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Spherical Cap Packing Asymptotics and
Rank-Extreme Detection

Kai Zhang

Abstract— We study the spherical cap packing problem with a
probabilistic approach. Such probabilistic considerations result
in an asymptotic sharp universal uniform bound on the maximal
inner product between any set of unit vectors and a stochastically
independent uniformly distributed unit vector. When the set of
unit vectors are themselves independently uniformly distributed,
we further develop the extreme value distribution limit of
the maximal inner product, which characterizes its uncertainty
around the bound. As applications of the above-mentioned
asymptotic results, we derive: 1) an asymptotic sharp universal
uniform bound on the maximal spurious correlation, as well as
its uniform convergence in distribution when the explanatory
variables are independently Gaussian distributed and 2) an
asymptotic sharp universal bound on the maximum norm of a
low-rank elliptically distributed vector, as well as related limiting
distributions. With these results, we develop a fast detection
method for a low-rank structure in high-dimensional Gaussian
data without using the spectrum information.

Index Terms— Spherical cap packing, extreme value distrib-
ution, spurious correlation, low-rank detection and estimation,
high-dimensional inference.

I. INTRODUCTION

N MODERN data analysis, datasets often contain a large
Inumber of variables with complicated dependence struc-
tures. This situation is especially common in important prob-
lems such as the relationship between genetics and cancer,
the association between brain connectivity and cognitive states,
the effect of social media on consumers’ confidence, etc.
Hundreds of research papers on analyzing such dependence
have been published in top journals and conferences proceed-
ings. For a comprehensive review of these challenges and past
studies, see [1].

One of the most important measures on the depen-
dence between variables is the correlation coefficient, which
describes their linear dependence. In the new paradigm
described above, understanding the correlation and the behav-
ior of correlated variables is a crucial problem and prompts
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data scientists to develop new theories and methods. Among
the important challenges of a large number of variables on
the correlation, we focus particularly on the following two
questions:

« The maximal spurious sample correlation in high
dimensions. The Pearson’s sample correlation coefficient
between two random variables X and Y based on n
observations can be written as

D (Xi — X)(Y; —Y)
V(X = KR (0 - 72

where X;’s and ¥;’s are the n independent and identically
distributed (i.i.d.) observations of X and Y respectively,
and X and Y are the sample means of X and Y
respectively. The sample correlation coefficient possesses
important statistical properties and was carefully stud-
ied in the classical case when the number of vari-
ables is small compared to the number of observations.
However, the situation has dramatically changed in the
new high-dimensional paradigm [1], [2] as the large
number of variables in the data leads to the failure
of many conventional statistical methods. For sample
correlations, one of the most important challenges is that
when the number of explanatory variables, p, in the data
is high, simply by chance, some explanatory variable will
appear to be highly correlated with the response variable
even if they are all scientifically irrelevant [3], [4]. Failure
to recognize such spurious correlations can lead to false
scientific discoveries and serious consequences. Thus, it is
important to understand the magnitude and distribution
of the maximal spurious correlation to help distinguish
signals from noise in a large-p situation.

« Detection of low-rank correlation structure. Detecting
a low-rank structure in a high-dimensional dataset is
of great interest in many scientific areas such as sig-
nal processing, chemometrics, and econometrics. Current
rank estimation methods are mostly developed under the
factor model and are based on the principal component
analysis (PCA) [5]-[21], where we look for the “cut-off”
among singular values of the covariance matrix when they
drop to nearly 0. These methods also usually assume
a large sample size. However, in practice often a large
number of variables are observed while the sample size
is limited. In particular, PCA based methods will fail
when the number of observations is less than the rank.
Moreover, although we may get low-rank solutions to

C(X,Y) =

(LL)
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many problems, more detailed inference on the rank as
a parameter is not very clear. Probabilistic statements on
the rank, such as confidence intervals and tests, would
provide useful information about the accuracy of these
solutions. The computation complexity of the matrix
calculations can be an additional issue in practice. In sum-
mary, it is desirable to have a fast detection and inference
method of a low-rank structure in high dimensions from
a small sample.
Our study of the above two problems starts with the following
question: Suppose p points are placed on the unit sphere sl
in R”. If we now generate a new point on S"~! according to
the uniform distribution over the sphere, how far will it be
away from these existing p points?

Intuitively, this minimal distance between the new point and
the existing p points should depend on n and p, in a manner
that it is decreasing in p and increasing in n. Yet, no matter
how these existing p points are located, this new point cannot
get arbitrarily close to the existing p points due to randomness.
In other words, for any n and p, there is an intrinsic lower
bound on this distance that the new point can get closer to the
existing points only with very small probability.

Studies of this intrinsic lower bound in the above question
have a long history under the notion of spherical cap packing,
and this question has been one of the most fundamental
questions in mathematics [22]-[24]. In fact, this question
is closely related to the 18th question on the famous list
from Hilbert [25]. This question is also a very important
problem in information theory and has been studied in coding,
beamforming, quantization, and many other areas [26]-[33].

Besides the importance in mathematics and information the-
ory, this question is closely connected to the two problems that
we propose to investigate. For instance, the sample correlation
between X and Y can be written as the inner product

~ X — X1 Y —Y1
C(X,Y)=( ——, —"), (L.2)
X — X102 1Y —Y1,]2
where X = (X,...,X,), Y = (¥1,..., V), and 1, is

the vector in R” with all ones. In general, if we observe n
i.i.d. samples from the joint distribution of (X1,...,X,,Y),
the sample correlations between X ;’s and Y can be regarded as
inner products in R” between the p unit vectors corresponding
to X;’s and another unit vector corresponding to Y. Note
that these unit vectors are all orthogonal to the vector 1,
due to the centering process. Thus, they lie on an “equator”
of the unit sphere S”~! in R”, which is in turn equivalent
to S"2. Through this connection, the problem about the
maximal spurious correlation is equivalent to the packing of
the inner products, and existing methods and results from the
packing literature can be borrowed to analyze this problem.
In this paper, we particularly focus on probabilistic statements
about such packing problems.

An important advantage of this packing perspective is a
view of data that is free of an increasing p. Suppose we
view the data as n points in a p-dimensional space, then if
p exceeds n, all the n points will lie on a low-dimensional
hyperplane in R”. This degeneracy forces us to change the
methodology towards statistical problems, i.e., changing from
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the classical statistical methods to recent high-dimensional
methods [34], [35]. However, if we view the data as p vectors
in R”, then we will never have such a degeneracy problem.
No matter how large p is, a packing problem is always
a well-defined packing problem. Neither the theory nor the
methodology needs to be changed due to an increase in p.
Thus, with the packing perspective, theory and methodology
can be set free from the restriction of an increasing p.

We summarize below our results on the asymptotic theories
of the maximal inner products and spurious correlations. One
major advantage of the packing approach is that instead of
usual iterative asymptotic results which set p = p(n) and let
n — 00, our convergence results are uniform in n, which
leads to double limits in both n and p.

