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S p h eri c al  C a p P a c ki n g  As y m pt oti cs a n d
R a n k- E xtr e m e  D et e cti o n

K ai  Z h a n g

A bstr a ct —  We st u d y t h e s p h e ri c al c a p p a c ki n g p r o bl e m  wit h a
p r o b a bili sti c a p p r o a c h. S u c h p r o b a bili sti c c o n si d e r ati o n s r es ult
i n a n as y m pt oti c s h a r p u ni v e rs al u nif o r m b o u n d o n t h e  m a xi m al
i n n e r p r o d u ct b et w e e n a n y s et of u nit v e ct o rs a n d a st o c h asti c all y
i n d e p e n d e nt u nif o r ml y di st ri b ut e d u nit v e ct o r.  W h e n t h e s et of
u nit v e ct o rs a r e t h e ms el v es i n d e p e n d e ntl y u nif o r ml y di st ri b ut e d,
w e f u rt h e r d e v el o p t h e e xt r e m e v al u e di st ri b uti o n li mit of
t h e  m a xi m al i n n e r p r o d u ct,  w hi c h c h a r a ct e ri z es its u n c e rt ai nt y
a r o u n d t h e b o u n d.  As a p pli c ati o n s of t h e a b o v e- m e nti o n e d
as y m pt oti c r es ult s,  w e d e ri v e: 1) a n as y m pt oti c s h a r p u ni v e rs al
u nif o r m b o u n d o n t h e  m a xi m al s p u ri o u s c o r r el ati o n, as  w ell as
it s u nif o r m c o n v e r g e n c e i n di st ri b uti o n  w h e n t h e e x pl a n at o r y
v a ri a bl es a r e i n d e p e n d e ntl y  G a u ssi a n di st ri b ut e d a n d 2) a n
as y m pt oti c s h a r p u ni v e rs al b o u n d o n t h e  m a xi m u m n o r m of a
l o w- r a n k elli pti c all y di st ri b ut e d v e ct o r, as  w ell as r el at e d li miti n g
di st ri b uti o n s.  Wit h t h es e r es ults,  w e d e v el o p a f ast d et e cti o n
m et h o d f o r a l o w- r a n k st r u ct u r e i n hi g h- di m e n si o n al  G a u ssi a n
d at a  wit h o ut u si n g t h e s p e ct r u m i nf o r m ati o n.

I n d e x  Ter ms — S p h e ri c al c a p p a c ki n g, e xt r e m e v al u e di st ri b-
uti o n, s p u ri o u s c o r r el ati o n, l o w- r a n k d et e cti o n a n d esti m ati o n,
hi g h- di m e n si o n al i nf e r e n c e.

I. I N T R O D U C T I O N

I N  M O D E R N d at a a n al ysis, d at as ets oft e n c o nt ai n a l ar g en u m b er of v ari a bl e s  wit h c o m pli c at e d d e p e n d e n c e str u c-
t ur es.  T his sit u ati o n is es p e ci all y c o m m o n i n i m p ort a nt pr o b-
l e ms s u c h as t h e r el ati o ns hi p b et w e e n g e n eti cs a n d c a n c er,
t h e ass o ci ati o n b et w e e n br ai n co n n e cti vit y a n d c o g niti v e st at es,
t h e eff e ct of s o ci al  m e di a o n co n s u m er s’ c o n fi d e n c e, et c.
H u n dr e d s of r e s e ar c h p a p er s o n a n al y zi n g s u c h d e p e n d e n c e
h a v e b e e n p u bli s h e d i n t o p j o ur n al s a n d c o nf er e n c e s pr o c e e d-
i n g s. F or a c o m pr e h e n si v e r e vi e w of t h e s e c h all e n g e s a n d p a st
st u di e s, s e e [ 1].
O n e of t h e  m o st i m p ort a nt  m e a s ur e s o n t h e d e p e n-

d e n c e b et w e e n v ari a bl es is t h e c orr el ati o n c o ef fi ci e nt,  w hi c h
d e s cri b e s t h eir li n e ar d e p e n d e n c e. I n t h e n e w p ar a di g m
d e s cri b e d a b o v e, u n d er st a n di n g t h e c orr el ati o n a n d t h e b e h a v-
i or of c orr el at e d v ari a bl es is a cr u ci al pr o bl e m a n d pr o m pt s

M a n us cri pt r e c ei v e d  A u g ust 2 8, 2 0 1 3; r e vis e d J a n u ar y 2 9, 2 0 1 5 a n d S e p-
t e m b er 1 3, 2 0 1 6; a c c e pt e d J a n u ar y 3 1, 2 0 1 7.  D at e of p u bli c ati o n  M a y 2, 2 0 1 7;
d at e of c urr e nt v ersi o n J u n e 1 4, 2 0 1 7.  T his  w or k  w as s u p p ort e d i n p art b y  N S F
u n d er  Gr a nt  D M S- 1 3 0 9 6 1 9,  Gr a nt  D M S- 1 6 1 3 1 1 2, a n d  Gr a nt II S- 1 6 3 3 2 1 2,
i n p art b y t h e J u ni or F a c ult y  D e v el o p m e nt  A w ar d at  U N C  C h a p el  Hill, a n d
i n p art b y  N S F t o t h e St atisti c al a n d  A p pli e d  M at h e m ati c al S ci e n c es I nstit ut e
u n d er  Gr a nt  D M S- 1 1 2 7 9 1 4.
T h e a ut h or is  wit h t h e  D e p art m e nt of St atisti cs a n d  O p er ati o ns  R es e ar c h,
T h e  U ni v ersit y of  N ort h  C ar oli n a at  C h a p el  Hill,  C h a p el  Hill,  N C 2 7 5 9 9  U S A
( e- m ail: z h a n g k @ e m ail. u n c. e d u).
C o m m u ni c at e d b y  G.  M at z,  Ass o ci at e  E dit or f or  D et e cti o n a n d  E sti m ati o n.
C ol or v ersi o ns of o n e or  m or e of t h e fi g ur es i n t his p a p er ar e a v ail a bl e
o nli n e at htt p://i e e e x pl or e.i e e e. or g.
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d at a s ci e ntists t o d e v el o p n e w t h e ori e s a n d  m et h o d s.  A m o n g
t h e i m p ort a nt c h all e n g e s of a l ar g e n u m b er of v ari a bl e s o n
t h e c orr el ati o n,  w e f o c u s p arti c ul arl y o n t h e f oll o wi n g t w o
q u e sti o n s:

• T h e  m a xi m al s p u ri o us s a m pl e c o r r el ati o n i n hi g h
di m e nsi o ns. T h e P e ar s o n’s s a m pl e c orr el ati o n c o ef fi ci e nt
b et w e e n t w o r a n d o m v ari a bl es X a n d Y b a s e d o n n
o b s er v ati o n s c a n b e  writt e n as

C ( X , Y ) =
n
i= 1 ( X i − X̄ )(Y i − Ȳ )

n
i= 1 ( X i − X̄ )

2 n
i= 1 (Y i − Ȳ )

2
(I. 1)

w h er e X i ’s a n d Y i ’s ar e t h e n i n d e p e n d e nt a n d i d e nti c all y
distri b ut e d (i.i. d.) o b s er v ati o n s of X a n d Y r es p e cti v el y,
a n d X̄ a n d Ȳ ar e t h e s a m pl e  m e a n s of X a n d Y
r e s p e cti v el y.  T h e s a m pl e c orr el ati o n c o ef fi ci e nt p o ss ess es
i m p ort a nt st atisti c al pr o p erti es a n d  w as c ar ef ull y st u d-
i e d i n t h e cl a ssi c al c a s e  w h e n t h e n u m b er of v ari-
a bl es is s m all c o m p ar e d t o t h e n u m b er of o b s er v ati o n s.
H o w e v er, t h e sit u ati o n h as dr a m ati c all y c h a n g e d i n t h e
n e w hi g h- di m e n si o n al p ar a di g m [ 1], [ 2] a s t h e l ar g e
n u m b er of v ari a bl e s i n t h e d at a l e a d s t o t h e f ail ur e
of  m a n y c o n v e nti o n al st atisti c al  m et h o d s. F or s a m pl e
c orr el ati o n s, o n e of t h e  m o st i m p ort a nt c h all e n g e s is t h at
w h e n t h e n u m b er of e x pl a n at or y v ari a bl e s, p , i n t h e d at a
is hi g h, si m pl y b y c h a n c e, s o m e e x pl a n at or y v ari a bl e  will
a p p e ar t o b e hi g hl y c orr el at e d  wit h t h e r e s p o n s e v ari a bl e
e v e n if t h e y ar e all s ci e nti fi c all y irr el e v a nt [ 3], [ 4]. F ail ur e
t o r e c o g ni z e s u c h s p uri o u s c orr el ati o n s c a n l e a d t o f als e
s ci e nti fi c dis c o v eri e s a n d s eri o u s c o n s e q u e n c e s.  T h u s, it is
i m p ort a nt t o u n d er st a n d t h e  m a g nit u d e a n d distri b uti o n
of t h e  m a xi m al s p uri o u s c orr el ati o n t o h el p disti n g uis h
si g n als fr o m n ois e i n a l ar g e- p sit u ati o n.

• D et e cti o n of l o w- r a n k c o r r el ati o n st r u ct u r e. D et e cti n g
a l o w-r a n k str u ct ur e i n a hi g h- di m e n si o n al d at a s et is
of gr e at i nt er est i n  m a n y s ci e nti fi c ar e as s u c h as si g-
n al pr o c e ssi n g, c h e m o m etri c s, a n d e c o n o m etri c s.  C urr e nt
r a n k e sti m ati o n  m et h o d s ar e  m o stl y d e v el o p e d u n d er t h e
f a ct or  m o d el a n d ar e b a s e d o n t h e pri n ci p al c o m p o n e nt
a n al y sis ( P C A) [ 5] –[ 2 1],  w h er e  w e l o o k f or t h e “ c ut- off ”
a m o n g si n g ul ar v al u e s of t h e c o v ari a n c e  m atri x  w h e n t h e y
dr o p t o n e arl y 0.  T h e s e  m et h o d s als o u s u all y a ss u m e
a l ar g e s a m pl e si z e.  H o w e v er, i n pr a cti c e oft e n a l ar g e
n u m b er of v ari a bl e s ar e o b s er v e d  w hil e t h e s a m pl e si z e
is li mit e d. I n p arti c ul ar, P C A b a s e d  m et h o d s  will f ail
w h e n t h e n u m b er of o b s er v ati o n s is l ess t h a n t h e r a n k.
M or e o v er, alt h o u g h  w e  m a y g et l o w-r a n k s ol uti o n s t o
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m a n y pr o bl e m s,  m or e d et ail e d i nf er e n c e o n t h e r a n k as
a p ar a m et er is n ot v er y cl e ar. Pr o b a bilisti c st at e m e nts o n
t h e r a n k, s u c h a s c o n fi d e n c e i nt er v als a n d t e sts,  w o ul d
pr o vi d e u s ef ul i nf or m ati o n a b o ut t h e a c c ur a c y of t h e s e
s ol uti o n s.  T h e c o m p ut ati o n c o m pl e xit y of t h e  m atri x
c al c ul ati o ns c a n b e a n a d diti o n al iss u e i n pr a cti c e. I n s u m-
m ar y, it is d esir a bl e t o h a v e a f ast d et e cti o n a n d i nf er e n c e
m et h o d of a l o w-r a n k str u ct ur e i n hi g h di m e n si o n s fr o m
a s m all s a m pl e.

O ur st u d y of t h e a b o v e t w o pr o bl e m s st arts  wit h t h e f oll o wi n g
q u e sti o n: S u p p o s e p p oi nt s ar e pl a c e d o n t h e u nit s p h er e S n − 1

i n R n . If  w e n o w g e n er at e a n e w p oi nt o n S n − 1 a c c or di n g t o
t h e u nif or m distri b uti o n o v er t h e s p h er e, h o w f ar  will it b e
a w a y fr o m t h es e e xisti n g p p oi nts ?
I nt uiti v el y, t his  mi ni m al dist a n c e b et w e e n t h e n e w p oi nt a n d

t h e e xisti n g p p oi nts s h o ul d d e p e n d o n n a n d p , i n a  m a n n er
t h at it is d e cr e asi n g i n p a n d i n cr e a si n g i n n . Yet, n o  m att er
h o w t h es e e xisti n g p p oi nts ar e l o c at e d, t his n e w p oi nt c a n n ot
g et ar bitr aril y cl o s e t o t h e e xisti n g p p oi nts d u e t o r a n d o m n e ss.
I n ot h er  w or d s, f or a n y n a n d p , t h er e is a n i ntri n si c l o w er
b o u n d o n t his dist a n c e t h at t h e n e w p oi nt c a n g et cl o s er t o t h e
e xisti n g p oi nts o nl y  wit h v er y s m all pr o b a bilit y.
St u di e s of t his i ntri n si c l o w er b o u n d i n t h e a b o v e q u e sti o n

h a v e a l o n g hist or y u n d er t h e n oti o n of s p h eri c al c a p p a c ki n g,
a n d t his q u e sti o n h a s b e e n o n e of t h e  m o st f u n d a m e nt al
q u e sti o n s i n  m at h e m ati cs [ 2 2] –[ 2 4]. I n f a ct, t his q u e sti o n
is cl o s el y r el at e d t o t h e 1 8t h q u e sti o n o n t h e f a m o u s list
fr o m  Hil b ert [ 2 5].  T his q u e sti o n is als o a v er y i m p ort a nt
pr o bl e m i n i nf or m ati o n t h e or y a n d h a s b e e n st u di e d i n c o di n g,
b e a mf or mi n g, q u a nti z ati o n, a n d  m a n y ot h er ar e a s [ 2 6] –[ 3 3].
B e si d e s t h e i m p ort a n c e i n  m at h e m ati cs a n d i nf or m ati o n t h e-

or y, t his q u esti o n is cl o s el y c o n n e ct e d t o t h e t w o pr o bl e m s t h at
w e pr o p o s e t o i n v e sti g at e. F or i n st a n c e, t h e s a m pl e c orr el ati o n
b et w e e n X a n d Y c a n b e  writt e n as t h e i n n er pr o d u ct

