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Abstract. We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching

of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the
well-known Matching problem in graphs, where the objective is to choose a subset of M edges in
the graph such that at most a specified number b(v) of edges in M are incident on each vertex v.
Subject to this restriction we maximize the sum of the weights of the edges in M . We prove that the
b-Suitor algorithm computes the same b-Matching as the one obtained by the Greedy algorithm
for the problem. We implement the algorithm on serial and shared-memory parallel processors and
compare its performance against a collection of approximation algorithms that have been proposed
earlier. Our results show that the b-Suitor algorithm outperforms the Greedy and locally dominant
edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has
a high degree of concurrency, and it scales well up to 240 threads on a shared-memory multiprocessor.
The b-Suitor algorithm outperforms the locally dominant edge algorithm by a factor of 14 on 16
cores of an Intel Xeon multiprocessor.
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1. Introduction. We describe a half-approximation algorithm, b-Suitor, for
computing a b-Matching of maximum weight in a graph, implement it on serial and
shared-memory parallel processors, and compare its performance against approxima-
tion algorithms that have been proposed earlier. b-Matching is a generalization of
the well-known Matching problem in graphs, where the objective is to choose a sub-
set M of edges in the graph such that at most b(v) edges in M are incident on each
vertex v, and subject to this restriction we maximize the sum of the weights of the
edges in M . (Here b(v) is a nonnegative integer.)

There has been a flurry of activity on approximation algorithms for the weighted
Matching problem in recent years, since (exact) algorithms for computing optimal
matchings, while requiring polynomial time for many problems, still are too expen-
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sive for massive graphs with close to a billion edges. These approximation algo-
rithms have nearly linear time complexity, are simple to implement, and have high
concurrency, so that effective serial and shared-memory parallel algorithms are now
available. Experimentally they compute nearly optimal matchings as well in terms
of weight.

While a few earlier papers have described exact algorithms for b-Matchings,
these again have high computational complexity and are difficult to implement effi-
ciently. We do not know of an effective program that is currently available in the
public domain. There has been much less work on approximation algorithms and
implementations for b-Matching problems. b-Matchings have been applied to a
number of problems from different domains: these include finite element mesh refine-
ment [30], median location problems [40], spectral data clustering [19], semisupervised
learning [20], etc.

Recently, Choromanski, Jebara, and Tang [3] used b-Matching to solve a data
privacy problem called Adaptive Anonymity. Given a database of n instances each
with d attributes, the Adaptive Anonymity problem asks for the fewest elements to
mask so that each instance i will be confused with ki − 1 other instances to ensure
privacy. The problem is NP-hard, and a heuristic solution is obtained by group-
ing each instance with the specified number (or more) of other instances that are
most similar to it in the attributes. The grouping step is done by creating a com-
plete graph with the instances as the vertices and the similarity score between two
instances as the edge weight between the two vertices. Then a b-Matching of max-
imum weight is computed, where b(i) = ki − 1. The authors of [3] used a perfect
b-Matching for the grouping step in the context of an iterative algorithm for the
Adaptive Anonymity problem, but this is not guaranteed to converge because a per-
fect b-Matching might not exist for a specified set of b(i) values. In recent work,
Choromanski et al. [4] have used the b-Suitor algorithm (described here) to com-
pute an approximate b-Matching, provide an approximation bound of 2β for the
anonymity problem if there are no privacy violations, and solve the problem an order
of magnitude faster (Here β is the maximum desired level of privacy.). Moreover,
a specific variant of b-Suitor, the delayed partial scheme, reduces the space com-
plexity of Adaptive Anonymity from quadratic to linear in the number of instances.
An Adaptive Anonymity problem with a million instances and 500 features has been
solved by this approach on a Xeon processor with 20 cores in about 10 hours. This
approach has increased the size of Adaptive Anonymity problems solved by three or-
ders of magnitude from earlier algorithms. These authors have also formulated the
Adaptive Anonymity problem in terms of the related concept of b-Edge covers and
obtained a 3β/2-approximation algorithm for the problem.

Our contributions in this paper are as follows:
1. We propose the b-Suitor algorithm, a new half-approximation algorithm for

b-Matching, based on the recent Suitor algorithm for Matching. This
latter algorithm is considered to be among the best performing algorithms
based on matching weight and run time.

2. We prove that the b-Suitor algorithm computes the same b-Matching as
the one obtained by the well-known Greedy algorithm for the problem.

3. We have implemented the b-Suitor algorithm on serial processors and shared-
memory multiprocessors and explored six variants of the algorithm to improve
its performance.

4. We evaluate the performance of these variants on a collection of test problems
and compare the weight and run times with seven other approximation and
heuristic algorithms for the problem.
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5. We show that the b-Suitor algorithm is highly concurrent and show that it
scales well up to 240 threads on shared-memory multiprocessors.

This paper is organized as follows. Section 2 describes concepts and definitions
needed to discuss Matchings and b-Matchings. We then discuss earlier work on
exact and approximation algorithms for these problems. In section 3 we describe the
serial b-Suitor algorithm, prove it correct, and then develop a parallel algorithm.
We describe variants of the algorithm that could improve its performance. Section 4
reports on the processor architectures, test problems, the weight of the approximate
matchings, and factors that influence performance such as the number of edges tra-
versed, cache misses, and finally the run times. We compare the run times of the
b-Suitor algorithm with other approximation algorithms for both serial and parallel
computations. We discuss how the run time performance is improved by optimiza-
tions that exploit architectural features of the multiprocessors. We also investigate
scalability of the b-Suitor algorithm on a processor with 16 threads and a coprocessor
with 240 threads. Section 6 includes our concluding remarks.

2. Background. We consider an undirected, simple graph G = (V,E), where
V is the set of vertices and E is the set of edges. We denote n ≡ |V |, and m ≡ |E|.
Given a function b that maps each vertex to a nonnegative integer, a b-Matching is
a set of edges M such that at most b(v) edges in M are incident on each vertex v ∈ V .
(This corresponds to the concept of a simple b-Matching in Schrijver [39].) An edge
in M is matched, and an edge not in M is unmatched. Similarly, an endpoint of an
edge in M is a matched vertex, and other vertices are unmatched. We can maximize
several metrics, e.g., the cardinality of a b-Matching. If M has exactly b(v) edges
incident on each vertex v, then the b-Matching is perfect. An important special
case is when the b(v) values are the same for every vertex, say, equal to b. In this
case, a perfect b-Matching M is also called a b-factor. For future use, we define
β = maxv∈V b(v) and B =

∑
v∈V b(v). We also denote by δ(v) the degree of a vertex

v and by ∆ the maximum degree of a vertex in a graph G.
Now consider the case when there are nonnegative weights on the edges, given by

a function W : E 7→ R≥0. The weight of a b-Matching is the sum of the weights
of the matched edges. We can maximize the weight of a b-Matching, and it is not
necessarily a b-Matching of maximum cardinality.

The commonly studied case with b = 1 corresponds to a Matching in a graph,
where the matched edges are now independent, i.e., the endpoints of matched edges
are vertex-disjoint from each other. We will use results from Matching theory and
algorithms to develop results for the b-Matching case.

An exact algorithm for a maximum weight b-Matching was first devised by Ed-
monds [10] and was implemented as a bidirected flow problem in the code Blossom
I. Pulleyblank [37] later gave a pseudopolynomial time algorithm with complexity
O(mnB). The b-Matching problem can be reduced to 1-matching [12, 26] but the
reduction increases the problem size and is impractical as a computational approach
for large graphs. Anstee [1] proposed a three-stage algorithm where the b-Matching

problem is solved by transforming it into a Hitchcock transportation problem, round-
ing the solution to integer values, and finally invoking Pulleyblank’s algorithm. Derigs
and Metz [7] and Miller and Pekny [29] improved the Anstee algorithm further. Pad-
berg and Rao [33] developed another algorithm using the branch and cut approach
and Grötschel and Holland [14] solved the problem using the cutting plane technique.
A survey of exact algorithms for b-Matchings was provided by [30]. More recently,
Huang and Jebara [17] proposed an exact b-Matching algorithm based on belief
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propagation. The algorithm assumes that the solution is unique, and otherwise it
does not guarantee convergence.

