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Abstract—With the installation of synchrophasors widely
across the power grid, measurement-based oscillation monitoring
algorithms are becoming increasingly useful in identifying the
real-time oscillatory modal properties in power systems. When
the number of PMU channels grows, the computational time of
many PMU data based algorithms is dominated by the
computational burden in processing large-scale dense matrices. In
order to overcome this limitation, this paper presents new
formulations and computational strategies for speeding up an
ambient oscillation monitoring algorithm, namely, Stochastic
Subspace Identification (SSI). Based on previous work, two fast
Singular Value Decomposition (SVD) approaches are first applied
to the SVD evaluation within the SSI algorithm. Next, block
structures are exploited so that the large-scale dense matrix
computations can be processed in parallel. This helps in memory
savings as well as in overall computational time. Experimental
results from three sets of archived data of the Western
Interconnection demonstrate that the new approaches can
provide significant speedups while retaining modal estimation
accuracy. With proposed fast parallel algorithms, the real-time
oscillation monitoring of the large-scale system using hundreds of
PMU measurements becomes feasible.

Index Terms—Power system oscillations, Stochastic Subspace
Identification, large-scale dense matrix computations, parallel
computing, Synchrophasors

1. INTRODUCTION

EVELOPMENT of wide-area measurement system

(WAMS) which is composed primarily of phasor
measurement units (PMUs) [1] has enabled a variety of
measurement-based algorithms for system-wide stability
analysis [2], [3] and control [4], [5] in recent years. Among
them, measurement-based oscillation monitoring algorithms
have matured considerably and played an important role in the
small signal stability analysis of power systems [6]-[16].

The computational complexity of the above PMU-based
oscillation monitoring algorithms largely depends on the
number of PMU measurements being processed in the analysis.
Currently, only a handful of PMU signals can be handled in
real-time implementations. On the other hand, there are several
hundreds of PMUs installed in the Western and the Eastern
systems of North America already, and it is important to
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develop fast algorithms that can process all available PMU data
together to detect and to locate the likely cause of any
oscillatory problems in the observed PMU measurements.
More generally, there is an urgent need to develop new
computational strategies that can overcome the limitations of
PMU processing algorithms in handling hundreds of PMU
measurements simultaneously.

Among various methods, Stochastic Subspace Identification
(SSI) methods [4], [6], [12]-[16] are recognized as effective
algorithms for the modal estimation of systems with unknown
inputs like the power system. SSI was first introduced to power
systems in [12] to identify the critical modes from the ambient
noise measurements. In [14], a recursive adaptive SSI method
was proposed in order to reduce the computational burden.
Recursive methods generally are more sensitive to data quality
issues compared to data block approaches, and our focus in this
paper is on fast implementation of the block SSI approach
SSI-Covariance in [14]. A recent work [15] tackled the
challenge of model-order determination and extended the
application of SSI to ring-down analysis.

SSI methods in general are known for accurate estimation of
electromechanical modes and their mode shapes from ambient
data [3]-[16]. Specifically SSI-Covariance method (denoted
simply as SSI in the rest of this paper) has a special advantage
over other ambient oscillation identification methods in its
ability to simultaneously estimate forced oscillations and
inter-area modes even when their frequencies are close to each
other [17]-[18].

The main challenge in applying SSI method for real-time
ambient modal analysis in power systems is the computational
burden in SSI from SVD processing of large dense matrices
[16]. An improved parallel SVD algorithm has been introduced
in [19]. In [16], we took advantage of the properties of the SVD
problem in power systems and introduced two fast SVD
approaches for speeding up the SVD: Randomized SVD
method [20], and the augmented Lanczos bidiagonalization
method [21]. They were tested on SSI algorithm of [14].

This paper shows that the faster SVD methods from [16] by
themselves are not sufficient. The construction of the matrix
that requires SVD is in itself an extremely time consuming task
because of the enormity of the matrix size. We first note that the
matrix whose SVD needs to be computed in PMU is large and
dense, not sparse [16]. While there exists a rich history of
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power engineering literature on the solution of large-scale
sparse matrix problems [22], matrix computations involving
large dense matrices have remained a challenge. In this paper,
we propose new formulations and computational strategies for
how such large-scale dense matrices can be handled using
parallel implementations.

This paper proposes strategies to get around the problem by
solving the SVD problem involving large-scale dense matrix
without even constructing the matrix. By deeper analysis of the
structure of the dense matrix, it is shown that all the
computational steps in the fast SVD methods of [16] require
only the evaluation of product terms of the large dense matrix
with a small matrix or a vector. Moreover, the product can be
evaluated in fast parallel fashion by exploiting certain block
structures in the matrices.

Using the new strategies introduced in the paper, it is shown
that SSI can be implemented to run faster than real time in our
test servers even for oscillation monitoring using 400
measurement signals. The contribution of this paper is in
demonstrating dramatic speedup from the proposed high
performance implementation strategies thus enabling SSI
algorithm to be useful for online ambient oscillation monitoring
of large power systems.