C ( X , Y ) =
X − X̄ 1 n

X − X̄ 1 n 2
,
Y − Ȳ 1 n

Y − Ȳ 1 n 2
, (I. 2)

w h er e X = ( X 1 , . . . , X n ), Y = (Y 1 , . . . , Y n ), a n d 1 n is
t h e v e ct or i n R n wit h all o n e s. I n g e n er al, if  w e o b s er v e n
i.i. d. s a m pl es fr o m t h e j oi nt distri b uti o n of ( X 1 , . . . , X p , Y ),
t h e s a m pl e c orr el ati o n s b et w e e n X j ’s a n d Y c a n b e r e g ar d e d a s
i n n er pr o d u cts i n R n b et w e e n t h e p u nit v e ct or s c orr e s p o n di n g
t o X j ’s a n d a n ot h er u nit v e ct or c orr e s p o n di n g t o Y . N ot e
t h at t h e s e u nit v e ct or s ar e all ort h o g o n al t o t h e v e ct or 1 n
d u e t o t h e c e nt eri n g pr o c e ss.  T h u s, t h e y li e o n a n “ e q u at or ”
of t h e u nit s p h er e S n − 1 i n R n , w hi c h is i n t ur n e q ui v al e nt
t o S n − 2 . T hr o u g h t his c o n n e cti o n, t h e pr o bl e m a b o ut t h e
m a xi m al s p uri o u s c orr el ati o n is e q ui v al e nt t o t h e p a c ki n g of
t h e i n n er pr o d u cts, a n d e xisti n g  m et h o d s a n d r e s ults fr o m t h e
p a c ki n g lit er at ur e c a n b e b orr o w e d t o a n al y z e t his pr o bl e m.
I n t his p a p er,  w e p arti c ul arl y f o c u s o n pr o b a bilisti c st at e m e nts
a b o ut s u c h p a c ki n g pr o bl e m s.
A n i m p ort a nt a d v a nt a g e of t hi s p a c ki n g p er s p e cti v e is a

vi e w of d at a t h at is fr e e of a n i n cr e a si n g p . S u p p o s e  w e
vi e w t h e d at a as n p oi nts i n a p - di m e n si o n al s p a c e, t h e n if
p e x c e e d s n , all t h e n p oi nts  will li e o n a l o w- di m e n si o n al
h y p er pl a n e i n R p . T his d e g e n er a c y f or c e s u s t o c h a n g e t h e
m et h o d ol o g y t o w ar d s st atisti c al pr o bl e m s, i. e., c h a n gi n g fr o m

t h e cl assi c al st atisti c al  m et h o ds t o r e c e nt hi g h- di m e n si o n al
m et h o d s [ 3 4], [ 3 5].  H o w e v er, if  w e vi e w t h e d at a a s p v e ct ors
i n R n , t h e n  w e  will n e v er h a v e s u c h a d e g e n er a c y pr o bl e m.
N o  m att er h o w l ar g e p is, a p a c ki n g pr o bl e m is al w a ys
a  w ell- d e fi n e d p a c ki n g pr o bl e m.  N eit h er t h e t h e or y n or t h e
m et h o d ol o g y n e e d s t o b e c h a n g e d d u e t o a n i n cr e a s e i n p .
T h u s,  wit h t h e p a c ki n g p er s p e cti v e, t h e or y a n d  m et h o d ol o g y
c a n b e s et fr e e fr o m t h e r e stri cti o n of a n i n cr e a si n g p .
We s u m m ari z e b el o w o ur r es ults o n t h e as y m pt oti c t h e ori es

of t h e  m a xi m al i n n er pr o d u cts a n d s p uri o u s c orr el ati o n s.  O n e
m aj or a d v a nt a g e of t h e p a c ki n g a p pr o a c h is t h at i n st e a d of
u s u al it er ati v e as y m pt oti c r es ults  w hi c h s et p = p (n ) a n d l et
n → ∞ , o ur c o n v er g e n c e r e s ults ar e u nif or m i n n , w hi c h
l e a d s t o d o u bl e li mits i n b ot h n a n d p .
• We c h ar a ct eri z e t h e l ar g e st  m a g nit u d e of i n d e p e n d e nt
i n n er pr o d u cts ( or s p uri o u s c orr el ati o n s) t hr o u g h a n
a s y m pt oti c b o u n d.  T his b o u n d is u ni v er s al i n t h e s e n s e
t h at it h ol d s f or ar bitr ar y distri b uti o n s of L j ’s ( or t h at of
X j ’s).  T his b o u n d is u nif or m i n t h e s e n s e t h at it h ol d s
as y m pt oti c all y i n p b ut is u nif or m o v er n . T his b o u n d is
s h ar p i n t h e s e ns e t h at it c a n b e att ai n e d, es p e ci all y  w h e n
t h e u nit v e ct or s L j ’s ar e i.i. d. u nif or m ( or  w h e n X j ’s
ar e i n d e p e n d e ntl y  G a u ssi a n).  T h u s, i n a n a n al o g y, t his
b o u n d is t o t h e distri b uti o n of i n d e p e n d e nt i n n er pr o d u cts
( or t o t h at of s p uri o u s c orr el ati o n s) as t h e f u n d a m e nt al
b o u n d

√
2 l o g p is t o t h e p - di m e n si o n al  G a u ssi a n distri-

b uti o n [ 3 6].  We r ef er t his b o u n d a s t h e S h ar p  As y m pt oti c
B o u n d f or i n d E p e n d e nt i n n er p R o d u cts ( or s p u Ri o u s
c orr El ati o n s), a b br e vi at e d as t h e S A B E R ( or S A B R E).

• I n t h e s p e ci al i m p ort a nt c a s e  w h e n t h e s et of u nit v e ct or s
ar e i.i. d. u nif or ml y distri b ut e d ( or  w h e n X j ’s ar e i n d e-
p e n d e ntl y  G a u ssi a n distri b ut e d),  w e s h o w t h e s h ar p n e ss
of t h e S A B E R ( or S A B R E) a n d d e s cri b e a s m o ot h p h a s e
tr a n siti o n p h e n o m e n o n of t h e m a c c or di n g t o t h e li mit
of l o g pn . F urt h er m or e,  w e d e v el o p t h e li miti n g distri b-
uti o n b y c o m bi n g t h e p a c ki n g a p pr o a c h  wit h e xtr e m e
v al u e t h e or y i n st atisti cs [ 3 6], [ 3 7].  T h e e xtr e m e v al u e
t h e or y r es ults a c c ur at el y c h ara ct eri z e t h e d e vi ati o n fr o m
t h e o b s er v e d  m a xi m al  m a g nit u d e of i n d e p e n d e nt i n n er
pr o d u cts ( or t h at of s p uri o u s c orr el ati o n s) t o t h e S A B E R
( or S A B R E).  O n e i m p ort a nt f e at ur e of t h e s e r e s ults is
t h at t h e y ar e n ot o nl y fi nit e s a m pl e r es ults b ut als o ar e
u nif or m- n -l ar g e- p a s y m pt oti cs t h at ar e  wi d el y a p pli c a bl e
i n t h e hi g h- di m e n si o n al p ar a di g m.
T h e s p h eri c al c a p p a c ki n g as y m p t oti cs c a n b e als o a p pli e d
t o t h e pr o bl e m of t h e d et e cti o n of a l o w-r a n k li n e ar d e p e n-
d e n c y. F or t his pr o bl e m,  w e o b s er v e t h at t h e l ar g e st  m a g ni-
t u d e a m o n g p st a n d ar d elli pti c al v ari a bl es is cl o s el y r el at e d
t o t h e r a n k d of t h eir c orr el ati o n  m atri x.  T his is s e e n b y
d e c o m p osi n g elli pti c all y distri b ut e d r a n d o m v e ct or s i nt o t h e
pr o d u cts of c o m m o n  E u cli d e a n n or m s a n d i n n er pr o d u cts
of u nit v e ct or s i n R d , t h u s r e d u ci n g t h e pr o bl e m t o o n e
of s p h eri c al c a p p a c ki n g.  As a c o n s e q u e n c e, t h e pr e vi o u s
a s y m pt oti cs c a n b e a p pli e d h er e.  We t h u s o bt ai n e d a u ni-
v er s al s h ar p as y m pt oti c b o u n d f or t h e  m a xi m al  m a g nit u d e
of a d e g e n er at e elli pti c al distri b uti o n, as  w ell as its li miti n g
distri b uti o n  w h e n t h e u nit v e ct or s i n t h e d e c o m p o siti o n ar e
i.i. d. u nif or m.  Alt h o u g h  m a n y a s y m pt oti c b o u n d s a n d li miti n g
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di stri b uti o n s o n f ull r a n k  m a xi m a ar e  w ell d e v el o p e d u n d er
diff er e nt sit u ati o n s ( s e e [ 3 6] –[ 3 8] f or r e vi e ws of t h e e xt e n si v e
e xisti n g lit er at ur e),  w e ar e n ot a bl e t o fi n d si mil ar t h e or y i n
lit er at ur e o n l o w-r a n k  m a xi m a fr o m elli pti c al distri b uti o n s, n ot
e v e n i n t h e s p e ci al c as e of  G a ussi a n distri b uti o n.  We r ef er t h e
c o n n e cti o n  w e f o u n d b et w e e n t h e  m a xi m al  m a g nit u d e a n d t h e
r a n k a s t h e r a n k- e xtr e m e ( R e X) a ss o ci ati o n.
B as e d o n t h e as y m pt oti c r es ults o n t h e d e g e n er at e elli pti c al

distri b uti o n s,  w e s h o w t h at o n e c a n  m a k e st atisti c al i nf er e n c e
o n a l o w-r a n k t hr o u g h t h e distri b uti o n s of t h e e xtr e m e v al u e
a s a st atisti c.  O n e f e at ur e of t his pr o c e d ur e is t h at it d o e s n ot
r e q uir e t h e s p e ctr u m i nf or m ati o n fr o m P C A.  T h u s, t h e n e w
m et h o d  w or k s  w h e n n < d ,  w h e n P C A b a s e d  m et h o d s f ail
t o  w or k. It is als o c o m p ut ati o n all y f ast si n c e n o  m atri x  m ulti-
pli c ati o n is n e e d e d i n t h e al g orit h m.  T h es e a d v a nt a g es all o w
a f ast d et e cti o n of a l o w- di m e n si o n al c orr el ati o n str u ct ur e i n
hi g h- di m e n si o n al d at a.

A.  R el at e d  W o r k

We ar e n ot a bl e t o fi n d si mil ar pr o b a bilisti c st at e m e nts
o n u nif or m- n -l ar g e- p as y m pt oti cs.  T h e f oll o wi n g st atisti c al
p a p er s ar e r el at e d t o t h e st u d y o n t h e  m a xi m al s p uri o u s
c orr el ati o n.
• I n [ 4], t h e a ut h or s o bt ai n a r e s ult o n t h e or d er of t h e  m a x-
i m al s p uri o u s c orr el ati o n s i n t h e r e gi m e t h at l o g pn → 0.
T hr o u g h t h e p a c ki n g a p pr o a c h,  w e d eri v e t h e e x pli cit
li miti n g distri b uti o n of t h e e xtr e m e s p uri o u s c orr el ati o n s
f or e ntir e s c o p e of n a n d p .

• I n [ 3 9], t h e a ut h or s d e v el o p a t hr e s h ol d f or  m ar gi n al c or-
r el ati o n s cr e e ni n g  wit h l ar g e p a n d s m all n . T h e t hr e s h ol d
a p p e ar s i n a si mil ar f or m as t h e S A B R E.  We n ot e t w o
m aj or diff er e n c es b et w e e n t h e r es ults: ( 1)  T h e r es ults
i n [ 3 9] f o c u s o n t h e r e gi m e  w h e n l o g pn → ∞ (i. e.,  w h e n
t h e t hr e s h ol d c o n v er g e s t o 1),  w hil e o ur a s y m pt oti c r e s ults
c o v er t h e e ntir e s c o p e of n a n d p , a n d t h e S A B R E is
s h o w n t o b e v ali d fr o m 0 t o 1; ( 2)  w e d eri v e t h e e x pli cit
li miti n g distri b uti o n of t h e  m a xi m al s p uri o u s c orr el ati o n
i n t h e  m o st i m p ort a nt c a s e  w h e n t h e v ari a bl es ar e i.i. d.
G a u ssi a n.

• I n [ 4 0] –[ 4 2], t h e  mi ni m al p air wis e a n gl e s b et w e e n i.i. d.
u nif or ml y r a n d o m p oi nts o n s p h er e s ar e c o n si d er e d.
A si mil ar p h as e tr a n siti o n is d es cri b e d, a n d r es ults o n t h e
li miti n g distri b uti o n ar e d e v el o p e d.  We n ot e t w o  m aj or
diff er e n c es b et w e e n t h eir r e s ults a n d o ur s: ( 1)  D u e t o
diff er e nt  m oti v ati o n s of t h e r e s e ar c h,  w e f o c u s o n t h e
m ar gi n al c orr el ati o n b et w e e n o n e r e s p o n s e v ari a bl e a n d
p e x pl a n at or y v ari a bl e s.  We als o d e v el o p a u ni v er s al
u nif or m b o u n d f or  m ar gi n al c orr el ati o n s. ( 2)  T h e e xtr e m e
li miti n g distri b uti o n s i n t h eir p a p er s ar e st at e d s e p a-
r at el y a c c or di n g t o if t h e li mit of l o g pn i s 0, a pr o p er
c o n st a nt, or ∞ . Fr o m t h e p a c ki n g p ers p e cti v e,  w e ar e
a bl e t o st at e t h e c o n v er g e n c e i n a u nif or m  m a n n er  wit h
st a n d ar di zi n g c o n st a nts t h at ar e a d a pti v e i n n a n d p . Si n c e
i n r e al d at a, t h e li mit of l o g pn i s u s u all y n ot k n o w n,
t his u nif or m c o n v er g e n c e  wit h a d a pti v e st a n d ar di zi n g
c o n st a nts  m a k es t h e r es ult e as y t o a p pl y i n pr a cti c e.