2.1. Approximation algorithms for Matching. The approximation algo-
rithms that we develop for b-Matching have their counterparts for Matching, so
we review the algorithms for the latter problem now. After this subsection, we will re-
view the work that has been done for approximation algorithms for b-Matching. The
Greedy algorithm iteratively matches edges in nonincreasing order of weights, delet-
ing edges incident on the endpoints of a matched edge, and this is a half-approximation
algorithm for edge-weighted matching [2]. Preis [36] designed a half-approximation al-
gorithm that repeatedly finds and matches a locally dominant (LD) edge, and showed
that this can be implemented in time linear in the number of edges. (An edge is
LD if it is at least as heavy as all other edges incident on its endpoints.) Drake and
Hougardy [8] obtained a linear time half-approximation algorithm that grows paths
in the graph consisting of heavy edges incident on each vertex, decomposes each path
into two matchings, and chooses the heavier matching to include in the approxima-
tion. This is called the path-growing algorithm (PGA). Dynamic programming can
be employed on each path to obtain a heaviest matching from it, and this practically
improves the weight of the computed matching. This variant is called the PGA′ al-
gorithm. Maue and Sanders [27] describe a global paths algorithm (GPA) that sorts
the edges in nonincreasing order of weights, and then grows paths from the edges in
this order. All these algorithms typically find matchings of weight greater than 95%
of the optimal matching, and the GPA algorithm usually finds the heaviest weight
matching in practice. Due to the high quality and speed of the half-approximation
algorithms, algorithms with better approximation ratios are not usually competitive
for weighted matching.

Considering parallel algorithms, several variants of the LD matching have been
proposed. The algorithm of Fagginger Auer and Bisseling [11] targets parallel effi-
ciency on GPU architectures by relaxing the guarantee of half approximation. Vertices
are randomly colored blue or red, following which blue colored vertices propose to red
colored vertices. In the next step, red colored vertices respond to proposals, if any,
and pick the best proposal. Edges along matching proposals between blue and red
colored vertices get added to the matched set, and the corresponding vertices are
marked black. Vertices without potential mates get marked as dead. The algorithm
iterates until there are no more eligible (blue) vertices to match. In recent work,
Naim et al. provide GPU implementations of the Suitor algorithm that guarantees
half approximation and exploits the hierarchical parallelism of modern Nvidia GPU
architectures [32].

Riedy et al. [38] have implemented an LD algorithm for community detection. It
iterates through unmatched vertices to identify LD edges, adding them to the matched
set, and iterating until a maximal matching has been computed. Since this is a variant
of the Manne and Bisseling algorithm, it obtains half approximation for the weight of
the matched edges. This implementation targets the massively multithreaded Cray
XMT platform that supports fine-grained synchronization as well as multithreaded
computations using OpenMP. Halappanavar et al. [15] have designed a novel dataflow
algorithm to implement the LD edge algorithm that exploits the hardware features of
the Cray XMT. On measures of the run times on serial and parallel processors for the
1-Matching problem, the Suitor algorithm has been demonstrated to perform better
than other approximation algorithms [24]. In this work, we consider b-Matchings
rather than Matchings and, in doing so, extend the ideas from the Suitor algorithm
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with techniques such as partial sorting, delayed updates, and the order in which
proposals are extended.

We discuss approximation algorithms with better approximation ratios than half.
Randomized algorithms that have an approximation ratio of 2/3− ε for small positive
values of ε have been designed. These algorithms have been found to be an order
of magnitude slower than the half-approximation algorithms [27]. A (1− ε) approxi-
mation algorithm based on the scaling approach has been designed recently by Duan
and Pettie [9]. This algorithm is based on the scaling approach for weighted match-
ing, runs in O(mlog n3ε−2) time, and has not been implemented in practice. This
paper and Hougardy [16] provide comprehensive surveys of the work on approximate
matching algorithms.

We now describe a new half-approximation algorithm for matching called the
Suitor algorithm that was recently proposed by Manne and Halappanavar [24]. This
algorithm is currently the best performing algorithm in terms of the two metrics of
the run time and weight of the matching. The b-Suitor algorithm proposed in this
paper is derived from this algorithm. The Suitor algorithm may be considered as
an improvement over the LD algorithm.

In the LD algorithm, each vertex sets a pointer to the neighbor it wishes to match
with. Vertices consider neighbors to match with in decreasing order to weights. When
two vertices point to each other, the edge is locally dominating and is added to the
matching. Edges adjacent to LD edges are deleted, and the algorithm iteratively
searches for LD edges, adds them to the matching, and updates the graph.

In the Suitor algorithm, each vertex u proposes to match with its heaviest
neighbor v that currently does not have a better offer than the weight of the edge
(u, v). When two vertices propose to each other, they are matched, although they
could get unmatched in a future step. The algorithm keeps track of the best current
offer (the weight of the edge proposed to be matched) of each vertex. A vertex u
extends a proposal to a neighbor v only if the weight of the edge (u, v) is heavier than
the current best offer that v has. This reduces the number of candidate edges that
need to be searched for matching relative to the LD algorithm. If vertex u finds that
a neighbor v that it could propose to has a current offer from another vertex x that
is less than the weight of the edge (u, v), then it annuls the proposal from the vertex
x, proposes to v, and updates the current best offer of the vertex v to the weight of
(u, v). Now the vertex x needs to propose to its next heaviest neighbor y that already
does not have an offer better than the weight of the edge (x, y). It can be shown
that the Suitor algorithm computes the same matching as the one obtained by the
Greedy and the LD matchings, provided ties are broken consistently.

Manne and Halappanavar have described shared-memory parallel implementa-
tions of the Suitor algorithm. Earlier, Manne and Bisseling [23] had developed a
distributed-memory parallel algorithm based on the LD edge idea, and this was fol-
lowed by Halappanavar, et al. [15], who developed shared-memory parallel algorithms
for several machines.

A heuristic algorithm called Heavy Edge Matching (HEM), which matches the
heaviest edge incident on each vertex in an arbitrary order of vertices, has been
used to coarsen graphs in the multilevel graph partitioning algorithm [21]. This
algorithm provides no guarantees on the approximation ratio of the weighted matching
that it computes, but it is faster relative to the approximation algorithms considered
here [24]. We will discuss it further in section 4 on results.
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2.2. Approximation algorithms for b-Matching. Relatively little work has
been done on approximate b-Matching. Mestre [28] showed that a b-Matching is
a relaxation of a matroid called a k-extendible system with k = 2 and hence that
the Greedy algorithm gives a 1/k = 1/2-approximation for a maximum weighted
b-Matching. He generalized the PGA of Drake and Hougardy [8] to obtain an O(βm)
time half-approximation algorithm. He also generalized a randomized algorithm for
Matching to obtain a (2/3−ε)-approximation algorithm with expected running time
O(βm log 1

ε ) [28]. We will compare the performance of the serial b-Suitor algorithm
with the PGA and PGA′ algorithms later in this paper. Since the PGA algorithm is
inherently sequential, it is not a good candidate for parallelization. Morales, Gionis,
and Sozio et al. [6] have adapted the Greedy algorithm and an integer linear pro-
gram based algorithm to the MapReduce environment to compute b-Matchings in
bipartite graphs. There have been several attempts at developing fast b-Matching

algorithms using linear programming [22, 25], but where experimental studies have
been performed, these methods are orders of magnitude slower than the approxima-
tion algorithms considered in this paper. Georgiadis and Papatriantafilou [13] have
developed a distributed algorithm based on adding locally dominating edges to the
b-Matching. We also implement the LD algorithm and compare it with the b-Suitor
algorithm in section 4.

