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Abstract—The Cusp Catastrophe Model provides a promising 
approach for health and behavioral researchers to investigate both 
continuous and quantum changes in one modeling framework.
However, application of the model is hindered by unresolved 
issues around a statistical model fitting to the data. This paper 
reports our exploratory work in developing a new approach to 
statistical cusp catastrophe modeling. In this new approach, the 
Cusp Catastrophe Model is cast into a statistical nonlinear 
regression for parameter estimation. The algorithms of the 
delayed convention and Maxwell convention are applied to obtain 
parameter estimates using maximum likelihood estimation. 
Through a series of simulation studies, we demonstrate that (a)
parameter estimation of this statistical cusp model is unbiased,
and (b) use of a bootstrapping procedure enables efficient 
statistical inference. To test the utility of this new method, we 
analyze survey data collected for an NIH-funded project providing 
HIV-prevention education to adolescents in the Bahamas. We 
found that the results can be more reasonably explained by our 
approach than other existing methods. Additional research is 
needed to establish this new approach as the most reliable method 
for fitting the cusp catastrophe model. Further research should 
focus on additional theoretical analysis, extension of the model for 
analyzing categorical and counting data, and additional 
applications in analyzing different data types. 

Keywords—Cusp Catastrophe Model; bifurcation; 
asymmetry; bootstrapping; HIV prevention.

I. INTRODUCTION

Typically, the statistical models used to examine health 
outcomes are based on a linear regression approach. However, 
health outcomes are rarely linear because of the multiple,
complex influences of environmental, behavioral, psycho-
logical, and biological factors. What might appear to be small 
and inconsequential changes in these factors can lead to abrupt 
changes in health outcomes. Under these conditions, a linear 
approach seriously limits the predictive value of the influence 
of hypothesized factors on a particular health outcome [16]. To
account for nonlinearity in low-dimensional scenarios,
statisticians turn to natural extensions of linear regression,
which are nonparametric regression methods such as kernel  
regression or regression/smoothing splines. Other techniques 
for use with high-dimensional data include additive models, 

multivariate adaptive regression splines, random forests, neural 
networks, and support vector machine; these techniques have 
been discussed extensively elsewhere [15, 17]. However, these 
nonparametric regressions lack a mechanism to identify and 
incorporate cusp jumps; the presence of such a mechanism is 
the fundamental advantage offered by the Cusp Catastrophe 
Model.

 As a complement to traditional analytical approaches, the 
Cusp Catastrophe Model offers distinct advantages given its 
capacity to not only simultaneously handle complex linear and 
nonlinear relationships in a high-order probability density 
function but also to incorporate sudden jumps in outcome 
measures, as outlined in Zeeman [24]. Catastrophe theory was 
proposed in the 1970s [1] to understand a complicated set of 
behaviors that included gradual, continuous changes as well as 
sudden and discrete or catastrophic changes. The Cusp 
Catastrophe Model has been used extensively in a wide range 
of research, including modeling of accident process [7], 
adolescent alcohol use [9], changes in adolescent substance use 
[10], binge drinking among college students [11], sexual 
initiation among young adolescents [12, 22], nursing turnover 
[13], HIV prevention [12, 14, 23], therapy and program eval-
uation [6], and health outcomes [27].

Historically, two approaches or methods have been used 
to apply the cusp catastrophe theory in the analysis of research 
data. One method was operationalized by Guastello [6,7] using 
a polynomial regression approach (PolyCusp). The second 
method uses a stochastic differential equation Cusp Catastrophe 
Model (SDECusp) from Cobb and his colleagues [5] with 
likelihood estimation implemented in an R package [8]. This 
paper introduces the exploratory development of a third method 
that casts the Cusp Catastrophe Model in the framework of a 
statistical nonlinear regression (StatCusp). Our introduction of 
this third method allows statisticians to fit a cusp model using 
standard statistical inferences.  

To present this approach, Section II first gives an over-
view of the Cusp Catastrophe Model and then presents the 
implementation of PolyCusp and SDECusp. In Section III, we 
describe the novel development of StatCusp and present 
simulation studies to illustrate the properties of this novel 
approach. In Section IV, we show the application of StatCusp 
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to a real-world dataset. Section V provides our discussion and 
conclusions.  

II. OVERVIEW OF THE CUSP  CATASTROPHE  MODEL

A. Cusp Catastrophe Model 
Catastrophe theory was proposed in the 1970s by Thom [1] 

and popularized over the next two decades by several leading 
statisticians [1-5]. Thom [1] originally proposed the catastrophe 
theory to understand complicated phenomena that included 
both gradual, continuous change and sudden, discontinuous or 
catastrophic change. According to this theory, the presence of 
catastrophe is defined by five elements, as summarized in
Gilmore [28] and others [18-21]: 

1. bimodality (i.e., existence of two distinctly different 
behavioral modes); 

2. sudden jump (i.e., abrupt changes in outcomes between the 
two modes even with slight changes in the predictors);

3. inaccessibility (i.e., an outcome unlikely to be in the area 
between the two modes);

4. hysteresis (i.e., the change of an outcome from one mode 
to the other cannot be determined by control factors of the 
same value); and 

5. divergence (i.e., a slight change in the control factors can 
lead to substantial change in the outcome and deviation 
from the linear model).  