• D uri n g t h e r e vi e w pr o c ess of t his p a p er,  w e n oti c e d t h e
r e s ults i n [ 4 3]  w hi c h f o c u s o n t h e c o u pli n g a n d b o otstr a p

a p pr o xi m ati o n s of t h e  m a xi m al s p uri o u s c orr el ati o n  w h e n
l o g7 p
n → 0.  A g ai n o ur diff er e nt f o c u s is o n e x pli cit li m-

iti n g distri b uti o n s  wit h a d a pti v e st a n d ar di zi n g c o n st a nts
fr o m t h e p a c ki n g p er s p e cti v e.

We ar e n ot a bl e t o fi n d e xisti n g lit er at ur e o n t h e r a n k- e xtr e m e
a ss o ci ati o n.  T o e v al u at e t h e p erf or m a n c e of o ur l o w-r a n k
d et e cti o n  m et h o d,  w e c o m p ar e o ur  m et h o d  wit h t h e al g orit h m
i n [ 1 4]  w hi c h st u di e s a si mil ar pr o bl e m.  D uri n g t h e r e vi e w
pr o c e ss of t h e p a p er,  w e al s o n oti c e d r e c e nt  w or k b y [ 2 1].
T h e  m o st i m p ort a nt diff er e n c e fr o m t h e s e p a p er s is t h at t h e y
f o c u s o n t h e c a s e  w h e n n a n d p ar e c o m p ar a bl e a n d b ot h
l ar g e,  w hil e  w e c o n si d er t h e c as e  w h e n n is s m all a n d p is
l ar g e.

B.  O utli n e of t h e  P a p er

I n S e cti o n II,  w e d eri v e t h e as y m pt oti c b o u n d o n t h e
s p h eri c al p a c ki n g pr o bl e m, as  w ell as t h at of t h e  m a xi m al
s p uri o u s c orr el ati o n a n d t h e r el at e d e xtr e m e v al u e distri b u-
ti o n s. I n S e cti o n III,  w e d e s cri b e t h e r a n k- e xtr e m e ass o ci ati o n
of elli pti c all y distri b ut e d v e ct or s. I n S e cti o n I V  w e d e v el o p a
f ast d et e cti o n  m et h o d of a l o w-r a n k b y u si n g t h e r a n k- e xtr e m e
ass o ci ati o n r e v ers el y. I n S e c ti o n  V,  w e st u d y t h e p erf or m a n c e
of t h e d et e cti o n  m et h o d t hr o u g h si m ul ati o n s.  We c o n cl u d e a n d
dis c u ss f ut ur e  w or k i n S e cti o n  VI.

II.  A S Y M P T O T I C T H E O R Y  O F  T H E S P H E RI C A L
C A P P A C K I N G P R O B L E M

A. T h e S h a r p  A s y m pt oti c  B o u n d f o r I n d e p e n d e nt I n n e r
P r o d u cts ( S A B E R) a n d S p u ri o u s  C o rr el ati o n s ( S A B R E)

We fir st o b s er v e t h at a s d e s cri b e d i n [ 4 4],  w h e n
U is u nif or ml y distri b ut e d o v er S n − 1 , | L , U |2 ∼
B et a 12 ,

n − 1
2 , ∀ L ∈ S

n − 1 .  B y b orr o wi n g str e n gt h fr o m t h e
p a c ki n g lit er at ur e [ 2 2], [ 2 6] o n t h e t ot al ar e a of n o n- o v erl a p
s p h eri c al c a p s o n S n − 2 ,  w e d e v el o p t h e f oll o wi n g t h e or e m o n
a s h ar p a s y m pt oti c b o u n d f or i n d e p e n d e nt i n n er pr o d u cts.
T h e o r e m 1 ( S h a r p  A s y m pt oti c  B o u n d f o r I n d e p e n d e nt I n n e r
Pr o d u cts ( S A B E R)):  F o r a r bitr ar y d et er mi nisti c u nit v e ct ors
L 1 , . . . , L p a n d a u nif o r ml y di stri b ut e d u nit v e ct o r U o v er
S n − 1 , t h e r a n d o m v a ri a bl e  Mp ,n = m a x 1 ≤ j ≤ p | L j , U |
s atis fi e s t h at ∀ δ > 0 ,

P M p ,n > (1 + δ )( 1 − p − 2 /( n − 1 ) )

≤

√
2 p 1 /( n − 1 ) e x p − 12 δ ( n − 1 )( p

2 /( n − 1 ) − 1 )

π ( 1 + δ )( n − 1 )( p 2 /( n − 1 ) − 1 )
. (II. 1)

T h e r ef or e, ∀ δ > 0 , a s  p → ∞ ,

s u p
n ≥ 2
P M p ,n > (1 + δ )( 1 − p − 2 /( n − 1 ) ) → 0 . (II. 2)

I n p a rti c ul a r, if n → ∞ , t h e n  w e h a v e t h e d o u bl e li mit

li m
p ,n → ∞

P M p ,n ≤ 1 − p − 2 /( n − 1 ) = 1 . (II. 3)

T h e or e m 1 pr o vi d es a n e x pli cit a n s w er t o t h e q u esti o n at
t h e b e gi n ni n g of S e cti o n I  wit h a pr o b a bilisti c st at e m e nt:
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Fi g. 1.  T h e S A B E R 1 − p − 2 /( n − 1 ) f or 3 ≤ n ≤ 5 0 a n d 2 ≤ p ≤ 1 0 0.
T h e S A B E R r a n g es fr o m 0 t o 1.  T h e r e gi o ns of t h e s a m e c ol or r e pr es e nt

t h e s m o ot h p h as e tr a nsiti o n c ur v es
l o g p
n ≈ β f or β > 0 as d es cri b e d

i n S e cti o n II- B.

N o  m att er h o w L j ’s ar e l o c at e d o n t h e u nit s p h er e, t h e  m a g-
nit u d e of t h e i n n er pr o d u cts ( or c o si n e s of t h e a n gl e) b et w e e n
t h es e p p oi nt s a n d a u nif or ml y r a n d o m p oi nt c a n n ot e x c e e d
1 − p − 2 /( n − 1 ) wit h hi g h pr o b a bilit y f or l ar g e p . T his u p p er
b o u n d o n t h e i n n er pr o d u cts is e q ui v al e nt t o a l o w er b o u n d
o n t h e  mi ni m al a n gl e b et w e e n t h e n e w r a n d o m p oi nt t o t h e
e xisti n g p p oi nts.
T h e S A B E R p o ss ess es t h e f oll o wi n g i m p ort a nt pr o p erti es:

1)  T his b o u n d is u ni v er s al i n t h e s e n s e t h at it h ol d s f or a n y
c o n fi g ur ati o n of L j ’s.

2)  T his b o u n d is u nif or m i n t h e s e n s e t h at it h ol d s u nif or mit y
f or n ≥ 2.

3)  T his b o u n d is s h ar p i n t h e s e n s e t h at it c a n b e att ai n e d
f or s o m e c o n fi g ur ati o n of L j ’s, e s p e ci all y  w h e n L j ’s
ar e i.i. d. u nif or ml y distri b ut e d, a s  will b e dis c u ss e d i n
S e cti o n II- B.

T h u s, i n a n a n al o g y, t h e S A B E R 1 − p − 2 /( n − 1 ) i s t o t h e dis-
tri b uti o n s of t h e i n d e p e n d e nt i n n er pr o d u cts a s t h e f u n d a m e nt al
b o u n d

√
2 l o g p is t o t h e p - di m e n si o n al  G a u ssi a n distri b uti o n.

A t e c h ni c al n ot e h er e is t h at  w h e n n is fi nit e, t h e fr a cti o n
2
n − 1 i n t h e e x p o n e nt of p c a n b e r e pl a c e d b y

2
n − n 1

wit h a n y
fi x e d i nt e g er 0 < n 1 < n . T his c h a n g e  w o ul d n ot alt er t h e
as y m pt oti c r es ult i n p d u e t o a u nif or m c o n v er g e n c e i n t h e
pr o of.  T h e n u m b er n 1 o nl y h a s a n eff e ct  w h e n t h e di m e n si o n
n is fi nit e. F or e x a m pl e, s e e [ 3 9] f or a si mil ar b ut diff er e nt
b o u n d  w h e n n is fi x e d.  We f o c u s o n t h e b o u n d 1 − p − 2 /( n − 1 )

d u e t o its c o n n e cti o n t o t h e B et a 12 ,
n − 1
2 distri b uti o n.  W h e n

n → ∞ , all t h e s e b o u n d s ar e e q ui v al e nt.
A n ot h er t e c h ni c al n ot e is t h at alt h o u g h  T h e or e m 1 is f or

a d et er mi nisti c s et of L j ’s,  w e n ot e h er e t h at t his s et of
u nit v e ct or s c a n b e r a n d o m a s  w ell.  As l o n g a s L j ’s ar e
st o c h a sti c all y i n d e p e n d e nt of U , T h e or e m 1 c a n b e a p pli e d t o
r a n d o m L j ’s b y a c o n diti o ni n g ar g u m e nt o n a n y r e ali z ati o n
of L j ’s.

Fi g ur e 1 ill u str at es t h e S A B E R 1 − p − 2 /( n − 1 ) i n
T h e or e m 1 a s a f u n cti o n of n a n d p . It c a n b e s e e n t h at t h e

S A B E R h a s a r a n g e of (0 , 1 ) as a n i n cr e asi n g f u n cti o n i n p
a n d a d e cr e a si n g f u n cti o n i n n .
D u e t o t h e c o n n e cti o n b et w e e n s a m pl e c orr el ati o n s a n d
t h e i n n er pr o d u cts (I. 2), t his b o u n d is i m m e di at el y a p pli c a bl e
t o s p uri o u s c orr el ati o n s. S u p p o s e Y = (Y 1 , . . . , Y n ) r e c or d s
n i.i. d. s a m pl es of a  G a u ssi a n v ari a bl e Y , t h e n it is  w ell-

k n o w n ( s e e [ 4 4]) t h at Y − Ȳ 1 n
Y − Ȳ 1 n 2

i s a u nif or ml y distri b ut e d u nit

v e ct or o v er S n − 2 .  T h u s,  w e h a v e t h e f oll o wi n g b o u n d o n t h e
m a xi m al s p uri o u s c orr el ati o n.
C o r oll a r y 2 ( S h a r p  A s y m pt oti c  B o u n d f o r S p u ri o u s
C o rr el ati o n s ( S A B R E)): S u p p o s e  w e o b s e r v e n i.i. d. s a m pl e s
of a r bitr a r y r a n d o m v a ri a bl e s  X 1 , . . . , X p a n d a  G a u ssi a n
v a ri a bl e Y t h at is i n d e p e n d e nt of  X j ’s. T h e  m a xi m al a b s ol ut e
s a m pl e c o rr el ati o n  M X Y = m a x 1 ≤ j ≤ p |C ( X j , Y )| s atis fi es
t h at ∀ δ > 0 , a s  p → ∞ ,

s u p
n ≥ 3
P M X Y > (1 + δ )( 1 − p − 2 /( n − 2 ) ) → 0 . (II. 4)

I n p a rti c ul a r, if n → ∞ , t h e n  w e h a v e t h e d o u bl e li mit

li m
p ,n → ∞

P M X Y ≤ 1 − p − 2 /( n − 2 ) = 1 . (II. 5)

Si mil arl y as t h e i nt er pr et ati o n f or t h e S A B E R, t h e i m pli-
c ati o n of t h e S A B R E is as f oll o ws:  U nif or ml y f or n ≥ 3 ,
n o  m att er h o w t h e p v ari a bl es X 1 , . . . , X p ar e distri b ut e d,
t h e  m a g nit u d e of t h e s a m pl e c orr el ati o n s b et w e e n X j ’s a n d a
G a u ssi a n Y c a n n ot e x c e e d t h e S A B R E  wit h hi g h pr o b a bilit y
f or l ar g e p . N ot e h er e t h at i n pr a cti c e, t h e r e q uir e m e nt of
G a u ssi a nit y of Y c a n b e e a sil y r el a x e d t hr o u g h a tr a n sf or m a-
ti o n of distri b uti o n s. Si n c e t h e S A B R E is u ni v er s al, u nif or m,
a n d s h ar p a s t h e S A B E R, t his b o u n d pr o vi d e s a  w a y t o
disti n g uis h tr u e si g n als fr o m s p uri o u s c orr el ati o n s.  We s h all
i n v esti g at e t his a p pli c ati o n i n f ut ur e  w or k.

B. Li miti n g  Distri b uti o n s i n t h e i.i. d.  C a s e

I n t his s e cti o n,  w e d es cri b e t h e as y m pt oti cs of t h e  m a xi m al
i n n er pr o d u ct  w h e n L j ’s ar e i.i. d. u nif or ml y distri b ut e d a n d
t h e as y m pt oti cs of s p uri o u s c orr el ati o n s  w h e n X j ’s ar e i n d e-
p e n d e ntl y  G a u ssi a n distri b ut e d.  We fir st o b s er v e t h at  w h e n
L j ’s ar e i.i. d. u nif or ml y u nit v e ct or s o v er S

n − 1 , t h e n f or a n y
r a n d o m u nit v e ct or U t h at is i n d e p e n d e nt of L j ’s,  w e h a v e t h e
f oll o wi n g t w o pr o p erti es a b o ut t h e i n n er pr o d u cts L j , U |U :

1)  C o n diti o ni n g o n U , t h e v ari a bl es L j , U |U ’s ar e i n d e-
p e n d e nt si n c e L j ’s ar e i n d e p e n d e nt;

2) F or e a c h j, t h e v ari a bl e | L j , U |
2 |U is distri b ut e d as

B et a 12 ,
n − 1
2 . Si n c e t his c o n diti o n al distri b uti o n d o es n ot

d e p e n d o n U , it i m pli es t h at u n c o n diti o n all y | L j , U |
2

is st o c h a sti c all y i n d e p e n d e nt of U .

Fr o m t h e s e t w o pr o p erti es,  w e c o n cl u d e t h at u n c o n diti o n all y,
| L j , U |

2 ’s ar e i.i. d. B et a 12 ,
n − 1
2 distri b ut e d.  We t h u s s h o w

t h e s h ar p n e ss of t h e S A B E R a n d S A B R E b y st u d yi n g t h e
m a xi m u m of i.i. d. B et a ( 12 ,

n − 1
2 ) v ari a bl e s.