« We characterize the largest magnitude of independent
inner products (or spurious correlations) through an
asymptotic bound. This bound is universal in the sense
that it holds for arbitrary distributions of L ;’s (or that of
X ;’s). This bound is uniform in the sense that it holds
asymptotically in p but is uniform over n. This bound is
sharp in the sense that it can be attained, especially when
the unit vectors L;’s are i.i.d. uniform (or when X;’s
are independently Gaussian). Thus, in an analogy, this
bound is to the distribution of independent inner products
(or to that of spurious correlations) as the fundamental
bound ,/2Tog p is to the p-dimensional Gaussian distri-
bution [36]. We refer this bound as the Sharp Asymptotic
Bound for indEpendent inner pRoducts (or spuRious
corrElations), abbreviated as the SABER (or SABRE).

« In the special important case when the set of unit vectors
are i.i.d. uniformly distributed (or when X;’s are inde-
pendently Gaussian distributed), we show the sharpness
of the SABER (or SABRE) and describe a smooth phase
transition phenomenon of them according to the limit
of ]D%. Furthermore, we develop the limiting distrib-
ution by combing the packing approach with extreme
value theory in statistics [36], [37]. The extreme value
theory results accurately characterize the deviation from
the observed maximal magnitude of independent inner
products (or that of spurious correlations) to the SABER
(or SABRE). One important feature of these results is
that they are not only finite sample results but also are
uniform-n-large- p asymptotics that are widely applicable
in the high-dimensional paradigm.

The spherical cap packing asymptotics can be also applied
to the problem of the detection of a low-rank linear depen-
dency. For this problem, we observe that the largest magni-
tude among p standard elliptical variables is closely related
to the rank d of their correlation matrix. This is seen by
decomposing elliptically distributed random vectors into the
products of common Euclidean norms and inner products
of unit vectors in RY, thus reducing the problem to one
of spherical cap packing. As a consequence, the previous
asymptotics can be applied here. We thus obtained a uni-
versal sharp asymptotic bound for the maximal magnitude
of a degenerate elliptical distribution, as well as its limiting
distribution when the unit vectors in the decomposition are
i.i.d. uniform. Although many asymptotic bounds and limiting
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distributions on full rank maxima are well developed under
different situations (see [36]-[38] for reviews of the extensive
existing literature), we are not able to find similar theory in
literature on low-rank maxima from elliptical distributions, not
even in the special case of Gaussian distribution. We refer the
connection we found between the maximal magnitude and the
rank as the rank-extreme (ReX) association.

Based on the asymptotic results on the degenerate elliptical
distributions, we show that one can make statistical inference
on a low-rank through the distributions of the extreme value
as a statistic. One feature of this procedure is that it does not
require the spectrum information from PCA. Thus, the new
method works when n < d, when PCA based methods fail
to work. It is also computationally fast since no matrix multi-
plication is needed in the algorithm. These advantages allow
a fast detection of a low-dimensional correlation structure in
high-dimensional data.

A. Related Work

We are not able to find similar probabilistic statements
on uniform-n-large-p asymptotics. The following statistical
papers are related to the study on the maximal spurious
correlation.

« In [4], the authors obtain a result on the order of the max-
imal spurious correlations in the regime that ]"% — 0.
Through the packing approach, we derive the explicit
limiting distribution of the extreme spurious correlations
for entire scope of n and p.

« In [39], the authors develop a threshold for marginal cor-
relation screening with large p and small n. The threshold
appears in a similar form as the SABRE. We note two
major differences between the results: (1) The results
in [39] focus on the regime when 105'0 — o0 (i.e., when
the threshold converges to 1), while our asymptotic results
cover the entire scope of n and p, and the SABRE is
shown to be valid from 0 to 1; (2) we derive the explicit
limiting distribution of the maximal spurious correlation
in the most important case when the variables are i.i.d.
Gaussian.

« In [40]-[42], the minimal pairwise angles between i.i.d.
uniformly random points on spheres are considered.
A similar phase transition is described, and results on the
limiting distribution are developed. We note two major
differences between their results and ours: (1) Due to
different motivations of the research, we focus on the
marginal correlation between one response variable and
p explanatory variables. We also develop a universal
uniform bound for marginal correlations. (2) The extreme
limiting distributions in their papers are stated sepa-
rately according to if the limit of l"% is 0, a proper
constant, or co. From the packing perspective, we are
able to state the convergence in a uniform manner with
standardizing constants that are adaptive in n and p. Since
in real data, the limit of I"% is usually not known,
this uniform convergence with adaptive standardizing
constants makes the result easy to apply in practice.

« During the review process of this paper, we noticed the
results in [43] which focus on the coupling and bootstrap
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approximations of the maximal spurious correlation when

T
]"ng — 0. Again our different focus is on explicit lim-
iting distributions with adaptive standardizing constants
from the packing perspective.

We are not able to find existing literature on the rank-extreme
association. To evaluate the performance of our low-rank
detection method, we compare our method with the algorithm
in [14] which studies a similar problem. During the review
process of the paper, we also noticed recent work by [21].
The most important difference from these papers is that they
focus on the case when n and p are comparable and both
large, while we consider the case when n is small and p is
large.

B. Outline of the Paper

In Section II, we derive the asymptotic bound on the
spherical packing problem, as well as that of the maximal
spurious correlation and the related extreme value distribu-
tions. In Section III, we describe the rank-extreme association
of elliptically distributed vectors. In Section IV we develop a
fast detection method of a low-rank by using the rank-extreme
association reversely. In Section V, we study the performance
of the detection method through simulations. We conclude and
discuss future work in Section VL

II. ASYMPTOTIC THEORY OF THE SPHERICAL
CAP PACKING PROBLEM

A. The Sharp Asymptotic Bound for Independent Inner
Products (SABER) and Spurious Correlations (SABRE)

We first observe that as described in [44], when
U is uniformly distributed over Sl (L, U ~
Beta(},"5%),VL e S*!. By borrowing strength from the
packing literature [22], [26] on the total area of non-overlap
spherical caps on S"2, we develop the following theorem on
a sharp asymptotic bound for independent inner products.

Theorem 1 (Sharp Asymptotic Bound for Independent Inner
Products (SABER)): For arbitrary deterministic unit vectors
Ly,...,L, and a uniformly distributed unit vector U over
81, the random variable M,, = maxi<j<p|(L;j,U)|
satisfies that V6 > 0,

P(Mp,,, > ‘/(l +&)(1 — p—?ﬁ/(n—])))
\/ipl/(n—])exp ( — %5(,1 _ 1)(p2/(n—1) _ 1))

Va1 +8)m — D (p¥e=D —1)
Therefore, ¥é > 0, as p — o0,

. (IL1)

supP(M.l,,m > J(] + 01 — p—zf’("—l))) — 0. (IL2)

n=2

In particular, if n — oo, then we have the double limit

i /1—p=2/-1)) =
p,LIEIOOP(Mp’HS I1-p ) 1.

Theorem 1 provides an explicit answer to the question at
the beginning of Section I with a probabilistic statement:

(IL3)
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2]

Fig. 1. The SABER /1 — p=2/@=1) for 3 < n <50 and 2 < p < 100.
The SABER ranges from O to 1. The regions of the same color represent
the smooth phase transition curves lo;ng ~ B for f# > 0 as described
in Section II-B.