In summary, the Cusp Catastrophe Model would be a
particularly appropriate statistcal approach when an outcome 
measure has the properties of bimodal distribution (bimodality) 
with spurts (sudden jumps), an inaccessible  middle region 
between these two modes (inaccessibility), a delay between 
these transitions (hysteresis), and deviation  from a linear 
relationship between the response outcome measure and the 
predictors (divergence).  

Even though the Cusp Catastrophe Model has been well 
established theoretically and applied extensively in the physical 
sciences, the application of this model in the social and 
behavioral sciences has been criticized [for discussion, see 29, 
30].

To apply this theoretical model in research, the 
deterministic Cusp Catastrophe Model can be specified with 
three components: two control factors (i.e., α and β) and one 
outcome variable (i.e., z). This model is defined by a dynamic 
system: 

  ��
�� = ��(�;�,�)

��     (1)          

where the potential function V is defined as 
�(	; 
, �) = 
	 + �


 �	
 − �
� 	�  

    

In this potential function V, α is the asymmetry or normal 
control factor, and β is the bifurcation or splitting control factor. 
Both α and β are linked to determine the outcome variable z in 
a three-dimensional response surface. When the right side of 
equation (1) moves toward zero, the outcome z does not change 
with time; this status is called equilibrium. In general, the 
behavior of the outcome z (i.e., how z changes with time t) is 
complicated, but each subject moves toward equilibrium. 
Figure 1 graphically depicts the equilibrium plane that reflects 
the response surface of the outcome measure (z) at various 
combinations of the asymmetry control factor (x as the measure 
of α in Figure 1) and the bifurcation control factor (y as the 
measure of β in Figure 1).

Figure 1. Cusp Catastrophe Model for outcome z in the 
equilibrium plane with an asymmetry control variable (x as the 
measure of α) and a bifurcation control variable (y as the 
measure of β).

As shown in Figure 1, the dynamic changes in z have two 
stable regions (attractors), which are the lower area in the front 
left (lower stable region) and the upper area in the front right 
(upper stable region). Beyond these stable regions, z becomes 
sensitive to changes in x and y. This unstable region can be 
projected to the control plane (x, y) as the cusp region. The cusp 
region is characterized by line OQ (the ascending threshold) 
and line OR (the descending threshold) of the equilibrium 
surface. In this region, z becomes highly unstable with regard 
to changes in x and y, jumping between the two stable regions 
when (x, y) approaches the two threshold lines OQ and OR. In 
Figure 1, paths A, B, and C depict three typical but distinct 
pathways of change in the health outcome measure (z). Path A 
shows that in situations where y < O, a smooth relation exists 
between z and x. Path B shows that in situations when y > O, if 
x increases to reach and pass the ascending threshold link OQ, 
z will suddenly jump from the low stable region to the upper 
stable region of the equilibrium plane.  Path C shows that a
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sudden drop occurs in z as x declines to reach and pass the 
descending threshold line OR. 

The Cusp Catastrophe Model can be used with both 
qualitative and quantitative research methods to evaluate 
outcome measures (e.g., behaviors or health outcomes). The 
qualitative approach focuses on identifying the five catastrophe 
elements (i.e., catastrophe flags) outlined by Gilmore [28],
whereas the quantitative approach uses numerical data to 
statistically solve the model. Since the introduction of the Cusp 
Catastrophe Model, two quantitative approaches have been 
developed and used to implement the model: the PolyCusp 
approach and the SDECusp approach. To provide a complete 
overview of the Cusp Catastrophe Model, we briefly outline 
these two traditional approaches.   

B. PolyCusp Model 
To operationalize the Cusp Catastrophe Model for research, 

Guastello [6,7] developed the polynomial regression 
approach—the PolyCusp method—to implement the concept of 
the cusp model. Since the first publication of this method, 
PolyCusp has been widely used in analyzing research data (see 
Section I).  According to Guastello, PolyCusp is derived by 
reformulating the cusp dynamic system in Equation (1) from a
differential equation into a difference system, with change 
scores Δz = z2 – z1 (the differences in the measurement scores 
of a behavior assessed at Time 1 and Time 2) as a numerical 
approximation of dz: 

Δz = β0 + β1 z1
3 + β2 z1

2 + β3 y z1 + β4 x+ β5 y +ε    (2) 

where β0 is the intercept and ε is the normally distributed error 
term. Two additional terms, β2 × z1

2 and β5 × y, are added to the 
equation to capture potential deviations of the data from the 
equilibrium plane. When conducting a modeling analysis, a 
cusp is indicated only when the estimated β1 for the cubic term, 
plus β3 (for the interaction term) or β4 (for control variable x) in 
Equation 2 are statistically significant.  