T h e o r e m 3:

1) ( S h a r p n ess of S A B E R )
S u p p o s e L j ’s a r e i.i. d. u nif o r ml y distri b ut e d o v er t h e
(n − 1 )- s p h e r e S n − 1 , t h e n f o r a r bitr a r y r a n d o m u nit
v e ct o r U t h at is i n d e p e n d e nt of L j ’s, u nif o r ml y f o r all
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n ≥ 2 , a s  p → ∞ , t h e r a n d o m v a ri a bl e  M p ,n =
m a x j | L j , U | h a s t h e f oll o wi n g c o n v e r g e n c e:

M p ,n / 1 − p − 2 /( n − 1 )
p r o b .
− → 1 , (II. 6)

i. e., ∀ δ > 0 , a s p → ∞ ,

s u p
n ≥ 2
P (|M 2p ,n /( 1 − p

− 2 /( n − 1 ) ) − 1 | > δ ) − → 0 . (II. 7)

2) ( S h a r p n ess of S A B R E )
Si mil a rl y, s u p p o s e  w e o b s e r v e n i.i. d. s a m pl e s of i n d e p e n-
d e nt  G a u ssi a n v a ri a bl e s  X 1 , . . . , X p a n d a n a r bitr a ril y
distri b ut e d r a n d o m v a ri a bl e Y t h at is i n d e p e n d e nt of
X j ’s.  C o n si d e r t h e  m a xi m al a b s ol ut e s a m pl e c o rr el ati o n
M X Y = m a x 1 ≤ j ≤ p |C ( X j , Y )|. U nif o r ml y f o r all n ≥ 3 ,
a s p → ∞ , w e h a v e

M X Y / 1 − p − 2 /( n − 2 )
p r o b .
− → 1 . (II. 8)

T h e or e m 3 s h o ws t h e s h ar p n e ss of t h e S A B E R a n d
t h e S A B R E. It f urt h er d es cri b es a s m o ot h p h as e tr a n siti o n of
M p ,n ( als o M X Y ) d e p e n di n g o n t h e li mit of

l o g p
n :

(i) If li m p → ∞ l o g p / n = ∞ , t h e n M p ,n
p r o b .
− → 1 a n d

M p ,n / 1 − p − 2 /( n − 1 )
p r o b .
− → 1 .

(ii) If li m p → ∞ l o g p / n = β f or fi x e d 0 < β < ∞ , t h e n

M p ,n
p r o b .
− →

√
1 − e − 2 β .

(iii) If li m p → ∞ l o g p / n = 0, t h e n M p ,n
p r o b .
− → 0 a n d

M p ,n /
√
2 l o g p / n

p r o b .
− → 1 .

N ot e i n p arti c ul ar t h at  w h e n li m p → ∞ l o g p / n = 0,
t h e S A B R E s atis fi es

1 − p − 2 /( n − 2 ) = 1 − e − 2 l o g p /( n − 2 )

∼ 1 − (1 − 2 l o g p / n )

= 2 l o g p / n . (II. 9)

T h e r at e
√
2 l o g p / n h a s a p p e ar e d i n h u n dr e d s of b o o k s a n d

p a p er s a n d is v er y- w ell k n o w n i n hi g h- di m e n si o n al st atisti cs
lit er at ur e [ 3 5].  H o w e v er, it is j u st a s p e ci al c as e of t h e g e n er al
r at e 1 − p − 2 /( n − 2 ) ,  w hi c h is o bt ai n e d t hr o u g h t h e p a c ki n g
p er s p e cti v e.  T hi s f a ct d e m o n str at es t h e p o w er of t his p a c ki n g
a p pr o a c h. I n Fi g ur e 1, t h e s m o ot h p h as e tr a n siti o n c ur v es
l o g p
n ≈ β ar e r e pr e s e nt e d a s r e gi o n s of t h e s a m e c ol or.
B el o w ar e s o m e g e o m etri c i nt uiti o n s o n  w h y t h e p h a s e

tr a n siti o n d e p e n d s o n t h e li mit of l o g pn :  N ot e t h at t h e n u m b er
of ort h a nts i n R n is 2n a n d is gr o wi n g e x p o n e nti all y i n n .
T h er ef or e, if t h e gr o wt h of p is f ast er t h a n t h e e x p o n e nti al r at e
i n n , t h e n t h e p u nit v e ct or s o n S n − 1 w o ul d b e s o “ d e n s e ”
t h at t h e y  w o ul d c o v er t h e s p h er e,  m a ki n g t h e  m a g nit u d e of
t h e  m a xi m al i n n er pr o d u ct c o n v er gi n g t o 1; if t h e gr o wt h
of p is e x p o n e nti al i n n , t h e n t h er e  w o ul d b e a c o n st a nt
n u m b er ( d e p e n di n g o n t h e li mit of l o g pn ) of p oi nt s i n e a c h
ort h a nt, s o t h at t h e n e w r a n d o m p oi nt  w o ul d st a y ar o u n d s o m e
pr o p er a n gl e t o t h e e xisti n g p oi nts; if t h e gr o wt h of p is sl o w er
t h a n t h e e x p o n e nti al r at e, t h e n  m a n y ort h a nts  w o ul d b e e m pt y
of p oi nts as y m pt oti c all y, t h u s t h e n e w r a n d o m p oi nt c a n b e
al m o st ort h o g o n al t o t h e e xisti n g p oi nts.
W h e n L j ’s ar e i.i. d. u nif or ml y distri b ut e d or  w h e n X j ’s

ar e i n d e p e n d e ntl y  G a u ssi a n, b y c o m bi ni n g t h e r e s ults i n

p a c ki n g lit er at ur e [ 2 2], [ 2 6] a n d cl assi c al e xtr e m e v al u e
t h e or y [ 3 6], [ 3 7],  w e f urt h er d e v el o p t h e f oll o wi n g u nif or m
c o n v er g e n c e i n distri b uti o n of t h e c orr e s p o n di n g  m a xi m a.
T h e o r e m 4:

1) ( Li miti n g  Dist ri b uti o n of t h e  M a xi m al I n d e p e n d e nt
I n n e r  P r o d u ct )
S u p p o s e L j ’s a r e i.i. d. u nif o r ml y u nit v e ct o rs o v e r S

n − 1 .
F o r a r bit r a r y r a n d o m u nit v e ct o r U t h at is i n d e p e n d e nt
of L j ’s, c o n si d e r  M p ,n = m a x 1 ≤ j ≤ p | L j , U |. L et

a p ,n = 1 − p
− 2 /( n − 1 ) c p ,n , b p ,n =

2

n − 1
p − 2 /( n − 1 ) c p ,n ,

w h e r e c p ,n =
n − 1
2 B

1
2 ,
n − 1
2 1 − p − 2 /( n − 1 )

2 /( n − 1 )
i s

a c o rr e cti o n f a ct o r  wit h  B (s , t) b ei n g t h e  B et a f u n cti o n.
T h e n f o r a n y fi x e d x, a s p → ∞ ,

s u p
n ≥ 2
P
M 2p ,n − a p ,n

b p ,n
< x − I x >

n − 1

2

− e x p − 1 −
2

n − 1
x
(n − 1 ) /2

I x ≤
n − 1

2
→ 0 .

(II. 1 0)

I n p a rti c ul a r, if n → ∞ a n d p → ∞ , t h e n f o r a n y fi x e d
x,  w e h a v e t h e d o u bl e li mit

P
M 2p ,n − a p ,n

b p ,n
< x → e x p − e − x . (II. 1 1)

2) ( Li miti n g  Dist ri b uti o n of t h e  M a xi m al S p u ri o us
C o r r el ati o n )
Si mil a rl y, s u p p o s e  w e o b s e r v e n i.i. d. s a m pl e s of i n d e-
p e n d e nt  G a u ssi a n v a ri a bl e s  X 1 , . . . , X p a n d a n a r bi-
tr a ril y distri b ut e d r a n d o m v a ri a bl e Y t h at is i n d e p e n d e nt
of  X j ’s.  C o n si d e r t h e  m a xi m al a b s ol ut e s a m pl e c o rr el a-
ti o n  MX Y = m a x 1 ≤ j ≤ p |C ( X j , Y )|. T h e n f o r a n y fi x e d x,
a s p → ∞ ,

s u p
n ≥ 3
P
M 2X Y − a p ,n − 1

b p ,n − 1
< x − I x >

n − 2

2

− e x p − 1 −
2

n − 2
x
(n − 2 ) /2

I x ≤
n − 2

2
→ 0 .

(II. 1 2)

I n p a rti c ul a r, if n → ∞ a n d p → ∞ , t h e n f o r a n y
fi x e d x,  w e h a v e t h e d o u bl e li mit

P
M 2X Y − a p ,n − 1

b p ,n − 1
< x → e x p − e − x . (II. 1 3)

T h e or e m 4 c h ar a ct eri z e s t h e u n c ert ai nt y of t h e  m a xi m al
i n d e p e n d e nt i n n er pr o d u ct a n d t h e  m a xi m al s p uri o u s c or-
r el ati o n fr o m t h e S A B E R a n d S A B R E r e s p e cti v el y.  T his
r e s ult p o ss ess es t h e f oll o wi n g d e sir a bl e pr o p erti es f or pr a cti c e:
( 1)  T h e c o n v er g e n c e of M p ,n ( M X Y ) is u nif or m f or n ≥ 2
(n ≥ 3) a n d is a p pli c a bl e pr o vi d e d t h e d at a s et c o nt ai n s
t w o (t hr e e) o b s er v ati o n s.  T his u nif or mit y o v er n is d u e t o
t h e p a c ki n g p er s p e cti v e. ( 2)  Th e c o n v er g e n c e is ar bitr ar y
f or a n y distri b uti o n of Y .  T his ar bitr ari n ess r es ults fr o m t h e
i n v ari a n c e pr o p ert y of t h e u nif or m distri b uti o n o v er t h e s p h er e.
( 3)  T h e c o n v er g e n c e is a d a pti v e t o t h e n u m b er of v ari a bl e s p :
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D e s pit e t h e p h a s e tr a n siti o n p h e n o m e n o n, t h e n or m ali zi n g c o n-
st a nts a p ,n a n d b p ,n a d a pti v el y a dj u st t h e m s el v es f or diff er e nt
n a n d p t o g u ar a nt e e a g o o d a p pr o xi m ati o n t o a pr o p er li miti n g
distri b uti o n. ( 4) I n st e a d of t h e “ c ur s e of di m e n si o n alit y,” t h e
c o n v er g e n c e is a “ bl essi n g of di m e n si o n alit y ”:  T h e l ar g er p
is, t h e b ett er t h e a p pr o xi m ati o n is.  T h e s e pr o p erti es  m a k e
t h e r e s ult  wi d el y a p pli c a bl e i n t h e hi g h- di m e n si o n- a n d-l o w-
s a m pl e si z e sit u ati o n s.
We als o r e m ar k h er e t h at f or st atisti c al a p pli c ati o n s,

alt h o u g h i n pri n ci pl e t h e e m piri c al distri b uti o n of M X Y c a n
b e si m ul at e d b a s e d o n t h e  G a u ssi a n a ss u m pti o n s, i n a l ar g e- p
sit u ati o n, f or e x a m pl e p = 1 0 1 0 , s u c h si m ul ati o n c a n i n c ur
e xtr e m el y hi g h ti m e a n d c o m p ut ati o n c o st.  O n t h e ot h er h a n d,
t h e s e q u a ntil e s c a n b e e a sil y o bt ai n e d t hr o u g h t h e f or m ul a s
of a p ,n a n d b p ,n f or a n ar bitr ar y l ar g e p . I n d e e d, i n  m o d er n
d at a a n al y sis, it is  m or e a n d  m or e oft e n t o e n c o u nt er d at as ets
wit h a n u m b er of v ari a bl es i n  milli o n s, billi o n s, or e v e n l ar g er
s c al e s [ 4 5].  T h e u nif or m- n -l ar g e- p t y p e a s y m pt oti cs pr e s e nt e d
i n t his p a p er c a n b e es p e ci all y u s ef ul i n t h es e sit u ati o n s.

III.  R A N K - E X T R E M E A S S O CI A T I O N  O F
D E G E N E R A T E E L L I P T I C A L V E C T O R S

A.  R a n k- E xt r e m e  B o u n d of  D e g e n e r at e  Elli pti c al  Ve ct o rs

I n t his s e cti o n  w e c o n si d er t h e  m a xi m al  m a g nit u d e of a n
elli pti c all y distri b ut e d v e ct or.  A p - di m e n si o n al r a n d o m v e ct or
V is s ai d t o b e elli pti c all y distri b ut e d a n d is d e n ot e d as V ∼
E C p (ξ , ) if its d e n sit y f (v ) s atis fi es t h at

f (v ) ∝ g ((v − ξ ) T − 1 (v − ξ )) (III. 1)

f or s o m e c o nti n u o u s i nt e gr a bl e f u n cti o n g (·) s o t h at its is o d e n-
sit y c o nt o ur s ar e elli p s es.  T h e f a mil y of elli pti c al distri b uti o n s
is a g e n er ali z ati o n of  m ulti v ariat e  G a ussi a n distri b uti o ns a n d is
a n i m p ort a nt a n d g e n er al cl ass of distri b uti o n s i n pr a cti c e [ 4 6].
I n t his p a p er,  w e f o c u s o n a n elli pti c al distri b ut e d v e ct or
X ∼ E C p (0 , ) wit h a c o v ari a n c e  m atri x t h at h a s u nit
di a g o n als.  T hr o u g h a p a c ki n g ar g u m e nt,  w e fi n d a f u n cti o n al
li n k b et w e e n t h e distri b uti o n of  m a x1 ≤ j ≤ p |X j | a n d t h e r a n k
of . w e t h u s r ef er t his li n k as t h e r a n k- e xtr e m e ( R e X)
ass o ci ati o n.
B el o w ar e t h e o b s er v ati o n s t h at c o n n e ct t h es e r es ults t o t h e

p a c ki n g pr o bl e m:  C o n si d er a n y p × p c o v ari a n c e  m atri x
t h at is p o siti v e s e mi- d e fi nit e, h a s o n e s o n t h e di a g o n al, a n d h a s
r a n k d .  T hr o u g h it s ei g e n- d e c o m p o siti o n,  w e c a n  writ e =
L T L , w h er e L = [ L 1 , . . . , L p ] is a d × p m atri x  wit h c ol u m n s
L j ’s s u c h t h at L j 2 = 1.  T h u s,  w e c a n  writ e X = L

T Z
w h er e Z ∼ E C d (0 , I ). M or e o v er, f or a n y Z ∼ E C d (0 , I ), if w e
c o n si d er t h e s p h eri c al c o or di n at es, t h e n  w e h a v e Z = Z 2 U
w h er e U ∼ U ni f (S d − 1 ).  N ot e t h at Z 2 is a r a n d o m v ari a bl e
w hi c h d e p e n d s o nl y o n d . We t h u s a ss u m e Z 2 is a r a n d o m

v ari a bl e s u c h t h at
Z 22 − u d
v d

di st .
− → F ∞ a n d

Z 22
u d

p r o b .
− → 1 w h er e u d

a n d v d ar e s e q u e n c e s of c o n st a nts t h at d e p e n d s o nl y o n d , a n d
F ∞ is a pr o p er r a n d o m v ari a bl e.  N ot e als o t h at Z 2 a n d U
ar e i n d e p e n d e nt.  B a s e d o n t h e a b o v e c o n si d er ati o n,  w e o bt ai n
t h e f oll o wi n g d e c o m p o siti o n

X ∞ = m a x
j
|X j | = m a x

j
| L j , Z |  = Z 2 m a x

j
| L j , U |.