No matter how L ;’s are located on the unit sphere, the mag-
nitude of the inner products (or cosines of the angle) between
these p points and a uniformly random point cannot exceed
/1 — p=2/(n=1) with high probability for large p. This upper
bound on the inner products is equivalent to a lower bound
on the minimal angle between the new random point to the
existing p points.

The SABER possesses the following important properties:

1) This bound is universal in the sense that it holds for any
configuration of L;’s.

2) This bound is uniform in the sense that it holds uniformity
forn = 2.

3) This bound is sharp in the sense that it can be attained
for some configuration of L;’s, especially when L;’s
are i.i.d. uniformly distributed, as will be discussed in
Section II-B.

Thus, in an analogy, the SABER /1 — p—2/(n=1) ig to the dis-
tributions of the independent inner products as the fundamental
bound ,/21og p is to the p-dimensional Gaussian distribution.

A technical note here is that when n is finite, the fraction
% in the exponent of p can be replaced by n_zm with any
fixed integer 0 < n; < n. This change would not alter the
asymptotic result in p due to a uniform convergence in the
proof. The number n; only has an effect when the dimension
n is finite. For example, see [39] for a similar but different
bound when n is fixed. We focus on the bound /1 — p—2/(n=1)
due to its connection to the Beta (%, %) distribution. When
n — oo, all these bounds are equivalent.

Another technical note is that although Theorem 1 is for
a deterministic set of L;’s, we note here that this set of
unit vectors can be random as well. As long as L;’s are
stochastically independent of U, Theorem 1 can be applied to
random L;’s by a conditioning argument on any realization
of L;’s.

Figure 1 illustrates the SABER /1 — p=2/(n=1) in
Theorem 1 as a function of n and p. It can be seen that the
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SABER has a range of (0, 1) as an increasing function in p
and a decreasing function in n.

Due to the connection between sample correlations and
the inner products (1.2), this bound is immediately applicable
to spurious correlations. Suppose ¥ = (V1,...,Y,) records
n ii.d. samples of a Gaussian variable Y, then it is well-

known (see [44]) that ﬁ is a uniformly distributed unit

vector over S"~2. Thus, we have the following bound on the
maximal spurious correlation.

Corollary 2 (Sharp Asymptotic Bound for Spurious
Correlations (SABRE)): Suppose we observe n i.i.d. samples
of arbitrary random variables X, ..., X, and a Gaussian
variable Y that is independent of X ;’s. The maximal absolute
sample correlation Mxy = maxXi<j<p |6(Xj, Y)| satisfies
that Vé > 0, as p — oo,

supP(MXy > J(] + 01 — p—Z/("—Z))) — 0. (IL4)

n=3

In particular, if n — oo, then we have the double limit

lim P(MXY <J1— p—Zf("—Z)) =1. (IL.5)
pP.n—00

Similarly as the interpretation for the SABER, the impli-
cation of the SABRE is as follows: Uniformly for n > 3,
no matter how the p variables X1,..., X, are distributed,
the magnitude of the sample correlations between X ;’s and a
Gaussian Y cannot exceed the SABRE with high probability
for large p. Note here that in practice, the requirement of
Gaussianity of ¥ can be easily relaxed through a transforma-
tion of distributions. Since the SABRE is universal, uniform,
and sharp as the SABER, this bound provides a way to
distinguish true signals from spurious correlations. We shall
investigate this application in future work.

B. Limiting Distributions in the i.i.d. Case

In this section, we describe the asymptotics of the maximal
inner product when L ;’s are i.i.d. uniformly distributed and
the asymptotics of spurious correlations when X ;’s are inde-
pendently Gaussian distributed. We first observe that when
L ;’s are i.i.d. uniformly unit vectors over 8™, then for any
random unit vector U that is independent of L ;’s, we have the
following two properties about the inner products (L;, U}|U:

1) Conditioning on U, the variables (L;, U)|U’s are inde-
pendent since L ;’s are independent;

2) For each j, the variable |(L;, U)|?|U is distributed as
Beta (%, %) Since this conditional distribution does not
depend on U, it implies that unconditionally [{L;, U)|2
is stochastically independent of U.

From these two properties, we conclude that unconditionally,
[(Lj, U)[*s are i.i.d. Beta(}, ";") distributed. We thus show
the sharpness of the SABER and SABRE by studying the
maximum of i.i.d. Bera(%, %) variables.

Theorem 3:

1) (Sharpness of SABER)
Suppose L;’s are i.id. uniformly distributed over the
(n — 1)-sphere S"~1, then for arbitrary random unit
vector U that is independent of L;’s, uniformly for all
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n > 2, as p — 00, the random variable M, , =
max; |[(L;, U)| has the following convergence:

Mp,nf 1 — p—Z/(n—]} 'lﬂf;' 1,

ie, V6> 0, as p— oo,

supP(IM /(1 — p~ =Dy _ 11> ) — 0. (AL7)
n=2
2) (Sharpness of SABRE)
Similarly, suppose we observe n i.i.d. samples of indepen-
dent Gaussian variables X, ..., X, and an arbitrarily
distributed random variable Y that is independent of
X j’s. Consider the maximal absolute sample correlation
Mxy = maxi<j<p |C(X;, Y)|. Uniformly for all n = 3,
as p — oo, we have

b.
Myy /{1 — p~2/=2) %5 1 (IL.8)

Theorem 3 shows the sharpness of the SABER and

the SABRE. It further describes a smooth phase transition of
M, » (also Mxy) depending on the limit of logp .

n

prob.
—

(IL6)

(1) If limp_,clogp/n = oo, then Mp, 1 and

MP,H;\J l - p—zfl(ﬂ—]} ;EI; l'
(ii) If limp_,logp/n = B for fixed 0 < B < oo, then
prob.
1—e2.

My, —
(iii) If limp_,oologp/n =
b.
M, .//2Tog p/n 55 1.

Note in particular that when lim, .logp/n = 0,
the SABRE satisfies

[1— p=2/=2) = /1 — ¢=2logp/(n-2)

~/1—(1—2logp/n)
= /2log p/n. (11.9)

The rate \/2log p/n has appeared in hundreds of books and
papers and is very-well known in high-dimensional statistics
literature [35]. However, it is just a special case of the general
rate /1 — p~2/("=2)_ which is obtained through the packing
perspective. This fact demonstrates the power of this packing
approach. In Figure 1, the smooth phase transition curves
]"% ~ B are represented as regions of the same color.

Below are some geometric intuitions on why the phase
transition depends on the limit of ]"%: Note that the number
of orthants in R” is 2" and is growing exponentially in n.
Therefore, if the growth of p is faster than the exponential rate
in n, then the p unit vectors on S"~! would be so “dense”
that they would cover the sphere, making the magnitude of
the maximal inner product converging to 1; if the growth
of p is exponential in n, then there would be a constant
number (depending on the limit of 'D%) of points in each
orthant, so that the new random point would stay around some
proper angle to the existing points; if the growth of p is slower
than the exponential rate, then many orthants would be empty
of points asymptotically, thus the new random point can be
almost orthogonal to the existing points.