 To demonstrate the efficiency of the PolyCusp method 
in describing behavioral changes that are cusp, Guastello [7] 
recommended a comparative approach. In this approach, two 
types and four alternative linear models are constructed and 
used in modeling the same variables: 

� Change scores linear models 
Δz = β0+β1z1+β4x+β5y     (3) 
Δz = β0+β1z1+β3yz1+β4x+β5y    (4) 

� Pre-and post- linear models 
z2 = β0+β1z1+β4x+β5y     (5)  
z2 = β0+β1z1+β3yz1+β4x+β5 y    (6) 

These alternative linear models add another analytical 
strategy to strengthen the polynomial regression method.  A 
version of the cusp model (2) with better fit to the data than the 

alternative linear models (3 thru 6) is often used as additional 
evidence to support the hypothesis that the dynamics of a study 
behavior follows the Cusp Catastrophe Model. All procedures 
for fitting Guastello's PolyCusp regression model and the four 
alternative models can be conducted with commonly available 
statistical software, including SAS, SPSS, STATA, and R. 
Further discussion and applications of theses cusp catastrophe 
modeling methods are available elsewhere [16, 21]. The
validity of the PolyCusp model has been criticized by 
Alexander et al. [31], who presented extensive simulation 
studies to demonstrate that the PolyCusp method cannot 
adequately distinguish between data from a true catastrophe 
model and data from a true linear model. Given this limitation, 
this paper does not further examine the PolyCusp method.  

C. SDECusp Model 
Another method for applying the Cusp Catastrophe Model 

in research is the stochastic differential equation approach, or 
the SDECusp method. In this approach, the deterministic cusp 
model in equation (1) is first extended with a 
probabilistic/stochastic Wiener process. With this extension, 
the modeling process incorporates measurement errors of the 
outcome variable. Under this approach, the response surface of 
the cusp catastrophe is modeled as a probability density 
function where the bimodal nature of the outcome corresponds 
to the two states of outcome variable. Mathematically, Cobb 
and his colleagues [3-5] cast the deterministic cusp model in 
Equation (1) into a stochastic differential equation (SDE) as 
follows: 

�	 =  ��(�,�,�)
�� �� + ��(�)  (7) 

where dW(t) is a white noise Wiener process with variance σ2.
This extension is in fact a special case of general stochastic 
dynamical system modeling with a constant diffusion function 
defined by dW(t). The SDECusp model in equation (7) cannot 
be solved analytically; therefore, computational implementa-
tion of SDECusp in health outcomes research is limited. 
However, at the equilibrium state when time (t) approaches 
infinity, it is easier to estimate the probability density function 
of the corresponding limiting stationary stochastic processes. In 
other words, the probability density function of the outcome 
measure (z) [19, 32] can be expressed as follows: 

�(	) = �
�� ��� ��(���)��

��(���)���
�(���)� 

�� !  (8) 

where the parameter ψ is a normalizing constant and λ is used 
to determine the origin of z. With this probability density 
function, the regression predictors α and β can be incorporated 
as linear combinations to replace the canonical asymmetry 
factor (i.e., x) and bifurcation factor (i.e., y). Note that as a 
distribution for a limiting stationary stochastic process, this 
probability density function in equation (8) is independent from 
time t, thus it can be used to model cross-sectional relationship 
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with the advantage to detect and quantify its potential cusp 
nature comprising both sudden and continuous states. 
Moreover, the probability density function allows the well-
known statistical theory of maximum likelihood to be used for 
model parameter estimation and statistical inference. R Package 
"cusp" has been developed to implement the stochastic Cusp 
Catastrophe Model [8]. 

When conducting this modeling analysis, the following 
criteria are applied to examine the difference in goodness-of-fit 
between the cusp model and the alternative linear regression 
and nonlinear logistic regression models: (a) negative log-
likelihood values and the associated likelihood-ratio Chi-square 
test with smaller negative log-likelihood values indicate better 
model fit; and the associated likelihood-ratio Chi-square test is 
defined as twice the difference of the negative log-likelihood 
values between the cusp and the linear/nonlinear logistic 
regression models with p-value < 0.05 indicating  a better fit of 
the cusp model  than either the linear or  logistic regression 
models; (b) R2 defined as  R2=1-(error variance/variance of z)
where the larger the R2, the better the model fit. Note that in 
cusp modeling, this R2 is referred to as a pseudo-R2 since the 
value could be negative; (c) Akaike information criterion (AIC) 
[33] and Bayesian information criterion (BIC) [34] where 
smaller values of AIC and/or BIC indicate better model fit; and 
(d) at least 10% of the control factor (x, y) data pairs lie within 
the bifurcation cusp region [19,35].  An alternative and more 
stringent test for this 10% guideline was proposed by 
Hartelman [19]; Hartelman et al. [36]; and van der Maas et al. 
[37] as a nonlinear least squares regression with the logistic 
curve: 

	" = �
��#$%&/'&�

+ *"   (9) 

where  i = 1, ..., n.