(III. 2)

Si n c e t h e distri b uti o n of t h e  m a xi m al a b s ol ut e i n n er pr o d u cts
m a x j |L j , U | i s st u di e d i n S e cti o n II,  w e c a n a p pl y t h es e
as y m pt oti c r es ults t o st u d y t h e distri b uti o n of X ∞ =
m a x j |X j |. I n p arti c ul ar,  w e d e v el o p t h e f oll o wi n g u ni v er s al
b o u n d o n a d e g e n er at e elli pti c all y distri b ut e d v e ct or X wit h
a p arti c ul ar c a s e of a d e g e n er at e  G a u ssi a n v e ct or,  w h er e
Z 22 ∼ χ

2
d wit h u d = d .

T h e o r e m 5:

1) ( R e X  B o u n d f o r  D e g e n e r at e  Elli pti c al  Ve ct o rs )
F o r a n y v e ct o r of p st a n d a r d elli pti c al v a ri a bl e s X ∼
E C p (0 , ) wit h r a n k ( ) = d, t h e r a n d o m v a ri a bl e
X ∞ = m a x j |X j | s atis fi e s t h at f o r a n y fi x e d δ > 0 ,

li m
p ,d → ∞

P X ∞ / u d (1 − p − 2 /( d − 1 ) ) > 1 + δ = 0 .

(III. 3)

2) ( R e X  B o u n d f o r  D e g e n e r at e  G a u ssi a n  Ve ct o r s )
I n p a rti c ul a r, f o r a n y v e ct o r of p st a n d a r d  G a u ssi a n
v a ri a bl e s X ∼ N p (0 , ) wit h r a n k ( ) = d, t h e r a n d o m
v a ri a bl e X ∞ = m a x j |X j | s atis fi e s t h at f o r a n y fi x e d
δ > 0 ,

li m
p ,d → ∞

P X ∞ / d (1 − p − 2 /( d − 1 ) ) > 1 + δ = 0 .

(III. 4)

If f u rt h e r d = d ( p ) wit h
li m p → ∞ (l o g l o g p )

2 d /( l o g p )2 → ∞ , t h e n

li m
p → ∞

P X ∞ / d (1 − p − 2 /( d − 1 ) ) ≤ 1 = 1 . (III. 5)

Si mil ar t o t h e S A B E R 1 − p − 2 /( n − 1 ) , t his b o u n d is u ni-
v er s al o v er a n y c orr el ati o n str u ct ur es of r a n k d . We als o s h o w
t h at t his b o u n d is s h ar p, a s d e s cri b e d i n S e cti o n III- B.

B.  Att ai n m e nt of t h e  R e X  B o u n d a n d
R el at e d Li miti n g  Distri b uti o n s

T h e s h ar p n e ss of t h e b o u n d i n  T h e or e m 5  w as s h o w n b y
c o n si d eri n g t h e c a s e  w h e n L j ’s i n t h e d e c o m p o siti o n (III. 2)
ar e i.i. d. u nif or ml y distri b ut e d o v er S d − 1 .
T h e o r e m 6 ( S h a r p n e ss of  R e X  B o u n d s): If L j ’s a r e i.i. d.
u nif o r ml y distri b ut e d o v er t h e (d − 1 )- s p h e r e S d − 1 , ∀ j a n d a r e
i n d e p e n d e nt of Z ∼ E C d (0 , I ), t h e n a s d → ∞ a n d p → ∞ ,

m a x
j
| L j , Z |/ u d (1 − p − 2 /( d − 1 ) )

p r o b .
− → 1 , (III. 6)

i. e., ∀ δ > 0 ,

li m
p ,d → ∞

P m a x
j
| L j , Z |/ u d (1 − p − 2 /( d − 1 )) − 1 > δ = 0 .

(III. 7)

I n p a rti c ul a r, if Z ∼ N d (0 , I ), t h e n a s d → ∞ a n d p → ∞ ,

m a x
j
| L j , Z |/ d (1 − p − 2 /( d − 1 ) )

p r o b .
− → 1 . (III. 8)

O n e r e m ar k h er e is t h at t h o u g h e a c h r e ali z ati o n of L j ’s r e s ults
i n a d e g e n er at e elli pti c all y distri b ut e d X , u n c o n diti o n all y t h e
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j oi nt distri b uti o n of X is n ot elli pti c all y distri b ut e d.  N e v ert h e-
l ess,  T h e or e m 6 s h o ws t h e e xist e n c e of c o n fi g ur ati o n s of L j
t h at att ai n s t h e b o u n d i n  T h e or e m 5.
T h e li mit i n  T h e or e m 6 i n di c at es t h e f oll o wi n g p h as e tr a n-

siti o n f or t h e e xtr e m e v al u e i n d e g e n er at e  G a u ssi a n v e ct or s,
a g ai n d e p e n di n g o n t h e li mit of l o g pd :

(i) If d → ∞ a n d li m p → ∞ l o g p / d = ∞ , t h e n

m a x j | L j , Z |/
√
d
p r o b .
− → 1 .

(ii) If li m p → ∞ l o g p / d = β f or fi x e d 0 < β < ∞ , t h e n

m a x j | L j , Z |/
√
l o g p

p r o b .
− → (1 − e − 2 β ) / β.

(iii) If li m p → ∞ l o g p / d = 0, t h e n

m a x j | L j , Z |/
√
2 l o g p

p r o b .
− → 1 .

N ot e t h at t h e f u n cti o n f ( β ) = (1 − e − 2 β ) / β is a s m o ot h
f u n cti o n f or β > 0 a n d its r a n g e is (0 , 2 ). T h u s, as t h e p h a s e
tr a nsiti o n i n S e cti o n II- B, t h e a bo v e p h a s e tr a n siti o n is s m o ot h.
M or e o v er, t h e r e gi m e (iii) i n t h e p h as e tr a n siti o n i m pli es t h at
w h e n t h e r a n k d is hi g h c o m p ar e d t o l o g p , t h e  m a xi m u m
m a g nit u d e of a d e g e n er at e  G a u ssi a n v e ct or c a n b e h a v e a s t h at
of i.i. d.  G a u ssi a n v e ct or s.
N ot e t h at b y (III. 2),  w e h a v e t h e d e c o m p o siti o n of t h e

s q u ar e d  m a xi m u m n or m

X 2
∞ = m a x

1 ≤ j ≤ p
| L j , Z |

2 = Z 22 M
2
p ,d . (III. 9)

T h u s, b y t h e r e s ults i n S e cti o n II- B,  w e als o d e v el o p t h e
f oll o wi n g r es ult o n t h e li miti n g distri b uti o n of a d e g e n er at e
elli pti c al v e ct or  w h e n L j ’s ar e i.i. d. u nif or m.
T h e o r e m 7:

1) ( Li miti n g  Dist ri b uti o n of t h e  M a xi m u m of  D e g e n e r at e
Elli pti c al  Ve ct o rs )

S u p p o s e L 1 , . . . , L p
ii d
∼ U ni f (S d − 1 ) a n d Z ∼ E C d (0 , I )

wit h
Z 22 − u d
v d

di st .
− → F ∞ f o r s o m e s e q u e n c e s ud , v d a n d

a p r o p e r r a n d o m v a ri a bl e  F ∞ . T h e n  wit h t h e c o n st a nts
a p ,d a n d b p ,d a s i n T h e o r e m 4, t h e r a n d o m v a ri a bl e
K p ,d = m a x 1 ≤ j ≤ p | L j , Z |

2 = Z 22 M
2
p ,d h a s t h e

f oll o wi n g li miti n g distri b uti o n:

a) If d is fi x e d a n d p → ∞ , t h e n  K p ,d
di st .
− → Z 22 .

b) S u p p o s e d → ∞ a n d p → ∞ .

i) If d → ∞ , p → ∞ , a n d
v d a p ,d
u d b p ,d

→ ∞ , t h e n

K p ,d − u d a p ,d
v d a p ,d

di st .
− → F ∞ .

ii) If d → ∞ , p → ∞ , a n d
v d a p ,d
u d b p ,d

→ c  wit h

0 < c < ∞ , t h e n
K p ,d − u d a p ,d
v d a p ,d

di st .
− → F ∞ +

1
c H .

w h e r e  H ∼ G u m b el (0 , 1 ), a n d  F ∞ a n d  H a r e
i n d e p e n d e nt.

iii) If d → ∞ , p → ∞ , a n d
v d a p ,d
u d b p ,d

→ 0 , t h e n

K p ,d − u d a p ,d
u d b p ,d

di st .
− → H w h e r e H ∼ G u m b el (0 , 1 ).

2) ( Li miti n g  Dist ri b uti o n of t h e  M a xi m u m of  D e g e n e r at e
G a ussi a n  Ve ct o r s )
I n p a rti c ul a r, if Z ∼ N d (0 , I ), t h e n t h e r a n d o m v a ri a bl e
K p ,d h a s t h e f oll o wi n g li miti n g distri b uti o n:

a) If d is fi x e d a n d p → ∞ , t h e n  K p ,d
di st .
− → χ 2d .

b) S u p p o s e d → ∞ a n d p → ∞ .

i) If d → ∞ , p → ∞ , a n d (l o g p )2 / d → ∞ , t h e n
K p ,d − d a p ,d√
2 d a p ,d

di st .
− → G w h e r e G ∼ N (0 , 1 ).

ii) If d → ∞ , p → ∞ , a n d (l o g p )2 / d → c  wit h

0 < c < ∞ , t h e n
K p ,d − d a p ,d√
2 d a p ,d

di st .
− → G + 1√

2 c
H w h e r e

G ∼ N (0 , 1 ), H ∼ G u m b el (0 , 1 ), a n d  G a n d  H
a r e i n d e p e n d e nt.

iii) If d → ∞ , p → ∞ , a n d (l o g p )2 / d → 0 , t h e n
K p ,d − d a p ,d
d b p ,d

di st .
− → H w h e r e H ∼ G u m b el (0 , 1 ).

T h e or e m 7 c h ar a ct eri z es t h e li miti n g distri b uti o n of t h e
s q u ar e d  m a xi m u m n or m of d e g e n er at e elli pti c al v e ct or s f or
t h e e ntir e s c o p e of t h e r a n k.  T h e li miti n g distri b uti o n t a k es
o n a p h as e tr a n siti o n p h e n o m e n o n a c c or di n g t o t h e cr o ss
r ati o b et w e e n st a n d ar di zi n g c o n st a nts i n t h e c o n v er g e n c e of
t h e n or m a n d t h e c o n v er g e n c e of t h e  m a xi m al s q u ar e d i n n er
pr o d u ct.  T hi s p h e n o m e n o n i s si mil ar as t h e p h a s e tr a n siti o n s
i n t h e cl assi c al e xtr e m e v al u e t h e or y f or c orr el at e d r a n d o m
v ari a bl es [ 3 6] –[ 3 8].  W h e n Z is st a n d ar d  G a u ssi a n distri b ut e d,
t h e li miti n g distri b uti o n c a n b e eit h er χ 2d , st a n d ar d  G a u ssi a n,
a  mi xt ur e of t h e st a n d ar d  G a u ssi a n a n d  G u m b el, or  G u m b el
d e p e n di n g o n t h e r el ati o n s hi p b et w e e n d a n d p .

