by eigenvectors
of data-driven Koopman operators. This approach has
been introduced recently in [22], where a more detailed
analysis can be found, and here we summarize this
reference briefly. The approach utilizes the framework
of ergodic theory, and in particular, it relies on the
notion that the temporal sequence of states ag, ay, ...
of the system (here, of the atmosphere system) is the
outcome of measure-preserving ergodic dynamics. The
objective is to derive observables (temporal patterns)
that are functions of these states, f(a;), and can be
associated with the particular phenomena of interest
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Fig. 1. Temporal patterns (left) and their frequency spectra (right)
for three examples of CCEW-like patterns obtained here as eigen-
functions of data-driven Koopman operators.

(here, CCEWSs). In order to achieve that, the Koopman
operators that govern the temporal evolution of the ob-
servables are being considered. The Koopman operator
U of a dynamical system (sampled discretely in time)
acts on observables by time shifts, i.e., g = U(f) with
g(a;) = f(aj+1). Note that even if the dynamics is
nonlinear, U is a linear operator acting on a (generally,
infinite-dimensional) space of observables. Historically,
this operator-theoretic approach was introduced in the
1930s in the context of ergodic theory [23], and has
been employed more recently in dynamic mode decom-
position techniques [24], [25].

The method in [22] uses kernel methods [26] to rep-
resent the Koopman operator U in a smooth orthonor-
mal basis {¢;} of kernel eigenfunctions learned from
time-ordered observations of the system. Dynamical
temporal patterns, 1, are then determined by solving
the Koopman eigenvalue problem, Uiy = A1y, in
this basis. Numerically, this is a Galerkin method in-
volving the solution of the matrix eigenvalue problem
AG), = \pGy, where A, = ¢} U(d,) are the matrix
elements of the Koopman operator, and the column
vectors ¢j store the expansion coefficients of v in
the {¢;} basis. The corresponding eigenvalues \j are
complex, \;, = e+ and capture growth rates (v;)
and oscillatory frequencies (wy). As a result, the input
signal is decomposed into quasi-oscillatory patterns
with distinctive timescale separation. These patterns are
intrinsic to the dynamical system in the sense that they
are invariant under invertible nonlinear transformations
of the input data. Moreover, spatiotemporal patterns
associated with the 1/, can be obtained via projections
of the input data; a procedure familiar from PCA.

As with any Galerkin method, the efficacy of this
scheme depends strongly on the choice of basis {¢;},
and hence the choice of kernel. In [22], the kernel is
carefully constructed to ensure that the ¢; are orthonor-
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Fig. 2. 5-day evolution of the 7; anomalies (arbitrary units)
associated with the 5-day westward MRG wave shown in Fig. 1(a,b).

mal with respect to the invariant measure of the dy-
namics (see also [27]). A validation of the method can
be found in [28], where extraction of traveling waves
is demonstrated for a synthetic dataset [19] consisting
of two superposed waves of different wavelength and
with amplitude modulation by a background state. Ref-
erence [28] also employs kernels based on Takens delay
embeddings [29] to extract modes of convective orga-
nization (including CCEW signals) from equatorially
averaged brightness temperature (71;) data. The same
kernels have previously been employed for extraction
and prediction of intraseasonal and interannual modes
via so-called NLSA algorithms [30], [31], [32], [33],
but the higher-frequency intermittent CCEW signals of
interest here could not be recovered by NLSA.

ITI. RESULTS

We apply the Koopman operator approach described
in section II to extract CCEW patterns from two-
dimensional (2D) T; data. In this study, 7; data from
the CLAUS multi-satellite archive [34] were sampled
on a uniform longitude-latitude grid of 0.5° resolution,
and observed every 3 hours for the period July 1, 1983
to June 30, 2009. Since knowledge of the T; field at
a given time is not sufficient to uniquely determine its
evolution at a later time, we embed the input data in
a higher dimensional space via delay-coordinate maps
[35]. In particular, selecting an integer parameter g,
we construct the time series wu(t) = (T(¢t), Tp(t —
1),...,Tp(t—q+1)), where Tj(t) denotes the sampled
2D T field at time ¢. Due to a theorem of Takens
[36], the signal u(t) is expected to be more Markovian
than the individual 7} snapshots. Here, following [30],
[31], [28], [32], we set ¢ = 512, corresponding to

a time interval of 64 days for our 3-hour sampling
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Fig. 3. 15-day evolution of the 7; anomalies (arbitrary units)
associated with the 15-day westward ER wave shown in Fig. 1(c,d).

interval. After delay-coordinate mapping, the number
of samples available for analysis is n = 66,693 and
the ambient space dimension is ¢ x d = 5,713,920,
where d = 11,160 is the number of sampled spatial
points covering the whole equatorial belt. The kernel
eigenfunctions ¢; are computed as described in [28].
The Koopman eigenfunctions vy, are subsequently com-
puted using the leading [ = 110 kernel eigenfunctions
as a basis for the Galerkin approximation space.

The resulting eigenfunctions exhibit a broad range
of timescales, ranging from interannual to diurnal
timescales. Among them are periodic patterns rep-
resenting the seasonal and diurnal cycles and their
harmonics. Other patterns have the structure of inter-
mittent, amplitude-modulated traveling waves. These
waves include intraseasonal oscillations (ISOs), but also
higher-frequency CCEWSs. Representative eigenfunc-
tions of the latter class are displayed in Fig. 1. There,
the strong temporal intermittency of these modes, char-
acterized by periods of energetic, yet coherent, activity
interspersed between periods of almost complete quies-
cence is clearly evident. The modulating envelopes of
the CCEW modes evolves on intraseasonal timescales,
suggesting possible interactions with larger-scale ISOs.
To our knowledge, this is the first time that such CCEW
patterns have been recovered from 2D 7}, data via an
objective eigendecomposition technique.

The spatiotemporal patterns associated with the
Koopman eigenfunctions in Fig. 1 are displayed in
Figs. 2—-4. There, various types of eastward and west-
ward traveling convective organization can be seen. The
modes are in good qualitative agreement with the dis-
persion characteristics and spatial structures obtained by
dry linear CCEW theory (see, e.g., Figs. 2—4 in [16]). In
particular, Fig. 2 shows a 5-day westward-propagating
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Fig. 4. 10-day evolution of the 7} anomalies (arbitrary units)
associated with the 8-day eastward Kelvin wave shown in Fig. 1(e,f).

mixed Rossby-gravity (MRG) wave, Fig. 3 a 15-
day westward-propagating equatorial Rossby wave, and
Fig. 4 an 8-day eastward-propagating Kelvin wave. It is
important to note that despite the qualitative agreement
with linear dry theory, the patterns in Figs. 2—4 have
notable differences from the idealized structures. For
example, a prominent feature of the MRG in Fig. 2 is a
T, anomaly tilt with latitude which is not consistent
with the theoretical MRG solutions of the shallow
water equations. This tilted structure was also identified
in [37] from filtered OLR data, but was recovered
here from unfiltered data through eigenfunctions of an
operator governing the time evolution of observables of
the atmosphere system.

IV. SUMMARY AND OUTLOOK

In this work, we have demonstrated the potential of
data-driven Koopman operator techniques for extrac-
tion of spatiotemporal patterns from high-dimensional
multiscale timeseries generated by nonlinear dynamical
systems. In particular, applying the method developed
in [22] to 2D brightness temperature data over the
tropics, we identified several propagating patterns cor-
responding to CCEWSs. To our knowledge, recovery
of such patterns from brightness temperature data has
previously not been possible via objective eigendecom-
position techniques. This provides an opportunity to
improve the understanding of CCEW structures and
their interactions with lower-frequency modes [9], [6].
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Abstract—To understand future climate
different Earth system models from groups wo
simulate projections of future climates. However.
from these simulations are computationally very
sive, often requiring several months on a superco
In this paper, we provide a new statistical en
method that may allow a realization of future
projections within a day rather than several
Specifically, we analyze the structure of several
outputs from various climate models on a man
covariance matrices. The manifold covariance st
provides a method to compare existing climate
outputs, as well as to sample a new realization o
climate projections. We validated our climate
output comparison method using known deper
between various climate models. Additiona
showed, using semi-variogram plots, that the distiivuuvn
of our realizations lie within the distribution of existing
climate model outputs. The proposed statistical emulator
could find its use in future climate impact assessment.

I. INTRODUCTION

Our understanding of future climate changes can
improve by analyzing various plausible realizations
of future climate projections. However, generating a
climate simulation from an Earth System model is com-
putationally very expensive since the model captures
the complex interactions among the many components
of the Earth’s climate system (see [1]). The Coupled
Model Inter-comparison Project (CMIP [2]) coordinates
efforts between various groups developing Earth system
models to create a database of multi-model ensembles
of climate simulations. For example, Fig. 1 shows
changes in precipitation for North America from two
separate Earth system models that are part of the
CMIP Phase 5 (CMIP5) multi-model ensemble. Both
of these models show a plausible, yet, different view of

future climate changes. Hence, a thorough assessment
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% change in precipitation per
degree of global warming

Fig. 1. Projections (2090) of percent change in precipitation per
degree of change in the global mean temperature for North America
from the CMIPS multi-model ensemble. Shown here are projections
from the Max Planck Inst. (MPI, Germany) and Community Earth
System Model (CCSM4, USA).

of future climate impact requires a framework that can
capture the variability across all climate model outputs.

An overview of methodologies that can capture the
variability among climate model outputs is given in [3],
along with the limitations of these approaches. For ex-
ample, some of the climate models share common phys-
ical representation and numerical methods, and, thereby,
cannot be considered as independent simulations. Ad-
ditionally, the dependencies in climate models reduces
the spread of future climate projections. To address the
inter-model dependency issue, a Bayesian hierarchical
framework has been suggested by [4], [5], [6], [7].
However, the proposed Bayesian framework faces
difficulties in robustly modeling the inter-dependencies
because of its sensitivity to prior assumptions.

Recent work by [8] shares similar methodological
goals as ours in that the authors address issues of
model dependencies and sampling in a non-parameteric
set-up. The authors use a standard Euclidean metric
on a low dimensional space by fixing the modes of
variance within the available ensemble. Thus, limiting
the amount of variability information that is present in
the climate model outputs.

This paper presents an approach that allows for the
variability information from the climate model outputs
to be estimated. Specifically, we assume that the
ensemble of well fitted covariance matrices provides
sufficient information to characterize a distance
measure. One application is to sample new realizations
from an existing ensemble of climate model outputs.
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II. -

To capture the variabi
tions at locations arour
ensemble members, one
framework. If ¥ is a n
then the standard multiva
(sMVN) is given by

y =

where y is the new mu
the future climate project
> is the ensemble covari
is the standard normal ra

In SMVN, the estimat
distribution of the climat
of the forms

2(0)(ie. 3) = I + o

In this preliminary study, H is selected as a stationary
anisotropic matérn covariance function. Here, stationar-
ity is selected for simplicity, and the anisotropic matérn
covariance function is a standard choice in geostatistics.
Finally, fi is estimated as an equally weighted average.

The parameters 0 = {¢,0,19} are also known as
range, sill, and nugget, resp., in the geostatistics litera-
ture. They are estimated by maximizing the likelihood
function, which is of the form ¢(f|yi,...,yn)
12(0)] 7= TIL, exp(— 5 (yi — ) TS(0) "L (yi — 1)),
where N is the number of ensemble members, and y;
is a vector field of climate model outputs.

Our statistical emulation method, which we call the
information geometric multivariate normal sampling
method (igMVN), is depicted in Fig. 2. In igMSN, the
estimate of the parameters 3 and p is of the form

n m;

S=sirie =YY Ly @

. nn@
Jj=1k=1

where ¥ s sampled from a normal distribution
on a manifold of covariance matrices, i.e.,
¥(O) ~ N(Z,A|X(0:),...,2(0x)). Finally, i is
estimated as a weighted average. Here, n is the number
of clusters of covariance matrices, and m; is the
number of covariance matrices in each cluster.

The parameters ¥ and A are the mean and variance,
resp., of the ensemble of covariance matrices. Each
¥(0;)(i.e. ;) is a covariance matrix of individual
ensemble members, and 6; is learned by maximizing
a likelihood function.

.............................. Manifold of Covariance Matrices

: Fitting covariance for each  :
¢ climate model output:

Modeling Team - MPI :

Fig. 2. Our inter-model comparison and sampling method: A
Manifold view of the covariance structure of climate model outputs
from various modeling teams (e.g. MPI, MRI, CCSM4)

A theoretical background for statistical distributions
of symmetric positive definite matrices on a manifold
can be found in [9], and the computational form to
estimate > and A is given in [10], [11], [12], [13].

In order to estimate [ using the weighted average,
we first cluster the covariance matrices on a manifold
using a standard hierarchical clustering method. The
criteria for a cluster is max{D(X1,%2) : X €
S1(%:),22 € S2(3;)} < threshold. The choice of
the clustering method and the criteria for clustering
are chosen for simplicity. The threshold is empirically
chosen as 2 in our experiments, .51 and S are two sets
of clusters of X;’s, and the distance metric (geodesic)
on the manifold of covarianlce matrlices is of the form
D?(1, B2) = 5Tr(log?(2; * ¥4 *)).

The estimates of /1 and > in igM VN incorporate extra
information about the structure of covariance matrices
that the sMVN fails to consider. This extra information
is enabled using statistics on the structure of the
covariance matrices in order to detect dependencies in
climate model outputs and, thereby, incorporate known
limitations in the ensemble members.

IIT. EVALUATION

To gain insight into the applicability of our proposed
statistical emulation method, we used the ensemble
of climate model outputs from CMIP5 experiments of
future projections under RCP scenarios (see [1]). In
order to test our method against various patterns in
climate model outputs, we selected the climate variable
of percent change in precipitation per degree of change
in the global mean temperature.

In this paper, we restrict our study to the spatial
dataset of the North American region in order to
analyze the regional spatial variability aspect of the
climate model outputs. Additionally, we have included
single simulation runs from each of the Earth System
Models (ESMs), rather than multiple simulation runs,

in order to reduce biases in the ensemble.
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Fig. 3. A representation of the similarity measure between cl
models outputs of the CMIP5 ensemble members. The simi
measure that we designed is a geodesic distance between the
covariance matrix of individual climate model outputs. Row
columns of the above plot represent various climate model ou
lighter shades of red represent higher similarity between ms
and boxes represent climate models that are validated to have
inter-model dependencies.

Fig. 3 shows the values of our distance m
between each of the ensemble members. In this figu..,
lighter shades of red represent higher similarity in the
covariance matrices of the climate model outputs, and,
in turn, imply higher dependencies between the models.
The climate model outputs from the same Earth system
modeling group are highlighted by the blue boxes and
are known to have high inter-model dependencies for
reasons that include code and data sharing (see [14]).
The highlighted blue boxes show lighter shades of
red, and, in turn, demonstrate that the chosen geodesic
distance metric can be used to compare and cluster
climate model outputs in a non-parametric fashion.

Fig. 4 shows the experimental semi-variogram plots
of climate model outputs and statistically generated
samples from a number of methods. Given the semi-
variogram function, one can estimate the parameters
(range, sill, and nugget) of the covariance function.
Hence, semi-variogram plot, explained in detail in
[15], is a good tool in spatial statistics to visualize the
differences in covariance matrices.

The climate model outputs (as shown by the red lines
in Fig.4)) in the RCP2.6 and 4.5 ensembles (Fig.4)
(a), (b), (c), (d)) has higher inter-model variability in
its semi-variogram plots than the RCP8.5 ensemble
(Fig.4) (e) and (f)). Hence, the spread of the climate
model outputs realizations (as shown by the blue lines
in Fig. 4) using the igM VN method (Fig.4) (b) and (d))
is better than the sMVN method (Fig.4) (a) and (b))
in representing the underlying spread of the climate
model outputs. The wide spread in the igM VN samples

Climate model output
Generated samples from a-méthod
300 ——  Subset of climate model outputs

:  Spread of the generated samples

7(h), Semi-variogram function

h, Distance in degrees

Fig. 4. Diagnostic plots showing the experimental semi-variogram
function for various climate model outputs from CMIP5 ensembles
(red lines) and the statistically generated samples (blue lines) from
the standard multi-variate normal sampling method (sMVN) for
the (a) RCP2.6 ensemble, (c) RCP4.5 ensemble, and (e¢) RCP 8.5
ensemble. Realizations from our sampling method (igMVN) are
shown for the (b) RCP2.6 ensemble, (d) RCP4.5 ensemble, and
(f) RCP8.5 ensemble. The ellipse in each plot focuses on the spread
of the generated samples from each sampling method.

could be attributed to the sampling of the covariance
matrices from a manifold.

Fig.5 (a) shows the spatial field of the GFDL-ESM2G
model output (a member in the CMIP5-RCP2.6 ensem-
ble) overlaying the North American region. From the
semi-variogram plots in Fig.4 (a) and (b) we see that the
realizations from the SMSV method does not emulate
the climate data well, when compared to the igMVN
method, for the GFDL-ESM2G model. Similarly, in
Fig.5 (b) and (c) we see that there are more matching
pixels (as shown by the grey colored boxes) in the re-
alizations from the igM VN method (c) than the SMVN
method (a). Therefore, the igMVN method may have
some advantages over more traditional approaches;
hence, it would be worth pursuing this method to
compare and sample climate model outputs.

I'V. DISCUSSION

In this paper, we have shown a non-parametric sta-
tistical emulator that can potentially mimic the existing
ensemble of climate model outputs for projections of
precipitation changes over North America and under

the RCP scenarios. Additionally, we have provided
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Fig. 5. Diagnostic plots showing the spatial field of climate
variables from the Geophysical Fluid Dynamics Laboratorys cli-
mate model output of GFDL-ESM2G (a CMIP5-RCP2.6 ensemble
member). The spatial field shown here is restricted to the North
American region. (a) shows the climate model output, (b) shows
one of closest realization (from Fig. 4(a)) using the SMVN method,
and (c) shows one of closest realization (from Fig. 4(b)) using the
igMVN method. The coast is represented by black lines, and the
boxes represents patterns of similarity between the realizations and
the climate model output.

a method to compare climate model outputs, which
can be potentially used to investigate multi-model
interdependencies in the CMIP5 ensembles.

By providing an emulator and a method for inter-
model comparison, we can make the uncertainty in
future climate projections more comprehensive and
robust.
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SIMPLE AND EFFICIENT TENSOR REGRESSION
FOR SPATIO-TEMPORAL FORECASTING

Rose Yu, Yan Liu

Computer Science Department, University of Southern California

Abstract—Forecasting, a classic problem in climate
science, has gained much improved performance by in-
corporating spatio-temporal correlations. Tensor regres-
sion provides an efficient framework for spatio-temoral
forecasting. However, many of the existing algorithms for
tensor regression suffer from memory bottleneck. In this
paper, we develop the tensor projected gradient (TPG)
algorithm, whose memory requirement is linear in the
problem size. We demonstrate that our algorithm obtains
comparable prediction accuracy with significant speed-up
and memory budge on climate measurements.

I. MOTIVATION

The increasing capabilities of climate measurement
devices have lead to large amount of data with spatial
and temporal information. It is critical yet challenging
to incorporate the spatio-temporal correlations when
performing data analysis. One classic problem in cli-
mate science is spatio-temporal foreacasting [12], i.e.,
predicting climate variables at different locations and
time using their historical measurements. We note that
spatio-temporal data can be naturally represented as a
tensor (time X location X climate variables). Many
work (e.g.[1], [2]) have shown that spatio-temporal
forecasting can be formulated as a low-rank tensor
regression problem, which provides us with a concise
way of modeling complex structures in climate data.

Tensor regression assumes that the model parameters
form a high order tensor and there exists a low-
dimensional factorization for the model tensor. Existing
tensor regression algorithms (e.g.[3], [4], [5], [6], [7])
fall into two categories : (1) alternating least square
(ALS) sequentially finds the factor that minimizes the
loss while keeping others fixed; (2) spectral regular-
ization approximates the original non-convex problem
with a convex surrogate loss, such as the nuclear norm
of the unfolded tensor.

Corresponding author: Rose Yu, qiyu@usc.edu

A clear drawback of all the algorithms mentioned
above is high computational cost. ALS displays un-
stable convergence properties and outputs sub-optimal
solutions [8]. Trace-norm minimization suffers from
slow convergence [9]. Moreover, those methods face
the memory bottleneck when dealing with large-scale
datasets. For example, the greedy algorithm [1] fol-
lows the Orthogonal Matching Pursuit (OMP) scheme.
Though significantly faster, it requires the matricization
of the data tensor, and thus would face memory bottle-
neck when dealing with large sample size.

In this paper, we introduce subsampled Tensor Pro-
jected Gradient (TPG), a simple and fast solution. Our
algorithm is based upon projected gradient descent [10]
and can also be seen as a tensor generalization of itera-
tive hard thresholding algorithm [11]. The algorithm
only needs a fixed number of iterations, depending
solely on the logarithm of signal to noise ratio. The
memory requirement grows linearly with the size of
the problem. We demonstrate the empirical perfor-
mance on multivariate spatio-temporal forecasting for
climate measurements. Experiment results show that the
proposed algorithm significantly outperforms existing
approaches in both prediction accuracy and speed.

II. METHOD

A. Spatio-Temporal Forecasting

Suppose we are given access to measurements X €
RIXPXM of T timestamps of M variables over P
locations as well as the geographical coordinates of P
locations. We can model the time series with a Vector
Auto-regressive (VAR) model of lag L, where we
assume the generative process as X; ., = Xy W, . i+
Eom,form=1,..., Mandt =L+ 1,...,T. Here
Xim = [X;Lz,m, ..., X, ] denotes the concate-
nation of L-lag historical data before time . We learn
a model coefficient tensor WW € RPLXPXM o forecast
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multiple variables simultaneously. The forecasting task
can be formulated as follows:

P —~ M ~ —~
7 — argmin { EP LS tr(»c,T,mLX:,zm}
w m=1

st X = XemW..m, s.t. rank(V) < R

where rank constraint imposes structures such as spatial
clustering and temporal periodicity on the model. The
Laplacian regularizer L is constructed from the kernel
using the geographical information, which accounts
for the spatial proximity of observations. With simple
change of variables, spatio-temporal forecasting can
be shown as a special case of the following tensor
regression problem [1].

B. Tensor Regression

Given a predictor tensor A and a response tensor )/,
tensor regression targets at the following problem:

W* = argmin LOWV; X, ))
w

s.t. rankW) <R ()

The problem aims to estimate a model tensor W €
RP1xD2xDs that minimizes the empirical loss £, sub-
ject to the constraint that the Tucker rank of W is at
most R. Equivalent, the model tensor WV has a low-
dimensional factorization W = § x1 Uy x9 Uy x3 Ug
with core S € RF1xF2xEs and orthonormal projection
matrices {U,, € RP»*f»1 The dimensionality of S is
at most I2. The reason we favor Tucker rank over others
is due to the fact that it is a high order generalization of
matrix SVD, thus is computational tractable, and carries
nice properties that we later would utilize.

Algorithm 1 Subsampled Tensor Projected Gradient
1: Input: predictor X, response ), rank R
Output: model tensor W € RP1*P2xDs
Compute count sketch S
Sketchy<—y><18 Xe)(xls
Initialize WW° as zero tensor
repeat
Wk—f—l — Wk _ nvﬁ(
Wk+1 — ITP(WkJrl)
until Converge

B X))

R A A S ol

As shown in Algorithm 1, subsampled Tensor Pro-
jected Gradient (TPG) combines a gradient step with
a proximal point projection step [14]. The gradient
step treats (2) as an unconstrained optimization of
W. As long as the loss function is differentiable in

(1) projection Pr(W) :

a neighborhood of current solution, standard gradi-
ent descent methods can be applied. For our case,
computing the gradient under linear model is trivial:
VLOV; X,Y) = (XT, Y — (X, W)). After the gradient
step, the subsequent proximal point step aims to find
RD1XD2XD3 — RDlxszDg

satisfying:

Pr(WF) = argmin(||W* — W||%)
w

st. WeC(R)={W :rank(W) < R} 3)

Algorithm 2 Iterative Tensor Projection (ITP)

1: Input: model W, predictor &X', response ), rank R
2: Output: projection W € RP1xDP2xDs

3: Initialize { U9} with R left singular vectors of W),
4: while i < R do

5.  repeat

6: k+1%W><2 ugT X3 ué?T

7: ustt W x u’fT X3 u’§T

8: l§+1 %le u’fT X9 uéT

9:  until Converge to {u;, us, us}

10:  Update {U,} with {un}

11: W<—WX1 U1U1 X9 U2U2 ><3U3U3T

122 if LW;X,)) <€ then

13: RETURN

14:  end if

15: end while

The difficulty of solving the above problem mainly
comes from the non-convexity of the set of low-rank
tensors. Common approaches based on spectral approx-
imation requires a full SVD for each unfolding of the
tensor. Iterative hard thresholding, on the other hand,
takes advantage of the general Eckart-Young-Mirsky
theorem [15] for matrices, which allows the Euclidean
projection to be efficiently computed with thin SVD.
Unfortunately, Eckart-Young-Mirsky theorem does not
apply to higher order tensors [16]. Therefore, comput-
ing high-order singular value decomposition (HOSVD)
[17] and discarding small singular values do not guar-
antee optimality of the projection.

To address the challenge, we note that for tensor
Tucker model, we have : W = S x; U; x5 Uy X3
Us;. And the projection matrices {U,,} happen to be
the left singular vectors of the unfolded tensor, i.e.,
U,x2, V! = Win)- This property allows us to compute
each projection matrix efficiently with thin SVD. By
iterating over all factors, we can obtain a local optimal
solution that is guaranteed to have rank at most R. We

want to emphasize that there is no known algorithm
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that can guarantee the convergence to the global optimal
solution. However, in the Tucker model, different local
optimas are highly concentrated, thus the choice of local
optima does not really matter [18].

When the model parameter tensor W is very large,
performing thin SVD itself can be expensive. In our
problem, the dimensionality of the model is usually
much larger than its rank. With this observation, we
utilize another property of Tucker model U,, = W x;
e X1 Ug_l X 41 UZH -+« X Up. This property
implies that instead of performing thin SVD on the
original tensor, we can trade cheap tensor matrix mul-
tiplication to avoid expensive large matrix SVD. This
leads to the Iterative Tensor Projection (ITP) procedure
as described in Algorithm 2. Denote {u,} as row
vectors of {U,}, ITP uses power iteration to find one
leading singular vector at a time. The algorithm stops
either when hitting the rank upper bound R or when
the loss function value decreases below a threshold e.

ITP is significantly faster especially when the model
is low-rank. If we initialize our solution with the top R
left singular vectors of tensor unfoldings, the projection
iteration can start from a close neighborhood of the
stationary point, thus leading to faster convergence. In
tensor regression, our main focus is to minimize the
empirical loss. Sequentially finding the rank-1 subspace
allows us to evaluate the performance as the algorithm
proceeds. The decrease of empirical loss would call for
early stop of the thin SVD procedure. Another accel-
eration trick we employ is randomized sketching. This
trick is particularly useful when we are encountered
with ultra high sample size or extremely sparse data.
In practice, we find count sketch works well with TPG,
even when the sample size is very small.

ITI. EVALUATION

To evaluate the performance of our framework, we
experiment with the U.S. Historical Climatology Net-
work (USHCN) daily '. The data set contains daily
measurements for 5 climate variables (temperature max,
temperature min, precipitation, snow fall and snow
depth) for more than 100 years. The records were
collected across more than 1,200 locations and spans
over 45, 384 time stamps.

We split the data along the temporal dimension into
80% training set and 20% testing set. We choose VAR
(3) model and use 5-fold cross-validation to select the
rank during the training phase. For both datasets, we
normalize each individual time series by removing the

"http://cdiac.ornl.gov/ftp/ushen_daily/

mean and dividing by standard deviation. Due to the
memory constraint of the Greedy algorithm, evaluations
are conducted on down-sampled datasets.

