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Abstract

Background: Comparing phenotypes of heterogeneous cell populations from multiple biological conditions is
at the heart of scientific discovery based on flow cytometry (FC). When the biological signal is measured by
the average expression of a biomarker, standard statistical methods require that variance be approximately
stabilized in populations to be compared. Since the mean and variance of a cell population are often correlated
in fluorescence-based FC measurements, a preprocessing step is needed to stabilize the within-population
variances.

Results: We present a variance-stabilization algorithm, called flowVS, that removes the mean-variance
correlations from cell populations identified in each fluorescence channel. flowVS transforms each channel from
all samples of a data set by the inverse hyperbolic sine (asinh) transformation. For each channel, the parameters
of the transformation are optimally selected by Bartlett’s likelihood-ratio test so that the populations attain
homogeneous variances. The optimum parameters are then used to transform the corresponding channels in
every sample. flowVS is therefore an explicit variance-stabilization method that stabilizes within-population
variances in each channel by evaluating the homoskedasticity of clusters with a likelihood-ratio test.
With two publicly available datasets, we show that flowVS removes the mean-variance dependence from raw

FC data and makes the within-population variance relatively homogeneous. We demonstrate that alternative
transformation techniques such as flowTrans, flowScape, logicle, and FCSTrans might not stabilize variance.
Besides flow cytometry, flowVS can also be applied to stabilize variance in microarray data. With a publicly
available data set we demonstrate that flowVS performs as well as the VSN software, a state-of-the-art
approach developed for microarrays.

Conclusions: The homogeneity of variance in cell populations across FC samples is desirable when extracting
features uniformly and comparing cell populations with different levels of marker expressions. The newly
developed flowVS algorithm solves the variance-stabilization problem in FC and microarrays by optimally
transforming data with the help of Bartlett’s likelihood-ratio test. On two publicly available FC datasets,
flowVS stabilizes within-population variances more evenly than the available transformation and normalization
techniques. flowVS-based variance stabilization can help in performing comparison and alignment of
phenotypically identical cell populations across different samples. flowVS and the datasets used in this paper
are publicly available in Bioconductor.
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1 Introduction
We describe an algorithm that transforms a collection
of flow cytometry (FC) samples in order to stabilize the
variance within cell populations in each fluorescence
channel for the entire collection of samples. This trans-
formation enables cell populations (clusters of cells
with similar phenotypes) with homogeneous variances
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to be easily compared with each other by standard sta-

tistical methods. Between-population comparisons are

important in detecting changes in populations across

biological conditions, which might help us to diag-

nose diseases, develop new drugs, and understand the

immune system in general [1, 2, 3, 4, 5]. Hence, our

variance-stabilization algorithm could play a support-

ing role in automating biological discovery based on

flow cytometry and similar imaging technologies.
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FC technology measures morphology (from light
scattering) and the expression of multiple biomarkers
(from fluorescence emission of fluorophores attached
to antibodies) at the single-cell level. An FC sam-
ple consists of hundreds of thousands or more of such
single-cell measurements, and a study could consist of
thousands of samples from different individuals at dif-
ferent time points under different experimental condi-
tions [6, 7].
Variance inhomogeneity is an inherent problem in

fluorescence-based FC measurements and can be an
obstacle both for manual data analysis performed
by qualified cytometry operators and for automated
multi-sample comparisons, which typically rely on an
intermediate step of cell clustering using a plethora of
approaches from modified k-means to non-parametric
Bayesian methodologies [8, 9]. The origin of the prob-
lem is the physics of fluorescence signal formation and
the detection processes that monotonically increase
the variance of the fluorescence signal with the average
signal intensity [10, 11]. For example, Fig. 1 demon-
strates how the variances of cell populations increase
with their mean fluorescence intensities (MFIs) in a
set of FC samples collected from several healthy indi-
viduals. Owing to such signal-variance dependence, a
cell population with higher levels of marker expressions
(i.e., higher fluorescence emission) has higher vari-
ance than another population with relatively low lev-
els of marker expressions (i.e., low fluorescence emis-
sion). This inhomogeneity of within-population vari-
ance creates problems in extracting features uniformly
and comparing cell populations with different levels of
marker expressions.
In order to demonstrate the flowVS results we eval-

uate the pre- and post-processing cluster homogene-
ity, and quantify the improvement offered by our ap-
proach. We report the results using a simple measure
of effect size, rather than through a hypothesis-testing
framework. As an example, consider the population
registration problem in which corresponding cell clus-
ters from multiple FC samples are identified based on
the average levels of markers expressed by the clus-
ters [3, 12, 13, 14]. The clusters of cells representing the
same immunophenotype identified in multiple samples
are represented by a hypothetical metacluster (a bio-
logical generalization of the particular immunopheno-
type, observed across multiple samples). The existence
of metaclusters is typically assessed by hemopatholo-
gists or other skilled FC operators on the basis of their
experience and knowledge of previous examples of nor-
mal and aberrant immunophenotypes. The biological
hypothesis behind assigning a cluster to a metacluster
can be formulated as “all clusters in a metacluster rep-
resent the same cell type (immunophenotype).” How-
ever, translating this hypothesis to a null stating “all