The rest of the paper is organized as follows: Section II is a
brief introduction of the SSI-Covariance method. The block
SSI algorithms based on the two fast SVD approaches are then
proposed in Section III. In Section IV, test results using three
sets of recorded PMU data of the Western Interconnection (of
North America) are provided. Section V concludes the paper.

II. STOCHASTIC SUBSPACE IDENTIFICATION - COVARIANCE

The state space model of a stochastic system is defined as

{XM =Ax, +w,

1
v, =Cx, +v, M

where x, € R™" is the state of system; y, € R is the output or

measurements; w; is the process noise and v, is the
measurement noise; 7 is the system order and / is the number of
input channels. All the modal properties of the given system
can be obtained from state and output matrices A and C. The
first step in SSI is to construct the past and future output
matrices Y, and Yy from 2/ +J data elements. That is,

Yo Yoo Yia
Yp _ )fl y-z y.J c R ,
LY Vi Vi
- 2)
Vi Yo 7 Yo
Yf — y1.+1 yl.+2 y1.+J c ER”XJ.
L Yoret Yo Yarsi-2

where J is known as the initial window and [ is a user defined
parameter that should be larger than n.
The covariance matrix H can be calculated as

H=Y,Y, =0, (3)

where O, the extended observability and G, are defined as
0,=[C CA CA’ CA™'T, 4)
G=E{x.y, }. (5)

In (5), the operator E{-} denotes the expected value. For

estimating the matrices A and C from H, we need to obtain the
matrix O,. It is seen from [23] that:

H=0,G=USV",
0,=U,xS8"”,
where U, contains the first 7 left singular vectors corresponding

to the n dominant singular values in S,. The state and output
matrices then can be estimated as

A=0/0,, C=0,(1:1,), (7)

where -" denotes the Moore-Penrose pseudo-inverse, 0, is

(6)

the matrix o, without the last / rows and 51 is the matrix 0,

without the first / rows. The continuous-time equivalents of
these matrices will be

A = ilog A C. =C. (8)
TS
where T is the sampling rate. Modal properties including mode
frequency and damping ratio for the oscillation modes of the
system can be obtained from an eigenvalue analysis of the
matrix A, and the mode shapes can be calculated using the right
eigenvectors of A, and the output matrix C.,.

As stated before, the new computational burden comes from
the construction of the covariance matrix H. It can be seen from
(3) that the matrix H is square with size of I-/ X I-/. Based on the
experiments in [14], a value for 21 between 5 and 20 seconds
multiplying the sampling rate achieves good estimation
accuracy. With a six-second window and sampling rate of 30
Hz which is usually the case in North American power systems,
the value for 21 will be 180. The size of matrix H then is highly
dependent on the number of channels /. Table I shows different
sizes of the matrix H that need to be constructed. It is clear from
Table I that the size grows with the number of measurements to
be handled in the SSI-Covariance algorithm.

TABLEI
THE SIZE OF MATRIX H
21 l Size of H
10 900x900
180 100 9000x9000
1000 90000x90000

For instance, when 200 PMU signals are to be processed, the
covariance matrix H becomes a square matrix with size 18,000
x 18,000. A typical value of the initial window is four minutes,
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so J equals to 7,200 with a sampling rate of 30 Hz. The
construction of the matrix H requires a product of two
large-scale matrices Y,;and Y, in (2) which costs approximately
4.666 x 10'* floating-point operations (flops). The matrix H
requires 2.41 GB of memory for analyzing 200 PMU signals
and the size of the matrix grows quadratically with increase in
the number of PMU signals. Clearly the computation and
storage of the covariance matrix H are not scalable for
analyzing a large number of PMU signals. In this paper, we
show that the growth in computational time can be made linear
with respect to the number of PMU signals using the strategies
introduced in Section III-C.

III. BLOCK SSI ALGORITHMS

The construction of the covariance matrix H is simply the
multiplication of two large-scale dense data matrices Yyand Y,,T
in (2). It costs O ((I-))*J ) flops. Instead of applying a full SVD
to the H matrix, the two fast SVD approaches multiply the H
matrix by a much smaller matrix or a vector, so that
construction of the H matrix is no longer necessary. A better
procedure is to multiply the YpT matrix by the smaller matrix or
the vector first, and then multiply the Y, matrix by the result
from the former step. Next, PMU data matrices Y, and Y, are
decomposed into I blocks in rows as follows:

Y

p.0
Y

Yp: I;’l ’Yp,[:[yi Yin yiufl]emlxj’

_Yp,l—l i
(Y, ] €))

Y,

Yf = ’ Yf,i = [yl+i Yivisl Visivsa ] e g:Rli ,

Y

L f.a-1
i=0,1,....,1-1.

Here, parallel computing can be applied in order to get more
time-savings. Moreover, each block of Y, or Y; can be
assembled directly from the PMU data matrices without
constructing the Y, and Y, matrices. Therefore, the proposed
block SSI algorithms demonstrate better performances both in
computational time and in memory storage.