TABLE 1
FORECASTING RMSE AND RUN TIME ON USHCN DAILY
MEASUREMENT FOR VAR PROCESS WITH 3 LAGS

TPG OLS THOSVD GREEDY ADMM
RMSE 0.3872 1.4265 0.7224 0.4389 0.5893
RUNTIME 144.43 23.69 46.26 410.38 6786

Table I presents the best forecasting performance
(w.r.t sketching size) and the corresponding run time
for each of the methods. TPG outperforms baseline
methods with higher accuracy. Greedy shows similar
accuracy, but TPG converges in very few iterations.
For USHCN, TPG achieves much higher accuracy with
significantly shorter run time. Those results demonstrate
the efficiency of our proposed algorithm for spatio-
temporal forecasting tasks.

425 N
40.0°'N
375N
350N

325" N

125.0°w

120.0° W

Fig. 1. Velocity vectors plot of spatial-temporal dependency graph
obtained via TPG. Results are averaged across all five different
climate variables.

We further investigate the learned structure of TPG
algorithm from USHCN data. Figure 1 shows the
spatial-temporal dependency graph on the terrain of
California. Each velocity vector represents the aggre-
gated weight learned by TPG from one location to
the other. The graph provides an interesting illustration
of atmospheric circulation. For example, near Shasta-
Trinity National forecast in northern California, the air
flow into the forecasts. On the east side along Rocky
mountain area, there is a strong atmospheric pressure,
leading to wind moving from south east to north west
passing the bay area. Another notable atmospheric
circulation happens near Salton sea at the border of
Utah, caused mainly by the evaporation of the sea.
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CONVECTIVE ANOMALIES
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Abstract— A new algorithm based upon a multiple
object tracking method is developed to identify,
tracks and classify Tropical intraseasonal
oscillations (TISO) on the basis of their direction of
propagation. Daily NOAA Outgoing Longwave
Radiation anomalies (OLRA) from 1979-2013 are
Lanczos bandpass filtered for the intraseasonal
time scale (20-100 days) and spatially averaged with
eight neighboring point to get large spatial scales
(~10° km?). Tracking of TISO is performed by using
a two-stage Kalman filter predictor-corrector. Two
dominant components of the TISO (Eastward
propagating and Northward propagating) are
classified, and it is found that TISO remains active
throughout the year. Eastward propagation of the
TISO occurs from November to April with phase
speed of ~4 m/s and Northward propagation of the
TISO occurs from May to October at ~2 m/s in both
Indian and Pacific Ocean basins.

I. MOTIVATION

The Tropical Intraseasonal Oscillation (TISO) refers to
variability on the time scale of 20-100 days,
intermediate between the time scales traditionally
associated with weather and climate. Physical
understanding of TISO is a very important and
challenging aspect of making predictions beyond the
limit of instantaneous weather. TISO can be classified
into two dominant components on the basis
seasonality: (a) Madden Julian Oscillations (MJO); and
(b) Monsoon Intra-seasonal Oscillations (MISO). The
prevailing view of the dynamics of the MJO is that it is
governed by the coupling of a moist Kelvin-Rossby
wave to convective heating by boundary layer moisture
convergence [9] although there is debate [7].

Corresponding author: Bohar Singh, bsingh5@gmu.edu
George Mason University, Fairfax, VA.

In contrast, the dynamics of the MISO is governed
primarily by barotropic cyclonic vorticity and easterly
wind shear [5]. MJO and MISO occur in different
seasons, at different latitudes and are governed by
different mechanisms. MJO and MISO also have a
different phase speed and direction of propagation.
TISO has great importance because of its influence on
the highly populated and largely agrarian economies of
the tropics, where it regulates wet and dry spells of
rainfall ([3]; [2], [4]), which has a direct relationship
with crop production. MJO also affects the tropical
cyclone activity in all the ocean basins ([6]; [8]), El
Nino Southern Oscillation (ENSO) as in [12] and
extra-tropical weather and climate. Understanding of
TISO is very crucial to realize the dream of seamless
perdition. Most of the commonly used diagnostics to
understand TISO consider dimensional reduction by
seasonal and spatial averages or empirical orthogonal
function decomposition. This approach may miss some
information regarding direction of propagation,
location and phase speed.

As an alternative, we examine TISO by tracking each
event and compositing events on the basis of direction
of propagation. The characterstics of TISO such as
prefered geographical loaction of propagation, phase
speed, life span, regions of initiation and dissipation
and their seasonal and intraannual variability are
analyzed in this study.

IT. DATA AND METHOD

To identify and track TISOs, 34 years (1979-2013) of
daily outgoing long-wave radiation (OLR) data from
the National Oceanic and Atmospheric Administration
(NOAA; 2.5° X 2.5° grid) is used. Anomalous OLR is
considered a proxy for large-scale tropical convective
anomalies [1] and [10], because negative OLR
anomalies (OLRA) are well correlated with convective
clouds. Daily OLR anomalies are obtained by
removing the first four annual harmonics from the data
at each gridpoint. The data is band pass filtered using a
Lanczos filter in the 20-100 day band to obtain intra-
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seasonal anomalies. Finally OLRA are spatially
smoothed using a 9-point weighted average. An event
is classified as TISO if it satisfies the following three
criteria, which are quite similar to [9]: (a) Life span at
least 20 days; (b) During its lifetime, the zonal
dimension exceeds 30° longitude and the mean OLRA
remains less than -15 W/m?; (c) At the strongest stage,
the zonal dimension exceeds 50° longitude and the
central intensity is less than -25 W/m®.

Sr. No Class Events Ave. Ave. Life
Speed Span
1 Eastward 71 4.04 33
2 Northward 96 2.28 24

Table 1: Characteristics of Tropical intraseasonal
oscillation
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Figure (1): (a) Track of eastward propagating TISO
identified visually (black) and identified by algorithm
(blue), (b) Hovmoller diagram averaged between 15°S-
15°N for the same dates as in (a)

A systematic framework using a motion-based
multiple-object tracking algorithm, as given in [11],
has been developed to identify, track and classify
tropical intra-seasonal oscillations. The method is
applied to intra-seasonally filtered daily and spatially
smoothed OLRA data from 35°S to 35°N to track
every individual TISO event.

The steps involved in tracking are as follows:

'S \6"" International Workshop on Climate Informatics
1 / September 22-23, 2016

\
2016 Hosted by the National Center for Atmospheric Research in Boulder, CO

A
Total Events:=71 § &

100°E 150°E

y ToTA] Events—06

160°W

150°E

50°E 100°E
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Figure (3): Frequency of occurrence of the eastward
and northward propagating TISOs

1) To make this process autonomous, each daily
frame is considered as an image from a static
camera.

2) Group of connected pixels in each image is
detected by wusing Dblob analysis after
background subtraction, which is already
performed during anomaly calculations. Group
of connected pixels is considered as an object
(clouds cluster)

3) The smallest size of cloud cluster (number of
pixel), which can be tracked by algorithm, is
controlled by a size threshold parameter
currently set at size of 15 pixels.

4) Tracks are initialized for each region and
properties like area, centroid, mean intensity
(OLRA) and date are stored.

5) Cloud clusters can change size and shape,
vanish or originate form frame to frame So after
detection, the position and velocity of each
centroid is predicted in the next frame using a
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Kalman filter with constant velocity dynamical
model.

6) To associate the position of a given cloud
cluster to a cloud cluster in next frame, the
assignment problem is solved by calculating the
minimum distance between the predicted cloud
cluster and all other cloud cluster in that frame.

7) Distance of association, is a maximum threshold
up to which two cloud cluster can be associated.
We are using 6 grid points in the algorithm

8) A correction is applied on the basis of
measurement and prediction variance, and re-
labeling is performed.

9) A cloud cluster is presumed to be dead if none
of the cloud clusters from the current frame is
assigned (not found within the distance of
association) to a cloud cluster from the previous
frame.

10)A cloud system is called newly originated, if it
is not assigned to any track and a new track is
initialized.

11)For all the cloud systems in the current frame,
the position of each is again predicted and the
algorithm repeats.

After obtaining all the tracks, they can be classified
according to the objective criteria like propagation
direction, lifetime, and intensity. Each class of tracks
can be used to develop climatology for that class.
The climatology of each class can used to investigate
the dynamical characteristics of that class by
compositing it with other variables.

I11. EVALUATION

In this section we summarize the results of applying
the objective-tracking algorithm to daily NOAA OLR
data from 1979-2013. As shown in Table 1, the
objective method identifies 71 eastward-moving and
96 northward-moving TISOs. The average speed for
eastward-moving TISOs is 4.0 m/s, with duration of
about 33 days. Northward-moving TISOs propagate at
about 2.0 m/s and last about 24 days before dying in
the high latitudes. Both the speed and average life span
of events detected by the objective-tracking algorithm
are in good agreement with results reported in previous
studies [9] and [4]. Fig (1a) is showing an eastward
propagating event identified by visual analysis and
than algorithm is ran for those dates. As we can see
that algorithm successfully identified the same event.
The very same event can also be confirmed with
conventional hovemoller diagram in Fig (1b).
Advantage of detection with algorithm is that we can
save more information about the event like start date,
end date, exact geographical location of the track,

/
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velocity, intensity and size of the cloud cluster on each
day as compared to hovemoller identification. This
information about each TISO event may help us to
understand better about it in further analysis. Fig. (2)
shows the tracks of eastward-moving TISOs from
objective-tracking algorithm. Tracks from the method
look similar in term of geographical location of
occurrence, initiation and dissipation as in previous [5]
and [2]. Most eastward-moving tracks are found south
of the equator between 0° and 15° S, beginning in the
western to central Indian Ocean and propagating
eastward to the South Pacific Convergence Zone
(SPCZ). Northward propagation can be seen in both of
the ocean basins, while initiation more often occurs in
the Indian Ocean. Two types of northward propagation
happen in the Indian Ocean sector: (a) Moving
northward immediately after initiation; and (b) Moving
eastward at first, then turning northward. TISOs
originating in the Pacific Ocean sector propagate
directly northward only. After initiation, northward
propagating TISOs die after crossing 20°N. Eastward-
moving TISOs occur more often in boreal winter
(NDJFMA), but they can occur throughout the year
(Fig. 2). Northward propagation is more common in
boreal summer (MJJASO), but sometimes it occurs in
November and December.
In this method of tracking, no assumption is made
regarding seasonality of TISO. Events are solely
classified on the basis of direction of propagation, and
therefore seasonality is confirmed naturally. We are
not missing any event that happens outside the
predefined season as opposed to other conventional
methods. Advantage of this method over hovemoller
and any index identification method (MJO identified
using any area averaged index) is that it can give us
actual track of a MJO event with daily position of
centroid (center of mass of cloud system), mean
intensity (OLR), minimum intensity (OLR), daily
phase speed, size of tracked cloud cluster (number of
grid points), positions of initiations and dissipations,
actual date occurrence and number of days that event
remains active for, which is not possible in both of
above mentioned methods. This method has some
limitations; such as it cannot track an event that
bifurcates into two tracks, which are possible in some
TISO cases. Sometimes algorithm can lose track of
TISO when it becomes weak while crossing maritime
continent.
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Carlos H. R. Lima'?, Amir AghaKouchak?®

Abstract—Extreme droughts in Amazonia seem to
become more frequent in the last years and have been
associated with local and global impacts on society
and the ecosystem. Here we try to better understand
the dynamics and causes of Amazonia droughts by
analyzing the moisture and heat fluxes that cross the
region. Particularly, we decompose the high-dimensional
moisture fluxes on the boundaries of the Amazonia region
into a low-dimensional space using supervised Kkernel
principal component analysis, where the side information
is provided by the gridded PDSI drought index over
Amazonia. Subsequently, we apply K-means to cluster
the first two modes into three groups. The distribution
of drought indexes (PDSI, SPI, SSI and MSDI), tem-
perature and rainfall over Amazonia associated with
each cluster is then analyzed. The results reveal at
least three distinguished patterns in the moisture and
heat fluxes crossing Amazonia that are associated with
extreme drought conditions. These findings could not be
obtained using standard PCA or from first clustering the
response variable (i.e. drought indices). Furthermore, the
manuscript offers insights into the dynamics and causes
of Amazonia droughts.

I. MOTIVATION

It is well recognized that the dynamics of Amazonia
ecosystem plays a significant role on biogeochemical
cycles [1], moisture transport [2] and on the regional
climate of distant regions [3]. Extreme droughts in
the Amazonia seem to become more frequent in the
last years [4] and have the potential to trigger a large
number of fires and cause extensive impacts on society
and the ecosystem [5], such as the events of 2005 and
2010.

The major cause of droughts in Amazonia is re-
lated to the El Nifio-Southern Oscillation (ENSO) [4]

Corresponding author: C Lima, University of Brasilia,
chrlima@unb.br Department of Civil and Environmental
Engineering, University of Brasilia > Department of Civil and
Environmental Engineering, University of California, Irvine

and to a minor extent to the sea surface tempera-
ture (SST) variability in the Tropical North Atlantic.
Warm SST anomalies in the eastern Tropical Pacific
shifts the descending branch of the Walker circulation
over Amazonia and inhibits precipitation during the
austral summer rainfall season [6]. A warmer tropical
north Atlantic will displace north the Inter-Tropical
Convergence Zone from its climatological position and
therefore the ascending branch of the Hadley cell and
reduce convection and precipitation over Amazonia.

However, the role of moisture and heat fluxes on
Amazonia droughts has not been extensively explored
in the literature. This work is carried out to better under-
stand how these fluxes affect the temperature, rainfall
and drought indices over Amazonia. This is accom-
plished using the supervised kernel principal component
analysis (SKPCA), which is a variant of PCA to deal
with nonlinearities and include side information.

II. DATA
A. Moisture and Heat Fluxes

Vertically integrated moisture and heat fluxes are
obtained from the ERA-Interim reanalysis data [7]. It
covers the period January/1980 — December/2013 and
are retrieved for the Amazonia boundaries (north, south,
east and west edges) as defined in Figure 1 (dashed
line). The moisture fluxes on each edge are combined
to form the input matrix X (size 408 data points versus
340 dimensions) to the SKPCA model.

B. Drought Indices

Drought indices are derived in order to reveal spe-
cific features of drought conditions. Here we use
four gridded (over the Amazonia region defined in
Fig. 1) drought indices: Palmer Drought Severity In-
dex (PDSI [8]); Standardized Precipitation Index (SPI
[9]); Standardized Soil Moisture Index (SSI [10]) and
Multivariate Standardized Drought Index (MSDI [11]).
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Fig. 1. Grid domain (dashed line) defining the Amazonia region
for this study. The Amazonia watershed is defined by the blue line.
The different land cover types follow the NASA land cover maps.

PDSI data is provided by the NOAA/OAR/ESRL PSD,
Boulder, at http://www.esrl.noaa.gov/psd/. SPI, SSI and
MSDI data are available at the Global Integrated
Drought Monitoring and Prediction System (GIDMaPS,
http://drought.eng.uci.edu/). We refer the reader to the
references cited above for more details regarding each
drought index. The gridded PDSI (matrix size: 408 x
70) is used as side information for the SKPCA model.
For the subsequent analysis, all the indices are averaged
over the Amazonia area as defined in Figure 1.

C. Rainfall and Temperature

Monthly gridded temperature and rainfall data for
the period 1980-2013 are provided by [12]. These data
consist of interpolated daily rainfall and temperature
observations from 3625 rainfall gauges and 735 weather
stations across Brazil available from different institu-
tions (INMET, ANA and DAEE). The interpolation
schemes and validation procedures are described in
[12]. The geographical region delimited by the dataset
is the Amazonia boundary as shown in Figure 1 and
the spatial average is used in the subsequent analysis.

ITII. TECHNICAL APPROACH

The kernel PCA is an extension of PCA [13] de-
signed for dealing with nonlinear data through the use
of kernels [14]. It consists of a nonlinear mapping of
the input data onto a linear space, in which PCA can be
freely applied. The kernel trick is employed in order to
avoid the explicit mapping of the input data coordinates
onto the feature space. We use the Gaussian (RBF)
kernel, which is defined for two points x and x’ of
moisture flux data as:

12
e e (=] 1
(x,x') = exp ( 952 ; (1
where || - || is the Euclidean norm and o is a parameter

often called the width of the kernel, which is arbitrarily
set here as the sample standard deviation of the input
data.

In order to highlight the main modes of the moisture
fluxes that are most associated with Amazonia droughts,
we use the so called supervised PCA [15], where the
PCs are obtained considering the maximum dependence
on the response variable (side information). This has a
similar interpretation of canonical correlation analysis,
but has more advantages, particularly when the number
of variables exceeds the number of observations [15].
Essentially, the procedure to obtain the supervised PCs
consists of an eigen-decomposition of a product matrix
of input and side information data. We refer the reader
to [15] for the mathematical details. Here we use
the gridded PDSI as side information and the code
developed by [15].

Once the SKPCA modes are obtained, we apply K-
means [13] to the first two modes to find clusters in
the reduced space. The distribution of moisture and
heat fluxes, drought indices, rainfall and temperature
associated with each cluster are then analyzed.

IV. EVALUATION
A. Clustering, Moisture and Heat Fluxes

The K-means clustering of the first and second
modes of the moisture fluxes considering the gridded
PDSI as side information is displayed in Figure 2.
There is a linear structure between the two modes and
a continuous density of points partitioned into three
clusters. Hereafter we will refer to them as clusters
1 (red dots), 2 (blue dots) and 3 (green dots). The
vertically integrated northward fluxes of moisture and
heat averaged over the months correspondent to each of
these clusters are shown in Figure 3. There is a clear
separation among the clusters. A stronger moisture and
heat inflow is observed for cluster 1 (red line in top
panels of Fig. 3) while a stronger outflow occurs in
clusters 2 and 3 (green and blue lines in bottom panels
of Fig. 3). The vertically integrated eastward fluxes
of moisture and heat are displayed in Figure 4. The
most intense westward moisture flux on both east and
west boundaries is observed for cluster 3, followed by
clusters 2 and 1. A similar pattern is observed for the
heat fluxes (bottom panels in Fig. 4) up to 7°S, where

the patterns are then reversed.
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Fig. 2. K-means clustering of first and second modes after applying
SKPCA to the moisture fluxes over Amazonia.
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B. Drought Indices, Rainfall and Temperature

The distribution of the drought indices, rainfall and
temperature associated with each cluster of Figure 2
is shown in Figure 5. In general, clusters 1 to 3 are
associated with wet to dry conditions as per the drought
indices (high to low values), and more significant
with high (low) to low (high) rainfall (temperature).
Essentially, the remarkable patterns of moisture and
heat fluxes as displayed in Figures 3 and 4 for cluster 3 -
reduced inflow on the north boundary, stronger outflow
on the south boundary and stronger inflow on the east
boundary - are associated with more intense drought
conditions: low rainfall and high temperatures.

This conclusion is more evident when we analyze
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Fig. 4. Asin Fig. 3, but for the vertically integrated eastward fluxes
of moisture and heat on the east (right panels) and west (left panels)
Amazonia boundaries.
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Fig. 5. Distribution (period 1980-2013) of PDSI, SPI, SSI, MDSI,
rainfall and temperature (averaged over Amazonia) according to the
clusters showed in Fig. 2.

such extreme events. In figure 6 we take the 10%
(monthly data) most extreme events of each variable
associated with drought conditions (rainfall and drought
indices in the lower tail of the distribution, i.e., values
below the 10th quantile; temperature in the upper tail
of the distribution, i.e., values above the 90th quantile)
and calculate the frequency of these extreme events
in each of the clusters. Clearly, clusters 3 and 2 are
associated with the most extreme droughts as measured
by all variables analyzed. A hypothesis test (assuming
independent events) reveals that the moisture and heat
patterns of cluster 3 are statistically associated with
the most extreme events of PDSI, MSDI, rainfall and
temperature over Amazonia.

Finally, if we follow a baseline approach and first
apply K —means to cluster the spatially averaged PDSI,
we are able to find distinguished clusters for this
variable as well as for rainfall and temperature (Fig.
7), but there is no clear separation among the clusters
associated with the moisture and heat fluxes. Hence,
when averaging across the associated events (dry, wet
and average PDSI), this baseline approach does not find
any particular moisture and heat flux pattern associated
with Amazonia moisture conditions, suggesting a minor
or no role of these variables and that other factors
are responsible for Amazonia droughts. On the other
hand, the SKPCA method adopted here was able to
show the most likely moisture and heat flux patterns
connected with droughts, highlighting then its relevance
as technical approach and revealing that such fluxes
certainly play a significant role on Amazonia droughts,
particularly the extreme ones. This new understanding
will also help future studies in finding the other climate
and ecosystem factors behind Amazonia droughts.
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red lines show, respectively, the 50% and 95% quantiles assuming
a multinomial distribution with equally probable clusters.
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A BAYESIAN PREDICTIVE ANALYSIS OF DAILY
PRECIPITATION DATA

Sai K. Popuri!,

Abstract—We develop a Bayesian predictive model for
data that features a point mass at zero (semi-continuous
data), where the predictions are also semi-continuous. The
procedure is illustrated for a Tobit modeling algorithm
using data augmentation, and Gibbs sampling. We apply
the procedure to the daily precipitation data at a location
in the upper Missouri River Basin (MRB) region to
generate predictions of daily rainfall. Historical simulated
data by MIROCS, a Global Climate Model (GCM), is
used as a covariate in our model. We further compare
the accuracy of our predictions with a few frequentist
methods using a criteria suitable for semi-continuous
data.

I. MOTIVATION

Predictions of daily precipitation are often required
as an input to hydrological modeling tools (ex.: Soil
and Water Assessment Tool (SWAT)[1]) for regional
hydrological assessment studies. One of the methods to
predict precipitation is to use simulated historical data
provided by GCMs as covariates in regression models
with the observed precipitation as the response. A com-
mon approach is to forecast precipitation at the monthly
level, and use a ‘weather generator’ (ex.:[1],[2]) to
simulate daily precipitation in a manner consistent
with the monthly forecasts. Here we are interested in
predicting at the daily level instead. This introduces
challenges because the data is semi-continuous, and we
seek predictions that also feature a point mass at 0.

One simple way to predict data with a point mass at
0 is to ignore the semi-continuous nature of the data,
and fit a linear regression model with normal errors.
Predictions can then be made by treating the negative
predictions (after plugging in the estimated parameters)
as 0 values. A better approach would be is to account
for the point mass, and accordingly assume a parametric
model, for example, a Tobit model ([3]), and maximize

Corresponding  author: ~ Sai  Popuri,  saikul @umbc.edu
Department of Mathematics and Statistics, University of
Maryland, Baltimore County 2Joint Center for Earth Systems
Technology, Baltimore, MD

Nagaraj K. Neerchal!, Amita Mehta?

the resulting likelihood function. Predictions can then
be made by treating the negative latent predictions as
0 values. An alternate approach is to minimize an L
loss (Least Absolute Deviations) for the Tobit model
([4]), and make predictions in a similar fashion by
thresholding at zero. While thresholding at O results
in semi-continuous predictions, it is adhoc. Also, the
distributional properties of the resulting predictions are
not clear. In this paper we propose a more construc-
tive method to generate semi-continuous predictions by
taking a Bayesian approach. As a result, predictions
are semi-continuous by design and a post-estimation
adhoc thresholding can be avoided. We illustrate the
implementation using data augmentation, and Gibbs
sampling to estimate the posterior predictive distribu-
tion for a Tobit model. We apply the method to the
daily precipitation data, and compare the accuracy of
our predictions with the frequentist methods mentioned
above.

II. METHOD

Consider a random variable Y with support {0} U
(0,00), that is, it takes the value 0 with a positive
probability, and follows a continuous probability dis-
tribution on (0, 00), if greater than 0. We call such
a random variable a semi-continuous random variable.
Let x = (x1,22,..,%p), a p-dimensional vector of
covariates. The density of Y given the covariate x can
be written as:

Fly1x,0) =06(y)v(x,0) + 5" (W)l —v(x,0)]gnx.0)(v), (1)

where 6(y) is the indicator function that is 1 if y = 0,
0*(y) =1—0(y), and g is the density of a continuous
random variable with support on (0,00) governed by
the parameter 6.

Let y = (y1,..,yn) be an i.i.d. sample of size n
of semi-continuous data, X = [x1X2..x,]7 (treated
as fixed), the n x p matrix of covariates, y§y a new
observation, and x the corresponding new covariate. Let
the parameter space of 6 be ©. Let p(f) be a prior on 0,

and p(0 | y, X) the posterior of 6. If the posterior of 6
is proper, then the posterior predictive density, defined

by’ fY\myX f@ y | 37 9 (9 | y,X)dG, is also
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TABLE I: Goodness of fit criteria

| | Pred.g=0 | Pred.g>0 |
- n00 L Ji
Obs. y=0 "o no—mnoo yi:%i>oyz
Obs.y>0 | —L > oy | "M, MSPE,MAD
1 11 y;>0,9;=0 '

semi-continuous, and can be written as:

5(?)7(5&7 Y, X) + 6* (g)(l - ’Y(i'v Y, X))g?\j,y,x@)’ (2)
where
1@y X) = [ 2(@000(0 |y, X)a0

is a function with range in (0, 1), and
1
957125 x D = T3 S8 1 0,0 (D |y, X)a0

is the density of a continuous random variable with
support on (0, c0).

Due to the discrete/continuous mixed nature of the
semi-continuous data, goodness-of-fit criteria to mea-
sure accuracy of predictions becomes multi-faceted
as depicted in Table 1. Let § be a semi-continuous
prediction of y;, a semi-continuous random variable,
i =1,..,n. Let ng, and ny be the number of zero, and
positive observations in the sample respectively. Let ngg
be the number of observations with value 0 and whose
predictions are also 0, and n1; be the number of positive
observations whose predicted values are also positive.
In Table I, Mean Squared Prediction Error (MSPE)

is ¥ (Vi -Y;)?% and Mean Absolute Deviations
Y;>0,Y;>0 .
(MAD) is £ > | Y; —Y; |. We use the criteria in

Y;>0,Y;>0 .
the Table for our analysis.

Predictive density for the Tobit model

One way to realize semi-continuous data is to assume
that the observed y; depends on x; via a latent random
variable y;, which is assumed to be normal with mean
06x;, where (3 is the p—dimensional vector of regression
coefficients, and variance o as shown in equation
(3). This model for y; is know as the Tobit model in
Econometrics ([3]).

yi = Bxi + u;
{y if yx; > 0 3)
Yi =
0,
2

if y7 <0,
where u; is i.i.d. normal with mean 0, and variance o“.
Under this model, the density of y; | x;, 6 is given by
equation (1) with 0 = (8, 02), v(x;,0) = 1 — & (%")
and g, x, ¢) as truncated (> 0) normal with mean (x;,

and variance 0.
We extend the Bayesian analysis of the Tobit model
described in [5] with a numerical approximation to the

posterior predictive distribution. Let y™ = {y; : i
y; > 0}, C be the index set of zero valued observations.
Let z = {z; : j € C} be the latent parameters
representing the unobserved y; for y; = 0. Therefore

y* = (z,y") is the augmented complete data. Assum-
ing a non-informative prior p(3,0?) o< 072, X'X is
non-singular, and given z, the posterior of (3,02) can
be obtained as ([6]):

Blo%y" X~ N(Fo*(XTX)™)
il J (nyB)T(nyB))
2’ 2 ( 4’)
where § = (X*X)"'X”y*. If the conditional distribu-
tions of individual parameters given rest of the param-
eters, and the data are available, and since n > p, and
X is full rank, Gibbs sampling ([6]) in Algorithm 1
enables us to draw approximate samples from the joint
distribution of (z,6). In Algorithm 1, let ) be the
initial value of 6, and z(?) are initialized to samples
from truncated (< 0) normal with parameters 6(?).

o | y*, X ~ Inv — Gamma

Algorithm 1 Gibbs sampler

Step 1: Update z**1) by drawing from truncated (<
0) normal with mean ,B(k)xj, and variance aQ(k), for
each j € C.

Step 2: Update g2 by drawing from the condi-
tional (given z(k), y 1) in equation (4).

Step 3: Update 5(*+1) by drawing from the condi-
tional (given 02(k+1>,z(k), y 1) in equation (4).

Based on L independent samples from the posterior
of & = (,02), we estimate the components of the
posterior predicitive distribution in equation (2) as:

A%y, X) = L7 Y (%,6))

j=1
= ! L L 1—7(x,0
99 |x,y, X = m ;( - (%, j))gn(i,ej),

(&)

where ~(x,60;) = 1 — <I>( : ) and g, 6, 1s truncated

(> 0) normal with mean 8;%, and variance o*. Since

semi-continuous predictions are desired, we use the me-

dian of simulations from the (approximate) predictive

density as predictions.