I V.  RE X D E T E C T I O N  O F L O W - D I M E N S I O N A L
L I N E A R D E P E N D E N C Y

I n t his s e cti o n  w e c o n si d er t h e pr o bl e m of d et e cti o n of l o w-
r a n k d e p e n d e n c y i n hi g h- di m en si o n al  G a u ssi a n d at a. S u p p o s e
w e h a v e n o b s er v ati o n s of a  G a u ssi a n v e ct or W ∈ R p w h o s e
c o v ari a n c e  m atri x h a s r a n k is r a n k ( ) = d p . O n e
c o m m o n t e c h ni q u e i n esti m ati n g d is ei g e n v al u e t hr e s h ol di n g
b a s e d o n t h e pri n ci p al c o m p o n e nt a n al y sis ( P C A).  H o w e v er,
s u c h  m et h o d s b e c o m e i n a c c ur at e  w h e n n is s m all.  M or e o v er,
st atisti c al i nf er e n c e, s u c h as t ests a n d c o n fi d e n c e i nt er v als,
a b o ut d as a p ar a m et er is n ot c o m pl et el y cl e ar.
We pr o p o s e t o a p pl y t h e r a n k- e xtr e m e ass o ci ati o n t o o bt ai n
t h e i nf or m ati o n a b o ut d .  We c o n si d er t h e f oll o wi n g g e n er ati n g
pr o c e ss of t h e d at a  m atri x W n × p fr o m a f a ct or  m o d el:

W n × p = 1 n μ
T + Z n × d L d × p T p × p + σ G n × p , (I V. 1)

w h er e μ is a fi x e d p - di m e n si o n al v e ct or, Z n × d h a s i.i. d.
N (0 , 1 ) e ntri es, L d × p h a s c ol u m n s of u nit v e ct or s, T p × p i s
a di a g o n al  m atri x  wit h p o siti v e di a g o n al el e m e nts τ 1 , . . . , τ p ,
G n × p h a s i.i. d. N (0 , 1 ) e ntri es as t h e o b s er v ati o n n ois es, a n d
σ ≥ 0 is t h e st a n d ar d d e vi ati o n of t h e n ois e. Z a n d G ar e
m ut u all y i n d e p e n d e nt s o t h at e a c h e ntr y W ij i s  m ar gi n all y
distri b ut e d as N ( μ j , τ

2
j + σ

2 ). All of t h e a b o v e v ari a bl e s ar e
n ot o b s er v e d e x c e pt f or t h e d at a  m atri x W , a n d o ur g o al is t o
e sti m at e t h e r a n k d wit h t h es e o b s er v ati o n s.
C o n v e nti o n al esti m at e of d is t hr o u g h a pr o p er t hr e s h-

ol d o v er t h e ei g e n v al u e s of t h e s a m pl e c o v ari a n c e  m atri x
of W . S u c h a n a p pr o a c h r e q uir e s t h e ei g e n v al u e s t o

b e at l e ast O ( σ 2 p
n ) f or p o ssi bl e d et e cti o n, a s s h o w n

i n [ 1 4, e q. ( 7),  T h. 1]. I n [ 1 4], t h e a ut h or s c o n si d er t h e c a s e
w h e n p = O (n ) s o t h at t his r e q uir e d  m a g nit u d e is O (1 ).
I n g e n er al, t o s et t his r e q uir e d  m a g nit u d e t o b e O (1 ) is
e q ui v al e nt t o s et σ 2 = O (

√
n / p ).

I n  w h at f oll o ws,  w e i ntr o d u c e o ur  R e X  m et h o d f or t h e i nf er-
e n c e of d b a s e d o n t h e o b s er v e d e xtr e m e v al u e s.  We c o n si d er
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b ot h t h e c a s e  w h e n t h e c ol u m n s ar e i.i. d. u nif or m u nit v e ct or s
a n d t h e g e n er al c a s e.

A. T h e  C a s e  W h e n t h e  C ol u m n s of L
Ar e i.i. d.  U nif o r m  U nit  Ve ct o rs

We fir st c o n si d er t h e c a s e  w h e n t h e c ol u m n s of L ar e
r e ali z ati o n s of i.i. d. u nif or m u nit v e ct or s o v er S d − 1 .  T o e x pl ai n
o ur  R e X  m et h o d,  w e st art  wit h t h e el e m e nt ar y n ois el ess c a s e
w h e n it is k n o w n t h at μ = 0 , σ = 0, a n d τ j = 1. I n t hi s c as e,
w e pr o p o s e t o a p pr o xi m at e t h e as y m pt oti c distri b uti o n of t h e
m a xi m al s q u ar e d e ntr y i n e a c h r o w of W b y t h at of K p ,d .
T his a p pr o xi m ati o n is p arti c ul arl y u s ef ul  w h e n n p , w h er e
o bt ai ni n g t h e s p e ctr u m i nf or m ati o n is dif fi c ult fr o m P C A
b a s e d  m et h o d s.  T h e a c c ur a c y of t h e a p pr o xi m ati o n is d u e t o
t h e f oll o wi n g t w o r e a s o n s: ( 1) t h e t h e or e m s i n S e cti o n III ar e
f or e a c h r o w of W a n d h a v e n o r e q uir e m e nt o n n ; ( 2) f or
e a c h r o w, t h e c o n diti o n σ 2 = O (

√
n / p ) i n t ur n s h o ws t h at t h e

l ar g e st  m a g nit u d e of n oi s e i n e a c h r o w of W is i n t h e or d er of
O p (
√
2 l o g p (n / p )1 / 4 ). T h u s,  w h e n n / p → 0, t his  m a g nit u d e

is o p (1 ) a n d  will n ot aff e ct t h e li miti n g distri b uti o n s.
N ot e t h at f or a l ar g e p , T h e or e m 4, t h e χ 2d distri b uti o n, a n d

t h e g e n er ali z e d e xtr e m e v al u e di stri b uti o n [ 3 7] i m pl y t h at

E [ M 2p ,d ] = E [m a x
j
| L j , U |

2 ]

∼ m p ,d : = a p ,d +
d − 1

2
(1 − (1 + 2 /( d − 1 )))b p ,d

Va r [ M 2p ,d ] ∼ v p ,d : =
(d − 1 )2 b 2p ,d

4
(1 + 4 /( d − 1 ))

− (1 + 2 /( d − 1 ))2 (I V. 2)

w h er e a p ,d a n d b p ,d ar e a s i n  T h e or e m 4.  T h u s, t hr o u g h (III. 9)
a n d  T h e or e m 6:

E [ K p ,d ] ∼ E p ,d : = d m p ,d ,

Va r [ K p ,d ] ∼ V p ,d : = 2 d ( v p ,d + m
2
p ,d ) + d

2 v p ,d . (I V. 3)

S u p p o s e  w e o b s er v e n i.i. d. s a m pl es of K p ,d w hi c h ar e
d e n ot e d a s K 1 , p ,d , . . . , K n , p ,d . B y t h e c e ntr al li mit t h e or e m
w e h a v e

√
n
¯K p ,d − E p ,d

V p ,d

di st .
− → G (I V. 4)

w h er e ¯K p ,d =
1
n

n
i= 1 K i, p ,d a n d G ∼ N (0 , 1 ). A n e as y

esti m at e of d is t h u s t h e s ol uti o n of t h e e q u ati o n

¯K p ,d = E p ,d . (I V. 5)

T h e e sti m at or s fr o m t his a p pr o a c h u s u all y h a v e a ri g ht-
s k e w e d distri b uti o n, as t h e distri b uti o n of χ 2d a n d M

2
p ,n ar e

b ot h ri g ht- s k e w e d.  T o r e d u c e t h e ri g ht- s k e w n e ss i n t h e distri-
b uti o n of K p ,d , w e t a k e t h e s q u ar e-r o ot tr a n sf or m ati o n a n d u s e
t h e d elt a  m et h o d a s i n [ 4 7] t o o bt ai n t h e f oll o wi n g a p pr o xi m at e
pr o b a bilisti c st at e m e nt

P ¯K p ,d ≥ z α
V p ,d

4 n E p ,d
+ E p ,d

2

≈ 1 − α (I V. 6)

w h er e 0 < α < 1 a n d z α is t h e α - q u a ntil e of t h e st a n d ar d
G a u ssi a n distri b uti o n.  O n e t h e n s ol v es t h e i n e q u alit y

¯K p ,d ≥ z α
V p ,d

4 n E p ,d
+ E p ,d

2

(I V. 7)

i n d t o o bt ai n t h e (1 − α ) -l eft- si d e d c o n fi d e n c e i nt er v al fr o m
0 t o t hi s s ol uti o n.  T h u s, pr o b a bilit y st at e m e nt s a b o ut a n
u n k n o w n d c a n b e  m a d e.  N ot e t h at n n e e d s n ot t o b e l ar g er
t h a n d t hr o u g h o ut t his a p pr o a c h.
A n ot h er a d v a nt a g e of t h e pr o p o s e d i nf er e n c e  m et h o d is t h e
s p e e d.  N ot e t h at t hr o u g h t h e r a n k- e xtr e m e a p pr o a c h, t h er e is
n o n e e d of  m atri x  m ulti pli c ati o n s.  B y q ui c kl y c h e c ki n g t h e
m a xi m al e ntr y i n e a c h r o w,  w e  m a y g et a g o o d s e n s e of
t h e r a n k as a p ar a m et er.  T h u s,  m u c h c o m p ut ati o n c o st c a n
b e s a v e d fr o m t h e r a n k- e xtr e m e a p pr o a c h, a n d t h e pr o p o s e d
i nf er e n c e  m et h o d f or d c a n b e u s e d f or a f ast d et e cti o n of a
l o w-r a n k.
W h e n t h e p ar a m et ers μ , σ , a n d τ j ’s ar e u n k n o w n,  w e  w o ul d

n e e d t o e sti m at e t h e m. Si n c e  w e ar e c o n si d eri n g t h e c a s e
w h e n n is s m all  w hil e p is l ar g e, t h e esti m ati o n of e a c h
c o m p o n e nt v ari a n c e τ 2j + σ

2 i s dif fi c ult.  H o w e v er,  w h e n it
is k n o w n t h at τ j ’s ar e e q u al t o s o m e u n k n o w n τ , w e c a n
esti m at e t h e v ari a n c e τ 2 + σ 2 b y b orr o wi n g str e n gt h fr o m all
v ari a bl es. S p e ci fi c all y,  w e pr o p o s e t h e f oll o wi n g pr o c e d ur e f or
t h e i nf er e n c e of d :
1)  C e nt er e a c h c ol u m n of W b y s u btr a cti n g t h e c ol u m n
a v er a g es.  D e n ot e t h e r es ulti n g d at a  m atri x b y W 0 .

2) St a c k t h e c ol u m n s of W 0 i nt o a n (n p ) × 1 v e ct or a n d
e sti m at e t h e c o m p o n e nt st a n d ar d d e vi ati o n

√
τ 2 + σ 2

wit h t his t h e s a m pl e st a n d ar d d e vi ati o n of t his v e ct or.
D e n ot e t h e e sti m at e b y s .

3) St a n d ar di z e W 0 b y di vi di n g s . D e n ot e t h e r es ulti n g d at a
m atri x b y W s .

4)  A p pl y t h e a p pr o a c h i n t h e n ois el ess c a s e a b o v e t o W s f or
i nf er e n c e a b o ut d .

T h e a b o v e c o n si d er ati o n is als o a p pli c a bl e t o t h e sit u ati o n
w h e n t h e v ari a bl e s c a n b e gr o u p e d i nt o s e v er al bl o c k s a n d
t h e c o m p o n e nt v ari a n c e s  wit hi n e a c h bl o c k ar e cl o s e.  Tests of
e q u alit y v ari a n c es s u c h as [ 4 8] ar e  wi d el y a v ail a bl e.  We  will
st u d y t h e c as e  wit h u n e q u al v ari a n c es i n f ut ur e  w or k.

B.  G e n e r al  C a s e

I n t his s e cti o n  w e dis c u ss t h e  m u c h  m or e c h all e n gi n g
sit u ati o n  w h e n t h e c ol u m n s of L ar e g e n er al u nit v e ct or s. F or
si m pli cit y  w e r estri ct o ur s el v es i n t h e c as e  w h e n it is k n o w n
t h at μ = 0 , σ = 0, a n d τ j = 1.  We o b s er v e t h at b y t h e
d e c o m p o siti o n (III. 2),  w e h a v e t h e f oll o wi n g pr o p o siti o n:
P r o p o siti o n 8 : S u p p o s e X ∼ N p (0 , ) w h e r e h a s u nit

di a g o n als a n d r a n k ( ) = d . If t h er e e xists a c oll e cti o n of
d et er mi nisti c u nit v e ct ors L j ’s i n R

d s u c h t h at = L T L
w h e r e L = [ L 1 , . . . , L p ] a n d t h at f o r a n i n d e p e n d e nt u ni-

f or ml y distri b ut e d u nit v e ct or U ∈ R d , m a x j | L j , U |
p r o b .
− → 1

a s p → ∞ , t h e n a s  p → ∞ ,

m a x
j
|X j |

2 di st .− → χ 2d . (I V. 8)

Wit h t hi s pr o p o siti o n,  w e c o n v ert t h e i nf er e n c e a b o ut d
a s a p ar a m et er t o a si m pl e i nf er e n c e pr o bl e m o n t h e



4 5 8 0 I E E E  T R A N S A C TI O N S  O N I N F O R M A TI O N  T H E O R Y,  V O L. 6 3,  N O. 7, J U L Y 2 0 1 7

T A B L E I

P E R F O R M A N C E  O F R e X I N F E R E N C E  F O R D I F F E R E N T n ’ S  A N D d ’ S W H E N p = 8 0 0 0 I N  T H E U N I T V A R I A N C E  A N D N O I S E L E S S C A S E

d e gr e e s of fr e e d o m of a χ 2 distri b uti o n.  T h e c o n diti o n

m a x j | L j , U |
p r o b .
− → 1 is a c o n diti o n o n as p → ∞ .

It r e q uir e s t h at t h e p v e ct ors L j ’s b e “ d e n s el y ” distri b ut e d
o v er t h e u nit s p h er e i n R d a s p i n cr e a s e s, s o t h at t h e
mi ni m al a n gl e b et w e e n t h e c oll e cti o n of L j ’s a n d t h e v e ct or
U c o n v er g e s t o 0 as t h e n u m b er of p oi nts o n t h e u nit
s p h er e i n cr e a s e s.  T h e e xist e n c e of s u c h a is s h o w n b y
t h e s h ar p n e ss of t h e S A B E R.  We ar e n’t a bl e t o fi n d a  m or e
pr e cis e c o n diti o n o n t o g u ar a nt e e t h e c o n v er g e n c e as it
r el at es t o t h e c h all e n gi n g q u e sti o n of t h e o pti m al c o n fi g ur a-
ti o n of s p h eri c al c a p p a c ki n g a n d s p h eri c al c o d e, o n  w hi c h
s o m e r e c e nt d e v el o p m e nt i n cl u d e s [ 4 9].  H o w e v er, as l o n g a s
li m p → ∞ P (m a x j | L j , U |  ≥ 1 − δ ) ≥ 1 − ε f or s o m e δ a n d
ε , b y c o n diti o ni n g o n t his e v e nt, i nf er e n c e s u c h as c o n fi d e n c e
i nt er v als c a n b e  m a d e a b o ut d as a p ar a m et er.  U nf ort u n at el y,
as  m a n y c o n diti o n s i n st atisti c al lit er at ur e, n eit h er of t h es e
a b o v e c o n diti o ns c a n b e c h e c k e d i n pr a cti c e.  We  will c o nsi d er
f urt h er a n al y sis o n t his a p pr o a c h i n f ut ur e  w or k.