clusters in a metacluster have equal mean” and using
a traditional hypothesis-testing framework accompa-
nied by p-values may not be appropriate. First, we
know that such a null hypothesis is unrealistic: biolog-
ical variability, technical variability of blood or bone-
marrow sample measurements, and random effects as-
sociated with the biochemistry of antibody binding
will certainly produce clusters of differing means. Sec-
ond, a hypothesis-testing framework addresses only
the question of whether the clusters have the same
location, but it is not designed to measure the mag-
nitude of the difference or lack of homogeneity within
a postulated metacluster. Finally, the p-values are af-
fected by both cluster size and metacluster homogene-
ity. Thus, the p-values obtained would not be com-
parable for various metaclusters or different clusters
within metaclusters.
Variance stabilization (VS) is a process for disso-

ciating data variability from mean signals [15, 16,
17, 18]. Other fluorescence-based technologies such as
the microarrays stabilize variance by data transforma-
tion [19, 20, 21, 18]. However, unlike microarray data,
explicit VS is not usually performed in FC data anal-
ysis. Traditionally, FC data are transformed with non-
linear functions to project cell populations with nor-
mally distributed clusters – a choice that usually sim-
plifies subsequent visual analysis [22, 23, 24, 25, 26,
27]. Recently, Finak et al. [27] used the maximum-
likelihood approach to explicitly satisfy normality of
the cell populations. Ray et al. [28] transformed each
channel with the asinh function whose parameters are
optimally selected by the Jarque-Bera test of normal-
ity (a goodness-of-fit test of whether sample data have
the skewness and kurtosis matching a normal distribu-
tion). While these transformations approximately nor-
malize FC data, they might not stabilize variance, as
may be seen in Figs. 6 and 7.
The VS problem in FC, however, cannot be solved di-

rectly by applying mature VS techniques from the mi-
croarray literature. In microarrays, each gene is mea-
sured multiple times (possibly under multiple condi-
tions) and the between-sample variance for each gene
is stabilized with respect to the average expression of
the gene across samples. By contrast, variance is de-
fined by within-population cell-to-cell variation in FC,
and this within-population variance is stabilized with
respect to the average expression of markers within
each population. These contrasting objectives prevent
us from applying VS methods from microarray litera-
ture directly to flow cytometry.
We address the need for explicit VS in FC with

a maximum likelihood (ML)-based method, called
flowVS, which is built on top of a commonly used
inverse hyperbolic sine (asinh) transformation. The
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choice of asinh function is motivated by its success
as a variance stabilizer for microarray data [21, 18].
flowVS stabilizes the within-population variances sep-
arately for each fluorescence channel z across a collec-
tion of N samples. After transforming z by asinh(z/c),
where c is a normalization cofactor, flowVS identifies
one-dimensional clusters (density peaks) in the trans-
formed channel. Assume that a total of m 1-D clus-
ters are identified from N samples with the i-th clus-
ter having variance σ2

i . Then the asinh(z/c) trans-
formation works as a variance stabilizer if the vari-
ances of the 1-D clusters are approximately equal, i.e.,
σ2
1 ∼ σ2

2 ∼ ... ∼ σ2
m. To evaluate the homogeneity

of variance (also known as homoskedasticity), we use
Bartlett’s likelihood-ratio test [29]. From a wide range
of cofactors, our algorithm selects one that minimizes
Bartlett’s test statistic, resulting in a transformation
with the best possible VS. Note that, in contrast to
other transformation approaches, our algorithm ap-
plies the same transformation to corresponding chan-
nels in every sample. flowVS is therefore an explicit
VS method that stabilizes within-population variances
in each channel by evaluating the homoskedasticity of
clusters with a likelihood-ratio test.
Using a healthy-subject data set from Purdue and

publicly available immune tolerance network (ITN)
data, we demonstrate that flowVS removes the mean-
variance dependence from raw FC data and makes the
within-population variance relatively homogeneous.
We demonstrate that alternative transformation tech-
niques might not stabilize variance. Variance homo-
geneity is especially useful to build metaclusters from
a collection of phenotypically similar cell populations
across samples [3, 27, 30, 31]. Previous studies (Hahne
et al. [32], for example) shifted the distribution of each
fluorescence channel to ensure homogeneity in meta-
clusters, but such shifting might hide useful biologi-
cal signals present in the MFIs of cell populations. By
contrast, we can build homogeneous metaclusters from
variance-stabilized populations without removing the
differences in their MFIs. Hence, flowVS could pro-
vide additional flexibility in processing and analyzing
a large collection of FC samples.

2 Related work
VS has been a widely studied topic in applied statistics
for its central role in making heteroskedastic data eas-
ily tractable by standard methods. Heteroskedasticity
appears in various data sets mostly because the data
follow a distribution with correlated mean and vari-
ance, e.g., Poisson or Gamma; there are many more
examples, but these two are relevant for fluorescence.
For well-known distribution families, VS is usually per-
formed by transforming data with an analytically cho-
sen function f . For example, f(z) =