Bix
P

We fitted the procedure described above on datasets
simulated from a few Tobit models (results are not
shown here). We found that the maximum likelihood
estimates (MLE) of the parameters in the Tobit model
are covered around the modes of the corresponding pos-
teriors. Also, the predictions from the Bayesian method
agreed well with the Tobit MLE plug-in predictions

based on the criteria in Table 1.
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Fig. 1: Observed vs MIROCS

IIT. EVALUATION

We analyze the daily precipitation data at
—109.8125° W, 41.4375° N (Rock Springs, WY)
using the Bayesian procedure for the Tobit model
described in section II. This data was analyzed in
[7] using Multiple Linear Regression (MLR), and
the Tobit maximum likelihood estimation (MLE). We
compare these methods with the Bayesian method for
predictive accuracy using the criteria in Table 1. In
addition, we also fit a regression model using the Least
Absolute Deviation (LAD) criterion ([4]). Observed
daily precipitation (measured in mm/day) is provided
by [8], and has a temporal coverage of 1949 — 2005.
Data from 1949 — 2000 is used for model fitting,
and 2001 — 2005 for evaluation. The covariate daily
precipitation data provided by MIROCS has the same
temporal coverage. Figure 1 shows the histogram of
the observed daily precipitation, and a scatter plot
of the observed data against the covariate data from
MIROCS. The observed data has approximately 65%
(indicated by the red dot in the histogram) of zeroes,
and is heavy tailed with a few very large intensities
of rainfall. The scatter plot suggests a complex
relationship between the observed, and the covariate
data. Despite the suggestion of a possible non-linear
relationship, we fit a Tobit model primarily to illustrate
the proposed methodology.

Let 3, be the observed precipitation for t* day
starting from 01/01/1949. Let x; be the correspond-
ing precipitation provided by MIROCS. The regression

model considered in [7] is

12 12
ye =B+ B+ Y akmu + > wmuw+u (6)

k=2 k=2
where the dummy variables my, k = 1,2, .., 11 repre-
sent the month effects and the errors {u;} are assumed
to be iid N(0,02). The Tobit model (equation 3)
has the mean term from equation (6) for the latent
process. The LAD model is similar to the MLR model
in equation (6) with the mean absolute deviations as the

risk criterion.
Let 8 = (ﬁo, b1, o, .., 12, Y2, ..,;712) be the vector

of parameters in equation (6), and 6 the point estimate
from MLR, Tobit MLE, or LAD models. Then the
forecast of y at a future time f based on the MLR,
Tobit MLE, or the LAD model is

95 = ys(0,2p)I(ys(0,25) > 0), ©)
where xf is the covariate at time f, and yf(é,:cf) is
the mean term in equation (6) evaluated at 6.

The Bayesian procedure for the Tobit model de-
scribed in section II was fitted using Gibbs sampling.
Twenty chains were run for 3, 000 iterations each with
initial values for (3,02) set at disparate locations in
the parameter space. We burn in 500 iterations in each
chain and thin every 5" simulation to collect a posterior
sample of size 10,000 in total. Figure 2 shows the
trace plots, histograms, and auto-correlation plots for
BY, B, and o? from one of the ten chains. It suggests
reasonable convergence rates, and the posterior samples
seem approximately independent. Diagnostics for other
parameters, and from other chains look similar.

Predictions based on the posterior samples could
be made in several ways. One could perform forward
simulation of the latent process y* in the Tobit model
in equation (3), and predict by thresholding at 0. Our
predictions are the median values of samples from the
approximate posterior predictive density in equation (5)
over the posterior sample. We found little difference in
terms of computational efficiency or accuracy between
these two approaches. However, an advantage of the
analytical form of the posterior predictive density is
that it could provide useful insights into predictive
uncertainty ([6]).

Table II shows the proportions of matched dry days
(’ZL—OOO), and matched wet days (%111), which indicate the
accuracy of various methods in terms of prediction
of dry, and wet days. Table III shows the details of
the prediction error when a. the true observed, and
predicted values are positive (MSPE, and MAD), b.
the true value is 0, but the prediction is positive (37¢

column shows the average of predicted rain intensities
7
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Fig. 2: Diagnostics from an MCMC chain

TABLE II: Proportion of Matched Dry and Wet Days.

Method % of dry day matches % of rainy day matches
MLR 0 1

Tobit 1 0

LAD 0.98 0.03

Bayesian 1 0

for true dry days), and c. the true value is positive, but
the prediction is 0 (4*" column is the average of true
rain intensities for dry predicted days). For the data
considered, the MLR method produced only positive
predictions. This is because MLR does not account
for the point mass at 0. As a result, the regression
parameter estimates tend to have a strong positive bias.
To the other extreme, the Tobit MLE method produced
only O values as predictions. A possible reason is the
model misspecification as the scatter plot in Figure 1
suggests. As expected, predictions from the Bayesian
method are similar to those from the Tobit MLE. Since
the LAD method is a more robust alternative to Tobit
MLE, we expect it to perform better as Tables II, and
III indicate. As suggested by one of the reviewers, more
flexible distributional forms like zero-adjusted gamma
distribution to model the semi-continuous observed
data could yield better results. Furthermore, statistical
methodologies to incorporate time, and space structure
of the data need to be developed.
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TABLE III: Errors in the Predicted Intensities of Rain.

Method MSPE MAD Avg. of DR Avg. of RD
MLR 2.07 0.43 0.34 0
Tobit 0 0 0 0.53
LAD 0.05 0.01 0 0.52
Bayesian 0 0 0 0.53
Computing Facility (HPCF).
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Abstract—We introduce a methodology for incorporat-
ing prior knowledge in spatio-temporal statistical models
and develop this idea for designing a spatio-temporal
neural network. More specifically, starting from an ana-
lytic description of a physical phenomenon using partial
differential equations, we derive functional dependencies
for the variables of the neural network. The latter is then
trained on data gathered from the observed phenomenon
so as to reproduce its underlying dynamics. The method
is illustrated via preliminary experiments performed on
two simple but representative datasets.

I. STATISTICAL MOTIVATION

Spatio-temporal statistical models are increasingly
being used across a wide variety of scientific disciplines
to describe and predict spatial processes that evolve
over time. They are efficient at modeling climatic phe-
nomena described by the evolution of specific quantities
over time. A key difficulty is that modeling spatio-
temporal dependencies at large scale rapidly becomes
prohibitive in terms of model complexity. It can be
useful then to exploit prior knowledge on the physical
phenomenon, in order to constrain the dependencies
between the model variables thus reducing its com-
plexity and making training easier and more accurate.
We propose here to use prior knowledge developed by
physicists under the form of partial differential equa-
tion (PDE) for designing our statistical models. This
methodology has been advocated in spatio-temporal
statistics for example by Wikle and al. [1] using a
Bayesian framework. Our contribution is (i) to adapt
this idea to the recent field of Deep Learning (ii) to
develop a spatio-temporal neural network along these
lines for modeling general spatio-temporal processes.
The family of PDEs we have in mind is that of reaction-
diffusion equations which are used in several fields of
natural science, such as physics, ecology and biology.

Corresponding author: arthur.pajot@lip6.fr *Sorbonne Universi-
ties, UPMC Univ Paris 06, UMR 7606, LIP6, 2Vedecom Institute,
Eco-Mobility Department, 77000, Versailles, France

For this contribution, we will illustrate the approach
with simple diffusion equations.

Let us first illustrate the ideas using as an example
the one-dimensional heat equation:

ou 0%u
a ¢ <8x2>
Where w is the heat measurement and a is a diffu-
sion coefficient. This equation expresses the temporal
evolution of quantity w on the real axis. Discretizing
time and space to approximate the PDE allows us to
describe a spatio-temporal process as an ensemble of
time series, where each time step represents a spatial
state {X;;t = 1,...} with X; a multidimensional
spatial vector.
Using the finite difference method the heat equation
can be discretized as:

™ — 2ul 4 ul !
Az?

Ujyq :ui—FaAt(
which can be rewritten as:

. .- , -

uy = Orup "+ Goug + Gluff

Where 0, and 6, are parameters depending on a, Ax
and At, to be estimated. This parameterization allows
us to capture the structure of a heat diffusion phenom-
ena and gives the following first order dynamics:

X(zy;t+1) O 01 ... O [X(21;t)

X(zo;t+1) 0r 02 ... O | X(29:t)

Xast+1)] [0 0 ... 6] X
(1)

where X (x;;t) is the modeled quantity at time ¢ and
location .

As shown in [2], finite-difference discretizations of
PDEs imply a lagged nearest-neighbor parameterization
of the dynamic function (i.e.sparse, with tri-diagonal
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structure in the example above), where the param-
eterization is controlled by the problem parameters.
Several other discretization choices can be applied to
this problem: such as finite-difference, and Runge-
Kutta schemes. Those different schemes and order of
discretizations can motivate alternative spatio-temporal
statistical models.

II. REPRESENTATION LEARNING

Representation learning approaches and particularly
Deep Learning are today state of the art methods in
many fields such as computer vision or speech pro-
cessing ([3], [4]). For temporal data, several successful
models based on recurrent neural networks (RNNs)
have been recently proposed for complex sequence or
series analysis tasks ([5], [6], [7]). RNNs attempt to
capture characteristics of the sequential process under-
lying temporal data dynamics. To the best of our knowl-
edge the spatial dimension has not been considered in
these temporal models but very recently [8].

Our NN model is an extension of [8]. It has two
components: a decoding component which computes
a prediction of future observations given a latent rep-
resentation of this future observation and a spatio-
temporal component which captures the dynamic of
the data series in the latent space. Let us consider
multivariate time series X = {Xy;¢t = 1,...,T} with
X! € R the value of the i-th spatial component of the
series at time ¢. Each series will have its own latent
representation at each time step. Let Z; be the latent
factor of series ¢ at time ¢, Z; is thus a n X N matrix, [N
being the dimension of the latent space and n the size of
the temporal dimension. If we consider for simplicity a
first order dynamic in the latent space, the model writes:

X; = d(Z;,T) with Z; = h(Z;_1;0) 2)

Where X; € R™ is the predicted value of the
multivariate series X; € R™ at time ¢. d is the encoding
function and h is the dynamic model in the latent
space. The aim of statistical modeling is to estimate
the parameters I' and ©. For a linear model I' and ©
will be linear operators (weight matrices), and for a
non-linear a neural network, for example.

With the above notations, X corresponds to a RT>m
multidimensional matrix. The latent representation Z 1
of any point ¢ of a series at time ¢+ 1 will be dependent
on both the latent representation of this point at time
t, and of the representations of the other points. The
shape of the h function will depend on the process
one wants to describe, and will be defined based on

the underlying differential equations that model this
process. Learning the parameters is apprehended as a
minimization problem defined as:

1
%%HFTZ,:: 1d(Z:,T) — X4
(3)
1

+)\f ; | Zt+1 — h(Z, ©)]]

Where )\ is a hyper-parameter set by cross-validation
which corresponds to the strength of the dynamic con-
straint. Learning is then performed through Stochastic
Gradient Descent. Let us now describe how h can be
defined for two simple dynamic processes.

A. One Dimensional Heat Equation

The equation 2 models the successive observation
vector as an auto-regressive process. In our model 3
the dynamic is modeled in the latent (Z)-space. In this
context, the heat equation described in section I can be
rewritten in the latent space under the following form:

Zi =027 + 0.2 + 0.2

This equation is a parameterization of the dynamic
function h.

B. Two-dimensional Heat equation

We can follow a similar methodology for the 2-
dimensional heat equation:
, P
0y?

ou 0%u
g ==
ot Ox?
In the latent space the parameterization gives:
Z3 =002+ 27T ) 40,20 + (27 + 20
This parameterization seems natural, as the 2D heat

equation describes a diffusion phenomenon is two di-
rections: horizontal and vertical.

III. EXPERIMENT

Preliminary experiments have been performed on
two simple spatio-temporal forecasting problems. In
the following, we will consider prediction (forecasting)
at different horizons 7'+ 1, T+ 2 up to 7" + 100,
with 7' = 100. This means that all observations until
T = 100 are used for training through equation (3),
and prediction is performed and evaluated on the next
100 observations. We use as a comparison baseline a
state of the art RNN with Gated Recurrent Unit called
GRU [7]. The addition of a tanh non-linearity to the h

dynamic function improves the performance.
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1) A Toy Example, the Heat Equation: The heat
equation simulation is used here as a canonical example
allowing us to demonstrate the capacity of our model
to accurately capture simple physical processes. It has
been simulated with a finite-difference discretization of
this equation.

We show in Fig 1 the Mean Squares Error (MSE)
achieved by our model and by the neural-network base-
line on the test sequence. Remember that the models are
trained on the first 100 observations of the phenomenon
and evaluated on the next 100. The spatial location has
one dimension of size 200. The initial conditions are a
heat of 1 for positions 70 to 130 and -1 for the rest.

As can be seen, recurrent networks perform slightly
better for the first few iterations, but then quickly
diverge while the proposed model is able to keep the
predicted MSE at a reasonable level.

— GRU
o1 — Our Model ||

Fig. 1. MSE of the heat equation at time T+1 to T+100

The behavior of our model and its ability to capture
the diffusion process is illustrated on figure 2.

Target

Fig. 2. Heat equation at time T+1 to T+100

2) Pacific Sea Surface Temperature: Tropical Pacific
Sea Surface Temperature (SST) exhibits strongly struc-
tured variability on multiple spatial and temporal scales.
More particularly, the El Nino phenomenon is strong

in the Pacific and is known to be one of the most
important sources of climate variability. The effects of
such variability influence ecological systems on a very
large scale, suggesting that it is useful to accurately
forecast such effects many months in advance.

We used monthly SST data from the Pacific Ocean
(fig. 3) across 2261 gridded spatial locations at 2x 2 res-
olution from January 1970 to March 1998 as described
in [9]. Our model is trained on the first 100 months and
tested on the following 100 months.

SST of the Pacific

T ™ S 099
20°N = 088
077
' 066
055

0 B e U .
- 044
- 033
022
20°5 011
- y 2 0.00

180° 150°W 120°W 90°W

Fig. 3. Pacific SST at time 100

For this preliminary experiments, the statistical pa-
rameterization chosen was a heat diffusion equation in
two dimensions, as described in section II-B.

Figure 4 shows the MSE of the forecasting for
our method and the baseline GRU. This data is more
complex than the artificially generated data from the
previous experiment. The GRU network works better
for several iterations of the dynamics corresponding to a
horizon up to 15 steps, but fails to forecast the long term
phenomena while or model remains relatively stable.

160

140 — G
— Our Model

120

100

MSE

Fig. 4. MSE of the SST at time T+1 to T+100

IV. CONCLUSION

We have proposed (i) a method to incorporate prior
physical knowledge into a statistical model that is easily
transferable to representation learning models (i) a
neural network model inspired from these principles,
able to model spatio-temporal dynamics. We have con-

ducted preliminary experiments and shown that our
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method outperforms a state-of-the-art RNN for long-
term forecasting. Future work will evaluate the model
on more complex datasets and examine more general
types of reaction-diffusion equations.
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DIMENSIONALITY-REDUCTION OF CLIMATE
DATA USING DEEP AUTOENCODERS

Juan A. Saenz' , Nicholas Lubbers!2, Nathan M. Urban'

Abstract—We explore the use of deep neural networks
for nonlinear dimensionality reduction in climate appli-
cations. We train convolutional autoencoders (CAEs) to
encode two temperature field datasets from pre-industrial
control runs in the CMIPS first ensemble, obtained
with the CCSM4 model and the IPSL-CM5A-LR model,
respectively. With the later dataset, consisting of 36500
96 <96 surface temperature fields, the CAE out-performs
PCA in terms of mean squared error of the reconstruction
from a 40 dimensional encoding. Moreover, the noise in
the filters of the convolutional layers in the autoencoders
suggests that the CAE can be trained to produce better re-
sults. Our results indicate that convolutional autoencoders
may provide an effective platform for the construction of
surrogate climate models.

I. INTRODUCTION

Uncertainty quantification of the response of the
Earth system to greenhouse-gas emission scenarios is
important for evaluating the impacts of climate change
on infrastructure, agriculture, and the environment,
among other areas. However, simulations using global,
coupled earth system models are computationally ex-
pensive, making it impossible to produce large ensem-
bles needed for statistical uncertainty quantification. To
overcome this, surrogate models—simplified models that
emulate more complex climate models—are built and
trained [1], [2]. The computational cost of running these
climate model emulators is much lower than their full
complexity counterparts. As a result, large ensembles
of simulations (order tens-hundreds of thousands) can
be produced and used to carry out uncertainty quantifi-
cation.

Emulators can be devised to dynamically evolve
the state of the climate on a dimensionally reduced
manifold [3]. An important requirement of such em-
ulators is that the state in physical dimensions can be
recovered. Linear dimensionality reduction via principal

Corresponding author: J.A. Saenz, juan.saenz@Ilanl.gov; N. Lub-
bers, nlubbers@bu.edu; N.M. Urban, nurban@lanl.gov.
Los Alamos National Laboratory, 2Boston University.

component analysis (PCA) is well-known in the climate
science community, however, nonlinear methods have
not been fully explored. Ross [3] investigated nonlinear
dimensionality reduction methods for a different cli-
mate aplication: identifying low-dimensional nonlinear
dynamics in El Nino variability. Errors from reconstruc-
tions using nonlinear methods were not significantly
better than using linear PCA. Methods include nonlin-
ear PCA (autoencoders), Isomap, and Hessian locally
linear embedding.

Here, motivated by the success of deep autoencoders
for dimensionality reduction [4] and convolutional neu-
ral networks for image processing [5], [6], we present
work in progress using convolutional autoencoders [7]
to reduce the dimensionality of data from climate
models. In section II we describe our methods, and
in section III we present results on two pre-industrial
climate model simulation datasets: the CCSM4-T31
temperature at the surface dataset, and the IPSL-CM5A-
LR temperature at the surface data. We end with a brief
discussion in section IV.

II. METHODS
A. Principal Components Analysis

Consider a dataset of dimensionality M with N
datapoints collected into a IV x M data matrix X. PCA
constructs a rank m reduced matrix cha by projecting
X (obtained by centering and normalizing X using the
global mean and standard deviation) onto the first m
principal components which maximizes the covariance
of the data, thus minimizing the mean reconstruction
error

1 s \2 1 |12
MSE = N gn (xp — Xp)” = —NMHX — X||5-
(D

This can be obtained by singular value decomposition
of X = UXSWT with X the diagonal matrix of sin-
gular values. The data covariance is given by X7X
= WX?WT| and so the first m principal component
vectors are the columns of W associated with the m
largest singular values.

7
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B. Convolutional Autoencoder

The autoencoder provides an alternative method for
dimensionality reduction of X. Data is fed though a
series of neural network layers, i.e. an affine transform
followed by an elementwise nonlinearity f, to create
activations X; at layer [:

X; = f(W; X1 + by). 2

The trainable parameters of the network are the weights
‘W, and biases b; of each layer. The waist layer of the
autoencoder is constrained to a number of neurons m,
so that the activations at that layer can be used as an m
length code for each image. This is followed by decod-
ing layers, and in the final layer of the autoencoder, X
is constructed to have the same dimensionality as the
input X. The parameters of the network are then trained
to minimize the same reconstruction error M SE (Eq. 1)
as PCA.

The convolutional autoencoder (CAE) is an extension
to the autoencoder which faciltates the analysis of
data on regular grids, such as images. Here, each data
point can be indexed by two pixel positions. In the
convolutional and deconvolutional layers, the weights
consist of small image filter kernels, and the product of
the weights and the data consist of spatial convolutions.
Denoting the feature k of the pixel indexed by ¢ and j
by xﬁ ;» the preactivations Wx are computed using

(Wx)évj = Z Wi xk

i—lj—me,g (3)
k,lm
Convolutional layers operate as a set of local image
filters with the capacity to extract patterns that increase
in complexity with depth [8]. They have the benefit
of greatly reducing the number of learnable parameters
per layer, and faciliate training by seeking out features
which encode the structure of local image patches [9].

Finally, CAEs have pooling layers that coarse-grain
the image plane after each convolution. We use 2 x 2
max pooling, with unpooling layers which use piece-
wise constant 2 X 2 upsampling. We use two regu-
larization strategies to improve training regularity and
smoothness of learned filters. In the first, we use image
flipping and weight decay with strength 3. In the
second, we use noise injection (denoising autoencoder),
applying pixel-wise Gaussian noise with mean 0 and
standard deviation ~y to the images.

Autoencoders presented here are trained using
stochastic gradient descent for 1000 epochs with a
learning rate of 0.01, which is updated using a Nesterov
scheme with a momentum of 0.975, and a batch size of
128. Convolutional layers use linear activation functions

TABLE I
ARCHITECTURES OF CONVOLUATIONAL AUTOENCODERS
label | encoding architecture | B ol
Al CL7,32-PL-FC40 0.00025 N/A
A2 CL5,32-PL-CL5,64-PL-FC40 | 0.00025 N/A
Bl CLS5,32-PL-CL5,64-PL-FC40 N/A N/A
B2 CLS5,32-PL-CL5,64-PL-FC40 N/A 0.1
B3 CL5,32-PL-CL5,64-PL-FC40 N/A 0.5

CLn,m is a convolutional layer with an n X n receptive field and
m features, PL is a 2x2 pooling layer, and FCm is a fully
connected layer with m neurons.

(we have not been able to successfully train non-linear
activations). Fully connected layers use rectified linear
(ReLU) activation functions. Decoding layers have the
reverse structure of the encoding layers, but we do not
tie the weights between the encoding and decoding
layers. Convolutional boundary conditions use valid
convolutions (no padding), with decoding convolutional
layer dimensions computed to produce the correct size
output. As preprocessing, the temperature fields are
normalized to mean 0 and standard deviation 1 using
the global mean and standard deviation.

ITI. RESULTS
A. CCSM4

We train encoders with data from the Community
Climate System Model - version 4 (CCSM4) [10]. We
employ 150 years of surface temperature (75) monthly
climatology data from the first ensemble, pre-industrial
control run of the 5th version of the Climate Model In-
tercomparison Project (CMIPS5). The data was regridded
to a 3.75x3.75 degree grid (T31 grid). The resulting
dataset has 1800 samples of 48x96 Ty fields.

The trained architectures (Al and A2, table I) do a
good job at recovering the global structure of the tem-
perature field 7. There are differences in local features
in some regions (not shown). In table II we compare the
MSE (Eq. 1) of reconstructions using CAEs Al and
A2 and PCA. Architecture A1l performs better than A2,
but PCA performed better than both autoencoders. The
weights of the first convolutional layer indicated that
this type of regularization was not effective (Fig. 1,
upper left). There is some repetitive structure between
weights, and they are noisy, indicating that the neural
networks are not well trained. One possible reason for
this is that there are not enough samples (N=1800).
To investigate this, we now use a dataset with a much
larger number of samples.

B. IPSL-CM5A-LR

Here, we use near-surface air temperature 7,5 from

the low resolution pre-industrial control run produced
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by the IPSL-CM5A-LR model, part of the CMIPS5 first
ensemble [11]. The data is on a 1.9x3.75 degree grid,
96x96, and we use daily output for 100 years between
1800 and 1900 (N=36500 samples), although 600 years
of data are available (219000 samples). As a result,
the dataset has 36500 samples of 96x96 T, fields,
resulting in X with shape (N = 36500) x (M = 9216).

We implement an autoencoder architecutre, BI,
which is similar to A2, but without any type of reg-
ularization (table I). The MSE using B1, shown in
table II, is smaller than the error obtained with PCA.
However, the weights are still noisy (Figure 1, upper
right). To remedy this, we explored architectures B2
and B3 (table I) which are regularized using injected
noise. The weights become smoother with more noise
(Fig 1, lower left and right), but the errors are larger,
as shown in table II.

In figure 2 we show the reconstructed temperature
fields, which are very similar to the temperature in the
original dataset. Large scale features of the global tem-
perature patterns are preserved. Smaller scale features in
regions such as over the Antarctic peninsula, the North
Atlantic and the South Pacific are filtered out. Some
small scale features above high elevation topography,
such as the Andes and the Himalayas, appear to be
well preserved.

sample 28618 from the IPSL-CM5A-LR dataset.

IV. DISCUSSION

The results of this work in progress indicate that there
is potential to devise deep autoencoders for dimen-
sionality reduction of climate data. Noise in the filters
of the trained networks indicate that finding effective
representations is dependent on regularization and the
availability of data.

Future developments will focus on testing networks
with data not used for training/validating, using larger
datasets, using nonlinear convolutional activation func-
tions, implementing other regularization methods (e.g.
dropout), and using deeper networks, with the aim of
improving the reconstruction of small scale features.
Future analysis will include the investigation of patterns
extracted by the convolutions.
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MAPPING PLANTATION IN INDONESIA

Xiaowei Jia', Ankush Khandelwal®, James Gerber?, Kimberly Carlson®, Paul West?, Vipin Kumar!

Abstract—Plantation is a key driver of deforestation
in Southeast Asia. Many governments and companies
aim to ensure that the plantation growth meets rigorous
sustainability standards. Such regulations depend on the
capacity of monitoring plantations in large regions. In this
paper we propose a two-stage automatic method to map
plantations on a yearly scale. The results on Kalimantan
region of Indonesia well demonstrate the effectiveness of
the proposed method.

I. INTRODUCTION

Tropical forests are important as they store ~50%
of all carbon stored in terrestrial vegetation. Tropical
forests of Southeast Asia are unique because of very
high diversity of wildlife. Nowadays Southeast Asia is
the largest producer of palm oil plantation, which has
become one of the biggest drivers of deforestation in
this region. The loss of tropical forests in Southeast
Asia has led to a huge impact on climate as conversions
of these forests to other land cover types lead to massive
release of CO,. Various efforts have been put in place
to reduce carbon emissions and to achieve sustainable
ways of doing commercial activities. To these reasons,
it is crucial to develop high quality monitoring systems
on the plantation.

In particular, remote sensing data acquired through
various earth observation satellites provide immense
opportunity to monitor land use/land cover (LULC)
changes. For instance, recent studies have shown ad-
vances in identifying soybean and sugarcane in Brazil
using remote sensing data [1], [2]. Besides, a wide
variety of methods have been proposed that use remote
sensing at different spatial and temporal scale for mon-
itoring changes in land cover. However, a vast majority
of these methods focus on detecting deforestation ac-
tivity only [3], [4], [5]. For instance, the widely used
global deforestation product [6] does not differentiate
between forest and plantations.

! Department of Computer Science and Engineering, University of
Minnesota, {jiaxx221,khand035} @umn.edu, kumar@cs.umn.edu
?Institute  on the Environment, University of Minnesota,
{jsgerber,pcwest} @umn.edu
Department of Natural Resources and Environmental Manage-
ment, University of Hawai’i Manoa, kimberly.carlson @hawaii.edu

The main challenges of mapping plantation lie in sev-
eral aspects. First, we are provided with limited ground-
truth information. Most available plantation datasets are
created via visual interpretation of satellite imagery,
and consequently have either low precision or low
recall. Moreover, there exists strong data heterogeneity
in several aspects. To identify plantations, we need to
differentiate between plantations and a variety of land
covers, e.g. agriculture, forest, etc. Besides, the same
land cover may look different over space and over time.

To tackle these challenges we propose our two-
stage framework to map plantations over different years.
With the available imperfect ground-truth datasets, we
first propose an effective strategy to sample training
data and to learn a multi-class classification model.
Then we implement Hidden Markov Model (HMM) to
discover the latent transition relationship and mitigate
the classification errors at each time step.

II. DATASETS

In this work we utilize MODIS data which are
available for every day at 500 meters spatial resolution
on a global scale. We create 8-day composite images by
taking per-pixel seven-band spectral values with least
noise from the corresponding 8-day interval. Based
on MODIS data, we wish to apply the classification
technique to map plantations for each year. We will
test the proposed method in MODIS tile h29v09, which
covers most Kalimantan region of Indonesia.