A. SSI based on Randomized SVD method

The main steps of the block SSI algorithm based on the
Randomized SVD method [20] are as follows:

1) Generate Gaussian random matrices €, where
Q eR",i=0,1,..., I—1. h is the rank of approximation
matrix (denoted as k in [16]).

2) Form the blocks Y),; and Y;; in (9) directly from the PMU

output measurements to construct the /-/xXh sample matrix Y.

_ . _
YfO' _:O(Y,;Ti 'Qi)
1-1
Y= Yf"',-:o(Y”T”"Q’) ; (10)
I-1
Y, 3 (YPTJ -Q[)
for j=1:q
r -1 T B 1-1 ]
Yo iZO(YfTJ'Yi) Yf,O'l_:O(YpTJ'Kemp.f)
1-1 -1
| Y 2 Y) | ] Y 2 V)
temp i=0 ’ i=0 ’

I-1 1

Yj',l—l :

T
(Yp,i : Yt('mp,[)
i=0 i=0

endfor
where ¢ is the number of the power iterations [20]. Y, is an
intermediate matrix with no physical meaning. Note that

Ye R*" and Y,

emp.i eR"" can be obtained by decomposing
matrix Y and Y,,,,, into I blocks, respectively.

Based on the fact that each block Y, ; (or Y},) is independent
from others, parallel computing can be applied in this step.

Take the equation (10) as the example. First, compute [/
independent tasks (Y i 'Q,-) in parallel and sum the results.

Second, multiply each block Y;; to the summation result
1-1
Z(YpT ,-'Q,-) in [ parallel tasks and put the multiplication

i=0
results into the corresponding places in matrix Y. Repeat this
procedure until we obtain the final matrix Y.

3) Form an [/xh orthogonal matrix @ through QR
decomposition such that Y = OR, where R is an upper triangular
matrix.

4) Construct the A xI-] approximation matrix B.
- S

Z(Qzl Y, .1) ’ Y;Z:0

~
- o

| S

=

<

I-1

Z(QI,T-Y](J)-Y[Z:FI

L =0

Similar to step 2, parallel computing is applied in the
construction of matrix B.

5) Calculate the SVD of the ix/h matrix B=[SV7 .

6) Form the approximate left-singular vectors U= Ql} .

7) Obtain state and output matrices A, and C, using (6) to (8).
8) Calculate modal properties and mode shapes.
The computational complexity is dominated by matrix
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multiplications in steps 2 and 4, which costs O (I-I-J-h) flops in
serial. Assuming that this is equally distributed among T
threads, the computational cost becomes O (I:[-J-h/ T) flops in
parallel implementation.

B. SSI using Augmented Lanczos Bidiagonalization method

The augmented Lanczos bidiagonalization method [21] only
requires the matrix H in the partial Lanczos bidiagonalization.
With a unit initial vector p, € R we get the decomposition,

HE =0Q.D,,
H'Q, =PD] +re/, an
Where k « I/ is the number of bidiagonalization steps,

p=Pe ., PeR™ and Q eR™ are orthogonal,
D, Rk (denoted as By in [16]) is upper bidiagonal

al ﬂl

0”2 ﬂz
D, = a . ,
ﬂk*l

o

and 7, e R is the residual. The pseudo code of the block

algorithm for partial Lanczos bidiagonalization is listed below:
~ o -
Yf,o Z(Yprz ’ pl,i)
i=0
-1 r
Yf,l ) Z(Yp,i ) pl,i)

) R=ps5q = i=0

-1

Y., Z(Y[JT! ) pl,i)

i=0

2) o :”(1.";(1] =q,/0;0 =q;

3) forj=1:k
- .
Yoo 2 (YfTr -q,,,-)
1-1 r
Y - Y..-q..
4 =" ,-:o(”' %) —a,p;;

Y, Z(YfT 'qn)

i=0

5)  r=r=P(Fn);
6) If j<k,then
7) ﬁ/z‘ |;pj+1=rj/ﬁ,;1?,-+l=[Pj Pial;

g

T
0 (Y[z,i 'P(j+1),i)

8) 9 = =" _ﬂjqj;

I-1

Y 'Z(YPTJ 'p(/““)

i=0

9) G =40 -2,Q/q,..);

10) Fjn =”qj+1 4 =23 Qi =10 g5l
11) endif

12) endfor

Note that p,;,q;;» P(M)JEW can be obtained by

decomposing vectors p;, g; and pj, into I blocks, respectively.
Similar to the Randomized SVD-based block SSI algorithm in
Section A, parallel computing can be applied in pseudo code
lines 1, 4, and 8.

Next, follow the remaining steps of the Augmented Lanczos
bidiagonalization method in [16] and SSI-Covariance method
in Section II to obtain the modal properties and mode shapes.

The computational complexity is dominated by the partial
Lanczos bidiagonalization, which is O (I:[-J-k) flops in serial.
Assuming that we have T threads, the computational cost
becomes O (I-[-J-k/ T) flops in parallel.