When L;’s are i.i.d. uniformly distributed or when X;’s
are independently Gaussian, by combining the results in

prob.

0, then M,, —> 0 and
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packing literature [22], [26] and classical extreme value
theory [36], [37], we further develop the following uniform
convergence in distribution of the corresponding maxima.
Theorem 4:
1) (Limiting Distribution of the Maximal Independent
Inner Product)
Suppose L ;’s are i.i.d. uniformly unit vectors over sl
For arbitrary random unit vector U that is independent
of L;’s, consider Mp , = maxi<j<p [(Lj, U})|. Let

2 w1
—p " ey,

where ¢, = ("_EIB(%, ﬂgl)mﬁl(n—l} is

a correction factor with B(s,t) being the Beta function.
Then for any fixed x, as p — oo,
su n—1

3 2

M: —a
p(M - x) _ ;(x N
n=2 bp,rz
) (n—1)/2 1
—expl —|1——=x I xg—n — 0.
n—1 2
(I.10)

In particular, if n — oo and p — oo, then for any fixed
x, we have the double limit

apn=1—p " Dep, bpn=

M2 —a
P(M < x) —exp(—e). (IL11)

bp,n
2) (Limiting Distribution of the Maximal Spurious

Correlation)

Similarly, suppose we observe n ii.d. samples of inde-
pendent Gaussian variables X, ...,X, and an arbi-
trarily distributed random variable Y that is independent
of Xj’s. Consider the maximal absolute sample correla-
tion Myy = maxi<j<p |C(X;, Y)|. Then for any fixed x,

as p — oo,
M%, —apn_ n—2

sup P(M <x)—1(x> )

n=3 bp,n—l 2

(n=2)/2 —
—exp(—(]—%x) )I(IERTZ)|—>O.
n_

(IL12)

In particular, if n — o0 and p — oo, then for any
fixed x, we have the double limit

2
P(M < x) —exp(—e™). (IL13)
bp,n—]

Theorem 4 characterizes the uncertainty of the maximal
independent inner product and the maximal spurious cor-
relation from the SABER and SABRE respectively. This
result possesses the following desirable properties for practice:
(1) The convergence of My, (Mxy) is uniform for n > 2
(n = 3) and is applicable provided the dataset contains
two (three) observations. This uniformity over n is due to
the packing perspective. (2) The convergence is arbitrary
for any distribution of ¥. This arbitrariness results from the
invariance property of the uniform distribution over the sphere.
(3) The convergence is adaptive to the number of variables p:
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Despite the phase transition phenomenon, the normalizing con-
stants ap, , and b, , adaptively adjust themselves for different
n and p to guarantee a good approximation to a proper limiting
distribution. (4) Instead of the “curse of dimensionality,” the
convergence is a “blessing of dimensionality”: The larger p
is, the better the approximation is. These properties make
the result widely applicable in the high-dimension-and-low-
sample size situations.

We also remark here that for statistical applications,
although in principle the empirical distribution of Myy can
be simulated based on the Gaussian assumptions, in a large-p
situation, for example p = 10', such simulation can incur
extremely high time and computation cost. On the other hand,
these quantiles can be easily obtained through the formulas
of ap , and by , for an arbitrary large p. Indeed, in modern
data analysis, it is more and more often to encounter datasets
with a number of variables in millions, billions, or even larger
scales [45]. The uniform-n-large- p type asymptotics presented
in this paper can be especially useful in these situations.

III. RANK-EXTREME ASSOCIATION OF
DEGENERATE ELLIPTICAL VECTORS

A. Rank-Extreme Bound of Degenerate Elliptical Vectors

In this section we consider the maximal magnitude of an
elliptically distributed vector. A p-dimensional random vector
V is said to be elliptically distributed and is denoted as V ~
EC, (£, ©) if its density f(v) satisfies that

f) xg(@—8T0 1(v—2¢)

for some continuous integrable function g(-) so that its isoden-
sity contours are ellipses. The family of elliptical distributions
is a generalization of multivariate Gaussian distributions and is
an important and general class of distributions in practice [46].

In this paper, we focus on an elliptical distributed vector
X ~ &Cp(0,%Y) with a covariance matrix X that has unit
diagonals. Through a packing argument, we find a functional
link between the distribution of max<j<,|X;| and the rank
of X. we thus refer this link as the rank-extreme (ReX)
association.

Below are the observations that connect these results to the
packing problem: Consider any p x p covariance matrix X
that is positive semi-definite, has ones on the diagonal, and has
rank d. Through its eigen-decomposition, we can write X =
LTL, where L = [Ly, ..., Lp]is ad x p matrix with columns
L;’s such that |[Lj[l2 = 1. Thus, we can writt X = LTZ
where Z ~ £C4(0, I). Moreover, for any Z ~ £C4(0, 1), if we
consider the spherical coordinates, then we have Z = || Z||oU
where U ~ Unif(Sd_l). Note that || Z]|; is a random variable

which depends only on d. We thus assume 2||Z |2 is a random

Z|2—uy dist. Z|; prob.
1215 —ua "1;2 “a I5% g and Y212 P00 4 where uy

variable such that .

and vy are sequences of constants that depends only on d, and
F is a proper random variable. Note also that || Z|2 and U
are independent. Based on the above consideration, we obtain

the following decomposition

(IIL1)

1 X loo :mj_lX|Xj| :l’IlJi_ile(Lj,ZH = IlzllszXI{Lj, U}
(1IL.2)
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Since the distribution of the maximal absolute inner products
max; |L;, U| is studied in Section II, we can apply these
asymptotic results to study the distribution of || X|x =
max; | X ;|. In particular, we develop the following universal
bound on a degenerate elliptically distributed vector X with
a particular case of a degenerate Gaussian vector, where
IZI13 ~ %3 with ug = d.
Theorem 5:
1) (ReX Bound for Degenerate Elliptical Vectors)
For any vector of p standard elliptical variables X ~
EC,(0,X) with rank(X) = d, the random variable
[IX|loc =max; |X;| satisfies that for any fixed 6 > 0,

lim P(||X||oof ug(l — p=2/@d=0y 5 1+c5) —0.
p,d—00
(IIL3)

2) (ReX Bound for Degenerate Gaussian Vectors)
In particular, for any vector of p standard Gaussian
variables X ~ N (0, ) with rank(X) = d, the random
variable || X ||oo = max; |X;| satisfies that for any fixed
>0,

lim P(||X||oo;,/d(1 —p2d-1) 5 14 5) —0.
p,d—00

(IIL.4)

If further d = d(p) with

lim,_, oo (log log p)zdf(log p)2 — 00, then

1imooP(||X||oo;,xd(1 — p2/d-1) < 1) — 1. (IIL5)
pP—

Similar to the SABER /1 — p—2/(n=1)_ this bound is uni-
versal over any correlation structures of rank d. We also show
that this bound is sharp, as described in Section III-B.