The first step for classification is to collect training
samples using the available ground-truth datasets. Even
though yearly plantation maps are not available, there
exist a few datasets prepared by different organizations
that provide plantations maps for a single year or a few
years.

A. Tree Plantation Dataset

Tree Plantation dataset (TP) [7] is created by Trans-
parent World and is available on Global Forest Watch.
In this dataset, the plantation locations are manually
labeled based on Landsat images on 2013 and 2014.
In total this data this dataset covers 260483 locations
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in our region of interest. Based on the assessment
on random stratified sampling [7], it is reported that
precision of the dataset is around 78.87% and the recall
is around 93.86%.

B. RSPO Dataset

RSPO dataset is provided by Roundtable on Sustain-
able Palm Oil (RSPO) [8], and covers all the locations
in the region of study. In this region, each location is
categorized into one of 19 land cover types on 2000,
2005 and 2009 by RSPO dataset. While it does not
provide a detailed assessment of accuracy, the compar-
ison with the high-resolution images from Digital Globe
shows that RSPO dataset is accurate (high precision),
but misses many real plantation areas (low recall).

III. METHOD

Here we present our method in two stages, as shown
in Fig. 1. First, we introduce an ensemble classification
method to map plantations at each time step. Then we
will investigate the latent land cover transition and post-
process the results.

________________________ Stage 2,

—

Discriminative
Learning

Stage 1

___________________________

Fig. 1. The flow chart in two stages.

A. Ensemble Learning Model

The mapping of plantation is difficult from machine
learning perspective since it requires the differentiation
between plantation and a variety of other land cover
types. If we directly merge all the non-plantation classes
as the negative class and conduct binary classification,
the heterogeneity within the negative class will greatly
hamper the classification performance.

To this end we propose a three-class ensemble learn-
ing method to identify plantations. Specifically, we
aggregate undisturbed forests and the disturbed forests
with crossing roads but not yet logged into “forest”,
and aggregate the remaining land covers as “other”. We
keep "forest” separate since tropical forests look similar
with tree plantations. Then we train three binary clas-
sifiers between each pair of classes from {“plantation”,
“forest”, “other”}. The final predicted label is obtained
by majority voting.

To train each classifier, we take equal amount of
samples for each sub-class (defined by RSPO) within
“forest” and ‘“other” in case the training process is
dominated by the land cover type with large population,
e.g., forest and grassland. Besides, we combine the
spectral features from different years so that the learned
model can be applied on different years. In addition,
since TP has high recall, we will use TP dataset to
further filter the selected training samples.

B. Temporal Transition

The latent transition relationship among different
land cover types offers opportunity to mitigate the
individual classification errors. For instance, given a
yearly sequence of {forest, forest, plantation, plantation,
forest, plantation}, the third “forest” is highly likely to
be a classification error since usually plantation would
not be converted back to forest.

To capture the transition relationship, we utilize
Hidden Markov Model (HMM), which models the tran-
sitions probability among latent states by the transition
matrix 7' and the mapping relationship between the
latent state and the observed class by the emission
matrix F, as shown in Fig. 1. In particular T;; represents
the transition probability from state ¢ and state j, and
F; denotes the emission probability from state ¢ to
the observed class k. The joint probability of the latent
states and the observed classes can be described as:

T
P(yl:T, Sl:T) = P(sl)E81y1 HTStflstEsfy‘-
t=2

(D

In our problem each latent state represents a
real land cover type and each observed class k €
{plantation, forest, other}. Specifically, T;; is initialized
as the proportion of locations in land cover ¢ at any
time step from {¢1, 2, ...,t7_1} to be converted to land
cover j at next time step. On the other hand, each
entry in emission matrix Fj;; represents the probability
for a real land cover class ¢ to be classified as class
k € {plantation, forest, other}. In this way the emission
matrix £ can capture the confusion between land cover
classes. With the obtained transition matrix and emis-
sion matrix, we can fix the yearly prediction on each
location via Viterbi algorithm [9].

IV. RESULTS AND DISCUSSION

Based the proposed method we can generate yearly
plantation maps. For instance, we show our generated
plantation maps in 2002, and 2014 in Fig. 2. Then
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we will evaluate the effectiveness of our method by
comparing to multiple baselines.

(a)

(b)

Fig. 2. The generated plantation maps in 2002 (a), and 2014 (c).
The plantation locations are marked in brown color.

TABLE 1
COMPARISON TO DIFFERENT LEARNING STRATEGIES - YEARLY
RECALL FROM 2005 TO 2009, OVERALL PRECISION AND
OVERALL RECALL.

yearly overall
Method 2005 2006 2007 2008 2009 | prec rec
PALM, 0.849  0.799 0.814 0.832 0.847 | 0.783 0.862
PALM,, | 0.828 0.740 0.743 0.761 0.815 | 0.750 0.833
PALM; 0.780  0.736  0.749  0.756  0.760 | 0.736 0.643
PALM 0.867 0.810 0.823 0.837 0.858 | 0.846 0.868

We conduct the ensemble learning with Deep Belief
Network (DBN) for each binary classifier. To show the
effectiveness of our proposed ensemble learning model
and the sampling strategy (termed PALM for Plantation
Analysis by Learning from Multiple land covers), we
compare to the following baselines:

PALM,: Here we uniformly sample from the entire
“other” class rather than take equal amount of samples
from each land cover type.

PALM,,,: We implement the proposed learning method
without using post-processing process.

PALM;: We implement our ensemble learning strategy
using Support Vector Machine (SVM) with RBF kernel.

Then we introduce the involved metrics in measuring
the performance. Based on the generated yearly map,
we measure the yearly recall from 2005 to 2009. The
yearly recall is computed based on the interpolation of
the provided maps in 2000, 2005 and 2009 by RSPO
dataset. Since RSPO dataset has low recall, we cannot
well estimate the precision on each year. Instead, we
measure the overall precision using the Tree Plantation
dataset and the overall recall using the RSPO dataset
(on 2009) based on all the detected plantation locations
through 2001 to 2014.

From the results shown in Table I, we can observe
that the performance of PALM, is not as good as
our approach since the training is dominated by the
land cover types with large population. In this way

the trained classifier is highly likely to misclassify
the small classes, e.g., urban area, as plantation, and
consequently leads to low precision. Furthermore, we
can observe that PALM outperforms PALM; by a
considerable margin due to the effectiveness of DBN
in learning from complex feature space. Moreover, the
comparison between PALM,,, and PALM demonstrates
the effectiveness of post-processing.

In addition we compare our generated map to TP and
RSPO datasets. We show a case study in Fig. 3. Here
the red color denotes the detected plantation locations
outside RSPO and blue color denotes the detected
locations by TP but missed by our method. From the
high-resolution image in Fig. 3 (b) we can verify that
the red colored region is real plantation while the blue
colored region is not. Therefore we can conclude that
our method can detect more real plantations outside
RSPO while avoiding the false positives in TP.

O Y

(a) (b)

Fig. 3. The comparison with TP and RSPO. (a) The detected
regions. (b) The corresponding high-resolution image from Digital
Globe.
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VI. CONCLUSION

In this work we propose an automatic method to map
plantations on an annual scale. The proposed method is
implemented in two stages. First, we conduct ensem-
ble learning to distinguish plantations from other land
covers. Then we post-process the predicted results on
different years using HMM. The results on Kalimantan
region of Indonesia demonstrates that the effectiveness
of the method in generating yearly plantation maps.
Besides we show through a case study that our method
can achieve a better balance of precision and recall than
existing datasets.
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FROM CLIMATE DATA TO A WEIGHTED
NETWORK BETWEEN FUNCTIONAL DOMAINS

Ilias Fountalis', Annalisa Bracco?, Bistra Dilkina®, Constantine Dovrolis!

Abstract—We propose 5-MAPS, a method that ana-
lyzes spatio-temporal data first to identify the distinct
spatial components of the underlying system, referred
to as ‘“domains”, and second to infer the connections
between them. A domain is a spatially contiguous region
of highly correlated temporal activity, Domains may
be spatially overlapping. Different domains may have
correlated activity, potentially at a lag, because of direct
or indirect interactions. The proposed edge inference
method examines the statistical significance of each lagged
cross-correlation between two domains, infers a range of
lag values for each edge, and assigns a weight to each edge
based on the covariance of the two domains. We illustrate
the application of 5-MAPS on data from climate science.

I. INTRODUCTION

Spatio-temporal data become increasingly prevalent
and important for both science (e.g., climate, systems
neuroscience, seismology) and enterprises (e.g., the
analysis of geotagged social media activity). The spatial
scale of the available data is often determined by an
arbitrary grid, which is typically larger than the true di-
mensionality of the underlying system. One major task
is to identify the distinct semi-autonomous components
of this system and to infer their (potentially lagged)
interconnections.

A common approach to reduce the dimensionality
of spatio-temporal data is to apply EOF (standard or
rotated) analysis. In climate science, EOF analysis has
been used to identify teleconnections between distinct
climate regions [1], [2]. However, the orthogonality be-
tween EOF components complicates the interpretation
of the results making it difficult to identify the distinct
underlying modes of variability and to separate their
effects, as clearly discussed in [3].

Another broad family of spatio-temporal dimension-
ality reduction methods is based on unsupervised clus-
tering [4]. These groups of algorithms are quite different

Corresponding author: 1. Fountalis, fountalis @ gatech.edu *School
of Computer Science, Georgia Tech 2School of Earth and Atmo-
spheric Sciences, Georgia Tech ® School of Computational Science
and Engr, Georgia Tech

but they share some common characteristics: the result-
ing clusters may not be spatially contiguous [5], [6],
every grid cell needs to belong to a cluster (potentially
excluding only outliers) [7], [8], and the number of clus-
ters is often required as an input parameter [9] - none
of these algorithms account for the fact that clusters
may overlap. In particular, the lack of spatial contiguity
makes it hard to distinguish between correlations due
to spatial diffusion (or dispersion) phenomena from
correlations that are due to remote interactions between
distinct effects.

An approach of increasing popularity is to first con-
struct a correlation-based network between individual
grid cells, after pruning cross-correlations that are not
statistically significant — see [10]. Then, some of these
methods analyze the (binary or weighted) cell-level
network directly based on various centrality metrics,
k-core decomposition, spectral analysis, etc. (e.g., [11],
[12], [13]) or they first apply a community detection
algorithm (potentially able to detect overlapping com-
munities, e.g., [14], [15]) on the cell-level network
and then analyze the resulting communities in terms
of size, density, location, overlap, etc. (e.g., [16], [17],
[18], [19]). A community however may group together
two regions that are, first, not spatially contiguous, and
second, different in terms of how they are connected to
other regions.

To overcome these limitations we propose 6-MAPS,
an inference method that first identifies domains -
spatially contiguous regions, homogeneous to the un-
derlying variable. Domains might be overlapping and
not all grid cells need to belong to a domain. At a
second step, 0-MAPS identifies connections between
the domains constructing a domain-level network. The
network is modeled as a directed and weighted graph.
The weight of a network edge captures the magnitude of
the interaction between domains while the direction of
the edge (and the lag associated to it) captures temporal
ordering of events.
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I1. )-MAPS

Informally a domain is a spatially contiguous region
that participates in the same function. The functional
relation between the grid cells of a domain results
in highly correlated temporal activity. If we accept
this premise it follows that each domain will have an
epicenter of action. We identify such epicenters as local
maxima in the correlation field between each grid cell
and its K nearest neighbors. Formally, a domain is a
set of grid cells that includes the epicenter, is spatially
contiguous, and the average correlation between its
grid cells is higher than a threshold 4. A domain may
not have sharp spatial boundaries. Instead of searching
for the discrete boundary of a domain, it is more
reasonable to compute a domain as the largest possible
set of cells that satisfies the previous three constraints.
The threshold ¢ determines the minimum degree of
homogeneity that a set of grid cells should have to form
a domain. Domains might be overlapping.

To construct the functional domain network, we asso-
ciate to each domain a signal, defined as the cumulative
anomaly of the time series of its grid cells. Connections
between the domains are not assumed to be instanta-
neous, thus we search for connections in a lag range
{—Tmaz - - - Tmaz }. Using the appropriate statistics to
control for the presence of autocorrelations [20] and
the FDR procedure to account for the multiple testing
problem [21] we identify significant correlations for a
given false discovery rate q. The edges of the network
are weighted in terms of the covariance between the
domain signals, the covariance is calculated in respect
to the maximum significant correlation in absolute
sense. To each edge we assign a lag or a range of lags
(if multiple significant correlations exist) capturing the
time points at which the domains are connected. The
latter also determines the direction of an edge.

III. APPLICATION IN CLIMATE SCIENCE

Here we apply -MAPS in the context of climate
science. Climate scientists are interested in teleconnec-
tions between different regions, and they often rely on
EOF analysis to uncover them [1]. Here, we analyze the
monthly Sea-Surface Temperature (SST) field from the
HadISST dataset [22], covering 50 years (1956-2005)
at a spatial resolution of 2.0° x 2.5°, and we focus on
the latitudinal range of [60°S;60°N] to avoid sea-ice
covered regions. Following standard practice, we pre-
process the time series to form anomalies, i.e., remove
the seasonal cycle and remove any long-term trend at
each grid-point (using the Theil-Sen estimator).

6-MAPS is applied as follows. We set the local neigh-
borhood to the K'=4 nearest cells and tbe homogeneity
threshold 6 to 0.37. In the edge inference stage, the
lag range is Ty,q; = 12 months (a reasonable value for
large-scale changes in atmospheric wave patterns), and
q is set to 3% (we identify about 30 edges and so we
expect no more than one false positive).

Fig. 1-A shows the identified domains. The spatial
dimensionality has been reduced from about 6000 grid
cells to 18 domains. 65% of the sea-covered cells
belong to at least one domain; the overlapping regions
are shown in black and they cover 2% of the grid cells
that belong to a domain. The largest domain (domain
E) corresponds to the El Ninno Southern Oscillation
(ENSO), which is also the most important in terms of
node strength (see Fig. 1-B). Other strong nodes are
domain F' (part of the “horseshoe-pattern” surrounding
ENSO), domain J (Indian ocean) and domain () (sub-
tropical Atlantic). The strength of the edges associated
with ENSO are shown in Fig. 1-C. These findings
are consistent with known facts in climate science
regarding ENSO and its positive correlation with the
Indian ocean and north tropical Atlantic, and negative
correlations with the regions that surround it in the
Pacific (horseshoe-pattern) [23].

Fig. 1-D shows the inferred domain-level network.
The color code represents the (signed) cross-correlation
for each edge. The lag range of each edge is shown
in Fig. 1-E; some edges are not directed because
their lag range includes 7=0. The network consists
of five weakly-connected components. If we analyze
the largest component (which includes ENSO) as a
signed network (i.e., some edges are positive and some
negative) we see that it is structurally balanced [24].
A graph is structurally balanced if it does not con-
tain cycles with an odd number of negative edges. A
structurally balanced network can be partitioned in a
“dipole”, so that positive edges only appear within each
pole and negative edges appear only between the two
poles. In Fig. 1-A, the nodes of these two poles are
colored as blue and green (the smaller disconnected
components are shown in other colors).

Focusing on the lag range of each edge, domain @)
seems to play a unique role, as it temporally precedes all
other domains in the inferred network. Specifically, its
activity precedes that of domains D, F and F' by about
5-10 months. The lead of south tropical Atlantic SSTs
(domain @) on ENSO has recently received significant
attention in climate science [25]. Our results suggest
that SST anomalies in domain () may impact a large

portion of the climate system.
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Fig. 1. (A) The identified domains. The color of each domain corresponds to the connected component it belongs to (the blue and green
nodes belong to two different poles of the same component). (B) Color map for domain strength. The strength of ENSO (domain FE)
is shown at the top. (C) Edges to and from ENSO (shown in black). (D) The climate network. The color of each edge represents the
corresponding cross-correlation. (E) The lag range associated with each edge. (F) Examples of lag-constistent triangles.

(A) EOF - 1 (Variance: 19.2%) (B) EOF - 2 (Variance: 5.4%)
3 7 7 3

Fig. 2. (A),(B) The first two components of EOF analysis. (C)
Communities identified by OSLOM. Each community has a unique
number and color. (D) Areas identified by spatial clustering.

Switching to lag inference, we say that a triangle
is lag-consistent if there is at least one value in the
lag range associated with each edge that would place
the three nodes in a consistent temporal distance with
respect to each other. For instance, in the case of the
first triangle of Fig. 1-F, the triangle is lag-consistent if
the edge from () to F' has a lag of 8§ months and the
edge between E and F' has lag -2 months (meaning
that the direction would be from F' to E); several other
values would make this triangle lag-consistent. We have
verified the lag-consistency of every triangle in the
climate network. One exception is the triangle between
domains (C, D, &), shown at the bottom of Fig. 1-F.
However, the large lag in the edge from C to GG can be
explained with the triangle between domains (C, E, G),
which is lag-consistent. We emphasize that the temporal
ordering that results from these lag relations should not
be misinterpreted as causality; we expect that several
of the edges we identify are only due to indirect
correlations, not associated with a causal interaction
between the corresponding two nodes.

For comparison purposes, Fig. 2 shows the results
of EOF analysis, community detection, and spatial
clustering on the same dataset. The first EOF explains
only about 19% of the variance, implying that the SST
field is too complex to be understood with only one
spatial component. On the other hand, the joint inter-

pretation of multiple EOF components is problematic
due to their orthogonal relation [3]. The anti-correlation
between ENSO and the horseshoe-pattern regions is
well captured in the first component but several other
important connections, such as the negative and lagged
relation between the south subtropical Atlantic and
ENSO (domains () and E, respectively), are missed.

Fig. 2-C shows the results of the overlapping com-
munity detection method OSLOM. Following [17],
the input to OSLOM is a correlation-based cell-level
network. Correlations less than 30% are ignored. The
weight of each edge is set to the maximum absolute
correlation between the corresponding two cells, across
all considered lags. OSLOM identifies 22 communities.
Community 6 is not spatially contiguous; it covers
ENSO, the Indian ocean, a region in the north tropical
Atlantic, and a region in south Pacific. This is a gen-
eral problem with community detection methods: they
cannot distinguish high correlations due to a remote
connection from correlations due to spatial proximity.
In the context of climate, the former may be due to
atmospheric waves or large-scale ocean currents while
the latter may be due to local circulations.

Finally, Fig. 2-D shows the results of a spatial cluster-
ing method [26], with the same homogeneity threshold
0 we use in 9-MAPS. That method ensures that every
cluster (referred to as ‘““area”) is spatially contiguous
but it also requires that there is no overlap between
areas and it attempts to assign each grid cell to an
area. Consequently, it results in more areas (compared
to the number of domains), some of which are just
artifacts of the spatial parcellation process. Further, the
spatial expanse of an area constrains the computation
of subsequent areas because no overlaps are allowed.
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EMPLOYING SOFTWARE ENGINEERING
PRINCIPLES TO ENHANCE MANAGEMENT OF
CLIMATOLOGICAL DATASETS FOR CORAL REEF
ANALYSIS

Mark Jenne!, Alex Zimmerman?, Hasan Kurban', Claudia Johnson?, M.M. Dalkilic'

Abstract—The challenges presented by data to scientific
inquiry and hypothesis testing in an oceanographic setting
are not new problems. Indeed, the challenges are at least a
century old. The problems are not with the data itself, but
rather with the attention to the management of the “data
ecology” in the information systems. Data needs to be
accessible as an input to scientific inquiry—a requirement
that goes far beyond simply centralizing the available
data. Our research focuses on the development of a proof-
of-concept system that properly handles an information
ecology. The power of such a strong foundation is then
demonstrated in two ways: (1) through our data driven
hypothesis generation system, built and employed for
analysis of the relationship between coral disease and
temperature in the Caribbean; (2) through programmatic
search for patterns and anti-patterns that verify, falsify,
or demonstrate no discernible relationship for a set of
variants on a particular temperature—disease hypothesis.

I. MOTIVATION

Many oceanographic data repositories have come
online in the last few decades. Some repositories are
large oceanographic datasets (World Ocean Database
(WOD) [1] and World Ocean Atlas (WOA) [2]), while
others have more specific content (ReefBase Coral
Bleaching GIS [3] and Global Coral Disease Database
[4]). Data stored in these repositories, particularly the
WOD and WOA, are vast and invaluable. Making the
data accessible as a proprietary product, however, is
not sufficient for driving large-scale analyses needed to
understand the effects of climate change on coral reefs.

The focus of our research is to make climate and
coral data available for scientific inquiry in a data-
driven approach. We recognize that significant effort

Corresponding author: M Jenne, mjenne@indiana.edu 'School
of Informatics and Computing, Indiana University *Department of
Geological Sciences, Indiana University

and resources are required to ensure longevity of data in
an information system. Our proof-of-concept software
for data governance and robust management of the data
ecology is developed with this in mind. We demonstrate
the power of such an approach by building an algorithm
for a high-level analysis of coral disease in relation
to ocean temperature in the Caribbean on top of our
information ecology framework that uses not thousands,
nor hundreds of thousands, but millions of data points.
Together, the components of our system allow for
programmatic search of the coral disease and tempera-
ture space to form testable hypotheses—a methodology
referred to as data-driven hypothesis generation. It is
these data-driven approaches that allows us to perform
large-scale analyses needed to address the questions
looming large for coral reefs under climate change.

The robustness of our information ecology man-
agement system is further demonstrated through a
reciprocal approach where the complete data space
is searched for patterns and anti-patterns that verify,
falsify, or demonstrate no discernible relationship for a
temperature—disease hypothesis formulated as an con-
ditional rule-set and fed back into the system. Thus
our system acts as a framework for both hypothesis
generation and testing.

II. METHOD

The software systems behind the two primary compo-
nents in this research are: (1) the information ecology
framework; (2) the algorithms for the analysis of the
relationship between coral disease and temperature. We
include only an overview of these components here,
but provide formal notation for the algorithms behind
the data-driven hypothesis generation and hypothesis
pattern search. The configuration for the system, or
experimental parameterization, behind the data-driven
hypothesis extraction and testing is then described.
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Rather than following the traditional computational
science approach of ushering all of the data to the
algorithm and building out the algorithm to incorporate
the elements of transformation, management, and pro-
cessing of the data, we isolate the non-research related
procedures and push them to the data. Together, this set
of procedures and the controlling software around them,
form the backbone of what we are calling our infor-
mation ecology framework. This system accomplishes
two major goals: (1) provisioning a robust data man-
ager with all necessary extraction, transformation, and
loading procedures; (2) isolating the processes involved
in the scientific inquiry of the algorithm development.

With the data ecology framework in place, the al-
gorithmic components focus on the search of the data
space and extraction of isolated trends in the data for
hypothesis testing (Alg. 1) and assessment of those
trends against a particular hypothesis or hypotheses
formulated as a logical rule-set (Alg. 2). As a first pass,
our approach leverages a naive quasi-clustering tech-
nique for establishing spatial bounds for the geographic
extent of coral disease outbreaks and is followed by
a search of the large temperature data space for local
representative ocean temperature data. The new spa-
tially and temporally associated data are then used to
produce visual analytic tools for expert analysis from
which individual, testable hypotheses are extracted for
further consideration. Hypotheses formed from these
trends can then be plugged back in as rule-sets guiding
pattern search through the data. This methodology
employs data-driven hypothesis generation by trading
in the necessity for explicit, testable claims to drive
experimental setup in favor of general pattern search
within the data pertaining to the relationship between
coral disease and temperature.

Reviewing individual geographic locations reveals
a potential causal relationship between thermal stress
anomalies followed by disease outbreaks. Or stated
succinctly: for a particular geographic location, where
the annual average sea surface temperature exceeds
the regional average during the time period of 1970
to 2009 by some threshold (antecedent), we expect
to see an increase in coral disease at that location
in the following year (consequent). Forming a similar
metric to those presented by Selig, et al [5] for testing
temperature—coral disease trends, we translate this hy-
pothesis into a logical rule-set and programmatically
search all geographic locations for all instances that
support and refute the hypothesis. The consequent of
this rule is whether there is an increase [verifies], a
reduction [falsifies], or no change [inconclusive] in

Algorithm 1 Coral Disease Temperature Analysis
1: INPUT data {A;, Ax}, config &

2: OUTPUT Temperature-Disease  Timelines
Ay, . A €A

3: %% assume that each A; is a tuple (lat,lon,D €
A, T € Ao, Y)

4: %% where each Y; € Y is (y,D; ¢ D, T; C T,C)

5: %% vy is the year, D; is the subset of coral diseases
at this location for year y, T; is the subset of
temperatures at this location for year y

6: %% C is the list of corals affected by disease at
this location

7: %% cluster disease instances

8: for x € A do

. flag + false
10: for A; € A do
11: if x.distance(A4;.lat, A;.lon) <  D.radius
then
12: A; D+ A, DUx
13: flag < true
14: end if

15:  end for

16:  if !flag then

17: A+ AUA(x)

18:  end if

19: end for

20: %% associate temperature data with disease clus-
ters

21: for A; € A do

22:  for Y; € A;.Y do

23: itr < 0

24: while |[resultSet| = ONitr < ®.maxltr do

25: results < Query(Aq, A;,Y;.y, ®.rad +
(®.rad « (itr/2)))

26: end while

27: if ||resultSet| = 0 then

28: A T Query(Asg,Y;.y)

29: else

30: A;. T + resultSet

31: end if

32:  end for

33: end for

34: %% process temperature-disease timelines
35: for A; € A do
36: for Y; € A;Y do

37 Y;.Dj < A;.D.Where(z => z.year = Yj.y)

38: Y;. Tj < A;. T.Where(z => xz.year =Yj.y)

39: Y;.C < Y;.D;.Select(x.genusSpecies =>
x)

40:  end for
41: end for
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coral disease instances following a true evaluation of
the rule antecedent. Four variants of the rule with the
threshold ranging from 1°C to 4°C are tested. Results
are presented in Table 1.

Algorithm 2 Temperature—Disease Hypothesis Search

1: INPUT Temperature—disease

Ai,..., A, € A, Hypothesis Rule R
OUTPUT Pattern sets that verify V, falsify F, and

demonstrate no discernible relationship |

: %% assume that each A; and all of the constituent
variables have the same meaning as those presented
in Algorithm 1.

timelines

4: for A; € A do

5: forY; € A;Y do

6: if AntecedentMatch(R.Ant,Y;.T;) then

7: if ConsequentVerify(R.Con,Y;.D;)
then

8: V<~ VU YJ

9: end if

10: if  ConsequentFalsify(R.Con,Y;.D;)
then

1 Fe FUY;

12: end if

13: if ConsequentInconclusive(R.Con,Y;.D;)
then

14: |+ 1UY];

15: end if

16: end if

17 end for

18: end for

IIT. EVALUATION

The results presented here are in the context of both a
big data problem and large-scale analyses. Making use
of our data ecology framework, our algorithm for data-
driven hypothesis generation regarding the temperature-
coral disease relationship in the Caribbean was able
to integrate and process the complete coral disease
catalog presented by ReefBase and the complete ocean
temperature data set hosted in the WOD. Grouping
the 5,038 coral disease records into spatial clusters
yielded 293 distinct geographic locations for analysis.
At each location, respective temperature data subsets
were selected from the more than 62 million data points
available. The resulting coral disease and temperature
sets were grouped together and visualized for extraction
of testable hypotheses. We now address components of
a compound hypothesis stating that a 2°C temperature
rise and pH reduction of about 0.1 are more than

TABLE I: Compound Hypothesis Analysis

TSA Verify | Falsify | Inconclusive
>1°C 68 67 1625
>2°C 29 28 539
>3°C 11 3 126
>4°C 4 0 23

Cases that verify, falsify, or demonstrate no discernible
relationship for the temperature—coral disease hypothesis for
thermal stress anomalies (TSA) ranging from 1°C to 4°C.

sufficient to cause extensive stress and mortality to
corals [6]. Our hypothesis regarding regional thermal
stress anomalies preceding coral disease outbreaks was
formed as a logical rule-set and fed into the system
to see if the trends in the data verify or falsify the
hypothesis. The results are found in TABLE I. It is
informative that in the Caribbean, the data show veri-
fication/falsification counts are similar for < 2 °C, but
> 2 °C the hypothesis appears valid. As importantly,
we observe that the data show relatively few instances
of coral diseases at these temperatures, likely because
these temperatures are rarely observed in the Caribbean,
especially when all depths of the ocean are pooled
together. This data-driven hypothesis generation tech-
nique suggests, for the high temperatures, an analysis
of the shallow water temperatures separate from the
deeper, cooler waters would be warranted, and would
further test the hypothesis relating high temperatures to
coral diseases.