C. Implementation Strategy

Four strategies are considered for both fast SVD methods in
the computational time comparison, in order to test the
performance of the block algorithms and parallel computing.
Please note that the four strategies provide the same estimation
results because the block algorithms will only affect the
computational time but not the accuracy of the results.

All four strategies are implemented using a commercial,
highly-optimized and extensively-threaded C# math library,
NMath.NET [24], which is in turn based on Intel Math Kernel
Library (MKL) [25]. The four strategies are listed as follows:

Strategy 1: Construct the covariance matrix H. This is the
algorithm introduced in [16], the traditional SSI with the fast
SVD methods. The computational complexity is dominated by
the construction of the matrix H in (3). It costs O ((I-)*J ) flops.

Strategy 2: Compute matrix-vector products involving the
covariance matrix H without forming H explicitly. The two fast
SVD approaches multiply the H matrix by a much smaller
matrix or a vector. In Strategy 2, we multiply the YpT matrix by
the smaller matrix or the vector first, and then multiply the Y
matrix by the result from the former step, to avoid the
construction of matrix H. The computational complexity is then
dominated by the SVD decomposition, which is O (I:I-J-h) and
O (I'l-J-k) flops for the two fast SVD methods as discussed in
Section III, respectively. There is additional speedup from
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native parallel computing features of NMath.NET matrix
routines.

Strategy 3: Apply a block algorithm based on NMath.NET
native parallel computing. The block structure is introduced in
this strategy. We first decompose the PMU data matrices Y, and
Yrinto I blocks as in (9). Then, we assemble each block of Y, or
Y; directly from the PMU data matrices without constructing
the Y, and Y; matrices. The computational complexity is the
same with Strategy 2, which is O (I-I-J-h) or O (I-[-J-k) flops.

Strategy 4: Apply a block algorithm based on explicit
parallel computing. In Strategy 4, parallel computing is applied
to the SVD decomposition as discussed in Section III (steps 2
and 4 in the Randomized SVD, and pseudo code lines 1, 4, and
8 in the partial Lanczos bidiagonalization). We parallelize the
matrix computations in the above steps into I independent tasks,
since 7 is 90, which is higher than the number of threads for our
testing machines. The computational cost of Strategy 4 is O
(I-1-J-h/T)or O (I-I-J-k/T) flops.

IV. CASE STUDIES

The proposed block SSI methods are applied to analyze the
measurement data from three recent recordings in the Western
Interconnection with a total of 102, 271 and 400 available PMU
channels, respectively. The results in this section are tested with
the implementations on the C# platform of Visual Studio 2012.
The computational time is reported from the tests on four
machines with different numbers of threads. The processor and
memory information of the four test machines are listed in

Table II.
TABLEII
TESTING MACHINE INFORMATION
Level 1
Mo ot st | Cund
. (KB)
Intel Core i17-4930MX @ 3.0 GHz
! (Turbo Boost up to 3.9 GHz) 8 32 128
Intel Xeon E5-2643 v2 @ 3.5 GHz
2 (Turbo Boost up to 3.8 GHz) 24 64 384
Intel Xeon E5-2650 v2 @ 2.6 GHz
3 (Turbo Boost up to 3.4 GHz) 32 32 >12
Intel Xeon E5-2697 v2 @ 2.7 GHz
4 (Turbo Boost up to 3.5 GHz) 48 128 768

A. Case 1 with 102 Voltage Phase Angle Channels

PMU measurements provide a choice of different signal
types for ambient oscillation monitoring. The different signal
choices include bus voltage phase angles, bus voltage
magnitudes, bus frequencies, line current magnitudes and line
current phase angles. Bus voltage phase angles have been
widely used in the literature and in industry installations
because they have excellent observability of electromechanical
modes [6]-[15]. Phase angle signals are relatively easy to
detrend by subtracting a suitable phase angle [6]-[15]. In later
sections of this paper such as in Section IV-B, we show that line
current magnitudes also serve as good signals for ambient
oscillation monitoring. Typically the number of available PMU
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line current measurements is much higher than that of bus
voltage phase angle measurements. In this context, line current
magnitudes provide more observability especially of local
oscillatory properties when compared with bus voltage phase
angle measurements. In general, the ambient modal estimation
results should be consistent across different signal types.

The first case analyzes 102 PMU channels of voltage phase
angle measurements. Fig. 1 shows three randomly chosen
examples of bus voltage phase angle channels for this case after
subtracting a reference phase angle from all of them. The angle
reference here is arbitrarily chosen to be a pre-specified PMU
bus voltage phase angle. The size of the covariance matrix H is
9,180 x 9,180. The system order for SSI is chosen to be 10.
According to the discussion in [16], 4~ = 20 and ¢ = 1 are
selected for the Randomized SVD method, and k= 16 is chosen
for the augmented Lanczos bidiagonalization method.

(rad)

Voltage Phase Angle

Time (hh:mm:ss)

Voltags Phase Angl (1)

Time (hh:mm:ss)

Votlage Phase Ange (2d)

Time (hh:mm:ss)

Fig. 1. PMU bus voltage phase measurements of Case 1.
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Fig. 2. Plots of the estimation results for different SSI algorithms for Case 1.

