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 
Abstract—With the installation of synchrophasors widely 

across the power grid, measurement-based oscillation monitoring 

algorithms are becoming increasingly useful in identifying the 

real-time oscillatory modal properties in power systems. When 

the number of PMU channels grows, the computational time of 

many PMU data based algorithms is dominated by the 

computational burden in processing large-scale dense matrices. In 

order to overcome this limitation, this paper presents new 

formulations and computational strategies for speeding up an 

ambient oscillation monitoring algorithm, namely, Stochastic 

Subspace Identification (SSI). Based on previous work, two fast 

Singular Value Decomposition (SVD) approaches are first applied 

to the SVD evaluation within the SSI algorithm. Next, block 

structures are exploited so that the large-scale dense matrix 

computations can be processed in parallel. This helps in memory 

savings as well as in overall computational time. Experimental 

results from three sets of archived data of the Western 

Interconnection demonstrate that the new approaches can 

provide significant speedups while retaining modal estimation 

accuracy. With proposed fast parallel algorithms, the real-time 

oscillation monitoring of the large-scale system using hundreds of 

PMU measurements becomes feasible. 

 
Index Terms—Power system oscillations, Stochastic Subspace 

Identification, large-scale dense matrix computations, parallel 

computing, Synchrophasors 

I. INTRODUCTION 

EVELOPMENT of wide-area measurement system 

(WAMS) which is composed primarily of phasor 

measurement units (PMUs) [1] has enabled a variety of 

measurement-based algorithms for system-wide stability 

analysis [2], [3] and control [4], [5] in recent years. Among 

them, measurement-based oscillation monitoring algorithms 

have matured considerably and played an important role in the 

small signal stability analysis of power systems [6]-[16].  

The computational complexity of the above PMU-based 

oscillation monitoring algorithms largely depends on the 

number of PMU measurements being processed in the analysis. 

Currently, only a handful of PMU signals can be handled in 

real-time implementations. On the other hand, there are several 

hundreds of PMUs installed in the Western and the Eastern 

systems of North America already, and it is important to 
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develop fast algorithms that can process all available PMU data 

together to detect and to locate the likely cause of any 

oscillatory problems in the observed PMU measurements. 

More generally, there is an urgent need to develop new 

computational strategies that can overcome the limitations of 

PMU processing algorithms in handling hundreds of PMU 

measurements simultaneously. 

Among various methods, Stochastic Subspace Identification 

(SSI) methods [4], [6], [12]-[16] are recognized as effective 

algorithms for the modal estimation of systems with unknown 

inputs like the power system. SSI was first introduced to power 

systems in [12] to identify the critical modes from the ambient 

noise measurements. In [14], a recursive adaptive SSI method 

was proposed in order to reduce the computational burden. 

Recursive methods generally are more sensitive to data quality 

issues compared to data block approaches, and our focus in this 

paper is on fast implementation of the block SSI approach 

SSI-Covariance in [14]. A recent work [15] tackled the 

challenge of model-order determination and extended the 

application of SSI to ring-down analysis. 

SSI methods in general are known for accurate estimation of 

electromechanical modes and their mode shapes from ambient 

data [3]-[16]. Specifically SSI-Covariance method (denoted 

simply as SSI in the rest of this paper) has a special advantage 

over other ambient oscillation identification methods in its 

ability to simultaneously estimate forced oscillations and 

inter-area modes even when their frequencies are close to each 

other [17]-[18]. 

The main challenge in applying SSI method for real-time 

ambient modal analysis in power systems is the computational 

burden in SSI from SVD processing of large dense matrices 

[16]. An improved parallel SVD algorithm has been introduced 

in [19]. In [16], we took advantage of the properties of the SVD 

problem in power systems and introduced two fast SVD 

approaches for speeding up the SVD: Randomized SVD 

method [20], and the augmented Lanczos bidiagonalization 

method [21]. They were tested on SSI algorithm of [14]. 