3. New b-Matching algorithm. We describe here a new parallel approxima-
tion algorithm for maximum edge weighted b-Matching called b-Suitor.

3.1. Sequential b-Suitor algorithm. For each vertex u, we maintain a prior-
ity queue S(u) that contains at most b(u) elements from its adjacency list N(u). The
intent of this priority queue is to maintain a list of neighbors of u that have proposed
to u and hence are suitors of u. The priority queue enables us to update the lowest
weight of a suitor of u, in log b(u) time. If u has fewer than b(u) suitors, then we
define this lowest weight to be zero. The operation S(u).insert(v) adds the vertex v
to the priority queue of u with the weight W (u, v). If S(u) has b(u) vertices, then
the vertex with the lowest weight in the priority queue is discarded on insertion of
v. This lowest matched vertex is stored in S(u).last; if the priority queue contained
fewer than b(u) vertices, then a value of NULL is returned for S(u).last.

In what follows, we will need to break ties consistently when the weights of two
vertices are equal. Without loss of generality, we will say that W (u) > W (v) if the
weights are equal but vertex u is numbered lower than v.

It is also conceptually helpful to consider an array T (u) which contains the vertices
that u has proposed to. We could consider these as speculative matches. Again, there
are at most b(u) neighbors of u in the set T (u), and so this is a subset of N(u). The
operation T (u).insert(v) inserts a vertex v into the array T (u), and T (u).remove(v)
removes the vertex v from T (u). Throughout the algorithm, we maintain the property
that v ∈ S(u) if and only if u ∈ T (v). When the algorithm terminates, we satisfy
the property that v ∈ S(u) if and only if u ∈ S(v), and then (u, v) is an edge in the
b-Matching.

Consider the situation when we attempt to find the ith neighbor for a vertex u
to propose to match to. At this stage u has made i − 1 outstanding proposals to
vertices in the set Ti−1(u), the index showing the number of proposals made by u.
We must have i ≤ b(u), for u can have at most b(u) outstanding proposals. If a vertex
u has fewer than b(u) outstanding proposals, then we say that it is unsaturated ; if it
has b(u) outstanding proposals, then it is saturated. The b-Suitor algorithm finds a
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partner for u, pi(u), according to the following equation:

(3.1) pi(u) = argmax
v∈N(u)\Ti−1(u)

{W (u, v) |W (u, v) > W (v, S(v).last)}.

In words, the ith vertex that u proposes to is a neighbor v that it has not proposed
to yet, such that the weight of the edge (u, v) is maximum among such neighbors and
is also greater than the lowest weight offer v has currently. We will call such a vertex
v an eligible partner for u at this stage in the algorithm. Note that the vertex pi(u)
belongs to Ti(u) but not to Ti−1(u).

We present the pseudocode of the sequential b-Suitor in Algorithm 1. We de-
scribe a recursive version of the algorithm since it is easier to understand, although
the versions we have implemented for both serial and parallel algorithms use iteration
rather than recursion. The algorithm processes all of the vertices, and for each vertex
u, it seeks to match b(u) neighbors. In each iteration a vertex u proposes to a heaviest
neighbor v it has not proposed to yet if the weight W (u, v) is heavier than the weight
offered by the last (b(v)th) suitor of v. If it fails to find a partner, then we break out
of the loop. If it succeeds in finding a partner x, then the algorithm calls the function
MakeSuitor to make u the suitor of x. This function updates the priority queue S(u)
and the array T (u). When u becomes the suitor of x, if it annuls the proposal of the
previous suitor of x, a vertex y, then the algorithm looks for an eligible partner z for
y and calls MakeSuitor recursively to make y a suitor of z.

We illustrate a sequence of operations of the b-Suitor algorithm in Figure 1.
The figure shows a bipartite graph with weights on its edges and b(v) values on the
vertices. Thus vertices a and b both have b(v) = 2 and other vertices have b(v) = 1. In
subfigure (a), step (i), the algorithm starts processing a vertex a, it finds the heaviest
edge W (a, c) = 8, and a proposes to vertex c. Vertex c stores the weight of the offer
it has in a local min priority heap S. Then a finds its next heaviest unprocessed edge
W (a, d) = 6 and also proposes to d. At this point a has found b(a) = 2 partners, so the
algorithm processes the next vertex b. In step (ii), b proposes to its heaviest neighbor
f with weight W (b, f) = 9; its next heaviest neighbor is d with W (b, d) = 7. Note
that b(d) = 1, i.e., vertex d can have at most one suitor, and it already has a suitor
in a. Vertex b checks the lowest offer vertex d currently has, which is from vertex a,
equal to 6. But vertex b can make a higher offer to d, since W (b, d) > W (a, d). Hence
the algorithm makes b the suitor of d, updates the lowest offer vertex d has, from 6
to 7, and then removes a from being the suitor of d. This removal of a is important
because a now has one fewer partners. Eventually, the algorithm will process a again,
finds the edge (a, e), and a becomes the suitor of e in step (iii). When the vertices c
and e propose to a, and vertices d and f propose to b, then (3.1) is satisfied by all
the vertices, and we have a half-approximation matching.

To illustrate that the order of processing determines the work in the b-Suitor
algorithm, we show a different processing order in Figure 1(b). In step (i), the al-
gorithm first processes vertex b, which proposes to f and d. Next in step (ii), it
processes vertex a, which proposes to c as before. The next heaviest unprocessed
neighbor of a is d, but vertex d already has an offer from b of weight 7. The b-Suitor
algorithm checks the offer that vertex d has so far, which is 7 from b, and correctly
deduces that a is not an eligible partner of d. So the algorithm moves on to the next
heaviest edge incident on a, the edge (a, e), and matches the edge in step (iii), thus
saving redundant computations. (The LD algorithm would have vertex a proposing
to vertex d, which would eventually be rejected by d, and this in turn would initiate
the search for a new partner for a.)
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Algorithm 1. Sequential algorithm for approximate b-Matching. Input: A graph G = (V,E,w) and
a vector b. Output: A half-approximation edge weighted b-Matching M .

procedure b-Suitor((G, b))
for all u ∈ V do

for i = 1 to b(u) do
x = argmax

v∈N(u)\T (u)

{W (u, v) : W (u, v) > W (v, S(v).last)}

if x = NULL then

break
else

MakeSuitor(u, x)

Algorithm 2. Recursive function MakeSuitor.

function MakeSuitor((u, x))
y = S(x).last
S(x).insert(u)
T (u).insert(x)
if y 6= NULL then

T (y).remove(x)
z = argmax

v∈N(y)\T (y)

{W (y, v) : W (y, v) > W (v, S(v).last)}

if z 6= NULL then

MakeSuitor(y, z)

Proof. The proof is by induction on the number of proposals in the algorithm.
Initially there are no proposals and the equation is trivially satisfied. Note that
the variable x in the b-Suitor algorithm corresponds to an eligible partner for each
vertex such that (3.1) is satisfied. Assume that the invariant is true for the first k ≥ 0
proposals. Let the (k + 1)st proposal be made by a vertex u to find its (i + 1)st
partner, pi+1(u). There are three cases to consider:

1. pi+1(u) = NULL, i.e., there is no neighbor of u satisfying (3.1). Then the
invariant is trivially satisfied since u does not extend a new proposal.

2. If pi+1(u) = x and x has fewer than b(x) suitors, the invariant is satisfied
because the node x offers a better weight than the NULL vertex, whose
weight is zero.

3. If pi+1(u) = x and x has b(x) suitors, i.e., W (u, x) > W (x, v), where v =
S(x).last, we maintain the invariant when u proposes to x, and annuls the
proposal from x to v, since the weight offered by u to x is greater than the
offer of v.