V. S I M U L A T I O N S T U D I E S

I n t his s e cti o n  w e st u d y t h e p erf or m a n c e of t h e  R e X
d et e cti o n of a l o w-r a n k fr o m t h e  m o d el i n S e cti o n I V- A.
We c o n si d er t w o c a s e s: ( 1) t h e c a s e  w h e n it is k n o w n t h at
μ = 0 , σ = 0, a n d τ j = 1 a n d ( 2) t h e c a s e  w h e n t h e u n k n o w n
c o m p o n e nt v ari a n c e s τ 2j = τ

2 f or s o m e u n k n o w n τ .

A.  N ois el ess  C as e

I n t his s u b s e cti o n,  w e st u d y t h e p erf or m a n c e of t h e  R e X
d et e cti o n  w h e n it is k n o w n t h at μ = 0 , σ = 0, a n d τ j = 1.
We s et p = 8 0 0 0, n t o b e fr o m { 1 0, 2 0, 3 0 }, a n d d t o b e fr o m
{1 1 , 1 6 , 2 1 }. I n t his c as e, t h e esti m ati o n of d c a n b e o bt ai n e d
b y s ol vi n g (I V. 5), a n d t h e c o n fi d e n c e i nt er v al c a n b e o bt ai n e d
b y s ol vi n g (I V. 7).  We e v al u at e t h e p erf or m a n c e of t h e  R e X
i nf er e n c e f or d wit h t w o crit eri a: ( 1) t h e s a m pl e  m e a n s q u ar e d
err or ( M S E) of t h e p oi nt e sti m at e of d w hi c h is d e fi n e d b y

M S E d =
1

N

N

k = 1

(d − d k )
2 ( V. 1)

w h er e N is t h e n u m b er of si m ul ati o n s, a n d d k is t h e e sti m at e
of d fr o m t h e k -t h si m ul at e d d at a, k = 1 , . . . , N ; a n d ( 2)
t h e c o v er a g e a n d 9 5 % u p p er b o u n d s f or d .  As a c o m p ari s o n,

w e als o st u d y t h e  M S E of a n i m p ort a nt P C A- b a s e d  m et h o d,
t h e  K N  m et h o d, pr o p o s e d i n [ 1 4] b y a p pl yi n g W t o t h e
al g orit h m p o st e d o n t h e a ut h or s’  w e b sit e.
Ta bl e I r e pr es e nts si m ul ati o n r es ults o n t h e p erf or m a n c e

of t h e  R e X i nf er e n c e f or diff er e nt n ’s a n d d ’s.  T h e r es ults
ar e b a s e d o n 1 0 0 0 si m ul at e d d at a s ets.  T h e fir st bl o c k i n t h e
t a bl e s u m m ari z es t h e  M S E of t h e  R e X esti m ati o n a n d t h e
K N e sti m ati o n.  T h e s e c o n d bl o c k s h o ws t h e a v er a g e c o v er a g e
pr o b a bilit y a n d t h e  m e a n a n d  m e di a n l e n gt h of 9 5 % l eft-
si d e d c o n fi d e n c e i nt er v als f or d .  W h e n (I V. 7) d o e s n ot h a v e a
s ol uti o n,  w e r e c or d t h e c o n fi d e n c e i nt er v al as n ot c o v eri n g d .
I n t er m s of esti m ati o n, alt h o u g h t h e  M S E of t h e  R e X

e sti m ati o n s e e m s l ar g er t h a n t h at of t h e  K N  m et h o d i n s o m e
c a s e s,  w e n oti c e d t h at i n s e v e n o ut of ni n e s c e n ari o s t h e  K N
m et h o d a ct u all y r et ur n s n − 2 as a n esti m at e of d . I n d e e d,
t h e c o n sist e n c y of t h e  K N  m et h o d is s h o w n  w h e n n a n d p
ar e l ar g e a n d c o m p ar a bl e,  w h er e a s its c o n sist e n c y is n ot
g u ar a nt e e d i n t h es e dif fi c ult sit u ati o n s  w h e n p is  m u c h l ar g er
t h a n n . I n t h e s c e n ari o s i n o ur si m ul ati o n s, t h e e sti m ati o n s
of t h e  K N  m et h o d ar e n ot c o n sist e nt a n d c a n l e a d t o s eri o u s
pr o bl e ms i n pr a cti c e, p arti c ul arl y  w h e n n < d .  O n t h e ot h er
h a n d,  w e s e e fr o m  Ta bl e I t h at t h e  M S E of t h e  R e X esti m ati o n
of d g ets b ett er as n gr o ws.  W h e n t h e  K N  m et h o d r et ur n s
b ett er esti m at es, s u c h as t h e c as es  w h e n n = 3 0 a n d d = 1 1
or d = 1 6, t h e  R e X  m et h o d h a s a  m u c h s m all er  M S E.
O n t h e p erf or m a n c e of  R e X c o n fi d e n c e i nt er v als, n ot e t h at
t h e st a n d ar d d e vi ati o n of s a m pl e pr o p orti o n of 1 0 0 0  B er n o ulli
tri als  wit h s u c c ess pr o b a bilit y 0.9 5 is a b o ut 0 .0 0 7 . T h u s,
a s c e n ari o  wit h a n a v er a g e c o v er a g e b et w e e n 0 .9 3 6 a n d 0 .9 6 4
s h o ws a s atisf a ct or y c o n fi d e n c e i nt er v al  wit h o ut b ei n g t o o li b-
er al or t o o c o n s er v ati v e.  Wit h t his crit eri o n, all  R e X c o n fi d e n c e
i nt er v als ar e s atisf a ct or y e x c e pt  w h e n n = 1 0 a n d d = 2 1.
I n t his c a s e, n ot b ei n g a bl e t o s ol v e (I V. 7) is t h e  m ai n r e a s o n
of n ot c o v eri n g d i n t his dif fi c ult sit u ati o n, s e e dis c u ssi o n s
at t h e e n d of t his s e cti o n.  T h e l e n gt h of t h e  R e X c o n fi d e n c e
i nt er v als is d e cr e asi n g as n i n cr e a s e s.  T h e  m e di a n l e n gt h s ar e
l ess t h a n t h e  m e a n l e n gt h s, s h o wi n g t h e distri b uti o n of t h e
u p p er b o u n d of c o n fi d e n c e i nt er v als is i n d e e d ri g ht- s k e w e d,
as e x p e ct e d i n S e cti o n I V- A.

B.  E q u al  V a ri a n c e  C a s e

I n t his c as e,  w e s et p = 8 0 0 0, n t o b e fr o m {1 0 , 2 0 , 3 0 },
a n d d t o b e fr o m {1 1 , 1 6 , 2 1 } as i n S e cti o n  V- A.  We s et σ
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t o b e (n / p )1 / 4 a s dis c u ss e d i n S e cti o n I V, s et μ t o b e a
r e g ul ar s e q u e n c e of l e n gt h p fr o m − 5 t o 5, a n d s et τ t o
b e 2 . Ta bl e II s h o ws t h e r e s ults b a s e d o n 1 0 0 0 si m ul at e d
d at as ets.
O n t h e esti m ati o n,  Ta bl e II s h o ws a g ai n t h e pr o bl e m of P C A

b a s e d  m et h o d s  w h e n p is  m u c h l ar g er t h a n n : t h e  K N  m et h o d
r et ur n s n − 2 f or s e v e n o ut of ni n e s c e n ari o s.  W h e n n = 3 0 a n d
d = 1 1 or d = 1 6, t h e  K N  m et h o d r et ur n s b ett er esti m at es,
b ut its  M S E is l ar g er t h a n t h at of t h e  R e X esti m ati o n.  N ot e
t h at i n t h es e t w o s c e n ari os f or t h e  K N  m et h o d as  w ell as i n
all ni n e s c e n ari o s f or t h e  R e X  m et h o d, t h e  M S E s ar e  m u c h
s m all er t h a n t h o s e i n  Ta bl e I.  O n e p o ssi bl e r e a s o n h er e is
t h e st a n d ar di z ati o n pr o c e ss. F or t h e  R e X  m et h o d, r e c all fr o m
S e cti o n I V- A t h at t h e distri b uti o n of t h e e sti m at or s c a n b e
ri g ht- s k e w e d. Si n c e t h e v ari a n c e e sti m ati o n fr o m t h e s a m pl e
u s u all y u n d er e sti m at e s τ 2 + σ 2 , t h e r o w  m a xi m u m K p ,d fr o m
st a n d ar di z e d d at a c a n oft e n b e l ar g er t h a n t h at i n t h e n ois el ess
c as e, l e a di n g t o a l ar g er esti m at e of d w hi c h off s ets t h e
ri g ht- s k e w n e ss i n t h e distri b uti o n.
O n t h e  R e X c o n fi d e n c e i nt er v als,  Ta bl e II s h o ws t h at t h e
c o v er a g e pr o b a bilit y of t h e m is 1 f or all ni n e s c e n ari o s.
Alt h o u g h t h e c o v er a g e pr o b a bilit y i s c o n s er v ati v e, t h e l e n gt h s
of i nt er v als ar e r e a s o n a bl y ti g ht.  Als o, t h e  m e di a n u p p er
b o u n d s ar e u s u all y l ess t h a n t h e  m e a n o n e s, s h o wi n g a g ai n
t h e ri g ht- s k e w n e ss.  T h e pr o bl e m of ri g ht- s k e w n e ss is  m u c h
m or e b e ni g n t h o u g h.
I n s u m m ar y, i n o ur si m ul ati o n st u di es  w h e n p is  m u c h

l ar g er t h a n n , t h e tr a diti o n al P C A b a s e d  m et h o d s s u c h a s
t h e  K N  m et h o d ( 1)  m a y h a v e a l ar g e  M S E i n esti m ati n g d ,
( 2)  m a y n ot b e a bl e t o pr o vi d e c o n fi d e n c e i nt er v als f or d ,
a n d ( 3) r e q uir e s  m atri x- wis e c al c ul ati o n.  O n t h e ot h er h a n d,
t h e  R e X i nf er e n c e ( 1) h as a s m all  M S E i n esti m ati o n,
( 2) pr o vi d e s c o n fi d e n c e i nt er v al st at e m e nts f or d , a n d ( 3)
o nl y n e e d s t o s c a n t hr o u g h t h e r o w  m a xi m a i n t h e  m atri x
a n d is t h u s f ast.  T h e s e r e s ults d e m o n str at e t h e a d v a n-
t a g e s of u si n g t h e  R e X  m et h o d f or t h e d et e cti o n of a
l o w-r a n k str u ct ur e i n hi g h di m e n si o n s  wit h a s m all s a m pl e
si z e.
T h e si m ul ati o n r es ults als o r e fl e ct s o m e iss u es of t h e  R e X

m et h o d t h at n e e d f urt h er i m pr o v e m e nts. F or e x a m pl e, f or s o m e
c as es i n  Ta bl e II, t h e  M S E of t h e  R e X  m et h o d i n cr e as es as n
i n cr e a s e s.  T hi s pr o bl e m c o ul d be r el at e d t o t h e a p pr o xi m ati o n
err or i n (I V. 3).  Al s o, t h e  R e X i nf er e n c e ar e b a s e d o n s ol uti o n s

of (I V. 5) a n d (I V. 7). S u c h e q u ati o n s  m a y n ot h a v e a s ol uti o n
i n dif fi c ult pr a cti c al sit u ati o n s ( T his h a p p e n s a b o ut 1 % of t h e
ti m e  w h e n n = 1 0 a n d d = 2 1).  Alt h o u g h t his pr o bl e m s e e m s
t o dis a p p e ar  w h e n n is a b o v e 1 0, a  m or e st a bl e al g orit h m is
n e e d e d.  We s h all i m pr o v e o ur  m et h o d i n t h es e dir e cti o n s i n
f ut ur e  w or k.

VI.  D I S C U S S I O N S

We d e v el o p a pr o b a bili sti c u p p er b o u n d f or t h e  m a xi m al
i n n er pr o d u ct b et w e e n a n y s et of u nit v e ct or s a n d a st o c h a sti-
c all y i n d e p e n d e nt u nif or ml y distri b ut e d u nit v e ct or, as  w ell
as t h e li miti n g distri b uti o ns of t h e  m a xi m al i n n er pr o d u ct
w h e n t h e s et of u nit v e ct or s ar e i.i. d. u nif or ml y distri b ut e d.
We d e m o n str at e t h e a p pli c ati o n s of t h e s e r e s ults t h e pr o bl e m s
of s p uri o u s c orr el ati o n s a n d l o w-r a n k d et e cti o n s.
We e m p h a si z e t h at  w e f o c u s o ur a s y m pt oti c t h e or y i n
t h e u nif or m-n -l ar g e- p p ar a di g m.  T his t y p e of a s y m pt oti cs
is  m oti v at e d b y t h e hi g h- di m e n si o n al-l o w- s a m pl e- si z e fr a m e-
w or k [ 4 5]  w hi c h is e m er gi n g i n  m a n y ar e a s of s ci e n c e.  T h e
pr o p o s e d p a c ki n g a p pr o a c h c a n b e e s p e ci all y u s ef ul i n t his
fr a m e w or k b e c a u s e ( 1) fi nit e- s a m pl e pr o p erti e s c a n b e st u di e d,
a n d ( 2) e xisti n g p a c ki n g lit er at ur e c a n b e a p pli e d. I n t h e
f ut ur e,  w e  will c o nti n u e t o e x pl or e t his t y p e of a s y m pt oti cs i n
m or e g e n er al sit u ati o n s. F or t h e t h e or y,  w e pl a n t o i n v esti g at e
t h e distri b uti o n of t h e  m a xi m al i n n er pr o d u cts  wit h  m or e
g e n er all y c orr el at e d L j ’s.  O n e of t h e a p pli c ati o n s of t h e
n e w t h e or y c o ul d b e a  m or e a c c ur at e d et e cti o n  m et h o d of
a l o w r a n k.  We al s o pl a n t o i m pr o v e a n d g e n er ali z e t h e
R e X d et e cti o n  m et h o d i n t h e c as e  w h e n τ j ’s ar e diff er e nt,
as  w ell as i n t h e c as e  w h e n t h e d at a ar e n ot  G a ussi a n
distri b ut e d.