This data-driven hypothesis generation and testing
approach explores a proof-of-concept through a hypoth-
esis rule-set and, as such, suffers from an incomplete
picture of the biotic data. Incorporation of additional
data e.g., reef coverage, coral counts, coral mortality,
would help the construction of a more complete model.

Here we have demonstrated the benefit that a ro-
bust information ecology management system lends to
hypothesis generation and testing. Use of our system
made the individual data sets involved easily accessi-
ble as input to our scientific inquiry, which allowed
us to perform Caribbean-wide analyses in exploring
the relationship between ocean temperature and coral
disease. Proper data management in concert with these
data-driven approaches will further allow us to perform
large-scale analyses needed to address the questions

looming large for coral reefs under climate change.
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Profiler Guided Manual Optimization for
Accelerating Cholesky Decomposition on R

Environment
V.B. Ramakrishnaiah!, R.P. Kumar!:3, J. Paige?, D. Hammerling®, D. Nychka®, R. Loft?

Abstract— fields is a spatial statistics package in R
that is supported by the National Center for
Atmospheric Research (NCAR) and is widely used to
analyze spatial data. We made use of the Matrix
Algebra on GPU and Multicore Architectures
(MAGMA) [1]]2][3] library to accelerate the
Cholesky decomposition in this package. The
acceleration of the Cholesky decomposition was
motivated by a) its role as a core computation in
spatial statistics, b) its relative simplicity in
implementing on GPU architectures, and c) its
suitability for parallelization. A key benefit of this
project is linking a high level and flexible data
language with a lower level and parallel support for
computationally intensive steps. In this project, we
observed some unexpected behaviors such as
multiple GPUs being slower than a single GPU, and
in-place decomposition being faster than deep copy.
CPU and GPU profiling helped to explain the
unconventional behavior observed in the multi-GPU
executions and to develop strategies to accelerate the
Cholesky decomposition. These strategies include
accelerating the underlying C function, reducing the
function call overheads in R and optimizing the R
environment. We were able to optimize the code and
the environment to get a speedup greater than 75x
for large matrices. We also integrated our
accelerated C functions with Julia and drew a
performance comparison between R and Julia. Julia
was found to significantly reduce the function call
overheads when compared to R. We also uncovered
a way to improve the MAGMA functions themselves
by replacing the intra-node, inter-GPU
communications with direct device-to-device calls.

I. INTRODUCTION

We depend on physical models all the time, and climate
models play an important role in predicting a plausible
future geospatial environment. One of the biggest
computational challenges in the analysis of spatial data
is determining the parameters that control how the
spatial field is correlated as a function of distance.
Maximum Likelihood Estimation is an accurate way to
estimate these covariance parameters but s
computationally intensive as the number of spatial
locations grows. This is due to the fact that the core
computation is the Cholesky decomposition of a
positive definite matrix, the covariance matrix of the
spatial observations. Thus, for n spatial locations the
computational complexity grows as O(n*) [4]. The other
parts of the spatial analysis are not as demanding and so
it is appropriate to implement the bulk of the
computations in a higher-level language such as R,
which most data analysts are familiar with. R provides
simple interfaces to C, so we incorporated a parallel
linear algebra library into R to take advantage of
multiple cores and GPUs for the Cholesky
decomposition. In particular, the Matrix Algebra on
GPU and Multicore Architectures (MAGMA) [1][2][3]
library has good performance and is open source. One
advantage of R is that this decomposition can be
overloaded for the R Cholesky method and so, beyond
adding the specialized MAGMA functions that support
the overloading, few additional changes were required
to accelerate the fields package.

The accelerated code demonstrated some surprising
behavior that highlights the practical issues of
harnessing coprocessors for scientific computation. The
multi-GPU  implementation of the Cholesky
decomposition was slower than the single GPU
implementation and the deep copy version of the code
was slower than the shallow copy version.
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II. INITIAL ASSESSMENT

There are R packages such as HIPLAR [5] that make
use of PLASMA [1][6] and MAGMA libraries to
accelerate linear algebra computations, but invoking
them from the fields package will cause additional
overheads of loading the corresponding R environments
(objects) and will slow down the computations. So we
decided to directly invoke the MAGMA library from the
fields package. MAGMA provides two functions that
compute the Cholesky decomposition: ‘dpotrf m’ is a
CPU function making GPU calls, and ‘dpotrf mgpu’ is
a GPU function. We used the NVIDIA visual profiler to
profile the code and found that the ‘dpotrf mgpu’
performed better than ‘dpotrf m’. But when we
integrated it with the R environment the performance
was worse. Since the profiling results demonstrated the
working of the underlying C code, we wanted to get an
idea about the overheads in R calls. So, we timed
different sections of the code separately and found that
R calls incur significant overheads while calling C
functions. In addition, given R’s legacy as a serial code
with modest memory demands, we noticed that the R
environment could be optimized for using MAGMA.
All testing was performed on the Caldera nodes of the
Yellowstone [7] supercomputing environment.

I11. OPTIMIZATION APPROACHES

With insight from the profiler and timing results we used
the following approaches. First, we accelerated the
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Figure 1: Performance improvement by allocating
single precision matrices on pinned memory.

the inability to allocate pinned memory in R had a
significant impact on the performance of ‘dpotrf mgpu’
[8]. We had multiple versions of the code including a
single precision version, which was targeted towards
users willing to trade off accuracy for speed. (A separate
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study demonstrated that single precision arithmetic is
adequate for the likelihood computations [9].) Since R
always uses double precision for calculations, we forced
a manual copy to a single precision variable in C. This
variable was allocated on pinned memory, which
improved the performance of the single precision code.
Figure 1 shows the improvement in performance of the
code by allocating the single precision variable on
pinned memory. We can see that the improvement in
performance is significant for larger data sizes as the
page-able memory starts swapping data with the virtual
memory (secondary storage).

To include compiler level optimizations, we
rebuilt MAGMA with the latest Intel 2015 compiler [10]
and incorporated it with R to compile shared objects.
This provided us some additional performance benefits,
which can be seen in Figure 2.
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Figure 2: Improvement with Intel 2015 compiler.

Finally, to reduce the function call overheads in R
we used the following techniques:

e Preloaded the Intel MKL libraries, so that they
are readily available during the time of
execution.

e C(Created a single shared object for dynamic
loading in R.

e Moved dynamic loads to the highest level of
program flow to avoid R environment
overheads.

With these strategies, we gained some additional
performance benefits compared to a naive
implementation of the MAGMA library. This can be
seen in Figure 3, and we can see that the performance
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benefits are modest but more pronounced for large data
sizes.
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Figure 3: Speedup from reduced function call
overheads in R.

IVv. PERFORMANCE IMPROVEMENT WITH
JULIA

The overheads in R led us to investigate calling these C
functions from a more recently developed environment
called ‘Julia’. Julia is a high level language similar to R
but is well suited for high performance computing
applications. Because it is a recent development, it has
the disadvantage of a smaller user base and much fewer
contributed packages for data analysis and statistics.
Julia, however, has performance close to the C
programming language and new function libraries are
being developed on a regular basis. Using Julia to call
the underlying C functions in our code reduced the time
and memory overheads of calling C functions. For
example, the execution time for computing the
Cholesky Decomposition for a matrix of size 32,400
was about 16.21s when called from Julia, whereas, R
was taking about 28.97s. This is because the C
functions can be called without any additional ‘glue’
code, which improves performance.

V. CONCLUSION AND FUTURE WORK

We achieved up to 75x (single precision) and 65x
(double precision) speedup compared to the default,
single thread Cholesky decomposition on a single CPU
(Figure 4). This significantly improved the Kriging
performance (Figure 5), which is an important technique
used in analysis of climate models. In Figure 4, we see
that the multiple-GPU version performs better than the
single GPU version, which indicates good program
scalability. The amount of memory used in the case of
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deep copy is larger, resulting in more data swaps to the
virtual memory. That is the reason why the deep copy
version is slower than the in-place version. This was
verified by using the ‘perf” tool in Linux to monitor the
last-level cache and translation look-aside buffer
misses. Comparison of Julia with R showed that
overheads in Julia were significantly lower compared to
R. We observed that the accelerated C functions
computing the Cholesky Decomposition performed
better using Julia (greater than 80% improvement)
compared to the R environment. For future work, we
plan to replace the MAGMA code with direct device-to-
device communication to avoid involving the CPU.
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Figure 4: Improvement in  Cholesky
Decomposition performance. Abbreviations:
DP=Double Precision, DPCPY=Deep copy,

IP=In place, nGPU=number of GPUs.
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Figure 5: Improvement in Kriging performance.
Abbreviations: DP=Double Precision, SP=Single
Precision, mKrig_x=number of GPUs used for
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GLOBAL MONITORING OF SURFACE WATER
EXTENT DYNAMICS USING SATELLITE DATA
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Abstract—Freshwater, which is only available in inland
water bodies such as lakes, reservoirs, and rivers, is
increasingly becoming scarce across the world and this
scarcity is posing a global threat to human sustainability.
A global monitoring of surface water bodies is necessary
for policy-makers and the scientific community to address
this problem. The promise of data-driven approaches
coupled with the availability of remote sensing data
presents opportunities as well as challenges for global
monitoring. One of the major challenges in monitoring
surface water is the presence of a rich variety of land
and water bodies across the world, that show varying and
sometimes overlapping characteristics in remote sensing
signals. This heterogeneity within the land and water
classes makes it difficult to use traditional classification
approaches for differentiating between all types of land
and water bodies at a global scale. Our research aims at
developing predictive models that address this challenge
for creating the first global monitoring system of surface
water dynamics. This system can greatly enhance our
understanding of the interplay between climate change,
human actions, and surface water dynamics.

I. MOTIVATION AND BACKGROUND

Inland water bodies, which include all water sources
contained within landmasses, such as lakes, reservoirs,
and rivers, are important natural resources as they sus-
tain every form of terrestrial life on Earth [1]. Increased
incidence of adverse events such as dwindling ground
water, shrinking freshwater bodies, rapidly degrading
water quality, severe droughts, and devastating floods
not only pose a significant threat (see Figure 1) to
the sustainability of humans but also to the Earth’s
ecosystem. As a result, managing inland water has
become one of the major 21% century challenges for
the world [2]. A global water monitoring system that
can provide timely and accurate information about the
available water stocks across the world is critical for
managing water resources.
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Figure 1. Global map showing regions facing water threats,
indicated in red [3].

A global monitoring system will enable a number
of advances in understanding the dynamics of water
resources and its management. First, monitoring water
dynamics can help in assessing the impact of human
actions on the state of inland water bodies. As an
example, the Aral sea has been shrinking since the
1960s (shown in Figure 2) due to the undertaking of
several irrigation projects by the Soviet Union, which
has brought the lake to the verge of extinction in 2014.
Second, information pertaining to the dynamics of
inland water bodies will aid in discovering relationships
between changes occurring in different water bodies

(b) Image in 2014

Figure 2. Satellite images from NASA Earth Observatory showing
the shrinking of Aral Sea starting from 1960’s to present day.
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and their interactions with other climatic processes,
such as heat waves and precipitation extremes. Third,
a global monitoring system would also facilitate the
forecasting of water stocks and risks in the future,
which when coupled with information about the pro-
jected water demands can help in devising policies for
managing water in a timely and effective manner.

The potential in creating a global water monitoring
system is enabled by the availability of remote sensing
data, acquired via satellites orbiting the Earth. Remote
sensing data has made it possible to obtain observations
even for the most inaccessible regions of the Earth that
could not have been otherwise obtained using ground-
based sensors [4]. Remote sensing data provides global
coverage of a variety of physical attributes about the
Earths surface at fine spatial resolutions and frequent
time intervals. This information can be appropriately
leveraged for distinguishing water bodies from land
bodies [5], [6]. Data-driven approaches that mine useful
information from large data sources and have found
success in various applications (e.g. finance, advertis-
ing, and social network analysis) offer a promise in
constructing a global water monitoring system using
remote sensing data. However, traditional data-driven
approaches are not suitable for addressing the unique
challenges faced in analyzing remote sensing data at a
global scale, as discussed in detail in Section 2. This has
restricted the application of existing water monitoring
approaches to local and regional scales as highlighted
in [7], while no effort has yet been made to monitor
the dynamics of inland water bodies at a global scale.
This motivates the need for novel research in data-
driven approaches for global monitoring of inland water
dynamics.

II. GOALS AND CHALLENGES

The ultimate objective of this project is to develop
predictive models that are able to identify whether a
particular location on the Earth at a given time is
water or land (binary classes) using remote sensing
data. However, a major challenge in learning predictive
models for global water monitoring is the fact that
land and water bodies appear very different in remote
sensing signals in different regions of the Earth, due
to the presence of varying geographies, topographies,
and climatic conditions across the world. Furthermore,
the same land or water body can show different char-
acteristics at different times, due to the presence of
Earths seasonal cycles and inter-annual changes. This
heterogeneity within land and water bodies results in
a multi-distribution of both classes, where different

pairs of land and water modes show different degrees
of separability in the feature space of remote sensing
variables. In such scenarios, the traditional approach of
learning predictive models that differentiate between all
varieties of land and water modes would suffer from a
number of limitations. First, the performance of such an
approach may be reasonable for certain pairs of modes
that are easily separable from each other, but may be
poor for pairs of modes that are highly overlapping in
the feature space, termed as pairs of confusing modes.
For example, a pair of land and water modes, being
observed in different regions and times, may show
similar remote sensing characteristics, making them
difficult to be differentiated from each other. Second,
the presence of such pairs of confusing modes can
also impact the performance over other modes in the
data, that are reasonably separable in the feature space.
Third, the learning of a traditional predictive model can
be biased towards certain modes in the data that have
been favorably represented in the training set, resulting
in improper learning of the classifier over modes that
have been under-represented during training.

III. METHODS

In our research, we have explored ensemble learning
methods that can address the address the aforemen-
tioned challenge of heterogeneity within the water
(positive) and land (negative) classes for global sur-
face water monitoring. These methods can be briefly
described as follows.

In the presence of heterogeneity within the two
classes, every pair of positive and negative modes
requires the learning of a different classifier that is
designed to differentiate between instances belonging
to the given pair of modes. This can be achieved
by learning an ensemble of classifiers, where every
classifier differentiates between a different pair of pos-
itive and negative modes. Such an approach would
help in ensuring adequate representation of every mode
in the learning of the classifier ensemble, along with
maintaining diversity among the classifiers. In contrast
to traditional ensemble learning approaches (e.g. bag-
ging) that use random partitions of the input space,
constructing ensemble classifiers in accordance with the
multi-modal structure of every class results in improved
classification performance across all pairs of positive
and negative modes. In our previous work [8], we have
explored various strategies for constructing ensembles
of classifiers that take into account the heterogeneity

within the two classes.
98



MONITORING WATER DYNAMICS ...

4 \Gth International Workshop on Climate Informatics
{ C I | September 22-23, 2016

2016 Hosted by the National Center for Atmospheric Research in Boulder, CO

(a) Remote sensing image

(b) Errors of baseline approach (in red))

(c) Errors of proposed approach (in red)

Figure 3. Classification results on a land category near Burullus lake, Egypt, shown by red and white pixels in Figures 3(b) and 3(c).
Red pixels represent classification errors while white pixels represent correctly classified instances.

It should be noted that even though land and water
bodies exist as multiple modes in the feature space, only
a small subset of land and water modes appear in the
vicinity of a given water body at a certain time, which
may be easily separable from each other. To make
use of this property, we consider binary classification
problems where the test data arrives as groups of
test instances, termed as test scenarios, and every test
scenario involves only a subset of all the positive and
negative modes in the data. Note that the concept of a
test scenario depends on the grouping structure present
in the test data, which is common in a number of
real-world classification problems. For example, a test
scenario could comprise of instances observed in the
vicinity of the same water body at the same time-
step, which are contextually similar to each other and
thus require the same learning of a classifier. In such a
setting, different pairs of positive and negative modes
may emerge or disappear in different test scenarios,
and even though some modes may be participating in
class confusion at a global scale, the subset of modes
appearing in a given test scenario can be considered
to be locally separable among each other. This shows
a promise in using information about the context of a
test scenario for overcoming class confusion.

In our previous work [9], we have developed ensem-
ble learning methods that are able to make use of the
distribution of unlabeled instances in a test scenario for
assigning local weights to ensemble classifiers. This
helps in selecting classifiers that are locally relevant
in the context of a given test scenario, and discarding
classifiers that are irrelevant or show poor prediction
performance. Thus, by using locally adaptive weights
on ensemble classifiers in accordance with the context
of a test scenario, we are able to provide significantly
better classification performance even in the presence
of class confusion. Figure 3 shows differences in the
classification results of the proposed approach and a
baseline approach (that does not make use of the context

of test instances) over a certain land mode in Burullus
lake, Egypt in Feb 2000, that participates in class
confusion at a global scale (shown in red and white
pixels in Figures 3(b) and 3(c)). It can be seen that the
errors of the proposed approach are significantly fewer
than that of the baseline approach in the local context of
this lake at this time, which shows the power in using
information about the local context of test instances.

IV. BROADER VISION AND IMPACTS:

As a first step towards creating a global surface water
monitoring system using data-driven approaches, we
have created a preliminary version of a web-viewer
for visualizing changes occurring in water bodies:
http://z.umn.edu/monitoringwater. This viewer is able
to capture a variety of dynamics occurring in surface
water, e.g. melting of glacial lakes in Tibet, shrinking
water bodies in Brazil and California due to droughts,
construction of dams and reservoirs, and changes in
river morphology such as river migration and delta
erosion (see http://z.umn.edu/waterslides for further de-
tails). We envision a global water monitoring system to
be a key enabler in identifying changes in surface water
and studying their interactions with climate change
and human actions. Furthermore, the predictive learning
approaches developed as part of this project will have
wide applicability in several real-world applications that
involve heterogeneity in data populations, e.g. detecting
ecosystem disturbances using remote sensing data and
predicting disease risks using health-care data.
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QUANTIFYING TROPICAL CYCLONE RISK USING
POISSON MODELING
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Abstract— Hurricane landfall risk has substantial
social and economic implications, yet extant
methods of diagnosing annual Atlantic tropical
cyclone (TC) activity demonstrate no skill in
diagnosing U.S. hurricane landfalls. Using extended
landfall activity and reanalysis datasets, we
produced a novel Landfall Diagnostic Index (LDI),
which captures more of the interannual variability
in U.S. hurricane landfalls than current genesis
indices or even Atlantic TC count itself. LDI also
offers physical insight into why indices that
successfully capture TC activity fail to diagnose
landfalls: there is an inherent tension between
conditions likely to steer hurricanes toward the U.S
and conditions favorable for TC development.

I. INTRODUCTION

The first empirical index to condense multiple
oceanic and atmospheric fields into a single metric that
expresses the relative permissibility of cyclogenesis
was introduced in 1979 [1] and there has been renewed
interest in the development of such indices in recent
years with the expanded availability of high-quality
atmospheric re-analysis datasets as in [2], [3], [4], [5],
and [6]. Genesis indices (GIs) have a variety of
contemporary uses, having garnered attention as
potential proxies for changes in the number of TCs in
climate change simulations, especially in situations
where only large-scale fields are available due to
computational limitations, as shown by [7], [8], [9],
and [10].

We compared and evaluated the performance of
extant Gls in diagnosing aggregate TC activity as well
as U.S. hurricane landfall activity, focusing on U.S.
hurricane landfalls because the vast majority of TC
economic damage in the Atlantic is due to high-
intensity landfalling events and the historical record of
U.S. hurricane landfalls is accurate earlier than the full

Corresponding author: E. Staehling, erica@weathertiger.com
1Research and Development Division, WeatherTiger LLC,
2Department of Earth, Ocean, and Atmospheric Science, Florida
State University, Tallahassee, FL. *Authors contributed equally
to this research.

Atlantic TC record [11], [12]. We obtained hurricane
landfall records from the International Best Track
Archive for Climate Stewardship (IBTrACS [13]) and
atmospheric fields from the NOAA/CIRES 20th
Century Reanalysis version 2 (20CRv2 [14]), which
overlap and are reliable from 1900 through 2012.
These choices afford us a temporal domain more than
twice the length of previous GI studies, with n = 113
years. We used 20CRv2 to reproduce extant Gls for the
historical record, yielding comparable or better
performance relative to previously published results,
despite the fact that these GIs were trained using
different reanalyses. This builds confidence that
20CRv2 is a sufficiently accurate basis on which to
build a diagnostic model.

Since hurricane landfall count has a significant
relationship with overall TC activity (R* = 0.166, p =
0.0027, n = 50 for 1966-2015), it is tempting to assume
Gls that show skill in diagnosing TC activity are also
useful proxies for landfall incidence, but this is not the
case. We calculated and regressed the seasonal mean
value of each extant GI averaged over both the entire
Atlantic basin and the extended main development
region (EMDR), onto annual Atlantic TC count and
U.S. hurricane landfall count, and found that most Gls
averaged over the EMDR explain about half of the
interannual variance in Atlantic TC activity. In
contrast, there is no significant correlation evident
between any of the GIs and the seasonal hurricane
landfall count.

TC count and intensity have energetic and
moisture implications for the atmospheric system at
large, but it is landfall activity that has direct impacts
on human populations and the coastal environment.
While several predictive studies of U.S. hurricane
landfall activity exist in the literature in [15], [16],
[17], analogous approaches to diagnose landfalls are
rare [18]. In this study, we investigate the utility of
adapting and expanding the GI methodology to
historical records of U.S. hurricane landfall to create a
Landfall Diagnostic Index (LDI).
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The lack of landfall diagnostic skill in GIs points
to the importance of factors other than overall activity
for assessing landfall risks to coastal regions, including
genesis location [19], intensification processes [20],
and large-scale steering patterns [15]. To address this
utility gap, we adapted the index generation
methodology of [5] to produce LDI, namely employing
empirical Poisson linear regression modeling to build a
diagnostic index from a database of physically
explicable predictors. This study differs from [5] in
that we substituted hurricane landfall count for TC
count as the diagnosed quantity, used time- and area-
averaged fields, and considered additional predictors
related to large-scale steering and TC intensity
regulating processes.

Using stepwise forward Poisson linear regression
modeling, we tested potential fields drawn from the
20CRv2 for inclusion in LDI. Our final version of LDI
includes upper-tropospheric horizontal divergence
(Vv) between 250-100 hPa (the difference in vertical
motion between these levels), meridional wind (v)
averaged over 500-650 hPa, zonal shear vorticity
(du/dy) at 1000 hPa, and relative sea surface
temperature (rSST) [21]. To determine the relative
sensitivity of hurricane landfall activity to the four
terms, we normalized the time series of each
component, producing normalized LDI:

LDI, = exp(0.45+0.47(V ;%)—0.22(v)—
0.10(9u/dy)+0.06(rSST)),

so that the magnitudes of term coefficients reveal the
sensitivity to proportional changes in each component.

As a check against overfitting, we performed
cross-validation tests [22], comparing both in-sample
and out-of-sample LDI performance against several
baseline diagnostic methodologies, including the
constant mean count of annual hurricane landfalls, a
linear fit regressing year onto landfall count, a ten-year
trailing average of landfalls, the best-performing extant
Gls, and a linear regression model incorporating
seasonally-averaged Atlantic Multi-decadal
Oscillation, extended multivariate ENSO index, and
North Atlantic Oscillation values. Both in-sample and
out-of-sample LDI show significant diagnostic skill
beyond all baseline methods with greater than 95%
confidence.

In-sample and out-of-sample LDI explain 31.4%
and 26.6% of hurricane landfall interannual variability,
respectively, with p = 0.014 and p = 0.068 relative to
TC count per Wilcoxon signed rank tests [23]. As
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Atlantic TCs are a necessary but not sufficient
condition for U.S. hurricane landfall, to outperform TC
count, LDI must draw skill from genesis location,
intensification, or steering patterns, offering insight
into processes that influence landfall risk. Comparing
the annual expected value of U.S. hurricane landfalls
indicated by LDI with the observational record, the
index generally correctly sorts seasons into less active
than normal, near normal, and more active than
normal, with the mean value of both LDI and observed
hurricane landfalls in the top decile of LDI
approximately twice the historical mean of 1.73 U.S.
hurricane landfalls per year, and the mean value in the
bottom decile less than half the mean.

\ 6th International Workshop on Climate Informatics
| September 22-23, 2016

 for Atmospheric Research in Boulder, CO

a
0.5F
a
= 0
E \v’\ ,/’
205"
S — Thermodynamic
3 1|--Steering ‘ ; ‘
§ 1900 1910 1920 1930 1940 1950
[&] T
g 1
o
o
S AN Sl /\
[CNY.& b /\/\v,.' v
\/ AUEANE S uv
-0.5
-1F

b 1960 1970 1980 1990 2000 201 0
TC count: 8.76 TC count: 124
Hurr. landfalls:1.32 ¢ © Hurr. landfalls: 2.69
0.5- ot .
c o e o,
£ sl 2 . . + 0 landfalls
2™ e AT L . * 1 landfall
g I P - 2landfalls
e o
g— 0 = o o ,.9 3 landfalls}
5 . e %P he se e e % ° 4 landfalls
2 . ol PR - 5 landfalls
§’0-25 sle °, o e + 6 landfalls
17 o° N °
. o
-0.5F o
TC count: 8.22 ° TC count: 11.7
Hurr. landfalls: 1.09 j Hurr. landfalls: 2.05

-1 -0.5 0 05 1
Thermodynamic group contribution

Figure 1. (a) The interannual variation of the
thermodynamic (solid; divergence and rSST) and
steering (dashed; meridional wind and zonal shear
vorticity) term group contributions to In(LDI). (b)
Scatter plot of the contributions of the term groups,
with aggregate TC count and landfall outcomes by
quadrant.
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I1T1. PHYSICAL INTERPRETATION

Each of LDI’s four components is closely tied to
processes that develop, steer, and regulate the intensity
of TCs in the Atlantic basin, offering physical insight
into sources of interannual variance. Since LDI is an
exponential sum, we examined the anomaly of each
component to quantify its individual contribution [5].
We call the divergence and rSST components the
“thermodynamic terms,” as they are physically linked
to storm-scale convective, energetic [24], and
circulation processes [25], and call the meridional wind
and shear vorticity components the “steering terms,”
linked to large-scale TC track patterns [15].

The contributions of the thermodynamic and
steering groups to In(LDI) are shown in Fig. 1 to be
negatively correlated (R = -0.495, p = 2.6 x 10%),
suggesting a tension between environmental conditions
conducive for development and landfall-favoring
steering patterns. The scatterplot of steering versus
thermodynamic group annual In(LDI) contributions
shown in Fig. 1b includes TC and hurricane landfall
counts averaged within the quadrants dividing positive
and negative thermodynamic and steering term
contributions. Moving from negative to positive
steering term contribution while holding the sign of
thermodynamic term contribution fixed, there is a
marginal increase in quadrant-averaged TC count (less
than 7%) and a much larger increase in hurricane
landfall count (roughly 20-30%). Correlating each term
group with the 500 hPa geopotential height anomalies
from the re-analysis data shows the patterns associated
with the thermodynamic and steering morphologies
most favorable for U.S. landfalls are in near-diametric
opposition over much of the Northern Hemisphere,
further evidence of an intrinsic tension between the
two term groups of LDI.

Iv. CONCLUSIONS

LDI successfully diagnoses a significant portion of
U.S. hurricane landfall variance in the twentieth
century and reveals potential reasons for the historical
difficulty in understanding interannual variability in
U.S. landfall activity, elucidating the physical
relationship between TC count and hurricane landfall
count. As GIs have been invoked in the context of
climate models unable to resolve TC-scale structures
[27], LDI could serve as a proxy for changes in the
number of landfalling hurricanes in climate change
simulations, especially since even models and
downscaling efforts able to simulate TCs directly are
presently unable to reliably reproduce realistic landfall

{

\ 6th International Workshop on Climate Informatics
\C

| September 22-23, 2016

20716 st ot natens Gt for Amossnrc Researen i svtsr G0
statistics [28]. We have shown that it is important to
take the demonstrated tension between conditions
favorable for genesis and conditions favorable for
landfall into account when designing studies that
address direct impacts on human populations, and
using diagnostic indices to quantify tropical cyclone
risk is a useful step toward that end [29].
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OPTIMAL TROPICAL CYCLONE INTENSITY
ESTIMATES WITH UNCERTAINTY FROM BEST
TRACK DATA

Suz Tolwinski-Ward!