But v now has one fewer partners, and the algorithm seeks a new partner for
v. Again, the function MakeSuitor searches for an eligible partner for the annulled
vertex v satisfying (3.1). If it fails to find a partners, then the invariant holds since
no new proposal has been made. If it finds a partner, then again the invariant holds
since an eligible partner is chosen to satisfy the invariant.

However, the annulment of proposals could cascade, i.e., a vertex that gets an-
nulled could cause another to be annulled in turn, and so on. However, since (3.1)
looks for an eligible partner with a higher weight than the current lowest offer the
partner has, the cascading cannot cycle.
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Since a vertex x annuls the proposal of another vertex y which proposed earlier
to u, and there are fewer than n such vertices at any stage of the algorithm, the
cascading will terminate after at most n− 1 steps. At that point the invariant holds
for all proposed vertices. This completes the proof.

Lemma 3.2. At the termination of the b-Suitor algorithm, u ∈ S(v) ↔ v ∈ S(u).

Proof. For one direction, assume u ∈ S(v) and v 6∈ S(u). If u has fewer than b(u)
partners and v has fewer than b(v) partners, then v would propose to u and become
a suitor of u. Hence assume that |S(u)| = b(u). Then for all t ∈ S(u) : W (u, t) >
W (u, v), and u has b(u) partners to satisfy (3.1) and so does not propose to v. Thus
u 6∈ S(v), which is a contradiction.

The other direction follows from the symmetry of u and v.

Hence when the b-Suitor algorithm terminates, all proposals correspond to
matched edges.

Lemma 3.3. If (3.1) is satisfied for all u ∈ V , then pi(.) defines the same match-

ing as the Greedy algorithm, provided ties in weights are broken consistently in the

two algorithms.

Proof. The proof is by induction on the sequence of the matched edges chosen
by the Greedy algorithm. The base case is when the matching is empty, and in
this case, the lemma is trivially true. Assume that both the Greedy and b-Suitor
algorithms agree on the first k edges matched by the former. In order to match these
k edges, the Greedy algorithm has examined a subset of edges E′ ⊂ E, matching
some of them and rejecting the others. An edge (u, v) is rejected by Greedy when
either of its endpoints is saturated, i.e., it already has b(u) or b(v) matched neighbors.
Note that the edge with the least weight in E′ is at least as heavy as the heaviest
edge in F = E \E′. Therefore, Greedy will choose the (k+ 1)st matched edge from
F .

Assume that the Greedy algorithm rejects t ≥ 0 heaviest edges in F until it
finds an edge (u, v) whose endpoints have fewer than b(u) and b(v) matched neighbors,
respectively. This edge is now chosen as the (k + 1)st matched edge. We show that
b-Suitor will also not match these t edges and pick (u, v) as a matched edge. Note
that all of these t edges have at least one of their incident vertices as saturated. In
order for b-Suitor to match any of these edges, it has to unmatch at least one edge
from the k matched edges. But all the k matched edges are heavier than any of these
t edges, and unmatching an edge in E′ to match one of the t rejected edges would
violate (3.1).

It remains to show that the edge (u, v) will not be unmatched by the b-Suitor
algorithm later and will be included in the final matching. This is clear because
the Greedy algorithm chose (u, v) from a globally sorted set of edges, which means
W (u, v) is an LD edge in both u’s and v’s neighborhoods once earlier matched edges
are excluded.

The two lemmas lead to the following result.

Theorem 3.4. When ties in the weights are broken consistently, the b-Suitor al-

gorithm matches the same edges as the Greedy algorithm, and hence it computes a

half-approximation matching.

The running time of the algorithm is O(Σu∈V δ(u)
2 log β) = O(m∆ log β). This

follows since a node u might have to traverse its neighbor list at most δ(u) times
to find a new partner for each of its b(u) matched edges, and each time we find a
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candidate, updating the heap costs O(log β). For small β ∈ {2, 3}, we use an array
instead of a heap to avoid the heap updating cost.

If we completely sort the adjacency list of each vertex in decreasing order of
weights, it needs to be traversed only once in the b-Suitor algorithm. For, when a
vertex x is passed over in an adjacency list of a vertex v, x has a better offer than the
weight v can offer, and as the algorithm proceeds, the weight of the lowest offer that
x has can only increase. Hence v does not need to extend a proposal to the vertex
x in the future. But sorting adds an additional cost of O(m log∆), so that the time
complexity of this variant of the algorithm is O(m log∆ + m log β) = O(m log β∆).
By partially sorting the adjacency list, and choosing the part sizes to sort carefully,
we can reduce the time complexity even further, and this is discussed in section 3.4.

3.3. The parallel b-Suitor algorithm. In this subsection we describe a shared-
memory parallel b-Suitor algorithm. It uses iteration rather than recursion; it queues
vertices whose proposals have been rejected for later processing, unlike the recursive
algorithm that processes them immediately. It is to be noted that b-Suitor finds the
solution irrespective of the order in which the vertices are processed, which means the
solution is stable no matter how the operating system schedules the threads. It uses
locks for synchronizing multiple threads to ensure sequential consistency.

The parallel algorithm is described in Algorithm 3. The algorithm maintains a
queue of unsaturated vertices Q, which it tries to find partners for during the cur-
rent iteration of the while loop, and also a queue Q′ of vertices whose proposals are
annulled in this iteration to be processed again in the next iteration. The algorithm
then attempts to find a partner for each vertex u in Q in parallel. It tries to find
b(u) proposals for u to make while the adjacency list N(u) has not been exhaustively
searched thus far in the course of the algorithm.

Algorithm 3. Multithreaded shared-memory algorithm for approximate b-Matching. Input: A graph
G = (V,E,w) and a vector b. Output: A half-approximation edge weighted b-Matching M .

procedure Parallel b-Suitor(G, b)
Q = V ; Q′ = ∅;
while Q 6= ∅ do

for all vertices u ∈ Q in parallel do

i = 1;
while i <= b(u) and N(u) 6= exhausted do

Let p ∈ N(u) be an eligible partner of u;
if p 6= NULL then

Lock p;
if p is still eligible then

i = i+ 1;
Make u a Suitor of p;
if u annuls the proposal of a vertex v then

Add v to Q′; Update db(v);

Unlock p;
else

N(u) = exhausted;

Update Q using Q′; Update b using db;

Consider the situation when a vertex u has i − 1 < b(u) vertices outstanding
proposals. The vertex u can propose to a vertex p in N(u) if it is a heaviest neighbor
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in the set N(u)\Ti−1(u) and if the weight of the edge (u, p) is greater than the lowest
offer that p has. In this case, we say that p is an eligible partner for u. (Thus p would
accept the proposal of u rather than its current lowest offer.)

If the algorithm finds a partner p for u, then the thread processing the vertex u
attempts to acquire the lock for the priority queue S(p) so that other vertices do not
concurrently become suitors of p. This attempt might take some time to succeed since
another thread might have the lock for p. Once the thread processing u succeeds in
acquiring the lock, then it needs to check again if p continues to be an eligible partner,
since by this time another thread might have found another suitor for p, and its lowest
offer might have changed. If p is still an eligible partner for u, then we increment the
count of the number of proposals made by u and make u a suitor of p. If in this
process we dislodge the last suitor x of p, then we add x to the queue of vertices Q′

to be processed in the next iteration. Finally the thread unlocks the vertex p.
Now we can consider what happens when we fail to find an eligible partner p for a

vertex u. This means that we have exhaustively searched all neighbors of u in N(u),
and none of these vertices offers a weight greater than the lowest offer u has, S(u).last.
After we have considered every vertex u ∈ Q to be processed, we can update data
structures for the next iteration. We update Q to be the set of vertices in Q′ and the
vector b to reflect the number of additional partners we need to find for each vertex
u using db(u), the number of times u’s proposal was annulled by a neighbor.