A P P E N D I X A
T E C H N I C A L L E M M A S

We pr o vi d e s o m e k e y pr o of s i n t h e a p p e n di x. Pr o of s of ot h er
r es ults ar e i m m e di at e c or oll ari es of t h es e r es ults.  We st art  wit h
t h e k e y o b s er v ati o n t h at t h e di stri b uti o n of e a c h | L j , U |

2

is B et a (1 / 2 , (n − 1 ) /2 ), a s dis c u ss e d at t h e b e gi n ni n g i n
S e cti o n II- A a n d als o i n [ 4 4].  B a s e d o n t his f a ct,  w e fir st
d eri v e a l e m m a o n t h e t ail b o u n d s of t h e B et a (1 / 2 , (n − 1 ) /2 )
distri b uti o n.  T his l e m m a is pr o v e d b y i nt e gr ati o n b y p arts, a n d
t h e d et ails ar e o mitt e d.
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L e m m a 9:  F o r 0 < w ≤ 1 , w e h a v e t h e f oll o wi n g b o u n d s
f o r a n i n c o m pl et e b et a i nt e g r al:

2 ((n + 2 ) w − 1 )

(n 2 − 1 )
w − 3 / 2 (1 − w )

n − 1
2

≤
1

w
s −
1
2 (1 − s )

n − 3
2 d s

≤
2

(n − 1 )
w − 1 / 2 (1 − w )

n − 1
2 ( A. 1)

We als o fi n d a l e m m a o n t h e u nif or m c o n v er g e n c e of t h e
f u n cti o n (n − 1 )( p 2 /( n − 1 ) − 1 ). T his l e m m a is i m p ort a nt f or
t h e u nif or m c o n v er g e n c e i n t h e p a p er.  T h e pr o of is e a s y a n d
is o mitt e d.
L e m m a 1 0:  U nif o r ml y f o r a n y n ≥ 2 , a s p → ∞ ,
(n − 1 )( p 2 /( n − 1 ) − 1 ) → ∞ .
We d eri v e b el o w a l e m m a s u m m ari zi n g t h e u nif or m c o n v er-

g e n c e of st a n d ar di zi n g c o n st a nts i n t h e t h e or e m s.  T h eir pr o of s
ar e r o uti n e a n al y sis a n d ar e o mitt e d.
L e m m a 1 1:  C o n si d e r t h e s e q u e n c e s a p ,n = 1 −
p − 2 /( n − 1 ) c p ,n , bp ,n =

2
n − 1 p

− 2 /( n − 1 ) c p ,n i n T h e o r e m 4  w h er e

c p ,n =
n − 1
2 B

1
2 ,
n − 1
2 1 − p − 2 /( n − 1 )

2 /( n − 1 )
i s a c o rr e cti o n

f a ct o r.  F o r a n y fi x e d x , l et w p ,n = a p ,n + b p ,n x . We h a v e t h e
f oll o wi n g a s y m pt oti c r es ults:

1)  U nif o r ml y f o r a n y n ≥ 2 , a s  p → ∞ ,

c p ,n /
n − 1
2 B

1
2 ,
n − 1
2

2 /( n − 1 )
→ 1 , b p ,n → 0 ,

a p ,n
1 − p − 2 /( n − 1 )

→ 1 , a n d
b p ,n
a p ,n
→ 0 .

2)  U nif o r ml y f o r a n y n ≥ 2 , a s  p → ∞ ,
(n + 1 ) w p ,n
(n + 2 ) w p ,n − 1

I x ≤
n − 1
2 + I x > n − 12 → 1 .

A P P E N D I X B
P R O O F S I N S E C T I O N II

P r o of of T h e o r e m 1: T o s h o w (II. 1), n ot e t h at f or δ ≥ 1 /
( p 2 /( n − 1 ) − 1 ), (1 + δ )( 1 − p − 2 /( n − 1 ) ) ≥ 1 , t h u s t h e b o u n d
is tri vi al.  T h er ef or e, it is e n o u g h t o s h o w t h e c o n v er g e n c e
f or a n y δ t h at 0 < δ < 1 /( p 2 /( n − 1 ) − 1 ). Si mil arl y as t h e
pr o of of [ 5 0,  T h. 6. 3], b y  L e m m a 9 a n d t h e i n e q u aliti es t h at
( x + 1 / 2 ) /  ( x ) <

√
x a s i n [ 5 1],  w e h a v e

P m a x
j
| L j , U | > (1 + δ )( 1 − p − 2 /( n − 1 ) )

≤ p P | L j , U | > (1 + δ )( 1 − p − 2 /( n − 1 ) )

≤ p
2

(n − 1 ) π

(1 − (1 + δ )( 1 − p − 2 /( n − 1 ) ))(n − 1 ) /2

(1 + δ )( 1 − p − 2 /( n − 1 ) )

=
2

π ( 1 + δ )

p 1 /( n − 1 ) 1 − δ ( p 2 /( n − 1 ) − 1 )
(n − 1 ) /2

(n − 1 )( p 2 /( n − 1 ) − 1 )

≤
2

π ( 1 + δ )

p 1 /( n − 1 ) e x p − 12 δ ( n − 1 )( p
2 /( n − 1 ) − 1 )

(n − 1 )( p 2 /( n − 1 ) − 1 )

( B. 1)

T h u s, b y  L e m m a 1 0,

P m a x
j
| L j , U | > (1 + δ )( 1 − p − 2 /( n − 1 ) ) → 0

( B. 2)

a s p → ∞ r e g ar dl ess of n .
T o s e e (II. 3), n ot e t h at if li m p → ∞ n / l o g p = β > 0 , t h e n
p 1 /( n − 1 ) → e 1 / β < ∞ . T h u s  w e  m a y s et δ = 0 t o g et (II. 3).
Als o, if n → ∞ b ut n / l o g p → 0 , t h e n ( B. 1) is f urt h er

b o u n d e d b y 2
π ( n − 1 ) (1 + o (1 )). T h u s  w e h a v e (II. 3).

P r o of of T h e o r e m 3: Si n c e  w e alr e a d y h a v e t h e u p p er
b o u n d, it is e n o u g h t o s h o w t h at f or a n y fi x e d δ s u c h t h at
0 < δ < 1 / 2,

P m a x
j
| L j , U | < (1 − δ )( 1 − p − 2 /( n − 1 ) ) → 0 . ( B. 3)

B y t h e i n d e p e n d e n c e dis c u ss e d at t h e b e gi n ni n g of
S e cti o n II- B,  w e h a v e t h at f or p → ∞ ,

P m a x
j
| L j , U | < (1 − δ )( 1 − p − 2 /( n − 1 ) )

= P | L j , U | < (1 − δ )( 1 − p − 2 /( n − 1 ) )
p

≤ e x p − p P | L j , U | > (1 − δ )( 1 − p − 2 /( n − 1 ) ) .

( B. 4)

We  will l o w er- b o u n d t h e a b s ol ut e v al u e of t h e e x p o n e nt
i n ( B. 4).  B y t h e l o w er b o u n d i n  L e m m a 9 a n d t h e i n e q u alit y
t h at ( x + 1 ) /  ( x + 1 / 2 ) >

√
x + 1 / 4 as i n [ 5 1], w e h a v e

p P | L j , U | > (1 − δ )( 1 − p − 2 /( n − 1 ) )

=
p

B 1 / 2 , (n − 1 ) /2

1

(1 − δ )( 1 − p − 2 /( n − 1 ))
x − 1 / 2 (1 − x )(n − 3 ) /2 d x

≥
1

π ( 1 − δ ) 3
2 n − 3

n 2 − 1

p 1 /( n − 1 )

( p 2 /( n − 1 ) − 1 )3

· 1 + δ ( p 2 /( n − 1 ) − 1 )
(n − 1 ) /2

(1 − δ ) n ( p 2 /( n − 1 ) − 1 ) − 1

≥
2

π ( 1 − δ )

p 1 /( n − 1 ) 1 + δ ( p 2 /( n − 1 ) − 1 )
(n − 1 ) /2

n ( p 2 /( n− 1 ) − 1 )
(1 + o (1 )).

( B. 5)

I n t h e l a st st e p of ( B. 5),  w e u s e  L e m m a 1 0 a g ai n. It is n o w
e as y t o s e e t h at

p P | L j , U | > (1 − δ )( 1 − p − 2 /( n − 1 ) ) → ∞ ( B. 6)

a s p → ∞ r e g ar dl ess of t h e r at e of n = n ( p ), w hi c h
c o m pl et es t h e pr o of of  T h e or e m 3.
P r o of of T h e o r e m 4: If x ≥ (n − 1 ) /2 , t h e n a p ,n + b p ,n x ≥

1 a n d t h e r e s ult is tri vi al. F or x < ( n − 1 ) /2 , b y  L e m m a 9
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a n d  L e m m a 1 1, u nif or ml y f or a n y n ≥ 2 , as p → ∞ ,

− l o g P
M 2p ,n − a p ,n

b p ,n
< x

= − l o g{P (| L j , U |
2 < b p ,n x + a p ,n )

p }

=
2 p (1 − a p ,n − b p ,n x )

(n − 1 ) /2

B 1
2 ,
n − 1
2 (n − 1 ) a p ,n + b p ,n x

(1 + o (1 ))

=
2 p 1 − 1 + c p ,n p

− 2
(n − 1 ) − 2

n − 1 c p ,n p
− 2
(n − 1 ) x

(n − 1 )
2

B 1
2 ,
n − 1
2 (n − 1 ) a p ,n (1 + o (1 ))

(1 + o (1 ))

= 1 −
2

n − 1
x
(n − 1 ) /2

(1 + o (1 )). ( B. 7)

W h e n n → ∞ , 1 − 2
n − 1 x

(n − 1 ) /2
→ e − x , w hi c h c o n cl u d e s

t h e pr o of.

A P P E N D I X C
P R O O F S I N S E C T I O N III

P r o of of T h e o r e m 5: It is e a s y t o s h o w (III. 3) a n d (III. 4).
T o s h o w (III. 5), n ot e t h at f or a n y 0 < ε < 1,

P X ∞ / d (1 − p − 2 /( d − 1 ) ) > 1

= P Z 2 m a x
j
| L j , U |/ d (1 − p − 2 /( d − 1 )) > 1

≤ P m a x
j
| L j , U | > (1 − ε )( 1 − p − 2 /( d − 1 ) )

+ P Z 2 > (1 + ε ) d ( C. 1)

We  will s h o w e a c h of t h e t w o s u m m a n ds i n t h e l ast li n e c a n
b e  m a d e s m all  wit h a pr o p er c h oi c e of ε = ε ( p ).
B y t h e pr o of of  T h e or e m 1,  w e s e e t h at

P m a x
j
| L j , U | > (1 − ε )( 1 − p − 2 /( d − 1 ))

≤
2

π ( 1 − ε )

p 1 /( d − 1 ) e x p 1
2 ε ( d − 1 )( p

2 /( d − 1 ) − 1 )

(d − 1 )( p 2 /( d − 1 ) − 1 )
( C. 2)

N ot e als o t h at Z 22 ∼ χ
2
d .  T h u s b y t h e  C h er n off b o u n d f or

χ 2d distri b uti o n,

P Z 2 > (1 + ε ) d = P Z 22 > ( 1 + ε ) d

≤ ((1 + ε ) e − ε )d / 2

≤ e − d ε
2 / 6 ( C. 3)

D u e t o ( C. 2) a n d ( C. 3),  w e l et ε = ε ( p ) = l o g l o g p /( 4 l o g p ).

I n t h e c as e  w h e n li m p → ∞
(l o g l o g p )2 d
(l o g p ) 2

→ ∞ , b ot h

( C. 2) a n d ( C. 3) c o n v er g e t o 0.
P r o of of T h e o r e m 7: N ot e t h at,

K p ,d − u d a p ,d = M
2
p ,d ( Z

2
2 − u d ) + u d ( M

2
p ,d − a p ,d )

( C. 4)

N o w n ot e als o t h at a p ,d i s b o u n d e d a n d t h at M p ,d / a p ,d
p r o b .
− → 1.

T h er ef or e, t h e t h e or e m f oll o ws fr o m Sl uts k y’s t h e or e m b y
c h e c ki n g t h e li mit of t h e r ati o v d a p ,d a n d u d b p ,d a n d pi c ki n g
t h e o n e  wit h a l ar g er  m a g nit u d e as t h e s c ali n g f a ct or.

A C K N O W L E D G M E N T

T h e a ut h or a p pr e ci at e s t h e i n si g htf ul s u g g e sti o n s fr o m
L. D. Br o w n, A. B uj a, T. C ai, J. F a n, J. S. M arr o n, a n d
H. S h e n.  H e t h a n k s  R.  A dl er, J.  B er g er,  R.  B er k,  A.  B u d hir aj a,
E.  C a n d e s,  L. d e  H a a n, J.  G al a m b o s,  E.  G e or g e, S.  G o n g,
J.  H a n ni g,  T. Ji a n g, I. J o h n st o n e,  A.  Kri e g er,  R.  L e a d b ett er,
R. Li, D. Li n, H. Li u, J. Li u, W. Li u, Y. Li u, Z. M a, X. M e n g,
A.  M u n k,  A.  N o b el,  E. Pit ki n, S. Pr o v a n,  A.  R a k hli n,  D. S m all,
R. S o n g, J.  Xi e,  M.  Y u a n,  D.  Z e n g,  C.- H.  Z h a n g,  N.  Z h a n g,
L.  Z h a o,  Y.  Z h a o, a n d  Z.  Z h a o f or h el pf ul dis c u ssi o n s.  H e als o
t h a n k s t h e e dit or s a n d r e vi e w er s f or i m p ort a nt c o m m e nts
t h at s u b st a nti all y i m pr o v e t h e  m a n u s cri pt.  H e is p arti c ul arl y
gr at ef ul f or  L.  A. S h e p p f or his i n s piri n g i ntr o d u cti o n of t h e
r a n d o m p a c ki n g lit er at ur e.
A n y o pi ni o n s, fi n di n g s, a n d c o n cl u si o n s or r e c o m m e n d a-
ti o n s e x pr e ss e d i n t his  m at eri al ar e t h o s e of t h e a ut h or( s) a n d
d o n ot n e c ess aril y r e fl e ct t h e vi e ws of t h e  N ati o n al S ci e n c e
F o u n d ati o n.
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