This SDECusp model is extremely well-suited for use with 
cross-sectional data and the R package. We have used this 
SDECusp model extensively for research and publications [16, 
12, 22, 23, 27]. However, we found that this approach is not a
viable method when using other types of data such as binary 
data and counts data. In addition, adequate methods for 
modeling longitudinal data have not yet been developed, even 
though modeling longitudinal data is required in real-world 
research applications. Therefore, extensions or different 
approaches are needed to fill this gap, which led us to develop 
the StatCusp model.  

III. THE EXPLORATORY STATCUSP MODEL

A. The Model 
We first describe the StatCusp model for continuous data as 

a conceptual model that is guided by the statistical theory of 
generalized linear models and can be extended to the analysis of 
binary data, counts data, and mixed-effects models for 
longitudinal and multi-level data. 

        Following equation (1), the StatCusp model can be 
formulated as following: 

  

	" = -" + *"    (10) 

where *" (i = 1,…,n ) are the residuals from n observations, and 
are assumed to be normally distributed as ."~0(0, 2
); Zi in 
equation (10) is one of the  real roots of the deterministic cusp 
catastrophe equation: 

  
" + �"-" − -"3 = 0   (11) 

where 
"  and �"  are two control variables. For any observed 
data with p independent variables 4��, … , �56  and the outcome 
variable 	" , the control variables 
"  and �"  are modeled as 
follows: 

  
" = 78 + 7��� + ⋯ + 75�5  (12) 

  �" = :8 + :��� + ⋯ + :5�5  (13) 

With the formulations of equations (10) to (13), a nonlinear 
regression can be used to estimate the model parameters of < =478, 7�, … , 756, > = 4:8, :�, … , :56  from equation (12) and 
(13). The residual variance 2
 can be estimated using equation 
(10) to minimize the objective function of the sum of squared 
errors (SSE). This step can be theoretically formulated as 
follows: 

  ??@(<, >|�7�7) =  ∑ (	" − -")
B"C�   (14) 

Equivalently, these model parameters can be estimated using 
maximum likelihood estimation, with the likelihood function 
formulated as follows: 

D(<, >, 2
|�7�7) =  E �
√
G�HB ��� E− ∑ (�&�I&)�J&K�
�� H (15) 

B. Special Properties for Cusp Models 
Theoretically, the StatCusp model formulated from 

equations (10) to (13) should have all the required statistical 
properties, such as being unbiased and an efficient method of 
variance estimation. However, this StatCusp model is not the 
traditional statistical model in which each combination of 
independent variables is associated with only one outcome 
value. In fact, the StatCusp model formulated here could have 
one, two, or three roots from the cusp catastrophe equation (11) 
based on the Cardan discriminant: 

  ∆= 27

 − 4�3.     (16) 

 It is clear that when ∆> 0, equation (11) has one real root. 
However, when ∆≤ 0,  equation (11) has three real roots. 
Among these three roots, there are three cases: (a) if 
 = � =
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∆= 0, the three roots are the same, which is referred as the cusp 
point (labeled O in Figure 1); (b) if ∆= 0, but 
 ≠ 0 ST � ≠0, 
two roots are the same, which forms the boundary for the cusp 
region formed by the two lines OQ and OR in Figure 1; and (c)
if ∆ < 0, and 
 ≠ 0 ST � ≠0, the three roots are distinct from 
one another, which characterizes the cusp region between OQ 
and OR as illustrated in Figure 1. Therefore, this StatCusp model 
is no longer within the traditional domain of mathematical and 
statistical modeling. Further investigations are needed to
identify the statistical properties of this StatCusp model.

 To select the correct root for modeling equation (11), the 
field proposes two modeling conventions; the delay convention
and the Maxwell convention. The delay convention is used to 
select the root from the cusp surface of ��(�;�,�)

�� = 0 in equation 
(1) that are close to the observed z. The Maxwell convention is 
used to select the roots on the cusp surface of  ��(�;�,�)

�� = 0 in 
equation (1) corresponding to the minimum of the associated 
potential function �(	; 
, �) = 
	 + �


 �	
 − �
� 	�.

C.  Monte-Carlo Simulation  
 To verify the novel StatCusp model, we designed
simulations with known parameters. Data are simulated from 
equation (10) with 2 = 0.5 and the number of observations n =
300. Two independent variables x1 and x2 are simulated 
independently from the standard normal distribution. To test 
whether the StatCusp model can correctly distinguish and 
determine the model variables, we make use of the true 
parameters of a = (2, 2, 0), b = (2, 0, 2) from equations (12) and 
(13) where a2 = 0 in equation (12) to represent the correct model 
selection of x1 from equation (12) and b1 = 0 to represent the 
correct model selection of x2 from equation (13). 