Since the set of edges that satisfy (3.1) in the entire graph is unique (with our
tie breaking scheme for weights), the order in which we consider the edges does not
matter for correctness by Lemma 3.1. However, this order will influence the work
done by the algorithm, and by processing the adjacency list of vertices in decreasing
order of weights, we expect to reduce this work.

3.4. Variants of the b-Suitor algorithm. We consider three orthogonal vari-
ations to make the b-Suitor algorithm more efficient. The first concerns the sorting
of the adjacency lists of the vertices, the second considers when a vertex whose pro-
posal is annulled should extend a new proposal, and the third involves the order in
which vertices should extend proposals.

3.4.1. Neighbor sorting. Since we need to find only b(v) ≤ δ(v) mates for each
vertex v, sorting the entire adjacency list is often unnecessary. Hence we consider
partially sorting the adjacency lists so that for each vertex v we list p(v) ≥ b(v) of the
heaviest neighbors in decreasing order of weights. We try to match edges belonging to
this subset at first. The value p(v) is a key parameter that determines both the work
to be done in partial sorting as well the probability that we can find the matching
using edges solely from this subset. Given an adjacency list A(v) = adj(v) and a
subset size p(v), we find the heaviest p(v) neighbors from A(v) and sort only this
subset. The pth largest neighbor is found using an algorithm similar to the partition
function in Quicksort. The adjacency list is partitioned into two subsets with respect
to the pivot, and the subset with heavier edges than the pivot is sorted.

What should an algorithm do when a vertex v exhausts its partially sorted subset
of neighbors without finding b(v) partners? We consider two schemes: (i) falling back
to the unsorted mode for the rest of the neighbor list and (ii) computing the next
heaviest batch of p(v) neighbors by partial sorting. In the serial b-Suitor algorithm,
we use the batching scheme. In the parallel version of b-Suitor, falling back to the
unsorted scheme may be useful in some cases, more specifically in combination with
the eager update case to be discussed next.
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For the algorithm that employs partial sorting with batching, the total running
time is O(mc+ncp log p+m log β) ≈ O(m(c+log β)), where p is the maximum subset
size over all vertices, and c is the maximum number of batches (subsets) required
for any node. Here the first term comes from the selection of the pivots in each
adjacency list, the second term from the partial sorting, and the final term from
updating the heap as edges are added or deleted from it. The number of batches
c satisfies 1 ≤ c ≤ maxv∈V δ(v)/p(v). If we choose p(v) carefully, we could avoid
having to sort more than a few batches, and hence the number of batches could be
bounded by a small constant. In practice, with good choices that will be discussed in
section 4, we observe that the average number of batches per node is indeed bounded
by a constant. Hence the time complexity of the partially sorted b-Suitor algorithm
becomes O(m log β).

3.4.2. Delayed versus eager processing. We consider two strategies for how
the algorithm treats a vertex x whose proposal is annulled. The algorithm can either
immediately have x extend another proposal (an eager update) or put it a separate
queue for later processing (a delayed update). The recursive b-Suitor algorithm
described earlier is the eager update variant. The downside of this scheme is that
as soon as the algorithm makes the vertex v as the current vertex, we could lose
memory locality. Also the vertex v’s next offer to a neighbor will be lower than its
rejected offer, and it could be rejected again. To make matters worse, the annulment
operations could cascade. Another issue with this scheme for b-Matching is that a
vertex v can have more than one proposal annulled at the same time. In a partially
sorted scheme, two threads may initiate partial sorting on v’s neighbor list, which
requires synchronization, causing further overhead. Our experiments show that falling
back to unsorted mode mentioned above performs better with the eager update.

If a vertex x has k proposals annulled, the algorithm needs to find k new partners
for x. In the delayed scheme the dislodged vertex x is stored in a queue Q′ once, and
we count the number of times it gets dislodged. After the current iteration is done,
the algorithm can start processing all the deficient vertices x from the queue Q′, and
it processes the vertex x to find multiple partners.

Considering all these enhancements, we have six variations of our b-Suitor al-
gorithm. We name these schemes as follows: (i) eager unsorted (ST EU), (ii) eager
sorted (ST ES), (iii) eager partially sorted (ST EP), (iv) delayed unsorted (ST DU),
(v) delayed sorted (ST DS), and (vi) delayed partially sorted (ST DP).

3.4.3. Order in which vertices are processed. We can also investigate how
the order in which vertices make proposals influences the work in the serial b-Suitor
algorithm.

A sophisticated approach is to partition the edges into heavy and light edges
based on their weight and to consider only the heavy edges incident on the vertices as
candidates to be matched. Hence initially each vertex only makes as many proposals
as the number of heavy edges incident on it. If this initial phase succeeds in finding
b(v) matches for a vertex v, then we are done with that vertex. If it does not, then in
a second phase, v proposes to the neighbors of v that are incident on it through the
light edges to make up the deficit if possible. Giving higher priority to heavier edges
to be involved in proposals could decrease the number of annulled proposals in the
algorithm and potentially search fewer edges leading to faster run times. Clearly in
this case, finding a good value for the pivot element to split each adjacency list into
heavy and light edges is important. Recall that B =

∑
v∈V b(v). We have empirically

chosen the weight of the (kB)th element as this pivot value, where k is a small integer
typically between 1 and 5.
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A simpler approach is to sort each vertex by the heaviest edge incident on it
and then to process the vertices in the algorithm in this order. This scheme has the
advantage of simplicity, and low overhead cost, since it needs only to sort the vertices
by a key value.

4. Experiments and results. We conducted our experiments on an Intel Xeon1

E5-2670 processor based system (part of the Purdue University Community Cluster,
called Conte2 ). The system consists of two processors, each with 8 cores running at
2.6 GHz (16 cores in total) with 32 KB of L1, 256 KB of L2, 20 MB of unified L3
cache, and 64 GB of memory. The system is also equipped with a 60-core Intel Xeon
Phi coprocessor running at 1.1 GHz with 32 KB L1 data cache per core and 512 KB
unified L2 cache. The operating system is Red Hat Enterprise Linux 6. All the codes
were developed using C++ and compiled using the Intel C++ Composer XE 2013
compiler3 (version 1.1.163) using the -O3 flag.

Our test problems consist of both real-world and synthetic graphs. Synthetic
datasets were generated using the Graph500 RMAT data generator [31]. We generate
three different synthetic datasets varying the RMAT parameters (similar to previous
work [24]). These are (i) rmat b with parameter set (0.55, 0.15, 0.15, 0.15), (ii) rmat g
with parameter set (0.45, 0.15, 0.15, 0.25), and (iii) rmat er with parameter set (0.25,
0.25, 0.25, 0.25). These graphs have varying degree distributions representing different
application areas. We also consider a random geometric graph (geo 14) [35] that has
recently attracted attention in the study of neural networks, astrophysics, etc.

Additionally we consider ten real-world datasets taken from the University of
Florida Matrix collection [5] covering mutually exclusive application areas such as
medical science, structural engineering, and sensor data.

Table 1 shows the sizes of our test problems, which are divided into two subsets:
the first nine problems with tens of millions of edges or greater, and the last five with
low edge counts. The larger problems are the five largest symmetric problems from
the Florida Matrix collection. The other five out of these ten real-world problems have
fewer than a million edges, and we use these to compare the matching quality of the
approximation algorithms relative to the exact matching. The reason for using smaller
datasets for quality comparison is that we do not have a good implementation for
exact non-perfect b-Matching. The exact b-Matching algorithm that we compare
b-Suitor to uses integer linear programming and is programmed in Matlab. This
implementation can run only on the smaller datasets due to memory limitations, and
hence we selected the largest symmetric problems that this implementation could
solve.

The space complexity of the best performing delayed partial b-Suitor algorithm
is 2m + 5n + nβ. Our largest problem rmat er requires roughly 572 MB of memory
when β = 10. For each vertex, b-Suitor accesses its adjacency list and the heap

1Intel, Xeon, and Intel Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other
countries.