This paper shows that the faster SVD methods from [16] by 

themselves are not sufficient. The construction of the matrix 

that requires SVD is in itself an extremely time consuming task 

because of the enormity of the matrix size. We first note that the 

matrix whose SVD needs to be computed in PMU is large and 

dense, not sparse [16]. While there exists a rich history of 
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native parallel computing features of NMath.NET matrix 

routines. 

Strategy 3: Apply a block algorithm based on NMath.NET 

native parallel computing. The block structure is introduced in 

this strategy. We first decompose the PMU data matrices Yp and 

Yf into I blocks as in (9). Then, we assemble each block of Yp or 

Yf directly from the PMU data matrices without constructing 

the Yp and Yf matrices. The computational complexity is the 

same with Strategy 2, which is O (I·l·J·h) or O (I·l·J·k) flops. 

Strategy 4: Apply a block algorithm based on explicit 

parallel computing. In Strategy 4, parallel computing is applied 

to the SVD decomposition as discussed in Section III (steps 2 

and 4 in the Randomized SVD, and pseudo code lines 1, 4, and 

8 in the partial Lanczos bidiagonalization). We parallelize the 

matrix computations in the above steps into I independent tasks, 

since I is 90, which is higher than the number of threads for our 

testing machines. The computational cost of Strategy 4 is O 

(I·l·J·h /T ) or O (I·l·J·k /T ) flops.  

IV. CASE STUDIES  

The proposed block SSI methods are applied to analyze the 

measurement data from three recent recordings in the Western 

Interconnection with a total of 102, 271 and 400 available PMU 

channels, respectively. The results in this section are tested with 

the implementations on the C# platform of Visual Studio 2012. 

The computational time is reported from the tests on four 

machines with different numbers of threads. The processor and 

memory information of the four test machines are listed in 

Table II. 

TABLE II 

TESTING MACHINE INFORMATION 

Mach. 

No. 
CPU 

No. of 

Threads 

RAM 

(GB) 

Level 1 

Cache 

(KB) 

1 
Intel Core i7-4930MX @  3.0 GHz 

(Turbo Boost up to 3.9 GHz) 
8 32 128 

2 
Intel Xeon E5-2643 v2 @ 3.5 GHz 

(Turbo Boost up to 3.8 GHz) 
24 64 384 

3 
Intel Xeon E5-2650 v2 @ 2.6 GHz 

(Turbo Boost up to 3.4 GHz) 
32 32 512 

4 
Intel Xeon E5-2697 v2 @ 2.7 GHz 

(Turbo Boost up to 3.5 GHz) 
48 128 768 

A. Case 1 with 102 Voltage Phase Angle Channels 

PMU measurements provide a choice of different signal 

types for ambient oscillation monitoring. The different signal 

choices include bus voltage phase angles, bus voltage 

magnitudes, bus frequencies, line current magnitudes and line 

current phase angles. Bus voltage phase angles have been 

widely used in the literature and in industry installations 

because they have excellent observability of electromechanical 

modes [6]-[15]. Phase angle signals are relatively easy to 

detrend by subtracting a suitable phase angle [6]-[15]. In later 

sections of this paper such as in Section IV-B, we show that line 

current magnitudes also serve as good signals for ambient 

oscillation monitoring. Typically the number of available PMU 

line current measurements is much higher than that of bus 

voltage phase angle measurements. In this context, line current 

magnitudes provide more observability especially of local 

oscillatory properties when compared with bus voltage phase 

angle measurements. In general, the ambient modal estimation 

results should be consistent across different signal types. 

The first case analyzes 102 PMU channels of voltage phase 

angle measurements. Fig. 1 shows three randomly chosen 

examples of bus voltage phase angle channels for this case after 

subtracting a reference phase angle from all of them. The angle 

reference here is arbitrarily chosen to be a pre-specified PMU 

bus voltage phase angle. The size of the covariance matrix H is 

9,180 × 9,180. The system order for SSI is chosen to be 10. 