  

Data are simulated in following steps: 

1. With n = 300, simulate x1 and x2 from the standard 
normal distribution and also simulate *" from normal 
distribution with mean zero and standard deviation ϭ; 

2. With the true parameters of a = (2, 2, 0), b = (2, 0, 2) 
and the  x1 and x2 from Step 1, calculate 
" and �" from 
equations (12) and (13); 

3. With the 
" and �" from Step 2, solve equation (11) to 
obtain Zi and select the one root corresponding to the 
Maxwell convention, which is the minimum of the 
associated potential function V(Zi, 
", �");

4. With the selected Zi from Step 3, the outcome variable 
zi can be generated by using equation (10); 

5. Using the results from Steps 1 through 4 as data, the 
objective function can be formed to estimate the 
parameters a and b based on equation (14) if using 
nonlinear regression or equation (15) if using 
maximum likelihood estimation.  

 We ran these simulations steps 5,000 times and kept a record 
of the estimated parameters for investigations. The simulation 
results are summarized in Table 1. Columns in Table 1 labeled 
“Mean” and “Med” are the mean and median from the 5,000 
estimated parameters. These estimates are very close to the true 
parameters of a = (2, 2, 0) and b = (2, 0, 2), suggesting the 
estimation equation (14) is unbiased. This unbiased property is 
true for the estimates of 2
 where the mean and median from 
these 5,000 simulations are 0.501 and 0.501, respectively. This 
unbiasedness is graphically illustrated in Figure 2.  

Table 1: Summary of Simulation 1 
Mean Med EmpV EstV ECP

a0 2.0094 2.0035 0.0079 0.9525 0.3323
a1 2.0106 2.0062 0.0134 1.2496 0.2558
a2 -0.0014 -0.0009 0.0082 0.3232 0.2502
b0 2.0038 2.0016 0.0048 0.3240 0.3093
b1 -0.0069 -0.0029 0.0102 0.7649 0.2483
b2 2.0115 2.0057 0.0169 1.4016 0.2246

The column “EmpV” is the variance of estimated 
parameters from 5,000 simulations, or the sample variance, 
which are the consistent estimates of the true variance estimates 
based on the statistical theory. The column “EstV” is the 
average of the 5,000 estimated parameters from the Fisher 
information matrix, and the column “ECP” is the empirical 
coverage probability. ECP should be close to 95% if the EstV 
is close to EmpV. 

Figure 2. Distributions of simulated parameters from the 
StatCusp model. 

However, the results shown in Table 1 indicate the estimates 
of ECP for all parameters are less than 95%, which indicates 
the Fisher information matrix lacks efficiency for variance 
estimation. Figure 2 depicts this, showing that the distributions 
from the estimated parameters of a and b are highly leptokurtic. 
Therefore, a procedure to adjust the variance estimation is 
needed to validate the StatCusp model. To overcome this issue, 
we turn to a bootstrapping procedure. 
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D. Boostrapping Estimation for Variance 
Bootstrapping is commonly used in statistics to estimate 

variance when the typical Fisher information matrix is not 
correct. For variance estimation, a small number of bootstrap 
samples (i.e., from 200 to 300) are sufficient; we choose 300 in 
our simulations.  

This bootstrapping procedure is implemented with an 
additional bootstrapping step from Section III (C) as follows: 

1. With n = 300, simulate x1 and x2 from the standard 
normal distribution and also simulate *"  from normal 
distribution with mean zero and standard deviation ϭ; 

2. With the true parameters of a = (2, 2, 0), b = (2, 0, 2) 
and the  x1 and x2 from Step 1, 
" and �" are calculated 
using equations (12) and (13); 

3. With the 
" and �" from Step 2, solve equation (11) to 
obtain Zi and select the one root corresponding to the 
Maxwell convention: the minimum of the associated 
potential function V(Zi, 
", �");

4. With the selected Zi from Step 3, the outcome variable 
zi can be generated by using equation (10); 

5. With the generated data from Steps 1 to 4, the objective 
function is formulated in equation (14) if using 
nonlinear regression, or equation (15) if using 
maximum likelihood estimation to estimate a and b; 

6. (The bootstrapping step) Bootstrap the data from Step 4 
and re-run the estimation Step 5 300 times to generate a 
bootstrapping sample. The bootstrapping sample (n =
300) can be used for two purposes: (a) to estimate the 
variances (denoted by “ECP1”), and (b) to construct 
95% confidence intervals (CI) for each estimate 
(denoted by “ECP2”) from Step 5 to construct the 
empirical coverage probability.  