2https://www.rcac.purdue.edu/compute/conte/.
3Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors

for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2,
SSE3, and SSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel micropro-
cessors. Certain optimizations not specific to Intel micro-architecture are reserved for Intel micro-
processors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice revision #20110804
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Table 1

The structural properties of our test problems for b-Matching.

Problem Vertices Edges Avg. Max.
Deg. Deg.

Fault 639 638,802 13,987,881 11 317
mouse gene 45,101 14,461,095 160 8,031
bone010 986,703 35,339,811 18 80
dielFil.V3real 1,102,824 44,101,598 20 269
kron.logn21 2,097,152 91,040,932 22 213,904

geo 14 16,384 54,689,168 3274 10,365
rmat b 1,048,576 123,599,502 58 63,605
rmat g 1,048,576 133,056,675 64 7,998
rmat er 1,048,576 134,201,240 64 337

astro-ph 16,706 121,251 8 360
Reuters911 13,332 148,038 12 2265
cond-mat-2005 40,421 175,693 5 278
gas sensor 66,917 885,141 14 33
turon m 189,924 912,345 5 11

associated with its neighbors. We use the compressed row storage format for storing
the adjacency list and the heap size for each node is at most β. In shared memory,
each thread processes one vertex at a time and there are 16 such threads. So the
working memory requirement in parallel execution of the algorithm is roughly 16 ∗
(δavg + δavg ∗ β), where δavg is the average degree of a vertex. For example, with
β = 10, the working memory for rmat er is roughly 500 KB, which fits in the L3
cache of the Xeon and barely so in the L2 cache of the Phi.

4.1. Serial performance. We analyze the serial performance of 12 algorithms:
Greedy, PGA, PGA′, three variants of LD, and six variations of b-Suitor. The
LD algorithms differ in terms of whether the neighbor list of each vertex is unsorted,
sorted or partially sorted; we call these LD U , LD S, and LD P , respectively.

We have considered two sets of b(v) values for the experiments. First we fix
b(v) = min{b, δ(v)}, where b ∈ {1, 3, 5, 10, 15} for all the vertices. The reason for
using constant values of b(v) is to study how the algorithms perform as the value of
b(v) is varied. The second set of b(v) values is motivated by the privacy application in
[3]. Here we randomly assign values of b(v) for each vertex v, choosing b(v) uniformly

between 1 and (δ(v))
1/2

. We generate three sets of b(v) values for each problem and
select the set which leads to the median weight for its b-Matching. We use these
randomized b(v) values for all the experiments. The average randomized b(v) values
for all the problems are between 3 and 9, except for the relatively dense (geo 14)
problem, where the average value of b(v) is 40. In the experiments, we explicitly list
the b values unless we use randomized values for them.

4.1.1. Matching weight. We have compared the weight of the heuristic HEM
algorithm and the PGA with the algorithms that we consider in this section. We found
that the quality of the weighted b-Matchings obtained by the former algorithms
was dependent on the order in which the vertices were processed. We repeated the
computations for the original ordering and three random orderings of the vertices.
For HEM, the coefficient of variation was 1.3, whereas for the PG algorithm it was
0.8. The Greedy, LD, and b-Suitor algorithms all find the identical matching
irrespective of vertex ordering, and the weight is not affected by the order in which
the vertices are processed. For this reason, we do not consider the HEM algorithm
any further.
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Table 2

Total edge weight of b-Matching produced by b-Suitor compared to the optimal solution.

Problem Quality in % Quality in % Quality in % Quality in %
(b = 1) (b = 3) (b = 5) (b random)

astro-ph 97.89 98.39 98.75 99.09
Reuters911 97.11 97.73 98.06 98.36

cond-mat-2005 97.45 98.48 99.07 99.19
gas sensor 98.06 99.17 99.44 99.38
turon m 99.67 99.90 100.00 99.94
Geo mean 98.03 98.73 99.06 99.19

In Table 2 we compare the total edge weight computed by b-Suitor with the edge
weight of an optimal b-Matching for different choices of b(v). We see that although
b-Suitor guarantees only half approximation in the worst case, it finds more than
97% of the optimal weight for the five smaller problems where we could run the exact
algorithm. The matching weight increases with higher b(v) values and greater number
of edges.

We compare the weights of the matchings obtained by different approximate
b-Matching algorithms in Figure 2. Since the LD, Greedy, and b-Suitor algo-
rithms find exactly the same set of matched edges when ties are broken consistently, we
need to compare the quality of the matching only among b-Suitor and PGA′ relative
to PGA. We report the percent improvement of matching quality for b(v) = {1, 10}.
We observe that b-Suitor and PGA′ give better quality matchings, up to 14% rel-
ative to PGA, for b(v) = 1. But with the higher b(v) = 10, the improvements are
lower, up to 9%; also the differences between b-Suitor and PGA′ are smaller. This is
an important insight for the b-Matching problem overall relative to the Matching

problem. Given a fixed b value, the expected number of matched edges is (n × b)/2,
meaning that the set of matched edges is larger with higher b(v). As the solution
set gets larger, it is less likely that a b-Matching algorithm will miss out on a good
edge. Therefore, the difference in matching quality will tend to be smaller among the
b-Matching algorithms than for Matching algorithms; this difference should also
decrease with increasing b(v) values.

4.1.2. Run times of the algorithms. There are two factors that influence
the run times of these algorithms: (i) the number of edge traversals required and
(ii) the memory access times, primarily determined by the number of cache misses.
Unfortunately the edges searched in sorting or partially sorting the adjacency lists are
not included in the first term, since we use a system sort and accessing these numbers
is not straightforward. We consider these two issues one by one.

Recall that the partially sorted variants of the LD and b-Suitor algorithms work
with a subset of the adjacency list of each vertex. We chose the size of this sorted
subset p(v) empirically to reduce the number of edge traversals. For 1-matching, the
best value of p(v) = 9 ∗ b(v) for all problems except kron.logn21, for which the
multiplier is 11, and geo 14, for which it is 14. For 10-matching, the best value of
the multiplier was 3 for the first group of problems, 5 for kron.logn21, and 9 for
geo 14. For each problem, these values are nearly identical for the variants of the
b-Suitor algorithm and the variants of the LD algorithm, since all of them compute
the same b-Matching (identical to the Greedy algorithm; cf. Theorem 3.4). With
these choices for p(v), for more than 90% of the vertices, one batch sufficed to find
their mates in the b-Matching.

The number of edge traversals is the total number of times the edges of a graph
are searched to compute the matching. We compare the number of edge traversals
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Table 3

Number of edge traversals (in millions) for 1-Matching.

Problem LD U LD P PGA′ ST EU ST EP ST DU ST DP

Fault 639 84 2 30 46 14 41 3
bone010 2,950 4 71 147 9 148 4

dielFil.V3real 624 12 94 146 10 153 12

geo 14 334 7 109 232 23 178 6

kron.logn21 390 23 183 231 49 223 18

mouse gene 283 25 29 58 37 53 1

rmat b 531 11 248 330 20 314 10

rmat er 577 14 268 400 22 369 13

rmat g 571 13 266 380 22 355 12

Avg Rel Perf 67.89 1.51 15.93 25.67 2.96 23.87 1.00

metrics are the number of edge traversals, the number of cache misses, and run times;
for all of these, lower values are better. The entries in the table are absolute values of
the metrics and the winners are highlighted in bold font. The last row of a table is the
average relative performance which shows the relative performance of the algorithms
with respect to the delayed partial variant of the b-Suitor algorithm (ST DP). This
value is calculated for a specific algorithm by dividing the metric for that algorithm by
the ST DP metric for each problem, and then computing the geometric mean of these
normalized quantities. Thus the average relative performance of ST DP is always 1
and that of a better (worse) performing algorithm is less (greater) than 1.