√

z + 3/8 works

as a good (asymptotic) stabilizer for a random vari-
able z following the Poisson distribution [33]. Variance
stabilizers for several well-known distribution fami-
lies are described in [33, 34]. For unknown distribu-
tions, heuristic and data-driven stabilizers are often
used [15, 16, 17].
However, traditional transformations are often inad-

equate for low-count (photon-limited) signals [35, 18]
because of unknown error patterns in fluorescence
data. Past work developed ad hoc VS schemes for dif-
ferent types of fluorescence data. For example, in mi-
croarrays, the VS problem has been addressed by var-
ious non-linear transformations [19, 20, 21, 18]. Most
notably, the widely used approach by Huber et al. [18]
uses an asinh transformation whose parameters are se-
lected by a maximum-likelihood estimation.
For FC data, researchers have used various non-

linear transformations, such as the logarithm, hyper-
log, generalized Box-Cox, and biexponential (e.g., log-
icle and generalized arcsinh) functions [22, 23, 24, 25,
26, 27]. In past work, parameters of these transforma-
tions were adjusted in a data-driven manner to max-
imize the likelihood (flowTrans by Finak et al. [27]),
to satisfy the normality (flowScape by Ray et al. [28]),
and to comply with simulations (FCSTrans by Qian et
al. [36]). flowTrans estimates transformation parame-
ters for each sample by maximizing the likelihood of
data’s being generated by a multivariate-normal distri-
bution on the transformed scale. flowScape optimizes
the normalization factor of asinh transformation by the
Jarque-Bera test of normality. FCSTrans selects the
parameters of the linear, logarithm, and logicle trans-
formations with an extensive set of simulations. How-
ever, normalizing data may not necessarily stabilize
its variance, e.g., for a Poisson variable z,

√

z + 3/8
is an approximate variance-stabilizer, whereas z2/3 is
a normalizer [16]. Therefore, we consider an approach
built upon the well-known asinh transformation and
estimate transformation parameters for explicitly sta-
bilizing within-population variations.

3 Variance stabilization for FC data
3.1 Motivation
Consider two representative samples from the ITN
data set taken from the flowStats package in Biocon-
ductor. We gate the samples for lymphocytes, trans-
form using an asinh transformation (with cofactor set
to 1), and plot T-cell subpopulations and distribution
of CD8 marker in Fig. 2. Across these two samples,
T-cell subpopulations have different proportions and
MFIs. For example, in Subfig. 2(a) and 2(c), CD8+ T-
cell subpopulation is 35.4% of total T-cells with MFI
5.31. By contrast, CD8+ T-cell subpopulation is 28.7%
of total T cells with MFI 6.23 in Subfig. 2(b) and 2(d).
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Should we consider the differences between CD8+ pop-
ulations in these two samples to be biologically signif-
icant? The answer to this question depends on our as-
sumption about the data. If we assume that a cell type
either expresses or does not express a biomarker and
that the biological information lies only in the propor-
tion of positively and negatively expressed cells, then
MFI does not bear meaningful information other than
defining positive and negative cells. In this case, we
could consider the differences in MFIs across cell pop-
ulations of the same type as technical variations and
eliminate them by aligning cell populations described
by Hahne et al. [32] and Finak et al. [37]. However, past
work has shown that both cell proportion and MFI
can possess biological information [2, 3, 38]. Hence,
aligning cell populations to a common MFI might re-
move meaningful biological signal from data. In the
latter case, we want to compare MFIs of cell popula-
tions to evaluate whether they are statistically differ-
ent. A common statistical approach to compare aver-
age expressions of cell population is to use a statistical
test in an ANOVA model that explicitly requires that
variance be approximately stabilized in populations.
Hence, VS is necessary to detect statistically meaning-
ful changes across populations from different samples.

3.2 The goal of VS in flow cytometry
The aim of VS in FC is to make within-population
variances of different cell populations approximately
equal and thereby independent of the average marker
expressed by populations. Recall that the expression of
a marker is measured by the intensity of light at a par-
ticular channel of fluorescence. VS therefore stabilizes
the within-population fluorescence variance and makes
it independent of the MFIs of the cell populations. In
this paper, we refer to fluorescence channels more fre-
quently because the nature of fluorescence emissions
– not the protein expressions – dominates the mean-
variance relationship in FC data. We do not stabilize
variance on the scatter channels because, as pointed
out by Finak et al. [27], there are few benefits to trans-
forming forward- and side-scatter channels.

3.3 Channel-specific variance stabilization
We assume that correlations among fluorescence chan-
nels due to the overlap of spectra are removed by
spectral unmixing before we transform data. Even
though the expression of biomarkers can still be corre-
lated [24], we do not incorporate such correlations in
VS because the nature of such correlation is difficult
to model. Therefore, we assume that compensated flu-
orescence channels are independent and stabilize vari-
ance on each channel separately.
Selecting an optimal transformation for FC data is

a nontrivial problem because the accurate error model

of FC data is often unknown. In previous work, re-
searchers have successfully used a number of functions
to transform FC data, such as logarithm, asinh, Box-
Cox, logicle, etc. [24, 27, 28]. In our flowVS algorithm,
we decided to use the asinh function to transform FC
data. This choice of asinh function is motivated by
its success in FC data visualization and normalization
[27, 28] and in stabilizing variance in fluorescence read-
outs from microarray data [21, 18]. Stabilizing variance
with other transformations can be performed using the
same flowVS framework but is not discussed here.
To transform a fluorescence channel z, we use the

asinh transformation with a single parameter c:

asinh(z/c) = ln(z/c+
√

(z/c)2 + 1). (1)

In this transformation, c is called the normalization
cofactor, whose value is optimally selected to stabilize
within-population variance in channel z. Note that in
a more general form asinh transformation is expressed
with three parameters, a ∗ asinh(b+ z/c), where in ad-
dition to the cofactor c, a denotes a scaling after trans-
formation, and b denotes a translation before transfor-
mation. We set a = 1 because scaling after transfor-
mation does not affect downstream analysis and set
b = 0 to avoid shifting cell populations. Hence, we are
left with a single parameter c whose value is estimated
in order to stabilize the variance.