TABLE III
SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 1

Mode Results Full SVD Ra;:‘f;“o',z;‘islw) La“;Z:slGSVD
g | Mean 02317 02316 02317
SD 0.0063 0.0063 0.0063
cop | Mean | 118046 11.8088 11.8046
SD 13161 13104 1.3161

Ten minutes of PMU data are analyzed and the estimation
results of the traditional SSI with full SVD are compared with
the two fast SVD methods in Fig. 2. The analysis uses an initial
window of four minutes, and is repeated every 15 seconds in a
moving window formulation. So J is 7200, and there are 24
moving windows, which implies 24 SSI computations in total.
The mean value and the standard deviation (SD) of the
frequency and the damping ratio for the mode are calculated
and are listed in Table III.
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TABLE IV

COMPUTATIONAL TIME COMPARISON OF DIFFERENT SSI ALGORITHMS FOR CASE 1

Randomized SVD Lanczos SVD
Mac.| Full SVD h=20,9=1 k=16
No. (sec) Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 1 Strategy 2 Strategy 3 Strategy 4
sec (speedup) | sec (speedup) | sec (speedup) | sec (speedup) | sec (speedup) | sec (speedup) | sec (speedup) | sec (speedup)
1 112,075 |105,826 (1.06x)| 206.8 (542x) 135.4 (828x) 105.7 (1060x) | 106,234 (1.05x)| 81.2 (1380x) 100.2 (1119x) 96.0 (1167x)
2 125,807 | 121,007 (1.04x)| 237.9 (529x) 174.0 (723x) 141.8 (887x) | 115,458 (1.09x)| 87.4 (1439x) 148.0 (850x) 122.0 (1031x)
3 138,236 | 135,304 (1.02x) | 298.4 (463x) 230.3 (600x) 134.2 (1030x) | 133,961 (1.03x)| 101.9 (1357x) 177.0 (781x) 115.0 (1202x)
4 170,518 | 168,617 (1.01x)| 304.4 (560x) 226.2 (754x) 140.0 (1218x) | 163,028 (1.05x) | 104.8 (1627x) | 158.0 (1079x) | 138.3 (1233x)

According to Fig. 2 and Table III, the estimation results of
the block SSI algorithms based on the two fast SVD methods
are comparable to the estimations of the full SVD-based
traditional SSI algorithm, which demonstrates the accuracy of
the proposed block SSI algorithms.

The four implementation strategies discussed in Section III
as considered in this case for testing the computational
performance of the block algorithm. First let us summarize the
values for all the variables in the flop computation formulas for
this test case: =90, [=102,J=7200,h=20,g=1, and k= 16.

In the Randomized SVD-based method, the computational
complexity is dominated by the construction of the covariance
matrix H (only for Strategy 1), the sample matrix Y, and the
small matrix B. The construction of matrix H requires the
multiplication of matrices Y and YpT, which costs 2x(I>xJ
flops, i.e. 1.214 x 10" flops in this test case. And it costs
2x(I 1> xhx(2q+1) flops and 2x(I1)*xh flops in order to build
the matrices Y and B, respectively. So there are 1.348 x 10"
more flops in Strategy 1. Strategy 2 requires 4XI ‘[xXJxhX(2g+1)
flops and 4x[{xJxh flops to obtain matrices Y and B,
respectively. So it costs only 2.115 x 10'° flops in total, which
is a 58-fold speedup compared to Strategy 1.

In the Lanczos SVD-based method, the flop counts of
Strategy 1 include 2x(I)*xJ flops for building matrix H and
2X(I 1> %(2k+1) flops for the partial Lanczos bidiagonalization,
whereas Strategy 2 requires only 4X1/xJx(2k+1) flops for the
partial Lanczos bidiagonalization. So the speedup of Strategy 2
over Strategy 1 is 140. (The flop counts are 1.220 x 10'* and
8.725 x 10° for Strategy 1 and Strategy 2, respectively.)

For both Randomized and Lanczos SVD-based methods,
Strategy 3 costs same number of flops as Strategy 2 in theory.
Strategy 4 applies parallel computing, so the time savings
compared to Strategy 3 is based on the number of the threads
available in the test server.

The computational time of the entire analysis is tested on
four different machines and the results are listed in Table IV.
The comparison is made among all the four strategies for both
fast SVD methods as well as the traditional SSI method with
full SVD calculation. The fastest times for the two SVD
methods are each marked in bold.

After subtracting the initial window, a total of 360 seconds of
PMU data have been analyzed. The traditional SSI method
which calculates the full SVD costs almost two days to finish

the analysis of six-minute data. Moreover, it costs 642.9 MB of
memory to store matrix H, which can be saved in Strategy 2.

The number of flops is the same for Strategy 2 and Strategy 3
for both fast SVD methods. Strategy 3 will cost additional time
in order to assemble the blocks. However, since the
construction of the ¥, and Y, matrices is avoided in Strategy 3, it
can save 0.985 GB of memory storage in this test case. By
introducing the two fast SVD methods (Strategy 1), we have
saved around one hour in the computation time, which is
insignificant compared to the total computational time.