In Table 3, we observe that for Matching (1-Matching), the delayed update
and partially sorted adjacency list (DP) variant of the b-Suitor algorithm requires
the fewest edge traversals for all except one problem. If we divide the number of
edges traversed by this algorithm by the total number of edges for each problem, the
mean is 14%. This clearly shows that the subsets of the adjacency lists we sort suffice
to find the Matching using the DP b-Suitor algorithm. In the eager update and
partially sorted version of the b-Suitor algorithm, once we exhaust the first batch in
each adjacency list, we switch to unsorted mode, and this leads to increased number
of edges traversed (by a factor of two or more over DP). The reasons for this switch
are explained in section 3.4. The LD algorithm also benefits from partial sorting, and
this is the second best performer with respect to this metric. The unsorted variants
of the algorithms require 15 to 60 times more edge traversals than the DP variant of
b-Suitor.

We see the same effect, in an even more pronounced manner, in Table 4 for 10-
Matching. Note that the multiplier here is smaller (3 for most problems) because
the value of b(v) is higher. Again ST DP is the best performer, and the partial sort
reduces the number of edge traversals from their unsorted counterparts by two to
three orders of magnitude. The DP b-Suitor algorithm traverses fewer edges than
the second best performer, the partially sorted variant of the LD algorithm, by a
factor greater than six.

Now we turn to cache misses. In Figure 3, we show the number of L1, L2, and
L3 cache misses (in logarithmic scale) relative to the ST DP scheme of b-Suitor for
the rmat er problem. We observe that PGA′ incurs the highest number of cache
misses, 28× with respect to the ST DP algorithm, since it is depth-first-search based.
We also observe that the unsorted versions LD U, ST EU, and ST DU have higher
numbers of cache misses than their corresponding (partially) sorted versions, because
sorting allows the algorithms to scan the adjacency lists only once in order to find the
heaviest remaining edges.
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Table 5

Serial run times on Intel Xeon processor for b-Matching with b = 10.

Problem Greedy LD U LD P ST EU ST EP ST DU ST DP
EdgeTrv
(ST DP)

mouse gene 47.95 308.63 15.99 5.61 5.29 5.90 4.19 3
Fault 639 51.01 19.38 12.90 4.35 6.95 4.63 5.86 4
geo 14 102.75 221.32 5.01 9.02 2.07 6.69 1.98 6
bone010 121.31 343.97 85.08 10.43 9.66 12.92 8.48 7
dielFil.V3real 173.41 72.82 37.89 17.84 14.85 12.62 9.53 14
rmat b 526.51 2768.24 68.71 37.20 31.10 32.10 24.83 18
kron.logn21 368.89 2881.20 76.32 27.93 23.98 25.21 19.36 20
rmat g 585.87 829.32 50.55 42.62 40.07 42.39 31.11 21
rmat er 589.90 830.23 54.16 45.28 44.28 45.70 35.01 22
Avg Rel Perf 17.72 35.45 3.06 1.51 1.24 1.41 1.00

Table 6

Serial run times on Intel Xeon processor for b-Matching with random b(v) values.

Problem Greedy LD U LD P PGA′ ST EU ST EP ST DU ST DP

Fault 639 14.83 6.37 4.29 2.62 1.00 1.01 1.00 1.15
bone010 73.41 81.50 22.47 4.59 2.47 1.97 2.30 1.72

dielFil.V3real 62.74 30.59 15.48 11.92 3.11 2.98 3.45 2.71

geo 14 130.40 462.50 9.87 218.51 18.51 4.89 16.51 4.50

kron.logn21 84.32 972.16 67.27 283.63 23.08 5.61 20.92 5.53

mouse gene 10.71 92.23 12.79 21.57 3.45 2.57 3.07 2.18

rmat b 93.62 880.18 47.42 256.13 25.68 6.75 22.17 6.52

rmat er 94.74 87.49 28.97 582.99 18.00 8.87 14.73 8.48

rmat g 99.17 225.96 42.75 66.60 19.37 8.24 15.95 7.95

Avg Rel Perf 15.62 35.50 5.35 13.50 2.10 1.05 1.91 1.00

algorithm. There are only two exceptions to greater run times with increase in the
number of edges traversed. The first of these is the geometric random graph geo 14,
where the run time is lower than expected. It has an extremely high average vertex
degree, which makes it easy to find b-Matching. The second is the kron.logn21

problem, which has edges all of equal weight.
Since the cache misses for the rmat er problem are shown in Figure 3, for this

problem we can try to correlate the run times of the seven algorithms with the observed
cache misses for them. However, as the reader can verify, these metrics are poorly
correlated.

In Table 6, we show the serial run times for eight algorithms when random val-
ues of b(v) are used. We observe that all four schemes of b-Suitor are considerably
faster than the other algorithms, b-Suitor with the partial sorting schemes ST EP
and ST DP being roughly twice as fast as their unsorted variants. The LD algorithm
with partially sorted adjacency lists follows the b-Suitor algorithms with their per-
formances within a factor of 5 of the latter. The PGA and the Greedy algorithms
are slower than ST DP by a factor of 13 to 15. Finally, as expected from the previous
results, LD U is the slowest by a factor of 35 over the best variant of b-Suitor. Note
that the run times for a problem and algorithm pair do not correlate well with the
run times of the same pair with b = 10. This shows how the values of b(v) influence
the run times.

Finally, we study the effect of the order in which the vertices are processed for
matching in b-Suitor algorithms. We present the impact of the heaviest edge and
pivot ordering on the number of proposals extended in the course of the algorithm in
Figure 4. We find that both these ordering schemes reduce the number of proposals
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Table 7

Impact of variant algorithms on the performance of Matching and b-Matching.

Variation 1-Matching b-Matching

Sorting Minimal impact Reduces edge traversals
Updating Minimal impact Reduces cache misses
Ordering Fewer proposals Fewer proposals

Table 8

Parallel run times (sec) with 16 cores on Intel Xeon processor.

Problem LD U LD P ST EU ST EP ST DU ST DP

Fault 639 1.22 1.35 0.13 0.14 0.15 0.21
bone010 13.14 12.11 0.25 0.19 0.27 0.29

dielFil.V3real 4.54 4.74 0.43 0.51 0.42 0.37
geo 14 35.77 0.68 1.92 0.88 1.58 0.34

kron.logn21 82.36 56.68 1.93 0.59 1.80 0.55

mouse gene 10.47 1.85 0.31 0.20 0.29 0.19

rmat b 69.47 31.24 2.03 0.62 1.83 0.61

rmat er 6.72 4.04 1.51 0.79 1.26 0.72

rmat g 17.10 9.46 1.61 0.76 1.35 0.73

Avg Rel Perf 34.66 14.40 1.89 1.09 1.78 1.00

them suitable for parallelization. We parallelized all variants of these two algorithms
but the completely sorted variants are not competitive in terms of run times, and
thus we report results for the unsorted and partially sorted variants. Table 8 shows
the parallel performance of these algorithms on 16 cores of the Intel Xeon processor.
Note that the b-Suitor and LD algorithms separate quite nicely into two groups,
with the former performing better by large factors. Note that the partial sorting of
the adjacency lists of the vertices can be performed concurrently on multiple threads,
and thus the relative overhead they add to the algorithms is less significant. Hence
among the b-Suitor algorithms, ST DP is the fastest closely followed by ST EP, and
among the LD algorithms, LD P is the fastest. Each variant of b-Suitor is clearly
faster than the variants of the LD algorithms by factors as large as 35 on the average.

Next, we compare the speed-up achieved by the best performing b-Suitor and
LD algorithms on 16 cores of the Intel Xeon in Figure 5. Due to the significant
differences in performance, we plot the y-axis in log scale. That is, we calculate the
speed-up and then take the logarithm (to base two) of that speed up. The baseline
serial algorithm here is the LD algorithm with partial sorting of adjacency lists. This is
why we see speed-ups larger than log2(16) = 4 for the b-Suitor DP variant algorithm.
We observe that the LD partial sorted variant does not scale well in general and it
achieves only 8× speed up except for the problem geo 14, which is a denser problem.