Abstract—The destructive wind power of a tropical
cyclone TC is best characterized by its maximum wind
speed, but this quantity is notoriously hard to measure.
Central pressure has historically been a much more
accurately-measured proxy quantity for the intensity of
a TC, especially before the advent of aircraft recon-
naissance missions and modern satellite observing tech-
nologies. Physically-derived relationships between central
pressure and maximum wind speed (or WPRs, wind-
pressure relationships) have thus often been used to
translate the more certain pressure observations into
estimates of wind speed. Typically, however, estimates
have assimilated both sets of observations only informally,
and have neglected the uncertainty in the measurements
themselves, as well as in their relationship. A Bayesian
hierarchical modeling strategy is employed to create joint
optimal estimates of wind speed and central pressure,
as well as to quantify the uncertainty in the estimates.
Drawing on both maximum windspeed and pressure
observations across a large number of storms, the model
is also used to derive estimates of bias and uncertainty in
the pressure-wind relationship.Here we present a proof-
of-concept using Atlantic Basin tropical cyclones from
2004 through the present. Ultimately, the formulation can
be used to create a homogeneous set of TC intensities
across basins and time, which can enable better regional
comparisons and trend analysis.

I. MOTIVATION

Maximum tropical cyclone (TC) windspeed is the
main quantity of interest for assessing the risks of hurri-
cane winds to life and property. However, it is a difficult
variable to measure for a combination of reasons. Tradi-
tional instruments that measure local windspeed directly
can break and fail in extreme winds, and networks
of these instruments are sparse in space so that the
probability of having measured the global maximum
windspeed over a storm’s domain is extremely unlikely.
Modern remote sensing instruments, meanwhile, may
be able to make observations over the full domain of

STolwinski-Ward @air-worldwide.com 'AIR Worldwide Corpo-
ration, Boston, MA

the storm, but the measurements are indirect and tend
to reflect conditions at higher atmospheric levels, rather
than at the ground where conditions are most relevant
to risk. Changing measurement instrumentation over
time likely introduces temporal biases in TC windspeed
estimates [1] (hereafter referred to as TS12), while
differing instrumentation, observing conventions, and
possibly environments also makes it difficult to compare
estimates for TCs occurring in different oceanic basins
[2].

The central pressure of a tropical cyclone is an
alternative proxy measure for windspeed hazard in-
tensity, because the lower the central pressure of a
cyclone tends to be, the faster its winds circulate.
Estimates of the relationship between windspeed and
pressure can be derived from the first-order physical
approximation of hurricane winds as resulting from
gradient wind balance. The relationship derived by [3]
(henceforth referred to as KZ07) and refined by [4]
(hereafter CK09) is well-known and used throughout
the scientific literature and in the insurance industry
to convert between maximum windspeeds and central
pressures, with dependencies in the relationship on
storm latitude, size, and environmental pressure. The
uncertainty and potential bias in this relationship is typ-
ically neglected in conversions, however. Several differ-
ent agencies collect and maintain so-called “best tracks”
datasets— databases of historical TC dates, locations
and intensities throughout the observational period. A
comparison of Atlantic Basin best tracks windspeed
and windspeed estimated via the Knaff-Zehr wind-
pressure relationship (KZ WPR), both plotted versus
best tracks pressure values, demonstrates both a need
to account for both bias and uncertainty (Fig 1). Some
tracks in these best tracks datasets contain estimates
of windspeed, others contain only estimates of central
pressure, and some contain estimates of both variables.
The present research strives to combine all sources of
information and uncertainty objectively to infer opti-
mal maximum windspeed estimates and accompanying
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Fig. 1. Maximum windspeed from the best tracks dataset (black)
and predicted (red) by the KZ WPR as a function of best-tracked
central pressure for historical tropical cyclones in the North Atlantic
Basin.

space-and-time-dependent estimate uncertainties for all
best-tracks data. The resulting consistent set of his-
torical maximum windspeed estimates should thus be
consistent across time and space, and can therefore
facilitate studies of the effects of climate variability and
change on the destructive hazard to society posed by
tropical cyclone activity.

II. METHOD

We develop a Bayesian hierarchical model (see [3]
for an introduction) for the present problem with the
following structure:

[V,AP|V,AP, Ray, ¢, ¢,0] < (1)
V|V, 0y][AP|AP, 0 p]
x [R34| Raa, Oraa][¢|c, 0.][] ¢, 0]
X[V, AP|Rs34,c, ¢, 0k 7]
X [0v][0aP][0Rr34][0c][04][0K 7]

(posterior)

(data-level)

(process level)

(parameter level)

where the variables used are defined in the following
table:

Variable | Unit§ Summary

V,V kts | The underlying “true” and
observed/best-tracked values of
the maximum windspeed, resp.

AP, hPa | Underlying/best-tracked values

AP of the pressure deficit (diff. in
surface pressure from TC pe-
riphery to central minimum).

R34, nmi | Underlying/best-tracked values

Rsa of the azimuthal average of the
radius of gale-force winds.

c, ¢ kts | Underlying/best-tracked values
of TC forward speed.

o, ¢ °N | Underlying/best-tracked TC lat-
itude.

Ok - Parameters of the KZ07 wind-
pressure relationship.

Ox - Parameters quantifying mea-
surement uncertainty or bias of
process X.

The inference for the proof-of-concept results presented
here is performed using tracks from the HURDAT?2
database from 2004 - 2014 (2004 is the earliest year of
the database in which values for R34, the radius of gale-
force winds, is included). In the following subsections,
we describe the choices for each model component in
the general structure specified above.

A. Data-level models.

All data-level models are assumed to be independent
of one another, and to be described using mean-zero
Gaussian model errors. (Note that this does not imply
that the process X itself is Gaussian, only that the best-
track data are normally distributed about the underlying
true process due to measurement noise and the process
of best-tracking.) The modeling choices for each data
model case are then reduced to how to specify the error
covariances.

a) [V|V,0y] and [AP|AP,0xp): This model de-
scribes how the best-tracked estimate of maximum
windspeed V and pressure deficit AP for a given
cyclone and time relate to the “true” unobserved values
V and AV. For present purposes, we assume simple
Gaussian models to account for measurement error:

V. ~ N(V,o%)
AP ~ N(AP,03p)
b) [Rsa|Rsa,0rs4], [¢|c, 02),[de]é, 02]: In princi-

pal, the uncertainty in the radius of gale-force winds

R34, the forward speed c, and the latitude ¢ along the
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tracks can be explicitly modeled at the data-level as
well. The model for Rs, should treat storm asymmetry,
and positional uncertainties 02 (documented in TS12
for modern observing platforms) can be used to derive
the models for ¢ and (2) For the current proof-of-
concept results, however, we neglect the uncertainty
in the HURDAT values of these variables, using the
observations as perfect reflections of the truth. Their
uncertainty will instead get accounted for implicitly in
estimates of the uncertainty of the KZ WPR relation-
ship.

B. Process-level model.

c) [V,AP|Rs4,c,¢,0k7]: The strategy for de-
scribing prior understanding of the maximum wind-
speed and pressure deficit processes themselves is con-
servative: it is only assumed that V' and AP are related
to one another by the WPR within the confines of
an error structure to be specified. No assumptions are
made about the temporal evolution or other features of
the processes themselves are made, and in that sense
the prior may be viewed as rather noninformative, and
providing only a vague constraint. Thus the process-
level structure may be re-written as

[V,AP|Rs34,c,0,0x7] = [VIAP,Rs4,c,¢,0k7]
X [AP, R34, C, (b]

= [V|AP7 R34,C7 ¢7 QKZ]

where the last equality follows from the first given the
assumption of a flat joint prior on variables AP, Rsy,
¢, and ¢.

We assume that the true values of time series V' and
AP along a given track are related through the KZ07
relationship, plus a WPR discrepancy &y pr, which
accounts for systematic errors in the WPR, plus an error
term e:

V ~ fkz(AP,V,c,¢,R3s) + dwpr +€¢  (4)

The function fx Z is taken from KZ07 and CK09, and
has the form

fkz = 1.5¢%% +ag—ai1S(V, Ry, ¢) — asp —
a3 AP + ag\/[AP) )

The KZ model discrepancy d; is assumed to be linear
in pressure deficit:

Ok = ag + BrAP (6)

C. Parameter-level models.

1) Data-level model parameters: The parameters
Oy and Oap of the simple proof-of-concept data-level
models for the windspeed and pressure deficit data are
just the variances of the measurement noise, o2 and
o2 p- In principal, informative priors can be put on these
parameters, and their posterior values derived in light
of the information contained in the data and the KZ
wind-pressure relationship. For present purposes, where
we use data derived from modern observing platforms
for the 2004-2014 HURDAT?2 data, we fix these uncer-
tainties at the constant, but intensity-dependent values
given in TS12. There are no parameters 6rs34, 0., and
9¢ in the present version of the model, given that we
currently neglect explicit uncertainty modeling for each
of the associated variables.

2) Process-level model parameters: The linear coef-
ficients of the KZ WPR discrepancy function, oy and
a1, are both given flat priors on the set of all reals. The
error variance for the KZ WPR is given a flat prior
on the positive reals (and so its full conditional has a
conjugate inverse gamma form, which is easy to sample.

III. PRELIMINARY RESULTS

Results derived from even the simplified model as-
sumptions here shed light on the uncertainty and bias of
the KZ WPR. At least for Atlantic Basin data, the rela-
tionship estimating tropical cyclone wind from pressure
is generally negatively biased, with a greater magnitude
of bias for more intense storms. The linear discrepancy
function 9 corrects for this bias. The median and 95%
credible intervals for the posterior distribution of the
discrepancy as a function of pressure deficit is shown
in the upper panel of Figure 2. The uncertainty in the
bias-corrected KZ WPR has a standard deviation ogz
with a symmetric posterior distribution, with a median
value around 22 knots (lower panel of 2).

Estimates of maximum windspeed, the most relevant
quantity for hazard risk analysis, can be improved
by combining the information in both best-tracked
measures of intensity, windspeed and pressure, along
with the physically-based information in the KZ WPR.
According to the preliminary analysis performed here,
combining the three information sources also reduces
the uncertainty in the maximum windspeed estimates
in most cases, particularly for the most intense trop-
ical cyclones. One such example is shown in Fig 3,
where the bias correction is especially evident at the
highest intensities along the track of hurricane Wilma
from 2005, and the credible intervals containing the

same probability mass around the central estimates
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Fig. 2. Top panel: inferred distributions of the discrepancy function
for the KZ WPR for the Atlantic Basin. Bottom panel: inferred
distribution of the error variance for the KZ WPR.
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Fig. 3. Best-tracked maximum windspeed estimates for Wilma,
2005, and estimate derived by combining windspeed, pressure, and
KZ WPR relationship information.

are also narrowed by the inclusion of two additional
sources of information (the pressure and physics-based
information in the KZ WPR) in addition to the Vmax
observational data alone.

IV. FUTURE DIRECTIONS

In future development of this work, considerable ef-
fort will be spent gathering estimates of time-dependent
observational uncertainties from the literature to reflect
the decreasing accuracy of windspeed and pressure
observations with time earlier in the historical datasets.

This development will enable the same type of un-
certainty quantification analysis presented here to be
applied throughout the observational record for more
rigorous quantification of uncertainties during analysis
of long-term trends in the data. The author also hopes
to apply the current methodology to other basins, where
different measurement techniques by agencies outside
the Atlantic may result in differences in the KZ WPR
bias and uncertainty results. The effect of uncertainty in
the radius of gale-force winds should also be explicitly
modeled and quantified, so that the methodology may
be applied additionally when these size data are missing
(which is true prior to 2004 in the Atlantic basin).
Finally, the realism of the data-level models [V |V, 6y/]
and [AP|AP,0ap] can be enhanced by more formally
modeling the best-tracking process. In particular, scien-
tists who perform the best-tracked estimates from raw
observations likely assume some smoothness in time in
the time series of V' and AP; this smoothing can be
modeled and its degree inferred within the context of
the Bayesian hierarchical model presented here.
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Abstract—Characterizing frequency and intensity of
extreme weather events in future climate projections
remains one of the grant challenges in climate change
research. Various algorithms have been developed for
detecting extreme weather events in climate simulations;
however, these schemes are largely build upon human
expertise in specifying multi-variate thresholds of relevant
climate properties in defining event. In other words, these
schemes require practitioner hand craft features that best
characterize event. In doing so, competing algorithms
often produce very different results even on same data
set. Alternative schemes for extreme weather event de-
tection that avoid subjective manual feature engineering
and thresholds specifying, eventually produce consistent
and trustworthy results are in urgent demand. In this
work, we employ deep convolutional neural network
for classifying weather events, with the ultimate goal
to develop automatic systems capable of detecting and
tracking multiple extreme events in climate simulations
simultaneously. We demonstrate success on classifying
tropical cyclones, atmospheric rivers and weather fronts.
The promising results point to the applicability of con-
volutional neural network for learning a broad class
of extreme weather events, potentially transforming the
quantitative evaluation of climate change in the future.

I. MOTIVATION

An array of methods have been developed for detect-
ing and tracking extreme weather events in large climate
simulations. Most widely used algorithms are built on
human expertise on providing multi-variate thresholds
for relevant climate variables to define event. For in-
stance, tropical cyclones are strong rotating weather
systems that are characterized by low pressure and
warm temperature core with high circulating wind.
However, there is no universally agreement of a set
of criteria that best characterize tropical cyclone ([1]).
The "Low” pressure and "Warm” temperature are in-
terpreted differently among researchers based on their
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understanding of event characteristics, therefore, differ-
ent thresholds are proposed. Very different, sometimes
contradictory, results are reported by employing these
algorithm on same data set and difficulties of assessing
results between approaches remains high ([2], [3]).

Recent advances in deep learning have demonstrated
exciting and promising success on pattern recognition
in natural image ([4], [5], [6]) and speech ([7], [8]).
These success have demonstrated the potential transfor-
mative power of deep learning to replace hand crafting
feature engineering with direct feature learning from
training data. Most of the state-of-art deep learning
architectures for visual pattern recognition are build on
the hierarchical feature learning convolutional neural
network. Modern convolutional neural network tend
to be deep and large with many hidden layers and
millions of hidden units, making them very flexible in
learning a broad class of patterns simultaneously from
training data. In this paper, we formulate the problem of
detecting extreme weather events as classic supervised
visual pattern recognition problem that consists two
components: classification and localization. We develop
deep convolutional architecture and mainly address the
classification task in this write up.

II. METHOD

A classic deep convolutional neural network com-
prised of several convolutional layers followed by a
small amount of fully connected layers. Inbetween two
successive convolutional layers, sub-sampling operation
(e.g. max pooling) is performed typically. The inputs of
a convolutional neural network are presumably (m,n,p)
images, where m and n are the width and height of an
image in pixel, p is the number of color channel of
image. The output of a convolutional neural network
is a vector of g probability units, corresponding to
the number of categories to be classified (e.g. for
binary classifier g=2) in the classification task, and is
a vector of coordinates that describe the location of
object in input image in the localization task. The most
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important layer in a convolutional neural network is
the convolutional layer, which performs convolution
operation between kernels and the input image (or
feature maps). A convolutional layer contains k kernels
with the size (i,j,p), where i,j are the width and height of
the kernel, typically much smaller than the height and
width of input image. p always equal to the number of
color channel of input image (e.g. a color image has
red, green, and blue channels, thus p=3). Each of the
kernels independently convolves cross the input images
(or feature maps) and dot product is computed between
the entry of kernel and the local region it covers in
the input image (or feature maps). Dot product at each
location is further passed to the non-linear activation
function of hidden units, generating k feature maps,
each corresponding to a particular kernel. The entries
of kernels (a.k.a the parameters of convolutional layer)
have to be learned in the process of training. Convolve
kernels across input image will produce larger outputs
for certain sub-regions than others, which allows fea-
tures to be extracted from input and preserved in the
feature maps regardless of where the feature locates in
the input image.

The pooling layer sub-samples the feature maps
from convolutional layer over a (s,t) contiguous region,
where s,¢ are the width and height of the sub-sampling
window. For example, in max pooling operation, only
the maximum value within the sub-sample window
is retained. This operation reduces the resolution of
feature maps with the depth of layers. Pooling layer
does not have any parameter to learn.

Fully connected layer, unlike the convolutional layer,
has full connections to all hidden units in previous layer.
The last fully connected layer also does the high level
reasoning based on the feature vectors from previous
layer and produce final class scores for objects in input
image or predict coordinates of objects in input image.

Training deep architecture is known to be difficult
([9], [10]). It requires carefully tuning model parameters
and learning parameters. The parameter tuning process,
however, can be tedious and non-intuitive. In this study,
we employ a Bayes’ frame work of hyper-parameter
optimization technique to facilitate parameter selecting.

Referring to AlexNet ([4]), we build classification
system with two convolutional layers followed by
two fully connected layers. Inbetween two consecutive
convolutional layer, max sub-sampling is performed.
Details of the architecture and layer parameters can be
found in Table I.

III. EVALUATION
A. Data

We collected ground truth labeling of tropical cy-
clone, atmospheric river and weather front obtained
via multivariate threshold based criteria implemented
in TECA ([11]), and manual labeling by experts ([12],
[13]). Training data comprise of image patches, in
which relevant variables are extracted from global cli-
mate simulation or reanalysis over a prescribed box that
bounds an event, then stacked together. The dimension
of the box is based on domain knowledge of events spa-
tial extent in real word. For instance, tropical cyclone
radius are typically with in range of 100 kilometers
to 500 kilometers, thus a box of size 500 kilometers
by 500 kilometers is likely to capture most of tropical
cyclones. The chosen climate variables are also based
on domain expertise. To facilitate model training, the
prescribed box is placed over an event and location
is slightly adjusted such that event is approximately
at the center. Image patches are cropped and centered
correspondingly. Because the spatial extent of climate
events varies and the spatial resolution of simulation
and reanalysis data is non-uniform, final training images
prepared differ in their size among the three types of
events. This is one of the most important limitations that
prevent us developing one signal convolutional neural
network to classify all three types of event simulta-
neously. The class labels of images are “containing
events” and not containing events”. In other words,
we formulate the problem as binary classification task.
A summary of the attributes of training images is listed
in Table III, attributes of original reanalysis and model
simulation data are documented in Table II. Training
data for localization task is prepared in a similar way,
but differ in the prescribed box size and events location
within the box. Specifically, the weather events are
randomly located within a much larger box. The ground
truth event location in the box is computed and saved.
These prepared data set are split into “training” and
“testing” subsets.

B. Classification

To illustrate performance of deep convolutional neu-
ral network comparing to other methods, we also
trained four widely used algorithms on the same classi-
fication task. Table IV summarizes the performance of
all five algorithms on classifying tropical cyclone, at-
mospheric river and weather front. Deep convolutional
neural networks perform best regarding classification

accuracy. In addition, the systems are well trained and
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TABLE I: Classification CNN architecture and layer parameters. The convolutional layer parameters are denoted
as <kernel size>-<number of feature maps> (e.g. 5x5-8). The pooling layer parameters are denoted as <pooling
window> (e.g. 2x2). The fully connected layer parameter are denoted as <number of units> (e.g. 2). Non-linear
activation function of hidden unit is shown in parentheses.

Convl (ReLu) | Pooll | Conv2 (ReLu) | Pool2 | Fully (ReLu) | Fully (Sigmoid)
Tropical Cyclone 5x5-8 2x2 5x5-16 2x2 50 2
Weather Fronts 5x5-16 2x2 5x5-16 2x2 400 2
Atmospheric River 12x12-8 3x3 12x12-16 2x2 200 2

TABLE II: Original Data Sources

Climate Dataset Time Frame | Temporal Resolution | Spatial Resolution (lat x lon degree)
CAMS.1 historical run 1979-2005 3 hourly 0.23x0.31
ERA-Interim reanalysis 1979-2011 3 hourly 0.25x0.25

20 century reanalysis 1908-1948 Daily 1x1
NCEP-NCAR reanalysis 1949-2009 Daily 1x1

TABLE III: Dimension of image, diagnostic variables (channels) and labeled data set size for classification task
(PSL: sea surface pressure, U: zonal wind, V: meridional wind, T: temperature, TMQ: vertical integrated water

vapor, Pr: precipitation)

Events Image Dimension Variables Total Examples
Tropical Cyclone 32x32 PSL,V-BOT,U-BOT, T-200,T-500,TMQ, V-850,U-850 | 10,000 +ve 10,000 -ve
Atmospheric River 148 x 224 TMQ, Land Sea Mask 6,500 +ve 6,800 -ve
Weather Front 27 x 60 T-2m, Pr, PSL 5,600 +ve 6,500 -ve

do not suffer from over-fitting '. We believe this is
mostly because of the shallow and small size of the
architecture (4 learnable layers) and the weight decay
regularization. Deeper and larger architecture would be
inappropriate for this study due to limited amount of
training data. Fairly good train and test classification
results also suggest that the deep convolutional neural
network are able to efficiently learn representations of
climate pattern from labeled data and make predictions
based on learned representations. Traditional threshold
based detection method requires human experts to care-
fully examine extreme event before determining a set of
thresholds for relevant variables that best characterize
events. In contrast, as shown in this study, deep convo-
lutional neural network are able to learn climate pattern
from labeled data directly, thus potentially overcome
subjective judgment in traditional detecting scheme.
However, the superior performance of deep convolu-
tional neural network comes at the cost of expensive to
train comparing to other competing methods. As many
researcher has pointed out that deep neural networks

'over fitting is a phenomenon that an algorithm, due to its
complexity, adapts to the noise in training data rather than learning
fundamental relations. Such that it is not able to generalize well
to unseen test data. Often, an over-fitted algorithm performs com-
paratively well on training data, but not as well on unseen testing
data. The training and testing performance of a well trained learning
algorithm should closely follow each other.

are hard to train ([9], [10]). Large architecture some-
times need to be trained for weeks. Despite the high
computation expense in training, deep convolutional
neural network is still promising as a generic algorithm
for event detecting by integrating classification and
localization, since one time evaluation is needed at
testing after the architecture is trained. Other methods
would require sliding window cross the entire image to
perform detecting. This is very computation expensive,
because classifier needs to perform classification at
every window it encountered.

Further analyzing the classification results, we ob-
served that random forest performs best among four
methods we chose, probably because random forest
ensembles a sets of classifier to reach a conclusion.
Tropical cyclone classification is a relatively easy task.
Simple logistic regression can achieve over 95% of ac-
curacy. It is likely due to the fact that the characteristics
of tropical cyclone are easy and well defined. Further
investigating the results, we see logistic regression and
support vector machines achieve comparable testing
accuracy for weather fronts but the training accuracy
is below that of deep convolutional neural network.
The difference between training and testing accuracy
are fairly large (5%), indicating the models are not well
trained given training data or the model is not suitable

for this task.
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TABLE IV: Classification cccuracy of five classification methods

ConvNet Logistic KNN SVM RandForest
Event Type Train (%) | Test (%) | Train (%) | Test (%) | Train (%) | Test (%) | Train (%) | Test (%) | Train (%) | Test (%)
Tropical Cyclone 99.3 99.1 96.8 95.9 98.1 97.9 97.0 95.9 99.2 99.4
Atmospheric River 90.5 90.0 81.9 82.7 79.7 81.7 81.6 83.0 87.9 88.4
Weather Front 88.7 89.4 84.7 89.8 72.5 76.5 84.4 90.2 81.0 87.5

I'V. CONCLUSION

We present deep convolutional neural network as a
novel method for classifying extreme weather events.
The classification system achieves fairly high classifi-
cation accuracy (89%-99%), outperforming K-nearest
neighbor, logistic regression, support vector machine
and random forest algorithms. Deep convolutional neu-
ral network is powerful because it can learn high-level
representation of pattern from data directly replacing
hand feature engineering that is often subjective. Inte-
grating object classification and localization will be a
novel approach for extreme event detecting that does
not rely on cherry picking features and thresholds.
In this manual script we emphasize on the classifica-
tion. However, the early result of localization is also
promising. To the best of our knowledge, this is the
first attempt to develop new detecting algorithm that
does not require hand feature engineering, thus can
overcome drawbacks of traditional detecting scheme.
The successful application could be a precursor for
tackling a broader class of pattern detection problem in
climate science. These detecting results are also critical
information for characterizing extreme events behavior
from past to future.
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INFORMATION TRANSFER ACROSS TEMPORAL
SCALES IN ATMOSPHERIC DYNAMICS
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Abstract—Earth climate, in general, varies on many
temporal and spatial scales. In particular, air temperature
exhibits recurring patterns and quasi-oscillatory phenom-
ena with different periods. Although these oscillations are
usually weak in amplitude, they might have non-negligible
influence on temperature variability on shorter time-
scales due to cross-scale interactions, recently observed by
Palus [1]. In this letter, we show how to discern possible
cross-scale interactions and, if present, how to quantify
their effect on air temperature in Europe.

I. MOTIVATION

Better understanding of the complex dynamics of the
Earth atmosphere and climate is one of the challenges
for contemporary science and society. Large amount of
experimental data requires new mathematical and com-
putational approaches. Considering the climate system
as a complex network of interacting subsystems [2] is
a new paradigm bringing new data analysis methods
helping to detect, describe and predict atmospheric
phenomena [3]. A crucial step in constructing climate
networks is inference of network links between cli-
mate subsystems [4]. Directed links determine which
subsystems influence other subsystems, i.e. uncover
the drivers of atmospheric phenomena. Inference of
causal relationships from climate data is an intensively
developing research field [5], [6], [7], [8], [9], [10],
[11]. Typically, a causal relation is sought between
different variables or modes of atmospheric variability.
Palu$ [1] has open another view at the complexity of
atmospheric dynamics by uncovering causal relations or
information flow between dynamics on different time
scales in the same variable. Here we further develop
research in this direction.

Air temperature dynamics vary on a large range of
spatial and temporal scales. In this letter, we will focus

Corresponding author: N. Jajcay, jajcay@cs.cas.cz 'Dept. of
Nonlinear Dynamics and Complex Systems, Institute of Computer
Science, Academy of Sciences of the Czech Republic, Prague,
Czech Republic?Dept. of Atmospheric Physics, Charles University
in Prague, Czech Republic

on relatively small temporal range from the annual scale
to near-decadal time scales. Long instrumental temper-
ature records available from various European stations
allow us to study long term temperature variability and
to identify recurring patterns, e.g. climate oscillations
on interannual scale. Plaut [12] found climate oscilla-
tion with the period about 7-8 years in central England
temperature record, Palu§ and Novotnd identified os-
cillatory phenomenon with similar, 7-8 years period in
various central Europe surface air temperature (SAT,
hereafter) records (Prague, Berlin, De Bilt, ...) [13].
Grieser et al. reported 7-8 year oscillations in SAT
records from western and northern Europe [14], while
Pisoft found spatial patterns of occurrence of the 8 year
cycle at various geopotential heights in the NCEP rean-
alyzed temperature series [15]. These cycles have been
usually observed and identified using subtle detection
techniques as singular spectrum analysis [16], Monte
Carlo SSA [17] and others, since their amplitude is
usually low and they are hidden in overall temperature
variability.

Once the oscillations (or quasi-oscillations) are de-
tected, we can employ causality measures to detect
possible cross-scale information transfer. Following
Palu§ [1], we expect that the phase of slow oscillatory
phenomena interacts with and influences the amplitude
of faster frequencies, thus we try to estimate the causal-
ity measures between the time series of phase of 7-8
year cycle and the amplitude of faster cycles.