B. Attainment of the ReX Bound and
Related Limiting Distributions

The sharpness of the bound in Theorem 5 was shown by
considering the case when L;’s in the decomposition (II1.2)
are i.i.d. uniformly distributed over S9—1.

Theorem 6 (Sharpness of ReX Bounds): If L;’s are i.i.d.
uniformly distributed over the (d —1)-sphere Sd_[’, Vj and are
independent of Z ~ £C4(0,1), then as d — 0o and p — oo,

max |(L;, Z)|/y/ua(1 — p=2/@d=0) 2%
J

>5):0.

(TIL.7)

(1IL6)

ie, Vé > 0,

lim P(’maxHL,-,znn/ud(l—p—?ffd—'))—l
J

p,d—00

In particular, if Z ~ Ny(0,1), then as d — oo and p — o0,

max [(L;, Z)|/\/d(1 — p—zf(d—l]) nﬂ!;‘ 1.
7

One remark here is that though each realization of L ;’s results
in a degenerate elliptically distributed X, unconditionally the

(IIL.8)
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joint distribution of X is not elliptically distributed. Neverthe-
less, Theorem 6 shows the existence of configurations of L ;
that attains the bound in Theorem 5.

The limit in Theorem 6 indicates the following phase tran-
sition for the extreme value in degenerate Gaussian vectors,
again depending on the limit of Dgp

(i)If d — o0 and llmp_,oologp,’d = o0, then

prob.
max; [(Lj, Z)|/v/d —
(ii) If limp_logp/d = B for fixed 0 < B < oo, then

rob.
max; |(L;, Z)|//Iogp =2 /(1 — e=2B)/.
(iii) If  limp_ o log p/d

max; [(L;, Z)|//ZTog p =5 1.

Note that the function f(f) = (1 — e_zﬁ)fﬁ is a smooth
function for # > 0 and its range is (0, 2). Thus, as the phase
transition in Section II-B, the above phase transition is smooth.
Moreover, the regime (iii) in the phase transition implies that
when the rank 4 is high compared to log p, the maximum
magnitude of a degenerate Gaussian vector can behave as that
of i.i.d. Gaussian vectors.

Note that by (IIL.2), we have the decomposition of the
squared maximum norm

then

2 2 2342
1Xl% = llﬁﬂgpl{h, Z)I" = ZII2Mp, 4 (IIL.9)
Thus, by the results in Section II-B, we also develop the
following result on the limiting distribution of a degenerate
elliptical vector when L;’s are i.i.d. uniform.

Theorem 7:

1) (Limiting Distribution of the Maximum of Degenerate
Elliptical Vectors)

Suppose Li,..., L, “ Unif(S~') and Z ~ £C4(0, 1)
dxst

with % — Fx for some sequences u4, vg and
a proper random variable Fy. Then with the constants
ap.d and by 4 as in Theorem 4, the random variable
Kpa = maxi<j<p, (L}, Z)* = Z]3 Mg,d has the
Jfollowing limiting distribution:

a) If d is fixed and p — oo, then K4 225 || Z|12.

b) Suppose d — oo and p — oo.

i) Ifd - oco,p — oo, and ;:—‘;% — o0, then
P
Ky g—uga dist.
p.d dp.d
vaap g _>‘Fm
udapd .
i) If d - oo,p — o0, and udbpg c with
K dist.
0 <c < oo, rkenwﬁﬂ,o—l— 2H.

g
where H ~ Gumbel(0, 1), and Foo and H are

independent.
iii) Ifd - oo,p — oo, and%}% — 0, then
%ﬂ 458 o where H ~ Gumbel (0, 1).

2) (Limiting Distribution of the Maximum of Degenerate
Gaussian Vectors)
In particular, if Z ~ Ny(0,1), then the random variable
K, 4 has the following limiting distribution:

a) If d is fixed and p — oo, then K4 ™5 »2.
b) Suppose d — oo and p — oo.
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i) Ifd - oo, p — oo, and (logp)z,’d — 00, then
M}E d”t G where G ~ N(O l)
ii) Ifd — oo, p — oo, and (log p)’/d — c with

\.l' apd
K, 4—day, 4 dist.
_P_P_ 1
0 < c¢ < oo, then 2ap G+~/_Hwhere

G~N(0,1), H~ Gumbel(O 1), and G and H
are independent.

iii) Ifd — oo, p — oo, and (log p)*/d — 0, then
Kpa—dapa dist g oo ~ Gumbel (0, 1).

_.DdeP_

Theorem 7 characterizes the limiting distribution of the
squared maximum norm of degenerate elliptical vectors for
the entire scope of the rank. The limiting distribution takes
on a phase transition phenomenon according to the cross
ratio between standardizing constants in the convergence of
the norm and the convergence of the maximal squared inner
product. This phenomenon is similar as the phase transitions
in the classical extreme value theory for correlated random
variables [36]—[38]. When Z is standard Gaussian distributed,
the limiting distribution can be either xﬁ, standard Gaussian,
a mixture of the standard Gaussian and Gumbel, or Gumbel
depending on the relationship between d and p.

IV. REX DETECTION OF LOW-DIMENSIONAL
LINEAR DEPENDENCY

In this section we consider the problem of detection of low-
rank dependency in high-dimensional Gaussian data. Suppose
we have n observations of a Gaussian vector W € R? whose
covariance matrix £ has rank is rank(X) = d <« p. One
common technique in estimating d is eigenvalue thresholding
based on the principal component analysis (PCA). However,
such methods become inaccurate when n is small. Moreover,
statistical inference, such as tests and confidence intervals,
about d as a parameter is not completely clear.

We propose to apply the rank-extreme association to obtain
the information about d. We consider the following generating
process of the data matrix Wy, from a factor model:

Wn.xp = lnﬂT + andexprxp + O'anp: (Iv.1)

where @ is a fixed p-dimensional vector, Z,xg has i.i.d.
N(0, 1) entries, Lgxp has columns of unit vectors, T,y is
a diagonal matrix with positive diagonal elements 7y, ..., 7p,
Guxp has iid. A(0, 1) entries as the observation noises, and
o > 0 is the standard deviation of the noise. Z and G are
mutually independent so that each entry W;; is marginally
distributed as A (u, rf + 02). All of the above variables are
not observed except for the data matrix W, and our goal is to
estimate the rank d with these observations.

Conventional estimate of 4 is through a proper thresh-
old over the eigenvalues of the sample covariance matrix
of W. Such an approach requires the eigenvalues to
be at least O(o? E) for possible detection, as shown
in [14, eq. (7), Th. 1]. In [14], the authors consider the case
when p = O(n) so that this required magnitude is O(1).
In general, to set this required magnitude to be O(1) is

equivalent to set o= O(/n/p).
In what follows, we introduce our ReX method for the infer-

ence of d based on the observed extreme values. We consider
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both the case when the columns are i.i.d. uniform unit vectors
and the general case.