3.4 The flowVS algorithm
Assume that we have a collection of N FC samples.
Then the objective of the flowVS algorithm is to trans-
form each sample such that the within-population vari-
ance is stabilized in each fluorescence channel across N
samples. Here, we describe the algorithm for a single
channel z; the process can be applied independently to
other channels. First, we discuss the process of evalu-
ating homoskedasticity of a transformed channel for a
selected cofactor c by computing Bartlett’s likelihood-
ratio test. Then, we elaborate the process of select-
ing an optimum cofactor that would stabilize variance
when used with asinh transformation.

3.4.1 Steps to compute Bartlett’s statistic on channel
z for a selected cofactor c

Step1: Transforming channel z in each sample. Let
zj be a vector denoting channel z in the j-th sample,
where 1 ≤ j ≤ N . We transform zj by the asinh func-
tion: z′j = asinh(zj/c), where z′j is the transformed
channel.
Step2: Detecting 1-D density peaks (1-D clusters).

We estimate the density of z′j by a kernel density es-
timation method (the density function of stats pack-
age in R). The peaks in the density of z′j are iden-
tified as regions of high local density and significant
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curvature (also called landmarks in [32]). We identify
high-density regions in z′j by the curv1Filter func-
tion of the flowCore package [39] in Bioconductor. The
boundaries of density peaks are identified by detecting
minima between two adjacent density peaks. Here, a
density peak represents a 1-D cluster of cells. Let Pj

be the collection of all density peaks identified in z′j .
Step3: Collecting density peaks from all samples.

Let P be the set of density peaks collected from all
samples, i.e., P = ∪1≤j≤NPj . Let P contain a total of
m density peaks where the i-th peak contains ni cells
with mean µi and variance σ2

i .
Step4: Computing Bartlett’s test statistic. Let n =

∑

1≤i≤m ni be the total number of cells in P and σ2
p

be the pooled variance of m density peaks. Then we
compute Bartlett’s statistic as follows:

B(c) =
(n−m) ln(σ2

p)−
∑m

i=1(ni − 1) ln(σ2
i )

1 + 1
3(m−1)

(

∑m
i=1

1
ni−1 − 1

n−m

) . (2)

This statistic B(c) is specific to the cofactor c used
to transform the data and measures the degree of ho-
mogeneity across all 1-D clusters in the transformed
channel z′.

3.4.2 Finding a cofactor for optimum VS
The optimum variance-stabilizing cofactor c∗ is a co-
factor giving the minimum value of Bartlett’s statistic:

c∗ = argminB(c). (3)

Minimizing Eq. 2 is a nontrivial optimization prob-
lem because Bartlett’s test statistic B(c) depends in-
directly on the cofactor c and is not differentiable
with respect to c. This prevents us from applying op-
timization methods from the gradient-descent family.
Therefore, we employ a piecewise minimization with-
out derivatives [40]. Let clow and chigh be the low-
est and highest possible values of the cofactor on a
logarithmic scale. By default, we set clow = −2 and
chigh = 10, i.e., the lowest and highest values of cofac-
tor is exp(−2) ∼ 0.135 and exp(10) ∼ 22026, respec-
tively. Users can also supply these extreme values. We
assume that the optimum cofactor lies in the range
[exp(clow), exp(chigh)]. Then the optimization proce-
dure works as follows:
(a) We divide the interval [clow, chigh] into k =

(chigh − clow) equal regions where the i-th region is
defined by the interval [ci, ci+1] and ci+1 − ci = 1.
(b) For the i-th interval, we look for a cofactor in

the range [exp(ci), exp(ci+1)] with minimum Bartlett’s
statistic. For each cofactor, we compute the Bartlett’s

statistic with the steps described in Sec. 3.4.1. For
faster convergence, we call the optimize function from
the stats package in R, which uses a combination of
golden section search and successive parabolic inter-
polation [41]. Interested readers might see the R doc-
umentation for a detailed description of the function.
Let c∗i be the optimum cofactor in the i-th interval
with the associated Bartlett’s statistic B(c∗i ).
(c) We identify the overall optimum cofactor c∗ as

follows:

c∗ = arg
k

min
i=1

B(c∗i ). (4)

Eq. 4 provides an approximate solution to Eq. 3.
Since we divided the search space into smaller inter-
vals, the probability of having multiple local optima
in an interval is small. Hence, the procedure described
above is expected to return a variance stabilizing cofac-
tor. After we obtain the optimum cofactor c∗, channel
z in each sample is transformed by asinh(zj/c

∗) and
used in subsequent analysis.