Table 2: Summary of Simulation 2 with Bootstrapping 
Mean Med EmpV EstV ECP1 ECP2

a0 2.023  2.014 0.037 0.059 0.980 0.988
a1 2.031 2.009 0.0614 0.098 0.977 0.980
a2 -0.014 0.002 0.0363 0.050 0.977 0.967
b0 2.005 2.009 0.0195 0.029 0.982 0.982
b1 -0.023 -0.009 0.0467 0.073 0.982 0.980
b2 2.027 2.010 0.0787 0.126 0.980 0.990

The results from this bootstrapping procedure are 
summarized in Table 2 where the column “EstV” is the 
estimated variance obtained from the 300 bootstrapping 
samples, which are much closer to the empirical variance in the 
column “EmpV”. The column “ECP1” is the coverage 
probability using the bootstrapping variance, and the “ECP2” is 
the coverage probability using the bootstrapping CI, which 
Table 2 shows are much closer to 95% than the values obtained 
without bootstrapping.  

IV. REAL DATA ANALYSIS

A. Data 
Data used to demonstrate the application of the new method 

were derived from an NIH funded project (Award #: R01 
MH069229, PI: Stanton and Chen) designed to provide HIV 
prevention education to adolescents in the Bahamas.  Students 
in Grade 9 were randomly selected to receive the intervention.
Data were collected in classroom settings using paper and 
pencil questionnaires. Data used for this analysis were collected 
when the students participating in the study advanced to Grade 
12 (n = 1,790, 40.6% male, mean age = 16.9 years, SD = 0.74).   

The outcome variable z = self-efficacy for condom use 
(mean score = 4.36, SD = 0.80). This variable was measured 
using six survey items (Cronbach alpha = 0.81). A typical item 
read, “I could convince my partner that we should use a condom 
even if he (she) doesn’t want to.”  Individual items were 
measured using a 5-point Likert scale (1 = no, not at all; 2 =
probably not; 3 = don’t know/unsure; 4 = probably yes; 5 = 
certainly yes).  Mean scores were computed for analysis, with 
higher scores indicating higher levels of self-efficacy in 
condom use.

The asymmetry variable x1 is HIV knowledge (mean = 
14.29, SD=2.39).  Student knowledge of HIV transmission and 
prevention was measured using 18 items. An example item 
read, “A woman can get HIV if she has anal sex with a man 
who has HIV.” Correct answers were scored as 1 point, with 
higher total scores indicating a higher level of HIV-related 
knowledge. The total scores had a possible range from 0 (no 
HIV knowledge) to 18 (fully knowledgeable). 

The bifurcation variable x2 = response efficacy (mean score 
= 4.36, SD = 0.88). This variable is defined as the perceived 
effectiveness of condom use in preventing HIV infection, and 
was assessed using three items (Cronbach alpha = 0.80). An 
example item is,  “Condoms are an important way to prevent 
you from getting a sexually transmitted disease (STD).” All 
three items used the same the 5-point Likert scale that ranged 
from 1 = strongly disagree, to 3 = neutral, to 5 = strongly 
agree).

In theory, as x1 or HIV knowledge increases, adolescents are 
more confident that they will use a condom during sex to 
prevent the transmission of HIV. However, this process can be 
bifurcated by x2, the response efficacy or perceived 
effectiveness of condom use. That is, when x2 is below the 
bifurcation point, the positive relationship between HIV 
knowledge and condom use self-efficacy will be continuous; 
however, when x2, the perceived condom efficacy, is greater 
than the bifurcation point, changes in condom use self-efficacy 
will manifest as a discrete process with two z values distributed 
at all (x1, x2) combination points on the cusp surface.
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B. Linear Regression Analysis 
The linear regression was used first to fit the data as in 

conventional statistical analysis.  The following are the 
modeling results: 

            Estimate   Std. Error t value Pr(>|t|)     
(Intercept) 2.876649   0.118648   24.245  < 2e-16 *** 
A(x1)       0.047284   0.007967    5.935 3.46e-09 *** 
B(x2)       0.203343   0.020204   10.065  < 2e-16 *** 
 
Residual standard error: 0.7677 on 1992 degrees of freedom 
Multiple R-squared:  0.07986,  Adjusted R-squared:  0.07894  
F-statistic: 86.45 on 2 and 1992 DF,  p-value: < 2.2e-16 
 
 Results from the multiple linear regression analysis 
indicate a positive relationship between the two predictor 
variables x1 (HIV knowledge, β = .0080, p < .01) and x2 (the 
perceived condom efficacy, β = .2033, p < .01) with the 
outcome variable z (condom use self-efficacy). R2, including 
adjusted R2 was less than 8%.   