However, by simply switching the order of the matrix
computations (Strategy 2), the calculation times drop to
minutes instead of days. The speedup for the Randomized
SVD-based algorithm is around 500 times, and is over 1000
times for the Lanczos SVD-based method. The actual speedup
from Strategy 2 to Strategy 1 is even higher than the theoretical
one. This is because the matrix H is too big to fit inside the
cache memory, which costs extra time when processing it.

The block structure is utilized in Strategy 3. The
computations are faster than Strategy 2 on all the four machines
for the Randomized SVD-based method. But they are slower
for the Lanczos SVD-based method. This is because, the matrix
H multiplies a vector x in the Lanczos SVD method, whereas it
multiplies a small matrix in the Randomized SVD method. The
vector x can be stored in 71.7 KB of memory, so it fits inside the
Level 1 cache for all the machines. However, in the
Randomized SVD method, the small matrix requires 1.40 MB
of memory, which is larger than the Level 1 cache size. The
block algorithms decompose the matrix into smaller blocks to
make them fit inside the Level 1 cache, so that the computations
become faster with blocking in this case.

Parallel computing is applied in Strategy 4. The
computational time is faster than Strategy 3 on all the machines.
Since NMath.Net library has the inherent multi-threading
feature, even in Strategies 2 and 3, almost half of the threads
have been used in the computation. Therefore, the speedup for
Strategy 4 is not significant compared to Strategies 2 and 3,
although the manual parallel computing in Strategy 4 uses all
the available threads for calculation.

Comparing the four machines in our tests, Machine 1 takes
the shortest time to complete the entire analysis for all the
strategies, because of its higher CPU clock rate. However, if we
consider the speedup of the block SSI methods compared to the
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traditional SSI, Machine 4 is the best. It has the largest number
of threads among four machines, so more speedup can be
obtained on Machine 4 with parallel computing.

For the Lanczos SVD-based algorithm, Strategy 4 is still
slightly slower than Strategy 2. This suggests that changing the
order of the matrix multiplication is good enough for this test
case. However, the block structure and parallel computing are
necessary for the Randomized SVD-based algorithm.

Based on the results in Table IV, Strategy 4 is the fastest for
the Randomized SVD-based algorithm. And, Strategy 2 is the
fastest for the Lanczos SVD-based algorithm. Both of them
take less than three minutes on all four machines which are
faster than real time. This is remarkable given that the
traditional SSI-Covariance algorithm implementation would
take more than one day to analyze the same set of PMU data on
the same machines.

B. Case 2 with 271 Current Magnitude Channels

In order to test the proposed block SSI algorithms for a
large-scale system, we analyze the second case with 271 PMU
channels of current magnitude measurements. Fig. 3 shows
three examples of PMU line current magnitude measurements
for this case.

The size of the covariance matrix H in this case is 24,390 x
24,390. Same parameters with Case 1 are chosen for different
SSI algorithms. Ten minutes of PMU data are analyzed.

In this test case, the traditional SSI algorithm is no longer
feasible. The program will generate an error says “Array
dimensions exceeded supported range” in the process of
constructing the covariance matrix H. This is because of the
memory limitations in the C# platform that “No single object
can be larger than 2GB”. Whereas the matrix H in this test case
costs 4.43 GB of memory to store it.

The mean and standard deviation (SD) of the estimation
results of the two fast SVD methods are shown in Fig. 4 and
Table V. The analysis uses an initial window of four minutes,
and is repeated every 15 seconds in a moving window
formulation.

Based on Fig. 4 and Table V, the estimation results of the two
block SSI algorithms agree with each other. The proposed
block SSI algorithms can guarantee the accuracy when the
number of PMU channels being processed has increased. Same
strategies are considered to test the computational time for the
two block SSI algorithms. Because the construction of the
matrix H is infeasible, Strategy 1 is only analyzed in theory, but
not implemented for this test case.

The construction of the covariance matrix H costs 8.566 X
10" flops in this test case. The flop counts speedups of Strategy
2 from Strategy 1 are 154 times and 371 times for the
Randomized SVD-based and Lanczos SVD-based algorithms,
respectively. Strategy 3 requires extra time for addressing the
blocks, but can save 2.62 GB of memory for not constructing

the ¥, and Yy matrices in this test case. With parallel computing
applied in Strategy 4, more time savings can be achieved
compared to Strategy 3.

Curent Magnitude (A)

Time (hh:mm:ss)

Curent Magritude (A)

Cument Magnitude (A)

Time (hhimm:ss)

Fig. 3. PMU line current magnitude measurements of Case 2.
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Fig. 4. Plots of the estimation results for different SSI algorithms for Case 2.