II. METHOD

The information transfer between various scales (in
particular, from above mentioned 7-8 year cycle to
faster time scales) could be studied in the frame-
work of phase dynamic approach [18], where we
compute the instantaneous phase and amplitude of
a quasi-oscillatory phenomenon using either Hilbert
transform [18] to obtain imaginary part of time series,
or complex continuous wavelet transform [19], which
provides both the bandpass filtering of the signal (for
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selected central period) and the estimation of the in-
stantaneous phase and amplitude. Mathematically,

Y(t) = s(t) +id(t) = A(t)e"® (1)
_ 5(t)

o(t) = arctan@ ()

At) = Vs (t) +52(1) 3)

where s(t) is the original (SAT) time series, §(¢) is its
imaginary counterpart, ¢(t) is its instantaneous phase
and A(t) is its instantaneous amplitude.

Among a number of notions and estimators of causal-
ity (for a review see e.g. [20]) we utilize the conditional
mutual information [21] which can be used to infer the
causal influence (in the Granger sense) between two
two time series. Namely, we estimate the functional

I(¢1(t); Aa(t+7)[ A2(t), A2t —n), ..., Azt —mn)),

“)
where 7 is forward-time lag and n is backward-time
lag in the (m + 1)-dimensional condition. Using this
approach, Palus [1] found the above mentioned slow
7-8 year phase to influence the amplitude on shorter
time scales. Furthermore, we tried to estimate the effect
using the conditional means technique on the amplitude
of the annual cycle of SAT and also overall variability
of SAT anomalies (SATA hereafter, from the SAT time
series the yearly climatology is subtracted).

III. AMPLITUDE OF THE ANNUAL CYCLE

The strongest mode of variability in the European
temperatures is without a doubt the annual cycle. Still,
its amplitude varies in time and space (e.g. [22]).
The period of various oscillatory phenomena found in
Prague SAT data fluctuates in a wide range, however the
most frequent period is close to 8 years (see [1] Fig. 3a
and references therein). The cycles, obtained from time
series of SAT recorded in Prague-Klementinum [23],
we are interested in are plotted in Fig. 1. The apparent
relationship between the amplitude of the annual cycle
(AAC hereafter, yellow in Fig. 1, corresponds well with
the “climatological amplitude”, defined as the differ-
ence between the means of daily temperature above
the upper and below the lower quartile in each year,
yellow circles in Fig. 1) and the 8-year cycle (red in
Fig. 1, Pearson correlation coefficient —0.86) can be
now studied using the conditional means technique.

The conditional means utilize simple binning ap-
proach, where the phase interval (—, ), representing
the full cycle, is divided equidistantly into 8 bins.
Note, that this means, that one bin equal approximately
one year of the cycle. For each bin we then evaluate
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Fig. 1. Cycles in the SAT data in the period 1. January 1934 to 31.
December 1944. Shown are SAT daily station data from Prague-
Klementinum (light blue), the wavelet reconstruction Agy(t) -
cos ¢gy (t) of the 8 year cycle (red), the wavelet reconstruction of the
annual cycle Aiy(t) - cos ¢1y(t) (dark blue), the wavelet amplitude
A1y (t) (yellow) and the climatological amplitude (yellow dots) as
the difference between warmest and coldest 25% of the year.

the mean (or other statistical measure) to obtain the
discretized estimate of the conditional mean of the
studied variable. If the 8 year cycle has no influence
on the studied variable, the conditional means in all
bins would be the same (within statistical fluctuations),
equal to the unconditional, global mean.
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Fig. 2. (left) Conditional means for the amplitude of the annual
cycle, A1y(t), for the Prague-Klementinum SAT data with the
period 1 January 1950 to 31 December 2013, conditioned on the
phase of the 8 year cycle, ¢sy (). (right) Spatial variability of the
effect of the 8 year cycle on the amplitude of SAT annual cycle
in Europe. Differences of the maximum and minimum conditional
means of the ECA&D reanalysis SAT annual cycle amplitude,
A1y (x,t), conditioned on the phase of the 8 year cycle, ¢s,(x,t)

The histogram of conditional means of AAC is pre-
sented in Fig. 2 (left). The maximum mean, conditioned
on the phase of the 8 year cycle, is located in the eight
bin (equivalent to last year of the 8 year cycle) with
value of 20.66°C, while the minimum, in the fourth
bin, is at 19.87°C. This implies that through the 8 year
cycle the AAC changes, on average, within the range
of 0.79°C. This is the average change for the eight

cycles in the period 1 January 1950 to 31 December
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2013. When using different segments of data, the results
differ, suggesting that this effect is nonstationary. This
is probably due to the nonstationarity of the tempera-
ture data and cross-scale interactions themselves. The
evolution of conditional means in different temporal
windows could be found in Jajcay et al. [24], along
with statistical testing against synthetic time series gen-
erated under the null hypotheses of linear autoregressive
process (autoregressive surrogates of order 1 [17]) and
linear process with same spectrum (Fourier transform
surrogates [25]).

Since the effect is nonstationary, we presume that
the effect is also variable in space. Thus, the gridded
temperature reanalysis dataset (E-OBS [26], 1 January
1950 to 31 December 2013) underwent the same AAC
conditional means analysis using the phase of CCWT-
extracted 8 year cycle. The marked influence of the
phase of the 8 year oscillatory mode on the amplitude
of the annual cycle can be seen over central, northern
and eastern Europe.

IV. OVERALL SATA VARIABILITY

Since the 8 year cycle is supposed to have an effect
on various temporal scales, not just the annual cycle [1],
now we explore its effect on the overall variability
represented by the surface air temperature anomalies
(SATA). As before, we utilize the conditional means
technique, but this time, we are computing the mean of
SATA directly, conditioned on the phase of the 8 year
cycle. The results, presented in Fig. 3 (left) show “cold”
bins in the beginning and the end of the cycle (with
minimum of 0.16°C in the eight bin) and the “warm”
bins in the middle of the cycle (with maximum of 1.3°C
located in the fourth bin). This gives us overall effect
on the temperature anomalies of 1.2°C in magnitude.

This effect, similarly as with the AAC effect, differs
in time and space. Our analysis showed, that it also
differs with seasons, with strongest effect visible in the
winter months (December - February, DJF), when the
differences between the maximum and the minimum
mean winter temperature, conditioned on the phase of
the 8 year cycle, could reach approximately 4-5°C in
the station SATA data from central Europe. During the
summer season, the effect is not statistically significant,
i.e. it is not distinguishable from random temperature
variability (caused by the intrinsic chaotic nature of
the temperature dynamics, see Supporting information
in [24]).

The spatial variability of the effect on the winter
temperatures in Europe is presented in Fig. 3 (right).
The differences range from about 1°C in Spain to the
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Fig. 3. (left) Conditional means for the SAT anomalies for the
Prague-Klementinum SAT data with the period 1 January 1950 to
31 December 2013, conditioned on the phase of the 8 year cycle,
¢sy(t). (right) Spatial variability of the effect of the 8 year cycle on
the amplitude of SATA winter season DJF in Europe. Differences
of the maximum and minimum conditional means of the ECA&D
reanalysis SATA DIJF time series, conditioned on the phase of the
8 year cycle, ¢sy(x,t)

maximum of 6.5°C in Finland and adjacent areas of
Russia. The pattern is similar to that in Fig. 2 (right)
and in central and eastern Europe they both resemble
(the inverse of) mountain topography: the effect of the
8 year cycle is strong in the lowlands from the North
and Baltic Seas southward and weakens at the mountain
ranges of the Alps and Carpathians. The interaction
of variable jet stream with the mountain topography
apparently has a modulating effect on the influence
of the 8 year cycle on the temperature variability in
Europe.

V. CONCLUSIONS

Considering air temperature variability in a range of
time scales, Palus [1] presented a statistical evidence
for a cross-scale-directed information flow from slower
to faster scales. We applied a simple, conditional means
approach to quantify the effect of this information
transfer, in particular, the effect of the phase of the 8
year cycle on the amplitude of the annual cycle and also
overall SATA variability. We showed that this effect
is strongest in the winter, DJF, months in which the
change in temperature could be up to 4-5°C. These
results suggest that the weak in amplitude 7-8 year cycle
plays an important role in the temperature variability
on interannual and shorter time scales. Therefore, this
phenomenon deserves a further study to understand
its mechanisms. Detailed discussion could be found
in [24].
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Identifying precipitation regimes in China using
model-based clustering of spatial functional data

Haozhe Zhang!, Zhengyuan Zhu!, Shuiging Yin??3

Abstract—The identification of precipitation regimes
is important for many purposes such as agricultural
planning, water resource management, and return pe-
riod estimation. Since precipitation and other related
meteorological data typically exhibit spatial dependency
and different characteristics at different time scales,
clustering such data presents unique challenges. In this
short paper, we develop a flexible model-based approach
to identify precipitation regimes in China by clustering
spatial functional data. Though the focus of this study
is on precipitation data, this methodology is generally
applicable to other environmental data with similar
structure.

I. INTRODUCTION

The study of precipitation in meteorology and clima-
tology has a significant society impact. For example,
drought and flood are two of the most serious mete-
orological disasters in China, with a direct economic
loss of 177 billion Chinese Yuan and annual average of
1256 deaths each year during the period 2001-2014 [1].
Obvious seasonal and interannual variations of precipi-
tation in China affected by Asian monsoon and complex
terrain are the main reasons for the frequent drought and
flood disasters. Dividing a large geographical area into
more homogeneous precipitation regimes [2] has been
shown to be useful for precipitation prediction, flood
zone management, and regional extreme analysis [3].
Precipitation data has complex characteristics on multi-
ple scales and typically has spatial and temporal depen-
dence, which makes delineating precipitation regimes
a non-trivial task. Motivated by this critical need, in
this paper we develop a clustering approach for spatial
functional data, and apply it to the precipitation data in
China.

Regionalization problem has been studied exten-
sively in the meteorological literature. The empirical

Corresponding author: Zhengyuan Zhu, zhuz@iastate.edu
1Depamnent of Statistics, lowa State University, Ames, [A 2State
Key Laboratory of Earth Surface Processes and Resource Ecology
3School of Geography, Beijing Normal University, Beijing, China

orthogonal function (EOF) analysis has been widely
used for regionalization problems in environmental
science [4], [5], which is equivalent to principal com-
ponent analysis in statistics. The EOF is used in [2]
to analyze the normalized monthly mean precipitation
data from 1961 to 2006 at 400 stations and obtained a
precipitation regionalization focusing on seasonal and
interannual variations. However, the seasonal advance
and retreat of the summer monsoon rain belt in East
Asia behave in a manner with a step of 10-15 days [6],
which can not be accurately described using monthly
data, and daily rainfall data may be more useful to
describe this summer monsoon effect accrurately. Due
to the limitation of EOF method, unevenly distributed
stations in space can significantly affect the loading
patterns. For example, the station density in the western
and eastern parts of China is very different, therefore,
some stations in the eastern part of China were ignored
in the EOF analysis, which led to loss of information.

The motivation of this research is to identify pre-
cipitation regimes in China using precipitation data.
In this article, we propose a model-based approach to
clustering spatial functional data by incorporating both
spatial and geographic information in the procedure. In
section III, we introduce the functional linear model
for observed data and Markov model for cluster mem-
berships with geographic covariates. In section IV, we
apply the proposed method to precipitation data.

IT. DATA

The data we analyze in this study is the daily
precipitation data of 824 meteorological stations in
the mainland China from 1951 through 2012. They
were provided by the National Meteorological Infor-
mation Center, China Meteorological Administration.
The proportion of the missing days was 0.04%. Only
those stations with more than 50 years’ complete data
are included in the analysis, so there are 722 stations
in total used in the analysis. The locations of these
meteorological stations are shown in Fig 1.
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Fig. 1. Spatial distribution of meteorological stations

ITIT. MODEL

Assume Y;; is the precipitation data observed in
station ¢ at time point ¢;;, where ¢ = 1,...,n and
j=1,...,n;. Denote Y; = (Yi1,...,Y;n,)T. Let Z; be
the cluster membership, called latent variable, follow-
ing a multinomial distribution with support {1,... C'}.
Here, C' is the number of clusters and is a tuning
parameter. Z; = k if Y; belongs to kth cluster. We
call {(Y;,Z;):i=1,...,n} the complete dataset.

A. Functional linear model for observed data

Given the cluster membership Z;, we assume
Y;|(Z; = k) follows a multivariate normal distribution
with a functional representation:

Yi|(Zi = k) = Si(ar +vi) + €,
‘YZNN(OaI‘), eiNN(O7J2I)a

(D
2

where ¢ = 1,...,n,k = 1,...,C. In the functional
linear model, S; = (s(t;1)7, ..., 8(tin,)T)7 is the basis
matrix for ith curve. s(-) is a vector of basis functions,
which can be B-spline, Fourier or functional principal
component. But the row number of basis matrix can
vary across different curves to allow irregularly spaced
time points and slight missing of data. oy is the
coefficient and needs to be estimated. The data in the
same cluster share the same coefficient ;.. The differ-
ence of {ay} reflects the heterogeneity across clusters.
We assume the independence between distinct curves
given cluster memberships. However, the within-curve

dependence is accounted by the random effect ~;, since
cov(Yi;,Y; ;) =the (4,5") element of S;T'ST". €; can be
regarded as the measurement error or stochastic error.
Note that ~; and €; are confounded. Therefore, some
constraint should be imposed for identifiability [7]. We
require that

STs-1s =1, (3)

where S is the basis matrix evaluated over a fine lattice
of time points that covers the full range of the data and
> =o2I +8STS7.

B. Markov model for cluster membership

To fully address the joint distribution of complete
data (Y;, Z;), we need to specify the distribution of
Z;. Here, we assume the cluster membership follows
a Markov model in space. We assume the following
probability mass function of cluster memberships in the
Markov model

exp{U;x(6)}
Ni(0) 7
where Ujx(6) 0> icoi1(Zj = k) is called the
energy function and N;(0) = Zgzl exp{U;(0)} is
the normalizing constant. € is the interaction parameter
that reflects the degree of interaction among nearby
sites in Markov random field. The above distribution is
called the Gibbs distribution [8], which originates from
statistical physics but is widely used in spatial statistics.
There are several ways to incorporate geographic
covariates in the Markov model. One way is to gener-
alize the definition of distance from Euclidean distance
to “geographic distance” by spatial deformation. For
instance, if there is a high mountain between two sites,
then the distance between them can be set to be much
larger than their euclidean distance on the earth but
the geometric properties of Euclidean distance are still
kept. The change of the definition of distance may lead
to the respective change of neighbors. This method has
been introduced in many papers in spatial statistics, to
name a few, [9], [10], etc. The second way is to extend
the energy distribution by imposing a function f; ;(-)
on I(?J = k‘), ie. Ulk(Q) :~0 Zjeai fZJ{I(Z] = k‘)}
and N;(0) = ¢, exp{Uin(0)}, where f;;{Zu}
is a function affected by the geographical covariates
between site ¢ and one of its neighbors, i.e. site j.

P(Z; = k|Zy;) = (4)

IV. RESULTS

We applied this method to identify the precipitation
regimes in China. Here, we focus on the interseasonal

patterns of precipitation. The extension of this method
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Fig. 2. The averaged daily precipitation in some stations

to multi-scale functional and scalar data will be ad-
dressed in the following full paper. As a consequence,
the averaged daily precipitation records within a year
are used in the clustering. The detailed procedure of
summarizing data is that, first we get the daily precip-
itation in each year from 1963 to 2012, then calculate
the mean of these 50 curves. Some curves are illustrated
in Fig 2. We used the second approach introduced in
Section III-B to incorporate geographical covariate. If
the elevation difference between two stations is larger
than 1000m [11], we no longer consider them to be the
“neighbors® in the Markov random field even if they
are closest in terms of distance.

The final cluster assignments are shown in Fig 3. The
results of clustering are consistent with the stepwise
manner of East Asian monsoon. The seasonal advance
and retreat of the summer monsoonal airflow and mon-
soon rain belt in East Asia behave in a stepwise manner
(Ding, 2004). When the East Asian summer monsoon
advances northward, it undergoes three standing stages
(South China and northern South China Sea from mid-
May to early June; 25—30°N from mid-June to mid-
July; and 40—45°N during the last 10 days of July
to mid-August), and two stages of abrupt northward
shifts (the first 10 days of June and around mid-July).
In early or mid-August the rainy season of North
China comes to end, with the major monsoon rain
belt disappearing. From the end of August to early
September the monsoon rain belt moves back to South
China again.

=

Fig. 3. Regionalization of precipitation regimes in China

V. DISCUSSION

In this short paper, we develop a flexible model-based
approach to cluster precipitation data which utilizes the
spatial and geographical information. There are still
several important aspects of this method needed to be
addressed, such as the selection of cluster numbers, how
to evaluate the uncertainty of clustering assignments,
etc. The parameter estimation, simulation study, model
selection, extension to multi-scale data and uncertainty
assessment will be introduced and addressed in the
following full paper.
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RELATIONAL RECURRENT NEURAL NETWORKS
FOR SPATIO-TEMPORAL INTERPOLATION FROM
MULTI-RESOLUTION CLIMATE DATA

Guangyu Li!, Yan Liu!

Abstract—Spatio-temporal interpolation is a funda-
mental task in climate modeling. A series of models
have been developed and achieved successes to a certain
extent. However, in many real world applications, we are
confronted with spatiotemporal climate data in multiple
resolutions. This raises significant challenges to existing
solutions. To address this problem, we generalized recent
advance in variational autoencoder for modeling sequen-
tial data to modeling relational (e.g. spatially related)
multi-resolution time series. Specifically, we proposed a
generative model, namely Relational Recurrent Neural
Network, to jointly model temporal dynamics and spatial
structures within multi-resolution climate data as an
effective solution to spato-temporal interpolation. Experi-
ments on a wind speed dataset show that Relational RNN
can capture spatio-temporal relationships and achieve
considerable improvement over state-of-art methods.

I. MOTIVATION

Spatio-temporal interpolation, i.e., estimating unob-
served values in locations or time of interest, is a
fundamental task in climate modeling [1] A series of
models have been developed for this task by modeling
spatial and temporal dependencies simultaneously, such
as deterministic interpolation methods (e.g., Inverse
Distance Weighting (IDW) based and regression-based
methods), and stochastic models (e.g., spatio-temporal
Kriging and spatio-temporal Gaussian process) [2].

Even though the idea of jointly modeling spatial and
temporal relationship is intriguing, existing methods
are mainly designed to model time series with the
same temporal resolution (i.e. sampled at the same fre-
quency). It is well known that in climate domain, many
time series observations come from different sources
and may have various temporal resolutions. To apply
existing models to multiresolution data, researchers
typically adopt the preprocessing step, i.e., aggregating

Corresponding  author: Guangyu Li, guangyul@usc.edu
Department of Computer Science, University of Southern
California

high resolution observations to lowest available reso-
lutions or interpolating low resolution data into high-
est resolutions. In this pre-filtering process, potentially
useful information may get lost and mis-specification
may be induced. Hence, effectively handling multi-
resolution data becomes an essential task in spatio-
temporal interpolation.

Very recently, variational-autoencoder(VAE)-based
deep generative models have recently shown to be
an effective framework to extract higher representa-
tion and model flexible density over data space [3].
Given a high-dimensional data, * = {z,}_,, the
VAE introduce a set of latent random variables z;, to
capture higher representation in observation x,, through
conditional probability p(z,, | x,) (stochastic encoder),
and further model observation density through condi-
tional probability p(x,, | z,) (stochastic decoder). Note
that the VAE usually parameterizes these probabilities
with highly flexible mapping such as L layers neural
networks, and then make efficient inference with Varia-
tional Bayes methods. By leveraging variation induced
by latent random variables and flexibility of neural
network mapping, VAE has already shown promise
as a generative model in modeling many kinds of
complicated data density. [3]

In this paper, we generalize the representation capa-
bility of VAE from solely modeling sequential data to
modeling spatio-temporal data. Specifically, we propose
a generative model based on a recurrent version of
VAE [4], namely Relational Recurrent Neural Networks
(Relational RNN), to handle multi-resolution time se-
ries in spatio-temporal interpolation. The intuition is
that we use variational recurrent autoencoder to map
each time series into a fixed-length random vectors as
higher-level representations in each time window (e.g.,
1 hour), and then model the spatial structures between
these random vectors via multivariate Gaussian random
fields. Since the model input is a set of fixed-time
window frames, all multi-resolution time series would
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Fig. 1. Graphical illustration of Relational RNN.

be synchronized automatically without information loss
or mis-specification. In addition, we train the model
with autoencoder reconstructure likelihood and random
field likelihood jointly to make an unified generative
model.

II. METHOD

Suppose we aim to model N climate time series
Xi.n with different temporal resolutions ry.. Firstly,
time series are represented as a sequence of time
window frames. Note that the number of samples within
each frame may vary among time series due to their
different temporal resolutions. For each time series
{xn+}I_,, we model it through a variational recurrent
autoencoder with a series of latent variables ~{zn7t}tT:1
and hidden states {h,, ;}Z_;. At the same time, we apply
a multivariate Gaussian random field (GRF) to model
the joint distribution of all latent variable for each time
step {Zn,i}h1-

For time series n at each time step ¢, the prior of
latent variable z,, ; is conditioned on latent variables of
all time series at previous time step.

(D

where [po+,00¢)] = ¢P""(hi.n4—1). The posterior
(encoder) and generate distribution (decoder) are sim-
ilar with regular variational autoencoder, defined as
follows:

Znt [Tng ~ N(pzy, diag(o? ),

where [.Uz,t, O'z,t)] = 0" (" (xn,t)s hpt—1)

Znt ™~ N(HO,ta diag(o-g,t))?

2

Tnt ‘zn,t ~ N(/J’I,tv diag(":%,t))?

dec( =z (3)
where [Hz,tao'x,t)] = p"“(p (zn,t)ahn,tfl)

While the hidden state h,,; is updated with recurrent
equation.

hn,t = fe(@w(wt),¢z(zt)7hn,t—1) 4)

Here P07 ¢ pdec generate distribution parameters
and %, p® extract features from x, ; and z,;. Gen-
erally, they can be any valid function such as neural
network in our case.

To model relationship among time series, we apply
a multivariate GRF to all latent variable at each time

step {zn,t}fzvzl.
)

Note that if there is prior knowledge of dependencea-
mong time series i.e. spatial structure, we could add
constraints on covariance matrix i.e. kronecker product
structure, or define GRF based on precision matrix
to better illustrate the conditional independence. For
large scale time series modeling, we could even switch
to Gaussian Markov random field instead for higher
efficiency. [5]

The parameters are estimated by maximizing the like-
lihood of the data. Specifically, the objective function
involve two parts, i.e. timestep-wise variational lower
bound and multivariate GRF likelihood.

T N T,
Zp(zl:N,t |pnz,Xz) + Z (Eq(zSTn|m<Tn)(Z
=1 n=1 =1

(—KL(q(zt | & < Tn, 2z <Tn) || (2t | @ < Ty 2 < Tn))

('zl,t) z2,ta "'zN,t)T ~ N(l‘l’Zv EZ)

+logp(xy | z < T, x < Tn))>)

(6)

where p(z: | & < T,z <Ty),q(ze | x < T,z <Tp),
p(xe | 2 < T, < T,) correspnd to equation (1) (2)
(3) repesctively.

After we train the generative model, interpolation is
carried out in a streaming fashion. That is, the interpo-
lation result of current time step is provided before next
time window arrives [6]. Suppose we are interested in
predicting x,, ; based on h;_1, *_,+ and z_,, ;. First,
we predict 2_,,; from h;_; and x_,; with (2), then
compute condition distribution of z,; | z_,; through
multivariate GRF. Finally, we obtain the distribution of
xp ¢ from h, ;1 and expectation of z,: with (3).

III. EXPERIMENTS

We evaluate the proposed Relational RNN model on
the task of wind speed interpolation. The data comes

from NREL Western Wind Resource Dataset which
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Fig. 2. Snapshot of Relational RNN Interpolation Results

TABLE I
PREDICTION PERFORMANCE COMPARISION BETWEEN
RELATIONAL RNN AND BASELINE METHODS

STGP
0.1344

Relational RNN  Regression
0.1023 0.1237

MAE

have wind speed data sampled every 10 minutes over
32043 locations in western United States for 3 years,
2004, 2005, 2006. We choose a subset of 7 locations
and down-sample time series into three frequencies i.e.
sampled per 20min, 30min, 60min, to generate multiple
temporal resolutions settings. We set time window as
4 hours and interpolate 1 locations based on others in
the streaming scenario. The proposed model is com-
pared with one deterministic baseline, regression-based
model, and one stochastic baseline, Spatio-temporal
Gaussian Process.

Figure 2 shows a snapshot of the interpolation re-
sult and corresponding confidence interval. The overall
results are summarized into Table 1. As we can see, Re-
lational RNN achieves significantly better performance
compared with the two baseline models.

IV. CONCLUSION

We have introduced a generative model, Rela-
tional Recurrent Neural Network (Relational RNN),
for spatio-temporal modeling. The proposed model can
handle multi-resolution time serise data directly with-
out information loss. The experiment shows that the
Relational RNN model is capable to capture complex
spatio-temporal structure in an interpolation task. In
addition, with the flexible fixed-length random vector
representations, Relational RNN can reveal important
information regarding spatial dependencies, such as
correlation and spatial clustering within spatio-temporal
data. The possible extensions above will be pursued in
our future work.
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OBJECTIVE SELECTION OF ENSEMBLE
BOUNDARY CONDITIONS FOR CLIMATE
DOWNSCALING

Andrew Rhines!, Naomi Goldenson'

Abstract—Computational constraints often lead to
downscaling experiments being limited to a small en-
semble of simulations. For small downscaling ensembles,
random sampling of boundary condition datasets may not
adequately cover the range of future climate scenarios.
We describe a procedure for efficiently and objectively
choosing boundary conditions for a prescribed number
of ensemble members. The cost function used to assess
distance between boundary condition datasets can be
specified to maximize ensemble spread in several ways
depending on the needs of the application. We provide
an example case study using tropical sea surface temper-
atures from the CESM Large Ensemble.

I. MOTIVATION

Downscaling is used to provide higher resolution
estimates of the impacts of large-scale climate change.
Many different downscaling methods have been pro-
posed and tested, and can generally be categorized as
either statistical or dynamical techniques [1], though
in some cases the two classes of methods are com-
bined in order to include empirical bias corrections
[2]. Statistical downscaling can increase the resolution
and accuracy of global climate model (GCM) output
through the inclusion of additional covariates known
to affect local climate conditions. Dynamical down-
scaling uses a nested high resolution physical model
that is driven by the coarse resolution output of a
GCM through specification of atmospheric boundary
conditions at the edges of the domain, and typically
also of surface boundary conditions over the ocean. The
high resolution numerical grid permits for simulation
of smaller scale physical processes and topography not
resolved by the GCM. By improving the representation
of fine-scale features such as topography, land use,
and hydrology, GCM biases can be reduced and more
accurate projections of climate change can be provided.

Corresponding author: A Rhines, arhines@atmos.uw.edu
'Department of Atmospheric Sciences, University of Washington

A challenge associated with dynamical downscaling
is that increased resolution comes at a high compu-
tational cost that often limits our ability to simulate
a complete range of climate scenarios. For example,
large ensemble simulations from GCMs have been used
to assess uncertainty due to physical parameterizations
(e.g., [3]) and the role of internal variability in multiple
climate change scenarios using the Community Earth
System Model Large Ensemble (CESM-LE, [4]). How-
ever, it is computationally prohibitive to dynamically
downscale each ensemble member, raising the question
of how to objectively select a subset of the ensem-
ble members. Constructing boundary conditions from
scratch is undesirable as it leads to simulations that are
not dynamically self-consistent. To our knowledge, only
one attempt has been made to provide an alternative
to simple random sampling; [5] presented a method of
selecting m members from an ensemble of size N > m,
using hierarchical clustering of Empirical Orthogonal
Function (EOF) expansion coefficients (referred to as
principal components, or PCs, in climate literature).

We propose a method of selecting m members from
N >> m potential boundary condition datasets by clus-
tering, using a flexible similarity measure. We describe
the clustering method in Section II, discuss several
useful similarity measures in Section III, and discuss
an application of the method to the Community Earth
System Model (CESM) Large Ensemble.