According to the discussion in [16], h = 20 and q = 1 are 

selected for the Randomized SVD method, and k = 16 is chosen 

for the augmented Lanczos bidiagonalization method.  
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Fig. 1.  PMU bus voltage phase measurements of Case 1. 

Fig. 2.  Plots of the estimation results for different SSI algorithms for Case 1. 

TABLE III 

SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 1 

Mode Results Full SVD 
 Randomized SVD 

h = 20, q = 1 

Lanczos SVD 

k = 16 

f (Hz) 
Mean 0.2317 0.2316 0.2317 

SD 0.0063 0.0063 0.0063 

ζ (%) 
Mean 11.8046 11.8088 11.8046 

SD 1.3161 1.3104 1.3161 
 

Ten minutes of PMU data are analyzed and the estimation 

results of the traditional SSI with full SVD are compared with 

the two fast SVD methods in Fig. 2. The analysis uses an initial 

window of four minutes, and is repeated every 15 seconds in a 

moving window formulation. So J is 7200, and there are 24 

moving windows, which implies 24 SSI computations in total. 

The mean value and the standard deviation (SD) of the 

frequency and the damping ratio for the mode are calculated 

and are listed in Table III. 
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TABLE IV 

COMPUTATIONAL TIME COMPARISON OF DIFFERENT SSI ALGORITHMS FOR CASE 1 

 Mac. 

No. 

Full SVD 

(sec) 

Randomized SVD 

h = 20, q = 1 

Lanczos SVD 

k = 16 

Strategy 1 

sec (speedup) 

Strategy 2 

sec (speedup) 

Strategy 3 

sec (speedup) 

Strategy 4 

sec (speedup) 

Strategy 1 

sec (speedup) 

Strategy 2 

sec (speedup) 

Strategy 3 

sec (speedup) 

Strategy 4 

sec (speedup) 

1 112,075 105,826 (1.06x) 206.8 (542x) 135.4 (828x) 105.7 (1060x) 106,234 (1.05x) 81.2 (1380x) 100.2 (1119x) 96.0 (1167x) 

2 125,807 121,007 (1.04x) 237.9 (529x) 174.0 (723x) 141.8 (887x) 115,458 (1.09x) 87.4 (1439x) 148.0 (850x) 122.0 (1031x) 

3 138,236 135,304 (1.02x) 298.4 (463x) 230.3 (600x) 134.2 (1030x) 133,961 (1.03x) 101.9 (1357x) 177.0 (781x) 115.0 (1202x) 

4 170,518 168,617 (1.01x) 304.4 (560x) 226.2 (754x) 140.0 (1218x) 163,028 (1.05x) 104.8 (1627x) 158.0 (1079x) 138.3 (1233x) 

 

According to Fig. 2 and Table III, the estimation results of 

the block SSI algorithms based on the two fast SVD methods 

are comparable to the estimations of the full SVD-based 

traditional SSI algorithm, which demonstrates the accuracy of 

the proposed block SSI algorithms. 

The four implementation strategies discussed in Section III 

as considered in this case for testing the computational 

performance of the block algorithm. First let us summarize the 

values for all the variables in the flop computation formulas for 

this test case: I = 90, l = 102, J = 7200, h = 20, q = 1, and k = 16. 

In the Randomized SVD-based method, the computational 

complexity is dominated by the construction of the covariance 

matrix H (only for Strategy 1), the sample matrix Y, and the 

small matrix B. The construction of matrix H requires the 

multiplication of matrices Yf and Yp
T, which costs 2×(Il)2×J 

flops, i.e. 1.214 × 1012 flops in this test case. And it costs 

2×(Il)2×h×(2q+1) flops and 2×(Il)2×h flops in order to build 

the matrices Y and B, respectively. So there are 1.348 × 1010 

more flops in Strategy 1. Strategy 2 requires 4×Il×J×h×(2q+1) 

flops and 4×Il×J×h flops to obtain matrices Y and B, 

respectively. So it costs only 2.115 × 1010 flops in total, which 

is a 58-fold speedup compared to Strategy 1. 