A. The Case When the Columns of L
Are i.i.d. Uniform Unit Vectors

We first consider the case when the columns of L are
realizations of i.i.d. uniform unit vectors over S?~!. To explain
our ReX method, we start with the elementary noiseless case
when it is known that 4 =0, ¢ =0, and z; = 1. In this case,
we propose to approximate the asymptotic distribution of the
maximal squared entry in each row of W by that of K, 4.
This approximation is particularly useful when n < p, where
obtaining the spectrum information is difficult from PCA
based methods. The accuracy of the approximation is due to
the following two reasons: (1) the theorems in Section III are
for each row of W and have no requirement on n; (2) for
each row, the condition 2 = O(,/n/p) in turn shows that the
largest magnitude of noise in each row of W is in the order of
0,(/2Tog p(n/p)'/*). Thus, when n/p — 0, this magnitude
is 0,(1) and will not affect the limiting distributions.

Note that for a large p, Theorem 4, the X§ distribution, and
the generalized extreme value distribution [37] imply that

E[M2 ] = Elmax L, U1

d—1
~Mpdi=Adapd+ T(l—l"(l—l—Zf(d—l)))bp,d

d —1)%b?
(g(r(l +4/d—1))

Var[M}, 41 ~ vp.d i= 2

—T(1+2/d-1)*% (@IV2)
where a, 4 and b, 4 are as in Theorem 4. Thus, through (II1.9)
and Theorem 6:

E[Kp 4]~ Epg:=dmpyq,
Var[Kp al ~ Vp.d :=2d(vp.a +m3 ;) +d*vp 4. (IV.3)

Suppose we observe n ii.d. samples of K,,; which are
denoted as Kj pd,..., Ky p,d. By the central limit theorem
we have
Kpa—Epa di
\/EM @) G (IV.4)
Vp.d

where Kpg = 237 | Kipa4 and G ~ N(0,1). An easy
estimate of d is thus the solution of the equation

Kp’d = Epad (IV'S)
The estimators from this approach usually have a right-
skewed distribution, as the distribution of L% and Mf,’,, are
both right-skewed. To reduce the right-skewness in the distri-
bution of K, 4, we take the square-root transformation and use
the delta method as in [47] to obtain the following approximate
probabilistic statement
— V d
P K > p!
( pd = (ZaE 4nEp g

2
+ Ep,d) )z 1—a (IV.6)
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where 0 < a < 1 and z, is the a-quantile of the standard
Gaussian distribution. One then solves the inequality

_ | Vo 2
K,q= P L+ JE
pd = (Za 4ﬂEp,d + p,d)

in d to obtain the (1 — a)-left-sided confidence interval from
0 to this solution. Thus, probability statements about an
unknown d can be made. Note that n needs not to be larger
than d throughout this approach.

Another advantage of the proposed inference method is the
speed. Note that through the rank-extreme approach, there is
no need of matrix multiplications. By quickly checking the
maximal entry in each row, we may get a good sense of
the rank as a parameter. Thus, much computation cost can
be saved from the rank-extreme approach, and the proposed
inference method for d can be used for a fast detection of a
low-rank.

When the parameters j, ¢, and z;’s are unknown, we would
need to estimate them. Since we are considering the case
when n is small while p is large, the estimation of each
component variance 2 + o2 is difficult. However, when it
is known that z;’s are equal to some unknown z, we can
estimate the variance 72 + o2 by borrowing strength from all
variables. Specifically, we propose the following procedure for
the inference of d:

1) Center each column of W by subtracting the column

averages. Denote the resulting data matrix by Wy.

2) Stack the columns of Wy into an (np) x 1 vector and
estimate the component standard deviation /7% + o2
with this the sample standard deviation of this vector.
Denote the estimate by s.

3) Standardize Wy by dividing s. Denote the resulting data
matrix by Wj.

4) Apply the approach in the noiseless case above to W; for
inference about d.

The above consideration is also applicable to the situation
when the variables can be grouped into several blocks and
the component variances within each block are close. Tests of
equality variances such as [48] are widely available. We will
study the case with unequal variances in future work.

Iv.7)

B. General Case

In this section we discuss the much more challenging
situation when the columns of L are general unit vectors. For
simplicity we restrict ourselves in the case when it is known
that g = 0, ¢ = 0, and 7; = 1. We observe that by the
decomposition (II1.2), we have the following proposition:

Proposition 8: Suppose X ~ N,(0, X) where X has unit
diagonals and rank(X) = d. If there exists a collection of
deterministic unit vectors L;’s in R? such that T = LTL

where L. = [Ly,..., L] and that for an independent uni-
b.
Jormly distributed unit vector U € R?, max; [{L;, U}| ke |
as p — oo, then as p — 00,
max | X;[2 5 42, av.s)
i

With this proposition, we convert the inference about d
as a parameter to a simple inference problem on the
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TABLE I
PERFORMANCE OF ReX INFERENCE FOR DIFFERENT n°S AND d°S WHEN p = 8000 IN THE UNIT VARIANCE AND NOISELESS CASE

d=11 d=16 d=21
n=10 n=20 n=30 n=10 n=20 n=230 n=10 n=20 n=230
MSE of Estimation

ReX 12.40 3.97 291 38.07 12.69 8.73 73.52 47.21 22.03
KN 9.00 49.00  148.16 64.00 4.00  143.98 169.00 9.00 49.00

95% left-sided ReX Confidence Interval
Coverage 0.958 0.946 0.944 0.951 0.949 0.950 0.926 0.937 0.952
Mean Upper Bound 18.21 15.15 14.20 31.41 23.66 22.13 49.32 3574 31.01
Median Upper Bound 16.55 14.65 13.87 26.27 2234 21.48 38.11 31.38 29.30

degrees of freedom of a Xz distribution. The condition

b.
max; [(L;, U)| P%° 1 is a condition on ¥ as p — 00.

It requires that the p vectors L;’s be “densely” distributed
over the unit sphere in RY as p increases, so that the
minimal angle between the collection of L;’s and the vector
U converges to 0 as the number of points on the unit
sphere increases. The existence of such a X is shown by
the sharpness of the SABER. We aren’t able to find a more
precise condition on X to guarantee the convergence as it
relates to the challenging question of the optimal configura-
tion of spherical cap packing and spherical code, on which
some recent development includes [49]. However, as long as
lim,_ .o P (max; [(Lj, U)| = 1—4)>1— ¢ for some J and
e, by conditioning on this event, inference such as confidence
intervals can be made about d as a parameter. Unfortunately,
as many conditions in statistical literature, neither of these
above conditions can be checked in practice. We will consider
further analysis on this approach in future work.

V. SIMULATION STUDIES

In this section we study the performance of the ReX
detection of a low-rank from the model in Section IV-A.
We consider two cases: (1) the case when it is known that
i =0,0 =0,and zr; = 1 and (2) the case when the unknown

component variances rf = 72 for some unknown 7.

A. Noiseless Case

In this subsection, we study the performance of the ReX
detection when it is known that g =0, 0 =0, and 7; = 1.
We set p = 8000, n to be from {10,20,30}, and d to be from
{11, 16, 21}. In this case, the estimation of d can be obtained
by solving (IV.5), and the confidence interval can be obtained
by solving (IV.7). We evaluate the performance of the ReX
inference for d with two criteria: (1) the sample mean squared
error (MSE) of the point estimate of d which is defined by

N
1 —
MSE; = ~ 2 (d — dp)? (V.1)
k=1

where N is the number of simulations, and Ef; is the estimate
of d from the k-th simulated data, k = 1,..., N; and (2)
the coverage and 95% upper bounds for d. As a comparison,

we also study the MSE of an important PCA-based method,
the KN method, proposed in [14] by applying W to the
algorithm posted on the authors’ website.