C. SDECusp Modeling Analysis 

We modeled the same data based on the theory of the 
SDECusp model and the R package “cusp” developed by
Grasman [8]. The package can be freely downloaded and the 
description of this package can be found at http://cran.r-
project.org/web/packages/cusp/vignettes/Cusp-JSS.pdf. All 
variables were standardized before analysis based on the 
suggestion from the package. The following are the results from 
the analysis conducted using the R package “cusp”: 

               Estimate Std. Error z value Pr(>|z|)     
a[(Intercept)]  1.07607    0.04898  21.967  < 2e-16 *** 
a[tA]           0.17599    0.02574   6.839 8.00e-12 *** 
b[(Intercept)]  2.24280    0.08206  27.332  < 2e-16 *** 
b[tB]           0.21467    0.03535   6.073 1.26e-09 *** 
w[(Intercept)]  1.35941    0.02117  64.199  < 2e-16 *** 
w[tY]           0.79771    0.01286  62.038  < 2e-16 *** 
 
  Null deviance:  1.2689e+03  on 1994  degrees of freedom 
Linear deviance:  1.8348e+03  on 1991  degrees of freedom 
Logist deviance: -9.5683e-11  on 1990  degrees of freedom 
 Delay deviance:  9.7105e+02  on 1989  degrees of freedom 
 
             R.Squared logLik npar  AIC    AICc     BIC 
Linear model 0.0798  -2747.25 4   5502.51 5502.53 5524.91 
Cusp model   0.3381  -2192.024 6  4396.05 4396.09 4429.64 
 
Note: R.Squared for cusp model is Cobb's pseudo-R^2. This 
value can become negative. 
     Chi-square test of linear vs. cusp model 
     X-squared = 1110, df = 2, p-value = 0 
 

First, similar to the linear regression model presented in 
Section IV(B), results from SDECusp indicate that both the 
asymmetry variable x1 (HIV knowledge, a = .1760, p < .01) and 
the bifurcation variable x2 (perceived condom efficacy, b = 
.2147, p < .01) were highly significant in predicting the 
outcome variable z (condom use self-efficacy). Both 
coefficients were positive, which is consistent with the 
substantive theory. 

However, further review of the results indicated that the 
estimated model coefficient a1 for the asymmetry variable and 
b1 for the bifurcation variable had less difference in the 
SDECusp model (0.1760 and 0.2147) than the two 
corresponding coefficients in the linear regression model 
(0.0080 and 0.2033), as shown in Section IV(B).

Most important, the estimated R2 for the cusp modeling was 
34%, and substantially greater than the 7.8% in the linear 
regression model, indicating the superiority of the cusp model 
to the linear regression model in quantifying the relationship 
between the two predictors and the outcome variable. A Chi-
square test of linear regression model to the SDECusp model 
gave the Chi-squared as 1110 with df = 2, which yielded a p-
value < 0.0001, which also indicated a better model fit.

The estimated density distribution of the data in Figure 3 
illustrates the data point distribution, including the cusp region 
(shaded area) with the control plane (α = asymmetry, β = 
bifurcation).  Most data points (n = 1,723) were located within 
the cusp region (whose condom use self-efficacy subjects to 
rapid change), with the remaining data points (n = 272) located 
in the upper stable region (with high condom use self-efficacy);
No data points were observed in other regions.
 
 

Figure 3. Cusp region from SDECusp model fitting. 
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Figure 4. Estimated bifurcation point from the SDECusp 
modeling. 

 Based on the results of the SDECusp modeling, we re-
constructed the cusp region to the original measurement scale 
of the data (1-5) (see Figure 4). In Figure 4, the two red lines 
represent the threshold lines for sudden changes in students’ 
condom use self-efficacy.  The bifurcation point (α, β) obtained 
by backsolving from the constructed cusp region was x1 (HIV 
knowledge) = -0.97 and x2 (response efficacy) = -4.77, as shown 
in Figure 4.  However, the solved bifurcation point cannot be 
explained logically, since it is not possible for a high school 
student to suddenly believe that he or she can correctly use 
condoms during sex to prevent HIV transmission while also 
having negative HIV knowledge and negative perceptions of 
the effectiveness of condoms to prevent HIV infection.   

D. StatCusp 
When applying our StatCusp model to the same data used 

for the SDECusp modeling (with  z,  x1 and  x2 also 
standardized), the estimated residual variance is 0.982,
indicating an excellent model fit to the data. For the asymmetry 
variable, the two parameters estimated were a0 = -0.083, a1 = 
0.094 (p < .01 for both); for the bifurcation variables, the two 
parameters estimated were b0 = 1.568; b1 = 0.672 (p < .01). 

In the StatCusp model, the two predictor variables, x1 (HIV 
knowledge) and x2 (response efficacy), significantly and 
positively predicted the outcome variable z (condom use self-
efficacy): this prediction is consistent with both linear 
regression modeling and SDECusp modeling. Furthermore, as 
shown numerically, the differences in the estimated model 
coefficients between the two predictor variables in StatCusp are 
more similar to the two estimated model parameters from the 
linear regression than the from the SDECusp. 

The most exciting finding from the StatCusp model is the 
estimate of the cusp point (see Figure 5). The solid red lines in 
Figure 5 indicate the bounds of the cusp region. However, the 
estimated bifurcation point (α, β) is located at (x1 = HIV 
knowledge = 14.55, and x2 = response efficacy = 2.33), which 
is scientifically reasonable. This result suggests the following: 

1. When the response efficacy (perceived effectiveness of 
condom use for HIV prevention) is below 2.33 (slightly 
smaller than the average of 2.5), the relationship between 
HIV knowledge and condom use self-efficacy is 
continuous and gradual; students with greater HIV 
knowledge are more likely to believe that they can 
correctly use condoms during sex to prevent transmission 
of HIV.  