In the Lanczos SVD-based method, the flop counts of 

Strategy 1 include 2×(Il)2×J flops for building matrix H and 

2×(Il)2×(2k+1) flops for the partial Lanczos bidiagonalization, 

whereas Strategy 2 requires only 4×Il×J×(2k+1) flops for the 

partial Lanczos bidiagonalization. So the speedup of Strategy 2 

over Strategy 1 is 140. (The flop counts are 1.220 × 1012 and 

8.725 × 109 for Strategy 1 and Strategy 2, respectively.)  

For both Randomized and Lanczos SVD-based methods, 

Strategy 3 costs same number of flops as Strategy 2 in theory. 

Strategy 4 applies parallel computing, so the time savings 

compared to Strategy 3 is based on the number of the threads 

available in the test server.  

The computational time of the entire analysis is tested on 

four different machines and the results are listed in Table IV. 

The comparison is made among all the four strategies for both 

fast SVD methods as well as the traditional SSI method with 

full SVD calculation. The fastest times for the two SVD 

methods are each marked in bold. 

After subtracting the initial window, a total of 360 seconds of 

PMU data have been analyzed. The traditional SSI method 

which calculates the full SVD costs almost two days to finish 

the analysis of six-minute data. Moreover, it costs 642.9 MB of 

memory to store matrix H, which can be saved in Strategy 2. 

The number of flops is the same for Strategy 2 and Strategy 3 

for both fast SVD methods. Strategy 3 will cost additional time 

in order to assemble the blocks. However, since the 

construction of the Yp and Yf matrices is avoided in Strategy 3, it 

can save 0.985 GB of memory storage in this test case. By 

introducing the two fast SVD methods (Strategy 1), we have 

saved around one hour in the computation time, which is 

insignificant compared to the total computational time.  

However, by simply switching the order of the matrix 

computations (Strategy 2), the calculation times drop to 

minutes instead of days. The speedup for the Randomized 

SVD-based algorithm is around 500 times, and is over 1000 

times for the Lanczos SVD-based method. The actual speedup 

from Strategy 2 to Strategy 1 is even higher than the theoretical 

one. This is because the matrix H is too big to fit inside the 

cache memory, which costs extra time when processing it. 

The block structure is utilized in Strategy 3. The 

computations are faster than Strategy 2 on all the four machines 

for the Randomized SVD-based method. But they are slower 

for the Lanczos SVD-based method. This is because, the matrix 

H multiplies a vector x in the Lanczos SVD method, whereas it 

multiplies a small matrix in the Randomized SVD method. The 

vector x can be stored in 71.7 KB of memory, so it fits inside the 

Level 1 cache for all the machines. However, in the 

Randomized SVD method, the small matrix requires 1.40 MB 

of memory, which is larger than the Level 1 cache size. The 

block algorithms decompose the matrix into smaller blocks to 

make them fit inside the Level 1 cache, so that the computations 

become faster with blocking in this case. 

Parallel computing is applied in Strategy 4. The 

computational time is faster than Strategy 3 on all the machines. 

Since NMath.Net library has the inherent multi-threading 

feature, even in Strategies 2 and 3, almost half of the threads 

have been used in the computation. Therefore, the speedup for 

Strategy 4 is not significant compared to Strategies 2 and 3, 

although the manual parallel computing in Strategy 4 uses all 

the available threads for calculation. 

Comparing the four machines in our tests, Machine 1 takes 

the shortest time to complete the entire analysis for all the 

strategies, because of its higher CPU clock rate. However, if we 

consider the speedup of the block SSI methods compared to the 
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traditional SSI, Machine 4 is the best. It has the largest number 

of threads among four machines, so more speedup can be 

obtained on Machine 4 with parallel computing. 