Table I represents simulation results on the performance
of the ReX inference for different n’s and d’s. The results
are based on 1000 simulated datasets. The first block in the
table summarizes the MSE of the ReX estimation and the
KN estimation. The second block shows the average coverage
probability and the mean and median length of 95% left-
sided confidence intervals for d. When (IV.7) does not have a
solution, we record the confidence interval as not covering d.

In terms of estimation, although the MSE of the ReX
estimation seems larger than that of the KN method in some
cases, we noticed that in seven out of nine scenarios the KN
method actually returns n — 2 as an estimate of 4. Indeed,
the consistency of the KN method is shown when n and p
are large and comparable, whereas its consistency is not
guaranteed in these difficult situations when p is much larger
than n. In the scenarios in our simulations, the estimations
of the KN method are not consistent and can lead to serious
problems in practice, particularly when n < d. On the other
hand, we see from Table I that the MSE of the ReX estimation
of d gets better as n grows. When the KN method returns
better estimates, such as the cases whenn =30 and d =11
or d = 16, the ReX method has a much smaller MSE.

On the performance of ReX confidence intervals, note that
the standard deviation of sample proportion of 1000 Bernoulli
trials with success probability 0.95 is about 0.007. Thus,
a scenario with an average coverage between 0.936 and 0.964
shows a satisfactory confidence interval without being too lib-
eral or too conservative. With this criterion, all ReX confidence
intervals are satisfactory except when n = 10 and d = 21.
In this case, not being able to solve (IV.7) is the main reason
of not covering d in this difficult situation, see discussions
at the end of this section. The length of the ReX confidence
intervals is decreasing as n increases. The median lengths are
less than the mean lengths, showing the distribution of the
upper bound of confidence intervals is indeed right-skewed,
as expected in Section I'V-A.

B. Equal Variance Case

In this case, we set p = 8000, n to be from {10, 20, 30},
and d to be from {11,16,21} as in Section V-A. We set o
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TABLE II
PERFORMANCE OF ReX INFERENCE FOR DIFFERENT n°S AND d’ S WHEN p = 8000 IN THE EQUAL VARIANCE WITH NOISE CASE

d=11 d=16 d=21
n=10 n=20 n=30 n=10 n=20 n=30 n=10 n=20 n=30
MSE of Estimation

ReX 049 0.65 0.82 1.93 1.52 1.51 6.89 4.24 342
KN 9 49 3.66 64 4 124.02 169 9 49.00

95% left-sided ReX Confidence Interval
Coverage 1 1 1 1 1 1 1 1 1
Mean Upper Bound 17.74 15.87 15.18 28.10 24.27 22.84 41.43 34.03 3144
Median Upper Bound 17.70 15.83 15.18 27.77 24.21 22.76 40.35 33.56 31.32

to be (ﬂ,’p)“4 as discussed in Section IV, set p to be a
regular sequence of length p from —5 to 5, and set 7 to
be 2. Table II shows the results based on 1000 simulated
datasets.

On the estimation, Table II shows again the problem of PCA
based methods when p is much larger than n: the KN method
returns n—2 for seven out of nine scenarios. When n = 30 and
d =11 or d = 16, the KN method returns better estimates,
but its MSE is larger than that of the ReX estimation. Note
that in these two scenarios for the KN method as well as in
all nine scenarios for the ReX method, the MSEs are much
smaller than those in Table I. One possible reason here is
the standardization process. For the ReX method, recall from
Section IV-A that the distribution of the estimators can be
right-skewed. Since the variance estimation from the sample
usually underestimates 72 + o2, the row maximum K, 4 from
standardized data can often be larger than that in the noiseless
case, leading to a larger estimate of d which offsets the
right-skewness in the distribution.

On the ReX confidence intervals, Table II shows that the
coverage probability of them is 1 for all nine scenarios.
Although the coverage probability is conservative, the lengths
of intervals are reasonably tight. Also, the median upper
bounds are usually less than the mean ones, showing again
the right-skewness. The problem of right-skewness is much
more benign though.

In summary, in our simulation studies when p is much
larger than n, the traditional PCA based methods such as
the KN method (1) may have a large MSE in estimating d,
(2) may not be able to provide confidence intervals for d,
and (3) requires matrix-wise calculation. On the other hand,
the ReX inference (1) has a small MSE in estimation,
(2) provides confidence interval statements for 4, and (3)
only needs to scan through the row maxima in the matrix
and is thus fast. These results demonstrate the advan-
tages of using the ReX method for the detection of a
low-rank structure in high dimensions with a small sample
size.

The simulation results also reflect some issues of the ReX
method that need further improvements. For example, for some
cases in Table II, the MSE of the ReX method increases as n
increases. This problem could be related to the approximation
error in (IV.3). Also, the ReX inference are based on solutions

of (IV.5) and (IV.7). Such equations may not have a solution
in difficult practical situations (This happens about 1% of the
time when n = 10 and d = 21). Although this problem seems
to disappear when n is above 10, a more stable algorithm is
needed. We shall improve our method in these directions in
future work.

VI. DISCUSSIONS

We develop a probabilistic upper bound for the maximal
inner product between any set of unit vectors and a stochasti-
cally independent uniformly distributed unit vector, as well
as the limiting distributions of the maximal inner product
when the set of unit vectors are i.i.d. uniformly distributed.
We demonstrate the applications of these results the problems
of spurious correlations and low-rank detections.

We emphasize that we focus our asymptotic theory in
the uniform-n-large-p paradigm. This type of asymptotics
is motivated by the high-dimensional-low-sample-size frame-
work [45] which is emerging in many areas of science. The
proposed packing approach can be especially useful in this
framework because (1) finite-sample properties can be studied,
and (2) existing packing literature can be applied. In the
future, we will continue to explore this type of asymptotics in
more general situations. For the theory, we plan to investigate
the distribution of the maximal inner products with more
generally correlated L;’s. One of the applications of the
new theory could be a more accurate detection method of
a low rank. We also plan to improve and generalize the
ReX detection method in the case when z;’s are different,
as well as in the case when the data are not Gaussian
distributed.

APPENDIX A
TECHNICAL LEMMAS

We provide some key proofs in the appendix. Proofs of other
results are immediate corollaries of these results. We start with
the key observation that the distribution of each [(L;, U }|2
is Beta(1/2,(n — 1)/2), as discussed at the beginning in
Section II-A and also in [44]. Based on this fact, we first
derive a lemma on the tail bounds of the Beta(1/2, (n—1)/2)
distribution. This lemma is proved by integration by parts, and
the details are omitted.
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Lemma 9: For 0 < w < 1, we have the following bounds
for an incomplete beta integral:

2((n+2)w—1) iy n—1

1 _1 n=3
< s I(1—s5) T ds
w

w_lﬂ(] — w)%

S P (A1)

We also find a lemma on the uniform convergence of the
function (n — 1)(p% =Y — 1). This lemma is important for
the uniform convergence in the paper. The proof is easy and
is omitted.