4 Results
4.1 Data sets
We demonstrate the use of flowVS and other related
methods by using a healthy-subject data set from Pur-
due University (HD) and publicly available immune
tolerance network (ITN) data. The original HD data
set consists of 65 samples from five healthy individu-
als who donated blood on different days [42]. Here, for
simplicity, we used a smaller subset of the HD data
set consisting of 12 samples from three healthy indi-
viduals, “A”, “C”, and “D”. From each individual, we
keep samples from two (randomly selected) days and
two technical replicates from each day. Each HD sam-
ple was stained using labeled antibodies against CD45,
CD3, CD4, CD8, and CD19 protein markers. In this
paper, an HD sample “C 4 2” means that it is col-
lected on day 4 from individual “C” and it is the second
replicate on that day. The healthy data set is part of
our Bioconductor package flowVS. The ITN data set is
collected from 15 patients. It includes 3 patient groups
with 5 samples each. Each sample was stained using la-
beled antibodies against CD3, CD4, CD8, CD69 and
HLADr. The ITN data set is available in the flow-
Stats package in Bioconductor. We selected these data
sets because they are available in standard R pack-
ages. Hence, the results presented here can be easily
reproduced.
We identify lymphocytes in each sample of the HD

and ITN datasets by using a two-step gating shown in
Fig. 4. In this paper, we perform data transformation
only on lymphocytes.
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4.2 Stabilizing variance in the HD dataset
At first, flowVs identifies an optimum cofactor for as-
inh transformation for each fluorescence channel of
the HD dataset. This process is performed by iden-
tifying density peaks in each channel and minimiz-
ing Bartlett’s statistic, as described in Section 3.4.
The top row in Fig. 4 shows Bartlett’s statistic com-
puted from density peaks of all samples after the data
are transformed by asinh transformation with differ-
ent cofactors. The range of values of the cofactor is
selected by the automated algorithm described in Sec-
tion 3.4. An optimum variance-stabilizing cofactor is
obtained where Bartlett’s statistic is a minimum. From
Fig. 4, the variance-stabilizing cofactors for different
markers are: (a) 17,956 for CD45, (b) 5,685 for CD3,
(c) 6,317 for CD4, (d) 4,937 for CD8, and (e) 5,976
for CD19. For every channel except CD45, we ob-
tain a clear global minimum, denoting the existence
of a unique variance-stabilizing cofactor with respect
to Bartlett’s test. For CD45, we observe a sharp de-
crease in Bartlett’s statistic at cofactor 17,000. Since
CD45 is a common leukocyte marker, it is always ex-
pressed on lymphocytes – the subset of cells that we
preselected for this study. Hence, most cells are CD45+
in our preprocessed samples, which might produce
a non-convex relationship between Bartlett’s statis-
tic and cofactors. For the same reason, the value of
Bartlett’s statistic at the optimum cofactor for CD45
is the smallest (less than 700) compared to the min-
imum value of Bartlett’s statistic achieved in other
channels. Note that the minimum Bartlett’s statistic
denotes the degree to which we are able to stabilize
the within-population variance of a channel consider-
ing the between-sample variations.
We transform each sample of the HD data set by

the asinh function with the variance-stabilizing cofac-
tors and plot the density of the transformed chan-
nels in the bottom row of Fig. 4. In each channel,
we observe that density peaks (a.k.a. one-dimensional
clusters) have approximately equal width across all
samples, which visually confirms the homogeneity of
within-population variances in one-dimensional clus-
ters. When both positive and negative peaks (i.e., clus-
ters with high or low marker expression) are present
in a channel, e.g., CD3, CD4, and CD8, their vari-
ances are also approximately stabilized. Note that
the density peaks may not be well aligned owing to
the between-subject variations. Aligning density peaks
across samples is not an objective of flowVS, because
such shifting of density might potentially eclipse bio-
logical signals present in the mean expressions of a cell
populations. When necessary, data normalization can
be performed after variance stabilization, as was done
by Hahne et al. [32] and Finak et al. [37].

4.3 Stabilizing variance in the ITN dataset
We stabilize variance in each channel of the ITN
dataset and show the results in Fig. 5. Similar to the
HD data set, the top row shows Bartlett’s statistic
computed from density peaks of all samples of the
ITN data set after each channel is transformed by as-
inh transformation with different cofactor for each one.
From Fig. 5, the variance stabilizing cofactors for dif-
ferent markers are: (a) 3.66 for CD3, (b) 25.1 for CD4,
(c) .75 for CD8, and (d) 0.2 for CD69. The curves
showing the relationship between Bartlett’s statistic
and cofactors might have multiple local minima. Nev-
ertheless, a clear global minimum is obtained for chan-
nels in the ITN dataset. We note that the variance-
stabilizing cofactors for the HD data set are an order
of magnitude greater than those of the ITN data set.
For example, the variance-stabilizing cofactor for the
CD channel is 6317 in the former data set, whereas for
the same channel, variance is stabilized at a cofactor
of 25.1 in the latter. The primary contributing factor
behind this difference is the maximum range of values
in each channel. The maximum value of a fluorescence
channel is 10,000 for the ITN data set, and 1,048,575
for the HD data set. Hence, variance is stabilized at
higher cofactor values for the channels in the HD data
set.
After identifying the optimum cofactors for each

channel, we transform each sample of the ITN data
set by asinh functions with the variance-stabilizing co-
factors and plot the density of the transformed chan-
nels in the bottom row of Fig. 5. Similar to the HD
data set (Fig. 5), the density peaks have approximately
equal variance across all samples, thus confirming the
homogeneity of within-population variances in one-
dimensional clusters.