5.1. Optimizations of the parallel b-Suitor algorithm. We optimized our
implementation of the b-Suitor algorithm to take advantage of the features of modern
microprocessor architectures on the Intel Xeon. Our optimizations include aligned
memory allocation to increase cache line usage [18] and software prefetch instructions
(using _mm_prefetch intrinsics) to ensure that data resides in nearby caches when it
is accessed. We use dynamic scheduling to improve load balancing among the threads
and the chunk size of 256 gave the best performance.









S618 KHAN ET AL.

[6] G. De Francisci Morales, A. Gionis, and M. Sozio, Social content matching in Mapreduce,
Proc. VLDB Endowment, 4 (2011), pp. 460–469.

[7] U. Derigs and A. Metz, On the use of optimal fractional matchings for solving the (integer)
matching problem, Computing, 36 (1986), pp. 263–270.

[8] D. E. Drake and S. Hougardy, A simple approximation algorithm for the weighted matching
problem, Inform. Process. Lett., 85 (2003), pp. 211–213.

[9] R. Duan and S. Pettie, Linear-time approximation for maximum weight matching, J. ACM,
61 (2014), pp. 1–23, http://dx.doi.org/10.1145/2529989.

[10] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, J. Res. National Bureau
of Standards B, 69 (1965), pp. 125–130.

[11] B. Fagginger Auer and R. Bisseling, Graph coarsening and clustering on the GPU, Con-
temp. Math., 588 (2013).

[12] H. N. Gabow, An efficient reduction technique for degree-constrained subgraph and bidirected
network flow problems, in Proceedings of the 15th Annual ACM Symposium on the Theory
of Computing, 1983, pp. 448–456.

[13] G. Georgiadis and M. Papatriantafilou, Overlays with preferences: Distributed, adaptive
approximation algorithms for matching with preference lists, Algorithms, 6 (2013), pp. 824–
856.

[14] M. Grötschel and O. Holland, Solving matching problems with linear programming, Math.
Program., 33 (1985), pp. 243–259.

[15] M. Halappanavar, J. Feo, O. Villa, F. Dobrian, and A. Pothen, Approximate weighted
matching on emerging many-core and multithreaded architectures, Internat. J. High Per-
formance Comput. Appl., 26 (2012), pp. 413–430.

[16] S. Hougardy, Linear time approximation algorithms for degree constrained subgraph problems,
in Research Trends in Combinatorial Optimization, W. J. Cook, L. Lovasz, and J. Vygen,
eds., Springer-Verlag, Berlin, 2009, pp. 185–200.

[17] B. C. Huang and T. Jebara, Fast b-matching via sufficient selection belief propagation, in Pro-
ceedings of International Conference on Artificial Intelligence and Statistics, 2011, pp. 361–
369.

[18] Memory Management for Optimal Performance on Intel Xeon Phi Coprocessor.
https://software.intel.com/en-us/articles/memory-management-for-optimal-performance-
on-intel-xeon-phi-coprocessor-alignment-and (2015).

[19] T. Jebara and V. Shchogolev, b-matching for spectral clustering, in European Conference
on Machine Learning, Springer, New York, 2006, pp. 679–686.

[20] T. Jebara, J. Wang, and S.-F. Chang, Graph construction and b-matching for semi-
supervised learning, in Proceedings of the 26th Annual International Conference on Ma-
chine Learning, ACM, 2009, pp. 441–448.

[21] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for par-
titioning irregular graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392,
http://dx.doi.org/10.1137/S1064827595287997.

[22] C. Koufogiannakis and N. E. Young, Distributed algorithms for covering, packing and max-
imum weighted matching, Distributed Comput., 24 (2011), pp. 45–63.

[23] F. Manne and R. H. Bisseling, A parallel approximation algorithm for the weighted max-
imum matching problem, in Proceedings of the 7th International Conference on Parallel
Processing and Applied Mathematics, 2007, pp. 708–717.

[24] F. Manne and M. Halappanavar, New effective multithreaded matching algorithms, in IEEE
28th International Symposium on Parallel and Distributed Processing Symposium, 2014,
pp. 519–528, http://dx.doi.org/10.1109/IPDPS.2014.61.

[25] F. M. Manshadi, B. Awerbuch, R. Gemulla, R. Khandekar, J. Mestre, and M. Sozio,
A distributed algorithm for large-scale generalized matching, Proc. VLDB Endowment, 6
(2013), pp. 613–624.

[26] A. B. Marsh III, Matching Algorithms, Ph.D. thesis, John Hopkins University, Baltimore,
MD, 1979.

[27] J. Maue and P. Sanders, Engineering algorithms for approximate weighted matching, in
Experimental Algorithms, Springer, New York, 2007, pp. 242–255.

[28] J. Mestre, Greedy in approximation algorithms, in Algorithms–ESA 2006, Springer, New York,
2006, pp. 528–539.

[29] D. L. Miller and J. F. Pekny, A staged primal-dual algorithm for perfect b-matching with
edge capacities, ORSA J. Comput., 7 (1995), pp. 298–320.

[30] M. Müller-Hannemann and A. Schwartz, Implementing weighted b-matching algorithms:
Insights from a computational study, J. Exp. Algorithmics, 5 (2000).

[31] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, Introducing the Graph 500,
Cray User’s Group, 2010.



APPROXIMATION ALGORITHMS FOR WEIGHTED b-MATCHING S619

[32] M. Naim, F. Manne, M. Halappanavar, A. Tumeo, and J. Langguth, Optimizing approxi-
mate weighted matching on Nvidia Kepler K40, in Proceedings of the 22nd Annual IEEE
International Conference on High Performance Computing (HiPC), Bengaluru, India, 2015.

[33] M. Padberg and M. R. Rao, Odd minimum cut-sets and b-matchings, Math. Oper. Res., 7
(1982), pp. 67–80.

[34] M. M. A. Patwary, N. Satish, N. Sundaram, F. Manne, S. Habib, and P. Dubey, Pardicle:
Parallel Approximate Density-based Clustering, in Proceedings of Supercomputing (SC14),
2014, pp. 560–571.

[35] M. Penrose, Random Geometric Graphs, vol. 5, Oxford University Press, Oxford, UK, 2003.
[36] R. Preis, Linear time 1/2-approximation algorithm for maximum weighted matching in general

graphs, in Proceedings of the of the 16th Annual Conference on Theoretical Aspects of
Computer Science, STACS 99, Springer, New York, 1998, pp. 259–269.

[37] W. R. Pulleyblank, Faces of Matching Polyhedra, Ph.D. thesis, Faculty of Mathematics,
University of Waterloo, 1973.

[38] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader, Parallel community detection
for massive graphs, in Parallel Processing and Applied Mathematics, Springer, New York,
2012, pp. 286–296.

[39] A. Schrijver, Combinatorial Optimization—Polyhedra and Efficiency. Volume A: Paths,
Flows, Matchings, Springer, New York, 2003.

[40] A. Tamir and J. S. B. Mitchell, A maximum b-matching problem arising from median
location models with applications to the roommates problem, Math. Program., 80 (1995),
pp. 171–194.


	Introduction
	Background
	Approximation algorithms for Matching
	Approximation algorithms for b-Matching

	New b-Matching algorithm
	Sequential b-Suitor algorithm
	Proof of correctness
	The parallel b-Suitor algorithm
	Variants of the b-Suitor algorithm
	Neighbor sorting
	Delayed versus eager processing
	Order in which vertices are processed


	Experiments and results
	Serial performance
	Matching weight
	Run times of the algorithms


	Parallel performance
	Optimizations of the parallel b-Suitor algorithm
	The Intel Xeon Phi processor

	Conclusions
	References