Lemma 10: Uniformly for any n = 2, as p — o0,
(n — (PN — 1) - .

We derive below a lemma summarizing the uniform conver-
gence of standardizing constants in the theorems. Their proofs
are routine analysis and are omitted.

Lemma 11: Consider the sequences ap, = 1 —
p O, bpn = P | 2 p~2/@=N¢, , in Theorem 4 where
cpn = (251B(3, 251)V1 — p~2/0- ]))2/("_]) is a correction
factor. For any fixed x, let wp n = ap p + bp nx. We have the
Jollowing asymptotic results:

1) Uniformly for anymn ]) 2, as p — o0,
cpn/ ("-B(3. "F)) — 1, by — 0

b
_ Apm Bp.n
20 > 1, and apn 0.

2) Uniformly for any n = 2, as p — o0
") b 10> 1) > 1.

(n+1)w )
) n+2)wp_n—1"(x =

APPENDIX B
PROOFS IN SECTION I1

Proof of Theorem 1: To show (IL.1), note that for d > 1/
(p¥ ==Y — 1), (1 +6)(1 — p~2/@=1) > 1, thus the bound
is trivial. Therefore, it is enough to show the convergence
for any & that 0 < & < 1/(p¥ @1 —1). Similarly as the
proof of [50, Th. 6.3], by Lemma 9 and the inequalities that
I'(x +1/2)/T(x) < /x as in [51], we have

P( max |(L, U)| > ‘/(1 +6)(1 — p—Z/(n—]}))
7

= pP(I(LJ,U | > ‘/(1 +6)(1 — p~2/n— 1}))

(1= (1491 — p72/e=Dy)-br
V(A +9)(1 — p~2/(-D)

; plz‘(n—l)(l — s(p2/-1 _ 1))('1_1)/2
“Vx(+9) o= D(pY@-D 1)
\/TP”("_” exp ( — 3 — D(p¥ D - 1))
<
“Vz(1+9) Vi —1)(p¥@=D —1)

(B.1)

=p

(n— D=
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Thus, by Lemma 10,

P(max (L, ) > (1 +8)(1 — p—zf("—”)) >0
J
(B.2)

as p — oo regardless of n.

To see (I1.3), note that if lim, . n/logp = f > 0, then
p/@=1) 5 ¢/F < 0. Thus we may set = 0 to get (IL3).
Also, if n — oo but n/logp — 0, then (B.1) is further

bounded by Zﬁ(] + 0(1)). Thus we have (IL.3). (]

Proof of Theorem 3: Since we already have the upper
bound, it is enough to show that for any fixed J such that
0<d<1/2,

P(m‘slx I(Lj,U)| < J(l — 91— in"z’("‘”))—> 0. (B3)
J

By the independence discussed at the beginning of
Section II-B, we have that for p — oo,

P( max (L, U)] < \/(1 —5)(1— p—zf(n—l)))

P
- (P(HLJ, )l </ —-8a - P—Z/(n—]})))

< exp ( - pP( (L, ) > /(1 — o)1 — p—zf("—')))).
(B.4)

We will lower-bound the absolute value of the exponent
in (B.4). By the lower bound in Lemma 9 and the inequality
that T(x +1)/T'(x +1/2) > /x + 1/4 as in [51], we have

PP(l(Lj, U)| > \/(1 — 91— p—Z/(n—]}))

p 1
B(1/2,(n—1)/2) /(l_a(l_p—zm—u)

1 2n—3  pl/-D
=
Va1 -0P3VnZ—1 J(pa-D) _ )3

(14 8(p¥ @D — 1)) @=D2((1 — s)n(p =D —1)—1)

1/(n—1) 2/(n—1) _1y\(n—1)/2
L [2 PR D" o).
z(1—4) Vn(p¥ (=) — 1)

(B.5)

In the last step of (B.5), we use Lemma 10 again. It is now
easy to see that

PP(I(L,:'s U)l > \/(1 — 01— P‘M”‘”)) — 00 (B.6)

as p — oo regardless of the rate of n = n(p), which
completes the proof of Theorem 3. O

Proof of Theorem 4: If x > (n—1)/2, then ap n+bp ax >
1 and the result is trivial. For x < (n — 1)/2, by Lemma 9
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and Lemma 11, uniformly for any n > 2, as p — oo,

M?: —a
_logP(M < x)
bps"'

= —log{P(I(L, U)* < bpnx +apn)F}

2p(1 — app — by px)=1/2
_ _2P( —apn—bpn¥) (1 + o(1))

B(%= H_EI)(” —1)y/apn+bpnx

2 -2 n—1
2p(1 =14 Cpap®@D — 2 ¢, ,p@Dx
— p( P,ﬂp n—1 ps"'p ) (] +0(]))

B(%v %)(” —1Dy/apa(1+0(1))
=(1-

2
When n — oo, (l—ix

—1/2
— lx)(" 2(1 4 0(1)). (B.7)

a1 )(n_])ﬂ — e~*, which concludes
the proof. O

APPENDIX C
PROOEFES IN SECTION III

Proof of Theorem 5: 1t is easy to show (III.3) and (IIL.4).
To show (IIL.5), note that for any 0 <& < 1,

P(nxuoon/d(l — pYE@-D) > 1)
- P(Ilzllz max (L, U)|/y/d(1 — p~2/(@-D) > 1)
J

= P(maxl(Lj, U)| > ‘/(1 —e)(1 — p—Z/(d—]}))
J
+P(IIZ||2 > J/a —I—s_)d)

We will show each of the two summands in the last line can
be made small with a proper choice of £ = ¢(p).
By the proof of Theorem 1, we see that

P(mz_ax|{Lj, U)| > ‘/(1 —e)(1— p—Z/(d—]}))
J

\/Tp‘“‘f—”exp (%s(d — 1)(p¥=D — 1))
= m(l—e¢) Jd— 1) (p¥d-D —1)
(C2)

Note also that ||Z||% ~ X‘%. Thus by the Chernoff bound for

3 distribution,

P(IZl2 > V(1 +e)d) = P(IZ]5 > (1+&)d)

(C.1)

< (L +e)e)?
< ¢—d%/6 (C3)
Due to (C.2) and (C.3), we let ¢ = ¢(p) = loglog p/(41og p).
(loglog p)*d

In the case when lim,_ .o "oz — 00, both
(C.2) and (C.3) converge to 0. O
Proof of Theorem 7: Note that,

Kpa—taapa = M, (1213 — ua) + ua(M}, 4 — ap.a)
(C4)

b.
Now note also that a,, 4 is bounded and that M, 4/a, 4 5.

Therefore, the theorem follows from Slutsky’s theorem by
checking the limit of the ratio vgap, ¢ and ugb, 4 and picking
the one with a larger magnitude as the scaling factor. 0
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