4.4 Comparing flowVS with other transformation
methods

We compare flowVS with three automated methods
developed for transforming FC data: (a) flowTrans
(b) logicle (flowCore), and (c) FCSTrans. We selected
these three methods because they automatically se-
lect parameters for different transformations. As dis-
cussed earlier, flowTrans estimates the parameters of
different transformations (e.g., asinh, biexponential,
linlog, and Box-Cox) by maximizing the likelihood of
data’s being generated from normal distributions [27].
In this paper, we chose the results of flowTrans with
asinh transformation because it generated relatively
better segregation of populations than the other op-
tions and is directly comparable to flowVS that also
uses the asinh transformation. We generate our re-
sults by calling the flowTrans function of the Bio-
conductor package flowTrans. Next, we select the logi-
cle transformation implemented in the flowCore pack-
age in Bioconductor. To estimate the parameters of
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logicle transformation, we use the estimateLogicle

function of the flowCore package. Finally, FCSTrans
also uses the logicle transformation. We obtained the R
source code of FCSTrans from http://sourceforge.

net/projects/immportflock/files/FCSTrans.
The top row of Fig. 6 shows the densities of the trans-

formed CD4 channel of the HD data set after the sam-
ples are transformed by four methods using their opti-
mum parameters. From visual inspection, we observe
that the logicle and FCSTrans stabilize variance of
the CD4+ and CD4- populations separately. However,
these two methods do not stabilize variances across
CD4+ and CD4- populations. flowTrans fails to con-
verge for six samples (all samples from subject D and
day 3 samples from subject C) and uses default cofac-
tor=1 for these samples. Hence, the peaks transformed
by flowTrans are on different scales, and they are hard
to compare against each other. By contrast, flowVS
stabilizes variance across all peaks of CD4 channels,
including CD4+ and CD4- populations. Furthermore,
flowVS selects a single cofactor for a channel across all
samples in a data set, whereas flowTrans selects dif-
ferent parameters for different samples. Thus, popula-
tions are more comparable after data are transformed
by flowVS.
Next, we quantitatively compare the stability of vari-

ance across multiple transformation methods. This
comparison, however, can not be performed on the
actual transformed data because different transfor-
mations convert data to different scales. Hence, we
convert each transformed channel z to [0,1] scale by
rescaling each element zi with the following equation
(zi −min{z})/(max{z} −min{z}). For each transfor-
mation, we identify the density peaks in the converted
CD4 channel and plot standard deviations of density
peaks against their ranks of MFI in the bottom row of
Fig. 6. Here we use rank of the means, instead of ac-
tual means, to distribute the points evenly along the x-
axis. We observe that all four transformations are able
to eliminate the systematic dependence of variance on
mean, which is typically observed in untransformed
fluorescence data, such as in Fig. 1. Therefore, these
transformations have inherent ability to stabilize vari-
ance, mostly owing to the properties of the underlying
asinh and logicle transformations. However, flowVS is
able to stabilize variance more evenly than other trans-
formations, as can be seen in the bottom right plot in
Fig. 6.
The comparison of different transformations on the

ITN data set is shown in Fig. 7. As before, the top row
shows the densities of the transformed CD4 channel
and the bottom row plots the standard deviations of
the density peaks. As with the HD data set, flowVS
stabilizes variance more evenly than other methods.

4.5 Normality of the variance-stabilized clusters
Bartlett’s test assumes that the cell populations are
normally distributed and is sensitive to departures
from normality. Density peaks (1-D cell populations)
in data sets that we have studied approximately fol-
low normal distributions. This normality assumption
is typical for many FC data sets as well. Hence, a VS
approach based on Bartlett’s test is expected to work
well for most FC data sets. For example, in Figure 8,
we show the normality of cell populations in a rep-
resentative sample of the HD data set with quantile-
quantile plots (Q-Q plots) [43] of eight 1-D clusters.
In each Q-Q plot, the distribution of a 1-D cluster is
compared with the standard normal distribution by
plotting their quantiles against each other. If a clus-
ter is normally distributed (i.e., linearly related to the
standard normal distribution), the points in the Q-Q
plot lie approximately on a straight line. We observe
that all eight Q-Q plots in Fig. 8 show linearity in
their central parts, except for small deviations at the
ends, indicating that the 1-D clusters approximately
follow normal distributions with heavier tails. There-
fore, flowVS based on Bartlett’s statistic works well for
this data.
However, if cell populations deviate significantly

from normality, we could use other likelihood ratio
statistic that is less sensitive to departures from nor-
mality, such as Levene’s [44] or the Brown-Forsythe
statistic [45]. In our experiments, we found Bartlett’s
approach working significantly better than Levene’s,
and therefore, did not show results of the latter
method.