For the Lanczos SVD-based algorithm, Strategy 4 is still 

slightly slower than Strategy 2. This suggests that changing the 

order of the matrix multiplication is good enough for this test 

case. However, the block structure and parallel computing are 

necessary for the Randomized SVD-based algorithm. 

Based on the results in Table IV, Strategy 4 is the fastest for 

the Randomized SVD-based algorithm. And, Strategy 2 is the 

fastest for the Lanczos SVD-based algorithm. Both of them 

take less than three minutes on all four machines which are 

faster than real time. This is remarkable given that the 

traditional SSI-Covariance algorithm implementation would 

take more than one day to analyze the same set of PMU data on 

the same machines. 

B. Case 2 with 271 Current Magnitude Channels 

In order to test the proposed block SSI algorithms for a 

large-scale system, we analyze the second case with 271 PMU 

channels of current magnitude measurements. Fig. 3 shows 

three examples of PMU line current magnitude measurements 

for this case. 

The size of the covariance matrix H in this case is 24,390 × 

24,390. Same parameters with Case 1 are chosen for different 

SSI algorithms. Ten minutes of PMU data are analyzed. 

In this test case, the traditional SSI algorithm is no longer 

feasible. The program will generate an error says “Array 

dimensions exceeded supported range” in the process of 

constructing the covariance matrix H. This is because of the 

memory limitations in the C# platform that “No single object 
can be larger than 2GB”. Whereas the matrix H in this test case 

costs 4.43 GB of memory to store it. 

The mean and standard deviation (SD) of the estimation 

results of the two fast SVD methods are shown in Fig. 4 and 

Table V. The analysis uses an initial window of four minutes, 

and is repeated every 15 seconds in a moving window 

formulation. 

Based on Fig. 4 and Table V, the estimation results of the two 

block SSI algorithms agree with each other. The proposed 

block SSI algorithms can guarantee the accuracy when the 

number of PMU channels being processed has increased. Same 

strategies are considered to test the computational time for the 

two block SSI algorithms. Because the construction of the 

matrix H is infeasible, Strategy 1 is only analyzed in theory, but 

not implemented for this test case. 

The construction of the covariance matrix H costs 8.566 × 

1012 flops in this test case. The flop counts speedups of Strategy 

2 from Strategy 1 are 154 times and 371 times for the 

Randomized SVD-based and Lanczos SVD-based algorithms, 

respectively. Strategy 3 requires extra time for addressing the 

blocks, but can save 2.62 GB of memory for not constructing 

the Yp and Yf matrices in this test case. With parallel computing 

applied in Strategy 4, more time savings can be achieved 

compared to Strategy 3. 
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Fig. 3.  PMU line current magnitude measurements of Case 2. 

 

Fig. 4.  Plots of the estimation results for different SSI algorithms for Case 2. 

TABLE V 

SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 2 

Mode Results 
Randomized SVD 

h = 20, q = 1 

Lanczos SVD 

k = 16 

f (Hz) 
Mean 0.2445 0.2446 

SD 0.0039 0.0038 

ζ (%) 
Mean 12.1434 12.1522 

SD 1.0809 1.0646 

TABLE VI 

COMPUTATIONAL TIME (SEC) COMPARISON FOR CASE 2 

Mac. 

No. 

Randomized SVD 

h = 20, q = 1 

Lanczos SVD 

k = 16 

Strat.2  Strat.3 Strat.4 Strat.2 Strat.3 Strat.4 

1 539.7 306.7 289.0 200.2 199.0 171.0 

2 573.0 373.4 269.8 212.0 220.0 197.0 

3 674.0 425.2 269.4 226.6 249.7 208.7 

4 785.8 491.6 262.5 209.6 261.0 203.0 

 

Table VI summarized the comparison results for the 

computational time of different strategies tested on four 

different machines.  