TABLE V
SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 2
Randomized SVD Lanczos SVD

Mode Results h=20,g=1 k=16

) Mean 0.2445 0.2446

/(H2) SD 0.0039 0.0038

Mean 12.1434 12.1522

0,
(%) SD 1.0809 1.0646
TABLE VI
COMPUTATIONAL TIME (SEC) COMPARISON FOR CASE 2
Randomized SVD Lanczos SVD
Mac. _ — =
N h=20,g=1 k=16
o Strat.2 | Strat.3 | Strat.4 Strat.2 | Strat.3 Strat.4
1 539.7 306.7 289.0 200.2 199.0 171.0
2 573.0 3734 269.8 212.0 220.0 197.0
3 674.0 425.2 269.4 226.6 249.7 208.7
4 785.8 491.6 262.5 209.6 261.0 203.0
Table VI summarized the comparison results for the

computational time of different strategies tested on four
different machines.

Similar to Case 1, Strategy 4 is the fastest for the
Randomized SVD-based block algorithm. For the block SSI
algorithm based on the Lanczos SVD method, Strategy 3 is still
slower than Strategy 2, except on Machine 1 where the times
for the two strategies are almost the same. But with the parallel
computing technique, Strategy 4 becomes faster than Strategy 2
in this test case. Therefore, when the number of PMU channels
increases, exploiting the block structure and employing the
parallel computing are useful for the Lanczos SVD-based
algorithm.
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The fastest times for both block SSI algorithms are in bold in
Table VI. They are faster than real time on all the machines,
whereas the traditional SSI algorithm is not even feasible.

C. Case 3 with 400 Current Magnitude Channels

In the third case, there are 400 PMU channels of current
magnitude measurements.

The size of the covariance matrix H in this case is 36,000 X
36,000. Same parameters with the first two cases are chosen for
comparing different SSI algorithms. Ten minutes of PMU data
are analyzed.

A memory space of 9.65 GB is needed to store the
covariance matrix H, which is higher than the single object
memory limit of the C# platform. Therefore, it is impossible to
construct the matrix H, which means the traditional SSI
algorithm is infeasible in this case. The mean and standard
deviation (SD) of the modal estimation results of the two fast
SVD methods are shown in Fig. 5 and Table VII. The analysis
uses an initial window of four minutes, and is repeated every 15
seconds in a moving window formulation.
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E 0.26 X Lanczos '% 14 X Lanczos
2 «*oum fn PAgE il PSR e A
S 024l wemmEEEmE M LiE] £ LIS P
g - T E- 3
w S
0.22 S 10
4 5 6 7 8 9 10 4 5 6 7 8 9 10
Time (min) Time (min)

Fig. 5. Plots of the estimation results for different SSI algorithms for Case 3.

TABLE VII
SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 3
Randomized SVD Lanczos SVD
Mode Results h=20,=1 k=16
) Mean 0.2425 0.2425
f(Hz)
SD 0.0052 0.0052
Mean 12.7344 12.7331
¢ (%)
SD 0.3521 0.3677
TABLE VIII
COMPUTATIONAL TIME (SEC) COMPARISON FOR CASE 3
Randomized SVD Lanczos SVD
“;ac- h=20,g=1 k=16
o- Strat.2 | Strat.3 | Strat.4 Strat.2 | Strat.3 Strat.4
1 787.0 553.0 482.5 285.8 301.2 253.0
2 804.5 553.7 426.0 282.8 266.0 225.0
3 928.5 641.3 371.0 303.0 301.4 231.8
4 1122.5 768.3 386.0 301.0 378.0 270.4

According to Fig. 5 and Table VII, the estimations of the two
block SSI algorithms match well with each other. Again, this
indicates good performance of the proposed algorithms in
terms of estimation accuracy. We use the same implementation
strategies to test the computational time. Similar to Case 2,
Strategy 1 is only analyzed in theory, but not implemented for
this test case, owing to memory limitations.

It takes 1.866 x 10" flops to construct the matrix H in this
400-channel case. Strategy 2 provides a 227-fold speedup in
flops compared to Strategy 1 for the Randomized SVD-based

algorithm, and the speedup for the Lanczos SVD-based method
is 548 times. The matrices Y, and Y; in this case take up 3.862
GB of memory space, and this can be reduced in Strategy 3.
Strategy 4 applies parallel processing to save more time. The
comparison among different strategies on all four testing
machines is summarized in Table VIIL

According to Table VIII, Strategy 4 (in bold) is the fastest for
both block SSI algorithms. Especially for the Lanczos
SVD-based algorithm, the block structure with parallel
processing shows much better performance in terms of speed,
when the number of PMU signals becomes larger.

The computational time is longer than six minutes for the
Randomized SVD-based algorithm, especially on Machine 1
where it takes more than eight minutes to complete the entire
analysis. In fact, Machine 1 is the fastest one for the first three
strategies. But it becomes the slowest one after parallel
processing is employed. This is because it has only eight
threads which is the smallest among all the testing machines.

Since the overall computational time is less than six minutes
(360 seconds), the Lanczos SVD-based algorithm is still faster
than real time even with 400 signals on all four test machines.