4.6 Impact of variance stabilization in comparing cell
populations

We now briefly demonstrate the impact of variance
stabilization on the homogeneity of metaclusters (i.e.,
groups of phenotypically concordant clusters). In
metacluster homogeneity evaluation, the underlying
assumption is that all clusters in a metacluster rep-
resent the same cellular immunophenotype. As men-
tioned before, the hypothesis-testing framework may
not be appropriate for the described problem, since a
null hypothesis claiming that all clusters in a meta-
cluster have equal mean is essentially always false.
Moreover, when the number of cells (sampling units of
the test) increases, the power of a statistical test such
as a t-test or an F-test increases too. Consequently,
a statistical test would inevitably detect small (i.e.,
statistically significant, but biologically irrelevant) dif-
ferences between clusters. For example, performing a
t-test with CD4+ cell clusters from the first and the
second samples of the ITN data set, we observe p-
values less than 10−10 for all transformations despite
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the fact that the tested cell populations are biologically
identical (in an immunophenotypic sense).
Therefore, we use an effect size measure rather than

p-values to illustrate the impact of the proposed algo-
rithm on metacluster homogeneity. We employ the ra-
tio of between-cluster variation (σ2

b ) to within-cluster
variation (σ2

w) [42]. Consider a set of k clusters where
the i-th cluster containing ni cells has mean µi and
variance σ2

i . If N is the total number of cells in all
clusters and µ is the combined mean then the ratio of
σ2
b and σ2

w is computed as follows:

σ2
b

σ2
w

=
1

N−k

∑k
i=1(ni − 1)(µi − µ)2

1
N−k

∑k
i=1 (ni − 1) σ2

i

. (5)

Unlike the F-test for comparing multiple clusters, the
above ratio does not depend on the sample size, and
it is constructed so that the increasing homogeneity of
a metacluster results in a progressively smaller value

of the ratio. Table 1 shows the
σ2

b

σ2
w

values of CD4+

metacluster and a biologically erroneous metacluster
grouping CD4+ and CD4- cells. The values are com-
puted after the data are transformed by four trans-
formations considered in this paper. In this example,
the flowVS transformation gives the best homogeneity
within the CD4+ metacluster, and an increased het-
erogeneity of the CD4+/CD4- clusters mixture. Thus
application of flowVS not only results in the highest
homogeneity of a set of known phenotypically identi-
cal cell clusters, but also provides the best discrimi-
nation between homogeneous and heterogeneous col-
lection of clusters. The result demonstrates that the
flowVS-based variance stabilization can help in per-
forming comparison and alignment of phenotypically
identical cell populations across different samples.

4.7 Application to microarray data
The VS approach based on optimizing Bartlett’s
statistic can also be used to stabilize variance in mi-
croarray data. However, the initial steps of flowVS
need to be adapted for microarrays. Assume that the
expression of m genes are measured from N samples in
a microarray experiment. After transforming the data
by the asinh function, the mean µi and variance σ2

i of
the ith gene gi are computed from the expressions of gi
in all samples. flowVS then stabilizes the variances of
the genes by transforming data using the asinh func-
tion with an optimum choice of cofactor. Unlike FC, a
single cofactor is selected for all genes in microarrays.
We have applied the modified flowVS to the publicly

available kidney microarray data provided by Huber
et al. [18]. The kidney data report the expression of
8704 genes from two neighboring parts of a kidney

tumor, using cDNA microarray technology. For dif-
ferent values of the cofactor, flowVS transforms the
kidney data with the asinh function and identifies the
optimum cofactor by minimizing Bartlett’s statistic.
Subfig. 5 shows that a minimum value of Bartlett’s
statistic is obtained when the cofactor is set to exp(6)
(∼ 400). The optimum cofactor is then used with the
asinh function to transform the kidney data.
We compare the VS performance of flowVS with

two software packages, VSN by Huber et al. [18] and
DDHFm by Motakis et al. [46]. Similar to flowVS,
VSN uses an asinh transformation whose parameters
are optimized by maximizing a likelihood function [18].
DDHFm applies a data-driven Haar-Fisz transforma-
tion (HFT)[47, 46] to stabilize the variance. Both VSN
and DDHFm are developed for stabilizing variance in
microarray data and can not be applied to FC.
In Subfig. 5, we plot the mean and standard devi-

ation of every gene before transforming the kidney
data and after transforming it by flowVS, VSN, and
DDHFm. In this figure, we have applied a loess regres-
sion to obtain smooth average curves. We observe in
Subfig. 5 that the standard deviation of the untrans-
formed kidney data increases monotonically with the
mean. Both VSN and flowVs approximately stabilize
the variance across all genes in this data. However, the
Haar-Fisz transformation achieves good VS properties
only for genes with higher levels of expression.
To take a closer look at the transformed data by

flowVS and VSN, we plot the variances of genes against
the ranks of their means in Fig. 11. These figures are
generated by the meanSdPlot function from the VSN
package. Here, the ranks of means distribute the data
evenly along the x-axis and thus make it easy to visu-
alize the homogeneity of variances. We also show the
running median estimator of standard deviation by the
red lines. Both VSN and flowVS remove the mean-
variance dependence because the red lines are approx-
imately horizontal for both transformations. Hence,
flowVS performs at least as well as a state-of-the-art
approach developed for microarray data.