2. When the response efficacy is above average, increases in 
HIV knowledge might result in totally opposite results: (a) 
a sudden jump in confidence in their ability to correctly use 
condoms, or (b) remain unconfident in their ability to 
correctly use condoms, with the trigger point for the 
confidence jumps determined by the red threshold lines. 
For example, when the perceived efficacy of condoms to 
prevent HIV infection increased from 2.3 (somewhat 
ineffective) to 4.0 (somewhat effective) or 5.0 (very 
effective), students with limited HIV knowledge (i.e., 
knowledge scores less than 5) might trigger a sudden jump 
among students with low levels of confidence to become 
confident about condom use during sex. 

Figure 5. Cusp region from StatCusp model. 

V. CONCLUSIONS AND DISCUSSIONS

A. Summary  
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 Cusp catastrophe has a strong theoretical base and the 
promising results from the application of this theory in research 
make the cusp catastrophe model an extremely useful tool for 
resarchers interested in broadening the horizons of their data 
analysis [16].  Decades of past research that sought statistical 
solutions for the deterministic Cusp Catastrophe Model provide 
useful experience and insight. Such experience includes the 
development of the polynomial cusp regression approach that 
mimics a polinomial regression, as discussed in  Guastello 
[6, 7, 21]. In addition, prior research contributed the  stochastic 
cusp model that capitalizes on the power of likelihood function 
in statistics, as discussed in Cobb [3,4,5] and Grassman [8].  
However, these methods have been  challenged by theoretical 
analysis and practical application [14, 23, 24].
 This paper has illustrated the novel development of the 
statistical Cusp Catastrophe Model (i.e., StatCusp),
demonstrated the unbiasedness of the parameter estimation,
and demonstrated estimation efficiency through simulation 
studies as illustrated in Tables 1 and 2 as well as Figure 2.
Moreover, we have described an innovative use of a 
bootstrapping procedure to resolve the estimation of the 
variance, recognizing the limitations of the Fisher information 
matrix in estimating variance of model residuals.  Last, we 
applied our StatCusp method to real-world data and  compared 
the results to those obtained with other methods. This 
comparison clearly demonstrated the advantages of our 
StatCusp approach in obtaining model parameters that are 
meaningful.

B. Primary conclusions 

 Through this explorative study, we conclude that this 
research has advanced the field and previously published 
methods in several respects: 

1. Theoretical strengths: We have established the StatCusp 
method based on a nontraditional, nonlinear regression that 
capitalizes on maximum likelihood estimation. This novel 
method is the first of such endeavors with great potential 
to open a new approach to solving the Cusp Catastrophe 
Model and to promote the application of the StatCusp 
method  in practical research,

2. Supported with simulation studies: The validity of our 
novel StatCusp is supported with extensive analysis of 
simulated data. Further, this simulation analysis 
demonstrated two key points: (a) the parameter estimation 
is unbiased, and (b) the variance estimation using a
bootstrapping method is efficient.

3. Supported with real-world data: By using real study data to 
illustrate StatCusp, we demonstrated that our method 
provides reasonable estimates of the key cusp model 
parameters, particularly the bifurcation points. 

 Correct estimation of the bifurcation point is essential to 
determining the threshold lines that are critical in health and 
behavioral research. In previous studies, very few, if any, 
researchers have used empirical data to investigate the cusp 

region. Despite claims that the cusp region can be estimated 
using the SDECusp approach, our application of SDECusp with 
empirical data yielded results that could not be explained by 
data. However, when our StatCusp method is applied to 
empirical data, the results are reasonable. 

C. Future Research 

Although our studies to date have produced highly 
encouraging findings, more research is needed to fully establish 
the StatCusp method.  Theoretically, we need to further 
investigate the statistical properties of the StatCusp model that 
we have proposed.  Methodologically, we need to investigate 
why the Fisher information matrix does not provide a good 
estimate of the variance. Computationally, we need to establish 
protocols to derive a set of data-driven initial values for the 
estimation outlined in equation (14) or (15). These protocols are 
needed because although our novel StatCusp model works 
satisfactorily in model fitting, the model is sensitive to the 
initial values. Although this issue is universal in all nonlinear 
modeling methods, we need to establish an objective approach 
and a guideline to solve the sensitivity issue. We are currently 
working on a procedure with data-driven initial values, which 
will complete the StatCusp model development.

Practically, we need to test the StatCusp method with more 
data, including the standardized data such as cusp machine data 
and data from experimental research, including data used in 
previous research conducted by others as well as our own 
research. 

Last, work is also needed to expand our StatCusp model to 
the analysis of different data types, including binary data, count 
data, and longitudinal data. Such expansion of our model holds 
promise for health and behavioral research. 
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