II. CLUSTERING METHOD

[5] used hierarchical agglomerative clustering, setting
the number of clusters on the basis of their computa-
tional constraint, m. Hierarchical clustering classifies
members among the m clusters, but does not directly
address the question of which member from each cluster
to use for downscaling. We address this with exemplar
clustering, a class of methods that both clusters the
data and selects a representative member from each. We
use k-medoids clustering with the Partitioning Around
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Medoids (PAM) algorithm [6], as it is in common use.
PAM is a greedy algorithm that may result in a local
rather than global optimum; we note that other methods
of exemplar clustering could be used in its place,
including affinity propagation [7] and other variants of
the k-medoids algorithm (e.g., [8]).

The clustering method is as follows:

1) Randomly initialize by selecting, without replace-
ment, k¥ < N members as cluster medoids.

2) For each member, find the nearest medoid.

3) Until the cost — the sum of the intra-cluster
distances, 1 — .S — no longer increases:

a) Compute the cost of switching each non-
medoid member with each medoid.

b) Perform the switch for each sequential com-
parison only if the cost decreases.

III. SIMILARITY MEASURES FOR GCM ENSEMBLES

Defining a similarity measure, S, between the output
of different simulations requires collapsing the temporal
and spatial dimensions of the data. We describe two
complementary approaches that address temporal and
spatial similarity in different ways. Method I uses
EOFs to measure similarity in terms of the temporal
development of the leading modes of variability in
the simulations. Method II permits for shuffling of the
data in time, comparing the range of synoptic condi-
tions experienced throughout the simulations. The first
method is useful when temporal trends are of greatest
interest, e.g., when considering how internal variability
can affect short-term trends. The second method would
be employed when attempting to capture the full range
of conditions irrespective of their relative timing.

A. EOF-Based Measures

Whereas [5] performed principal components anal-
ysis (PCA) on average temperatures within specific
geographic regions, we retain the full spatial field.
Given some variable of interest, Y, we construct maps
for each ensemble member, Y ;), where ¢ is the en-
semble number, rows map to a spatial index over
latitude and longitude, and columns map to a temporal
index. We note that while emergent modes of variability
such as the Pacific Decadal Oscillation (PDO) and
the El Nino Southern Oscillation (ENSO) are often
defined by EOFs [9], their spatial projections can differ
substantially between different models, observations,
and even different simulations using the same model.
Thus an important step is to first compute combined
EOFs, wherein each ensemble member is treated as an

independent realization of the same dynamical system.
Combined EOFs are computed by first constructing the
combined observation matrix,

Y = [Yo[Yel- Y]

If monthly or daily data are used, anomalies Y’ are
generally used in place of Y by removing the sea-
sonal cycle across all ensemble members and years.
Removing the seasonal cycle at this stage is more
precise than doing so in the individual Y;; using
multiple ensemble members reduces the standard error
of the estimated seasonal cycle by a factor of VN
provided that each ensemble member is longer than the
dominant timescales of variability in the model. The
leading modes of variability can then be identified via
standard EOF analysis on Y’. Given that the matrix
may be unusually large due to the number of ensemble
members, it may be necessary to employ a sequential
or truncated variant of the singular value decomposi-
tion (e.g., [10]). The PC timeseries, x(;(t), for each
ensemble member are then obtained by projecting the
combined EOF spatial patterns of each mode back onto
the original de-seasonalized data. Similarity between
ensemble members is then computed using some norm
over x(t),
Sij = lIxa@) — %,

which is then supplied directly to the PAM algorithm.

B. Time-Agnostic Measures

The need also arises to compare simulations in terms
of the uniqueness of spatial patterns represented across
all times. For example, one might wish to ensure that
different modes of variability are represented in each
of their possible combined phases irrespective of the
time at which this occurs, capturing situations such as
those where strong El Nifio events occur simultaneously
with the negative, positive, and neutral phases of the
PDO. To achieve this, we wish to compute the similarity
matrix,

Sij = 1Y) = Y Pell,

where P; ;y is the permutation matrix minimizing
arg;nin ||Y(z) - Y(g)PH

As with the EOF-based approach we use the L; norm,
though other cost functions could be trivially substituted
instead. Finding each P using a naive auction algorithm
given V; temporal samples would require O(Ny!) time,
which is clearly impractical for this problem given that

N; will typically be at least 30 for annual means or 360
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Fig. 1. Example of time-agnostic clustering using sea surface temperatures from the tropical Pacific in 41 members of the CESM Large
Ensemble. A two-year block is randomly chosen for each ensemble member, and the Hungarian algorithm is used to compute the similarity
between all pairs of ensemble members while ignoring the temporal ordering of the maps. Clusters are identified using k-medoids with
m = 3, and the medoids for each cluster are highlighted in red. Years (labeled ‘A’ and ‘B’) are aligned relative to the medoid for each
cluster. The similarity matrix S is shown at right, and is sorted to match the maps to the left.

for monthly data over a thirty year simulation. However,
it is possible to use the Hungarian algorithm [11] to
solve the assignment problem in O(N}). By symmetry,
computation of S requires doing this M (M + 1)/2
times, yielding a complexity of O(N2N}?). In practice
we are able to compute S within 100 hours on a
single core, even for the largest ensemble problems
involving several centuries of monthly data from 40
ensemble members. Furthermore, the problem can be
easily parallelized at two different stages.

—

We now provide a brief example application of the
time-agnostic clustering using the CESM Large Ensem-
ble. For ease of display and because it contains the
ENSO region that is the dominant source of interannual
variability through teleconnections, we focus on sea
surface temperatures in the tropical Pacific. We draw

only two years (/V¢y = 2) from each of the 41 ensemble
members, and use the Hungarian algorithm to find the
best possible match between the maps in each pair
of ensemble members. We then perform k-medoids
clustering using m = 3 clusters. The results (Fig. 1)
show that the algorithm is identifies three distinct sets
of conditions. Cluster 1 is the largest, and represents
ENSO-neutral conditions. Cluster 2 is second largest,
and contains 11 El Nifio events of varying strength.
Cluster 3 is the smallest, containing two members with
La Nifia events. Despite each of these events occurring
with vastly different frequencies in this particular subset
of the ensemble, the algorithm ensures that one repre-
sentative member of each cluster is identified for use
in a 3-simulation downscaling experiment.
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LLONG-LEAD PREDICTION OF EXTREME
PRECIPITATION CLUSTER VIA A
SPATIO-TEMPORAL CONVOLUTIONAL NEURAL
NETWORK

Yong Zhuang', Wei Ding!

Abstract—A reliable long-lead (5-15 days ahead) pre-
diction of extreme precipitation cluster is vitally im-
portant for regional flooding forecasting. A significant
research effort is to develop methods for making long-
lead flood forecasts using machine learning techniques,as
current physics-based numerical simulation models can
be extremely complex to account for compounding uncer-
tainty in measurements and modeling. Accurate precipi-
tation forecasts by numerical weather prediction models
are limited to a few days lead-time, because non-linearity
in the governing equations of the atmosphere creates
a sensitive dependence on initial conditions. We design
a novel Spatio-Temporal Convolutional Neural Network
(ST-CNN) to fully utilize the spatial and temporal in-
formation and automatically learn underlying patterns of
precipitation precursors from data for extreme precipi-
tation cluster prediction. We validate the ST-CNN model
using 62 years historical precipitation data collected in
the State of Iowa, USA, from 1948-2010.

I. INTRODUCTION

According to the U.S. Geological Survey [1] , floods
were the number-one natural disaster in the United
States in terms of number of lives lost and property
damage during the 20th century. Regional flooding is
often produced by long sequences of slowly moving,
low-pressure or frontal storm systems including decay-
ing hurricanes or tropical storms accruing over periods
of several days to several weeks. A reliable long-lead
(5-15 days ahead) prediction of extreme precipitation
event is vitally important for mitigating flood damage.
Accurate precipitation forecasts by numerical weather
prediction models are limited to a few days lead-time
because the non-linearity in the governing equations of
the atmosphere creates a sensitive dependence on initial
conditions that causes an effort in the initial conditions

{yong.zhuang001, wei.ding} @umb.edu 'Department of Com-
puter Science, University of Massachusetts Boston, Boston, MA

to double after just a few days, thus making long-range
forecasts (longer than 7 days) practically impossible.
Understanding the future trend of climate requires ac-
curately identifying the precipitation precursors. Long-
lead predictions have to consider variables in a long
time period and large spatial neighborhoods, which
involves an enormous amount of potentially influencing
variables.

The goal of this study is to integrate machine
learning and data mining methods with hydrological
science and atmospheric science to detect interesting
spatio-temporal patterns from this huge feature space
to improve long-lead forecasting of extreme precipita-
tion events. We design and implement a new Spatio-
Temporal Convolutional Neural Network (ST-CNN)
model to automatically learn the dependency of mete-
orological variables on spatio-temporal neighborhoods
and summarize the patterns of local neighboring groups
of neurons, to predict heavy precipitation cluster in
10 days ahead. We evaluate ST-CNN using 62 years
historical meteorological data collected in the State of
Towa, USA.

II. RELATED WORK

Over the last three decades, a great deal of attention
in statistics and machine learning has been directed
toward extreme weather prediction[2] [3]. Most of
them rely on meteorological inputs that usually come
from observation networks and radar [4], and require
a complex and meticulous simulation of the physical
equations in the atmosphere model.

In recent years, machine learning feature selection
methods, which aim to select a subset of relevant
features from an original feature set, often at a scale
of millions of features, have become popular in cli-
mate research for constructing forecasting models. For
instance, Wu et al. used Online Streaming Feature
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Selection (OSFS) for heavy precipitation prediction
[51[6][7]; Wang et al. applied the fast-OSFS algorithm
for extreme flood forecasting [8][9]. Although feature
selection methods can simplify forecasting models for
easier interpretation and time efficiency, the approach
usually requires domain scientists to provide initial
feature sets that are closely related with the problem
domain.

Neural-network-based machine learning approaches
have been very successfully used for detecting high
level patterns from raw low-level features without much
intervention with prior domain knowledge [10]. Anctil
et al. used artificial neural network (ANN) technique
to forecast rainfall [11]. The results show that ANN
forecasting models can get superior results to those
obtained by linear regression models. More recently,
Shi et al. implemented a new convolutional long short
term memory (LSTM) deep neural network for precip-
itation nowcasting [12]. This model is trained on two
dimensional radar map time series data. Their study
showed that deep networks reveal a great potential on
various climate problems. In our study, we explore
a new Convolutional Neural Network architecture to
learn patterns from meteorological variables in spatio-
temporal grids for the long-lead prediction of extreme
precipitation clusters.

III. METHOD

We formulate the long-lead prediction of extreme
precipitation cluster as a classification problem with
multiple spatio-temporal tensor data as inputs.

A. Spatio-Temporal Tensor Features

If we use the positions of cells in a data matrix to
represent spatio grids, then one observed variable over
a spatial region of m by n can be listed in a m X n
matrix, which consists m rows and n columns. Then
the matrices of k variables, which are collected at the
same time t, can be stacked as a m x n x k cuboid Q.
If the observations are recorded periodically, we get a
sequence of cuboids Qy,, Qy,, ..., Qy, (in this study, we
use ¢ = 10 days records of 9 meteorological variables
over a 32 by 32 region, and the size of cuboid is
32 x 32 x 9). Thus, the multiple spatio-temporal se-
quences can be represented by a tensor y € R™X"*kxq,
Then the long-lead (x time-stamps ahead) prediction of
extreme precipitation cluster problem can be formulated
as follows:

P(Cy,,.) = argmax P(Cy, Q1 Qty, -, Q) (1)
Here C;,,, denotes the class label of the (t44,)™ time-

stamp, and the objective function selects the mostlikely
outcome class (extreme precipitation cluster vs. non-
extreme precipitation cluster) in a x time-stamps lead
time given previously known spatio-temporal tensor
data sequences.

B. Spatio-temporal Data Analysis

Our goal is let a CNN model automatically identify
interesting and physically meaningful spatio-temporal
patterns from data for precipitation cluster precursor
identification. Certain pre-cursor patterns in the syn-
optic domain may indicate the development and move-
ment of strong storms, including the location of fronts
or strong horizontal temperature gradients, the presence
of an upstream trough / ridge axis or a strong jet streak
or a change in low-level winds.

C. The Spatio-Temporal Convolutional Neural Network

A Convolutional Neural Network (CNN) architecture
is usually formed by a stack of distinct layers that
transform the input volume into an output volume
through a differentiable function. In this study, we build
our ST-CNN architecture with six layers, including two
convolutional layers, two max polling layers, and two
fully connected layers. The ST-CNN is designed to use
those layers of neurons (learning units) to automatically
detect very local and detailed representations of a broad
class of patterns from tensor data at the convolutional
layers, and then summarize those local patterns to build
high level features in the max pooling layers. The
configuration of our architecture is depicted in Figure
1. The output volume is a vector that includes the
class scores of the binary class labels of the extreme
precipitation clusters after the calculation of the fully
connected layers. We use back propagation algorithm
to search for minimum of loss function in weight space
and apply Lo regularization to prevent overfitting.

Convolutional Layer: In ST-CNN architecture, there
are two convolutional layers, which consist of multiple
3D filters(kernels) with the size of 5 x 5 (in this
project, we choose to detect local patterns in a 5 by
5 neighborhood in the convolutionary layer). The first
convolutional layer has 10 filters and the second one
has 15 filters. Each filter takes inputs from a cuboid
section of the previous layer. The weights for this
cuboid section are the same for each filter in the convo-
lutional layer to reduce the number of neural network
parameters to be learned. Thus, the convolutional layer
is just a feature map convolution of the previous layer.

The task of the convolutional layer is to automatically
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Fig. 1. The ST-CNN Architecture and its layer parameters. The ST-CNN contains two convolutional layers with filter size (5 X 5), two
pooling layer with filter size (2 x 2), and two fully connected layer with 50 neurons and 2 neurons respectively. The input is a 32 x 32 x 90
tensor which is associated with nine meteorological variables of 10 days over a 32 by 32 region. Nine meteorological variables are PW,
T850, U300, U850, V300, V850, Z300, Z500, and Z1000 [13]. The final output is a vector that includes the class scores of the binary
class labels (extreme precipitation cluster vs. non-extreme precipitation cluster).

learn local meaningful patterns that are associated with
class labels.

Pooling Layer: Each convolutional layer is followed
by a pooling layer which takes small cuboid blocks
from the convolutional layer and sub-samples it to
produce a single output from that block. In other words,
each pooling layer is the summary of the patterns
learned by convolutional layer. Here, pooling layers are
max-pooling layers with 2 x 2 filters, which let the
patterns of previous convolutional layers be reduced at
half size and the outputs of adjacent pooling units do
not overlap. The function of the pooling layer is to pro-
gressively reduce the spatial size of the representation
to reduce the amount of parameters and computation in
the network, and also to control over-fitting.

Fully Connected Layer: ST-CNN has two fully
connected layers with 50 neurons and 2 neurons re-
spectively. Each one takes all neurons in the previous
layer and connects it to every single neuron it has.
The final layer outputs the class score vector of the
binary class label (extreme precipitation cluster vs. non-
extreme precipitation cluster).

IV. EXPERIMENTS
A. Data

The dataset we used for experiments is the historical
meteorological data collected in the State of Iowa, USA
from January 1st, 1948 to December 31%¢, 2010 [13].
A total of 23,011 samples over 63 years. We chose
nine meteorological variables from the dataset (Figure

1, Table I), which are collected at different pressure
surfaces and typically used by meteorologists for mak-
ing forecasts, as meteorological predictor variables. To
enhance efficacy, we only chose the samples collected
during the rainy season (April to October) every year,
which might have correlation with extreme precipitation
events. The samples in (1948-2000) are used as training
set to learn the prediction model, and the remaining 10
years data are used as test set to evaluate the prediction
model.

TABLE 1
METEOROLOGICAL VARIABLES.

PW Precipitable Water
T850 850hPa Temperature
U300 300hPa Zonal Wind
U8s0 850hPa Zonal Wind
V300 300hPa Meridional Wind
V850 850hPa Meridional Wind
7300 300hPa Geopotential Height
7850 850hPa Geopotential Height
71000 | 1000hPa Geopotential Height

B. Spatio-temporal Feature Space Construction

In order to build a feature space with the spatial and

temporal information of the meteorological variables,
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we create the raw spatio-temporal feature input space
for ST-CNN as following steps:

Step 1. Choose 1,024 locations, which are uniformly
distributed wrapped around the State Iowa (32 latitudes
and 32 longitudes).

Step 2. Sample 9 meteorological variables from
1,024 locations in the same day as the feature cuboid
(32 rows and 32 columns) of one day.

Step 3. Repeat Step 2 until the feature cuboids of
10 continuous days are accumulated, then stack these
cuboids as a tensor (32 x 32 x 90) which is the
experimental sample of the last day in the 10 continuous
days.

Step 4. Repeat Step 1-3 until all experimental sam-
ples are created.

C. Class Label Creation

Here, we use historical spatial average precipitation
data (the mean of daily precipitation totals from 22
observation stations divided by the standard deviation)
of the State Iowa from the same time period to create
the class labels. We define any 14 days periods as ex-
treme precipitation clusters and label them as a positive
sample if the total amount of precipitations of the 14
days reaches a historical high level (i.e., above the 95%
percentile of the historical records). Otherwise, we label
it as a negative sample.

V. PRELIMINARY RESULTS AND CONCLUSION

Here we compare our model with the streaming
feature selection method OSFS [5], and use Accu-
racy and F-measure for evaluation. Particular, Accuracy

TP FP . o, .
(T PIT er' FPIFN Wher‘e. TP is tr.ue positive, TN 18 true
negative, FP is false positive, FN is false negative) refers
to the closeness of a predicted class label to a known
2+TP
class label. And F-measure (m) conveys the

balance between the exactness and the completeness.

TABLE II
EXPERIMENTS RESULTS.
Event Metrics OSFS | CNN
Extreme precipitation | Accuracy | 0.712 | 0.708
Extreme precipitation | F-measure | 0.748 | 0.743

Table II summarizes the performance of our CNN
model predicting extreme precipitation clusters. Four
learnable layers (two convolutional layers and two pool-
ing layers) were able to produce comparable results.

Our next research work will focus on improving the
architecture of our model in convolutional and pooling
layers and understand how to interpret the features
learned by the ST-CNN with physically meaningful
patterns among these meteorological variables.
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MULTIPLE INSTANCE LEARNING FOR BURNED
AREA MAPPING USING MULTI -TEMPORAL
REFLECTANCE DATA

Guruprasad Nayak, Varun Mithal, Vipin Kumar
University of Minnesota

Abstract—Mapping burned area on a global scale
typically requires the use of a weak signal like Active Fire
for training the burned scar classification model. Since
these weak signals typically are inaccurate with respect to
temporal and spatial pinpointing of the event occurrence,
the use of Multiple instance learning paradigm to model
the occurrence of the event in a wider spatio-temporal
window is demonstrably beneficial than using the exact
date of the weak signal. In this work, we demonstrate the
use of MIL algorithm to model the temporal uncertainty
of the weak signal. We further propose an noise-robust
extension to the MIL paradigm for learning on sequence
data.

I. INTRODUCTION

Mapping forest fires is essential for efficient and sus-
tainable land management and for maintaining a healthy
forest population on our planet. Remote sensing enables
us to use machine learning algorithms to achieve this in
an efficient and automated fashion. Given training data
for burned and unburned locations, a classifier can be
trained that identifies burned regions. However, due to
the presence of large heterogeneity in landcovers and
seasons across fires in different regions and times, it is
prohibitively expensive to gather training data for every
kind of fire occurrence. Also, it is much harder to pin
point the exact span of time when the fire happened at
a location in comparison to determining if the location
experienced a fire activity at some point in a wider
time window. For instance, while the presence of Active
Fire signal at a location can be used as a proxy to
assume that the location experienced a fire sometime
in that year, the date at which the active fire signal was
observed at the location seldom shows presence of a
burn scar on the ground. The scar typically has a delay
of a few time steps after the AF date, the duration of
which may vary depending on the region.

Corresponding author: G Nayak, nayak@cs.umn.edu

In the traditional setting of classification, one is
provided with features and labels for all training in-
stances and task at hand is to learn a function that
maps a given instance to a class. However, in a lot
of practical settings, labels are hard to acquire for
sufficient number of training instances for the training
set to be representative enough of the whole population.
One of the ways to handle label scarcity is through
the paradigm of Multiple Instance Learning (MIL)[1].
In a MIL setting, the training set includes features for
all instances but labels are available only for groups
of instances, called bags. Typically, the task then is to
learn a classifier that can learn to classify a new bag
into either one of the predefined classes.

In this paper, we propose a method that adapts MIL
for sequence data. Given a set of sequences with binary
labels for each, we treat each sequence as a bag. The
task then is to a learn a classifier that distinguishes
positive bags from the negative ones. This scenario is
different from the traditional Multiple Instance scenario
where the instances in the bag are assumed to be
independently and identically distributed. In sequence
data, there exists a temporal auto-correlation which
implies that the occurrence of a meaningful event will
manifest itself in contiguous time steps in the sequence.
This is the notion that we use to define positiveness
of a bag in our MIL algorithm. In other words, a bag
is considered positive only if there exists a contiguous
span of time steps of at least a certain length that appear
positive. If the features spuriously appear positive for a
time step but the positiveness doesn’t seem to persist,
the sequence is not considered positive. The model is
cognizant of these random perturbations in the features
that cause some time steps to erroneously look positive
and these error rates are learned for the data set during
the training process. The figure 1 shows examples of
such positive and negative sequences.

By casting the fire mapping problem in the MIL
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Fig. 1: Caricature explaining the different kinds of
positive and negative time series. The first and the third
time series are positive while the second and the fourth
time series correspond to negative locations.

setting, we need less supervision, since we only need
to know about the occurrence of fire in the year and
not the exact time when it happened. The other trouble
with using multispectral data for classification is that
it is plagued with data noise. Especially in the tropics,
cloud cover and smoke corrupt a lot of data in fire prone
regions. Since the proposed method accounts for data
noise, it is expected to help circumvent this problem.
Multiple Instance learning is the task of learning a
classifier that can distinguish positive bags of instances
from negative ones. Different MIL algorithms differ
in the assumptions they make about the relationship
between the class label of a bag and the class label
of the instances within it[2], [1]. The first work on
MIL by Dietterich et. al [3] assumed that a bag is
labelled positive if at least one of it’s member instances
is labeled positive. A bag is labeled negative if all of
it’s member instances are labeled negative. Algorithms
have been proposed that generalize this notion to call
a bag positive if at least k£ of it’s member instances are
positive [4], [5], [6]. MIL algorithms have also been
proposed that treat instances to have some structure
instead of assuming them to be i.i.d.[7], [8]. Most pop-
ular time series classification techniques like Nearest
neighbor classifier using dynamic time warping and
shapelets make use of distance metric of some kind
defined on sequences.[9], [10].While these techniques
perform very well on univariate time series with no
noise, but since they use a distance measure (computed
from the nearest neighbor or from the shapelet sub-
sequence) to decide the classification, learning complex
decision boundaries in multivariate feature space is
harder without having lots of training data. The problem
is further complicated if the input time series are noisy.

II. METHOD

A. Proposed model

Figure 2 shows a graphical model for the proposed
solution. Each bag(sequence) I is a sequence of obser-

0 OO0

Fig. 2: Proposed graphical model for the noise robust
version of MIL for multivariate timeseries data

vations {x1,x2,...,xp} over T time steps. £ € {0,1}
is the class label assigned to the bag. For each time
step 4, y; € {0,1} denotes the instance level class label
according to the classifier 8 and feature x;. To account
for the presence of randomly occurring (not temporally
auto-correlated) noise in the features, a parameter « is
learned that captures the probability of the class label at
a time step truly being what the features at that time step
say it should. If e; € {0, 1} denotes the membership of
the time step ¢ in an event i.e it’s true class label, then
a =< a1,q9, a3, 04 > 18 defined as,

o =Pr(e; = 1le;-1 = 1,y;, = 1)
Qo —Pr(el =1le;—1 =0,y;, = 1)

=Pr(e; = 1le;—1 = 1,y; = 0)
ay —Pr(el =1le;—1 =0,y; =0)

The parameter A encodes the minimum number of
positive instances in the bag required to label the
bag positive. e;’s are assumed to follow a first order
Markov dependence and the parameter m encodes the
probability of starting state. In this work, Pr(y;|x;; 5) is
assumed to be logistic. Also, to make an exact inference
possible, Pr(E;|e; \) is assumed to be decomposable
over instances in the bag I. Specifically, in this work,
we assume,

Pr(E; = 1]e;\) =e“ ci <A,
=1 otherwise
where ¢; = ) . e; is the count of positive instances in
the bag.

B. Training the model

We propose an Expectation-Maximization (EM) so-
lution for learning the parameters § = {5, a, A, 7} in
the above graphical model. The update for the mth
iteration of EM will be done as

N
e,y) log[Pr(x1, Er,e,y;0)]
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where Q(e,y) depends on the parameter values in the
m — 1th iteration and is defined as,

Pr(e, Y|XI, E17 Hmfl)

Using the independence assumptions defined
in the graphical model, the joint probability
Pr(x1, Ey,e,y; o, 3,A) can be factorized as

Pr(Er|e; A) Pr(eg|Er; ps) Pr(xl) X
T T

H Pr(yi|zs; B) H Pr(e;lei—1,y:; )
i=1 i=1

Thus, the optimal parameters at the mth iteration are
chosen as,

N T
Qy, = arg max ZZQ(G,}’) ZIOgPr(ei|ei—17yi§a)
« i=1

I=1 ey

N T
/Bm = argénax Z Z Q(an) Zlog Pr(yt|xt7 6)
=1

I=1 ey

N
Ay = .y) log Pr(Ez|e; A
arginax ZZQ(e y) log Pr(E;|e; \)

I=1 ey

N
T = arg max Z Z Q(e,y) log Pr(eo\El; 7T)
i I=1 ey

It is possible to solve exactly for each one of the
above optimizations using dynamic programming al-
gorithms. Each update iteration in the EM algorithm
takes O(NT?) time, where N is the number of training
sequences and T’ is the length of each.

III. EXPERIMENTS

Active fire is known to have a lot of errors, with recall
dropping below acceptable levels in a lot of regions,
especially the tropics. However, the presence of Active
fire at a location at some time typically indicates the
occurrence of a burn activity in a wide spatial and
temporal window around it. This aspect of supervision
via Active Fire is very naturally captured in the MIL
paradigm. In [11], we used a 3-stage classification
procedure[12] to generate historical burned scar maps
for the tropical regions of Amazon and Indonesia. The
produced maps have more than 3 times the amount
of burned area detection with equally good precision
as the state-of-the-art NASA product. The procedure
uses Active Fire and multispectral MODIS data to
train the classifier. We used the original formulation
of MIL with a logistic learning as base classifier to
learn burn scar signatures in the first stage. The scars

Fig. 3: Instance level labels for the synthetic dataset.
Each row represents a time series i.e a bag. Yellow
columns in a row represent positive instances in the
bag and blue columns represent negative instances.

were then refined with and spatially enhanced with
active fire proximity in subsequent stages to produce the
final maps. The final classification maps can be viewed
online at http://z.umn.edu/fireviewersept.

We demonstrate the proposed extension to the MIL
paradigm for sequence data on a synthetic data set.
Every sequence in the data, both positive and negative
has a 20% of the time steps randomly marked positive,
i.e the feature values at these time steps will be taken
from the positive distribution. However, each of the
positive sequences has a continuous stretch of 5 time
steps with a positive signature. The rest of the time steps
in both kinds of sequences are taken from the negative
distribution. Figure 3 below shows the kind of instances
at each time step of every sequence. The two kinds
of instances are drawn from two different Gaussian
distributions. Each row is a sequence and the top half
of the sequences are positive. The positive time steps
in each sequence are marked yellow while negative
ones are marked blue. A MIL algorithm was trained
using the original formulation of Deittrich (MILR) and
with the proposed algorithm (MIS) that incorporates
event continuity. Logistic regression was used as the
base classifier for each algorithm. The algorithms were
trained on 200 sequences and were tested separately
on 1000 sequences. MILR failed to learn the signature
of the positive event and marked every sequence as
positive. MIS, on the other hand was able to distinguish
the two kinds of sequences with an accuracy of 87.3%.
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