5 Conclusions
We describe a variance-stabilization framework, flowVS,
that removes the mean-variance correlations observed
in cell populations from FC samples. This framework
transforms each fluorescence channel by the asinh
function whose normalization cofactor is optimally se-
lected by Bartlett’s likelihood-ratio test. Variance ho-
mogeneity (homoskedasticity) is a desirable property
for comparing populations across conditions, building
metaclusters from phenotypically similar populations,
and analyzing metaclusters in an ANOVAmodel. How-
ever, unlike the earlier approach by Hahne et al. [32],
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flowVS does not artificially shift populations to align
them in the marker space. By stabilizing the vari-
ances, flowVS homogenizes similar cell populations
and establishes the foundation of biologically mean-
ingful metaclusters and templates.
flowVS is built on several assumptions that limit our

approach. First, flowVS stabilizes variance separately
in each channel. Thus it might be unable to stabi-
lize covariances across multiple channels when they
are correlated. Second, flowVS identifies 1-D density
peaks and evaluates the homogeneity of populations
by the likelihood-ratio test. Therefore, this algorithm
might not perform well when density peaks are not eas-
ily identifiable. Third, flowVS stabilizes variance more
accurately when a number of samples are simultane-
ously passed to the algorithm. Hence, this approach
is not suitable for normalizing a single sample or sta-
bilizing variances of sequentially arriving samples. Fi-
nally, Bartlett’s test used in flowVS assumes that the
deviation from normality is relatively modest. If data
deviate significantly from normality, other likelihood
ratio tests can be employed, such as Levene’s test [44]
or the Brown-Forsythe test [45].
flowVS operates as an independent module in the

FC data analysis pipeline. It does not depend on the
preprocessing algorithms applied before VS nor on the
post-analysis methods such as matching, metacluster-
ing, and classification. Hence, flowVs is capable of
working with most automated clustering and meta-
clustering algorithms developed for flow cytometry.
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Cell populations dataset flowTrans logicle FCSTrans flowVS

CD4+ metacluster
HD 2.8 13.70 13.42 .87
ITN 1.3 1.55 1.54 .61

erronous CD4-/CD4+ metacluster
HD 24.40 21.63 12.64 36.77
ITN 11.68 11.30 10.38 26.47

Table 1 The ratio of between-cluster to within-cluster variations (a measure of effect size of metacluster homogeneity defined in
Equation 5) after four transformations. CD4+ cell populations are used in top two rows, and a mixture of CD4+ and CD4- cell
populations are used in bottom two rows. Small and large values of the ratio denote homogeneous and heterogeneous collections of
clusters, respectively. In this example, flowVS transformation results in the highest homogeneity when only CD4+ clusters are
considered, and highest heterogeneity when CD4+ and CD4- clusters are mixed together.

Figure 1 Figure 1. Mean fluorescence intensities (MFIs) of one-dimensional cell populations (also called density peaks) are plotted
against the variances of the populations. Blood samples were collected from five healthy individuals on different days and stained
with labeled antibodies against five biomarkers (see Sec. 4.1). Samples are compensated and gated for the lymphocytes, but no
transformation is used. Populations identified in each fluorescence channel are shown with the same symbol and color. We observe
that without proper transformation, variance increases monotonically with MFI.

Figure 2 Figure 2. Subfigs. (a) and (b) show the 2D-projections of T-cell subpopulations from two samples in the ITN data set.
Distributions of CD8 marker are shown below the corresponding samples in Subfigs. (c) and (d).

Figure 3 Figure 3. Identifying lymphocytes by a two-step gating from a representative sample in the HD data set. (a) We select an
approximate rectangular region in the lower left corner of side-scatter vs. forward-scatter plot. (b) A dense elliptical region within the
rectangular gate defines lymphocytes.

Figure 4 Figure 4. Transforming five fluorescence channels in HD data. Subfigures in the top row show Bartlett’s statistic computed
from density peaks after data are transformed by different cofactors. An optimum cofactor is obtained where Bartlett’s statistic
reaches the minimum. The bottom row shows the density plots after the data are transformed by an asinh transformation with the
optimum cofactors.

Figure 5 Figure 5. Transforming four fluorescence channels in ITN data. Subfigures in the top row show Bartlett’s statistic
computed from density peaks after data are transformed by different cofactors. An optimum cofactor is obtained where Bartlett’s
statistic reaches the minimum. The bottom row shows the density plots after the data are transformed by the optimum cofactor.

Figure 6 Figure 6. Transforming CD4 channels in HD data by four transformation algorithms. The top row shows the density plots
after the data are optimally transformed by different transformations. The bottom row shows the standard deviation of density peaks
against the rank of MFI.

Figure 7 Figure 7. Transforming CD4 channels in ITN data by four transformation algorithms. The top row shows the density plots
after the data are optimally transformed by different transformations. The bottom row shows the standard deviation of density peaks
against the rank of MFI.

Figure 8 Figure 8. The Q-Q plots for the eight 1-D clusters obtained from a representative sample in the HD data set. Every Q-Q
plot shows linearity in the central part, except for a little deviation at the end, indicating that the clusters approximately follow
normal distributions with heavier tails.

Figure 9 Figure 9. For kidney microarray data [18], flowVs selects the optimum cofactor for the asinh transformation by minimizing
Bartlett’s statistic. The cofactors are shown in the natural logarithm scale.

Figure 10 Figure 10. The standard deviation and mean of each gene from the kidney data are plotted before transformation and
after variance stabilization by flowVs, VSN, and DDHFm. Loess regression is used to smoothen the curves.
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Figure 11 Figure 11. Variance stabilization of the kidney microarray data [18] by (a) flowVs and (b) VSN [18]. Each black dot plots
the standard deviation of a gene against the rank of its mean. The red lines depict the running median estimator. If there is no
mean-variance dependence, then the red lines should be approximately horizontal.
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