D. Discussion

In Case 1, the block structure is not advantageous for the
Lanczos SVD-based algorithm when there are only around one
hundred PMU signals. However, the benefits of the parallel
computing gradually emerge when the number of PMU
channels keeps growing.

In order to identify the break-even point of number of PMU
channels that would result in nearly equal computational
performance between Strategies 2 and 4 for the Lanczos
SVD-based algorithm, we start with Case 2 in which Strategy 4
is faster than Strategy 2. Then, we keep decreasing the number
of PMU signals by 20 until the computational time of Strategy
2 becomes smaller than that of Strategy 4.
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Fig. 6. Speed comparison of Strategies 2 versus 4: a) Machine 1, b) Machine 2,
¢) Machine 3, and d) Machine 4.
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TABLE IX
COMPUTATIONAL TIME COMPARISON OF DIFFERENT TEST CASES
Case No. of Randomized SVD Lanczos SVD
No. PMU Machine 1 Machine 2 Machine 3 Machine 4 Machine 1 Machine 2 Machine 3 Machine 4
Signals sec (GF) sec (GF) sec (GF) sec (GF) sec (GF) sec (GF) sec (GF) sec (GF)
1 102 105.7 () 141.8 () 134.2 () 140.0 (1) 96.0 (-) 122.0 () 115.0 () 1383 ()
2 271 289.0 (2.73x) | 269.8 (1.90x) | 269.4 (2.01x) | 262.5(1.88x) | 171.0 (1.78x) 197.0 (1.61x) 208.7 (1.81x) 203.0 (1.47x)
3 400 482.5 (4.56x) | 426.0 (3.00x) | 371.0(2.76x) | 386.0 (2.78x) | 253.0 (2.64x) 225.0 (1.84x) 231.8 (2.02x) 270.4 (1.95x)
4 800 - ; ; ; 4713 (4.90x) | 536.7 (4.40x) | 480.3 (4.18x) | 463.4 (3.35%)
5 1200 - ; ; ; 6733 (7.01x) | 6625 (543x) | 649.7(5.65x) | 652.7 (4.72x)

Note: GF stands for growth factor.

Fig. 6 shows the computational time taken by Strategies 2
and 4 on the four testing machines with different number of
signals. According to Fig. 6, Machines 1, 2, 3, and 4 reach their
break-even points in terms of the same computational time
between Strategies 2 and 4 at around 130, 250, 210, and 250
PMU channels respectively. For all four machines, the
proposed block strategy is the fastest when the number of PMU
signals becomes high enough as shown in Fig. 6.

In order to test the performance of speed for the proposed
block SSI algorithms with more PMU channels, we duplicate
the measurement signals from Case 3 twice and three times to
make two larger test cases of 800 and 1200 channels,
respectively. The underlying assumption in deriving the
Randomized SVD method that the data is random does not hold
by repeating the channels, and the Randomized SVD-based
estimation results suffer for the cases of 800 and 1200 channels.
Therefore, only the Lanczos SVD-based methods are tested
with Case 4 and Case 5.

A comparison of the computational time for all the five test
cases is made in Table IX. The times for Strategy 4 are used
here, because they are the shortest among all the strategies for
most cases excepting Lanczos SVD-based method for Case 1.
From Case 1 to Case 2, the number of PMU measurements has
increased 2.66 times, but the computational time for Case 2 is
roughly twice of Case 1 for both methods, except for the
Randomized SVD-based method on Machine 1 which increases
2.73 times.

When the number of PMU channels increases by a factor of
3.92 in Case 3, the computational time grows by less than three
times compared to Case 1, except for the Randomized
SVD-based method on Machine 1 which grows 4.56 times. In
Case 4, the computational time increases by less than five times
on all the machines, compared to the fact that the number of
PMU signals is 7.84 times of Case 1. When there are more than
one thousand channels in Case 5, the computational time only
increases around seven times on Machine 1, and around five
times on Machine 2, 3, and 4.

To conclude, the computational time of the proposed fast
parallel methods rises in a linear fashion with the number of
PMU measurements.

The growth factor of Machine 1 for the Randomized
SVD-based method is much higher than the ones of other

machines, which suggests that eight threads are not enough for
processing large number of PMU signals. Parallel computing is
important for future power systems with a larger number of
PMU signals.

V. CONCLUSION

In this paper, two fast parallel SSI algorithms are proposed
based on the two fast SVD approaches introduced in [16]. The
algorithms have been tested using the measurement data from
three PMU recordings of the Western Interconnection. They
provide accurate estimation results and at the same time, speed
up the computation significantly.

The block structure and parallel processing are not necessary
for the Lanczos SVD-based algorithms in the first test case. But
they become useful when the number of PMU measurements
increases. The computational complexity of the traditional SSI
algorithm grows quadratically with the number of PMU
channels being processed in the analysis. However, the
strategies introduced in this paper show that proposed block
algorithms can make the growth linear.

In summary, this paper shows that large-scale dense matrices
in PMU problems can be handled effectively in parallel
implementations by employing strategies such as the ones
illustrated here for the SSI-Covariance algorithm.
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