Similar to Case 1, Strategy 4 is the fastest for the 

Randomized SVD-based block algorithm. For the block SSI 

algorithm based on the Lanczos SVD method, Strategy 3 is still 

slower than Strategy 2, except on Machine 1 where the times 

for the two strategies are almost the same. But with the parallel 

computing technique, Strategy 4 becomes faster than Strategy 2 

in this test case. Therefore, when the number of PMU channels 

increases, exploiting the block structure and employing the 

parallel computing are useful for the Lanczos SVD-based 

algorithm. 
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The fastest times for both block SSI algorithms are in bold in 

Table VI. They are faster than real time on all the machines, 

whereas the traditional SSI algorithm is not even feasible. 

C. Case 3 with 400 Current Magnitude Channels 

In the third case, there are 400 PMU channels of current 

magnitude measurements. 

The size of the covariance matrix H in this case is 36,000 × 

36,000. Same parameters with the first two cases are chosen for 

comparing different SSI algorithms. Ten minutes of PMU data 

are analyzed. 

A memory space of 9.65 GB is needed to store the 

covariance matrix H, which is higher than the single object 

memory limit of the C# platform. Therefore, it is impossible to 

construct the matrix H, which means the traditional SSI 

algorithm is infeasible in this case. The mean and standard 

deviation (SD) of the modal estimation results of the two fast 

SVD methods are shown in Fig. 5 and Table VII. The analysis 

uses an initial window of four minutes, and is repeated every 15 

seconds in a moving window formulation. 

 

 

Fig. 5.  Plots of the estimation results for different SSI algorithms for Case 3. 

TABLE VII 

SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 3 

Mode Results 
Randomized SVD 

h = 20, q = 1 

Lanczos SVD 

k = 16 

f (Hz) 
Mean 0.2425 0.2425 

SD 0.0052 0.0052 

ζ (%) 
Mean 12.7344 12.7331 

SD 0.3521 0.3677 

TABLE VIII 

COMPUTATIONAL TIME (SEC) COMPARISON FOR CASE 3 

Mac. 

No. 

Randomized SVD 

h = 20, q = 1 

Lanczos SVD 

k = 16 

Strat.2 Strat.3 Strat.4 Strat.2 Strat.3 Strat.4 

1 787.0 553.0 482.5 285.8 301.2 253.0 

2 804.5 553.7 426.0 282.8 266.0 225.0 

3 928.5 641.3 371.0 303.0 301.4 231.8 

4 1122.5 768.3 386.0 301.0 378.0 270.4 

 

According to Fig. 5 and Table VII, the estimations of the two 

block SSI algorithms match well with each other. Again, this 

indicates good performance of the proposed algorithms in 

terms of estimation accuracy. We use the same implementation 

strategies to test the computational time. Similar to Case 2, 

Strategy 1 is only analyzed in theory, but not implemented for 

this test case, owing to memory limitations. 

It takes 1.866 × 1013 flops to construct the matrix H in this 

400-channel case. Strategy 2 provides a 227-fold speedup in 

flops compared to Strategy 1 for the Randomized SVD-based 

algorithm, and the speedup for the Lanczos SVD-based method 

is 548 times. The matrices Yp and Yf  in this case take up 3.862 

GB of memory space, and this can be reduced in Strategy 3. 

Strategy 4 applies parallel processing to save more time. The 

comparison among different strategies on all four testing 

machines is summarized in Table VIII.  

According to Table VIII, Strategy 4 (in bold) is the fastest for 

both block SSI algorithms. Especially for the Lanczos 

SVD-based algorithm, the block structure with parallel 

processing shows much better performance in terms of speed, 

when the number of PMU signals becomes larger. 

The computational time is longer than six minutes for the 

Randomized SVD-based algorithm, especially on Machine 1 

where it takes more than eight minutes to complete the entire 

analysis. In fact, Machine 1 is the fastest one for the first three 

strategies. But it becomes the slowest one after parallel 

processing is employed. This is because it has only eight 

threads which is the smallest among all the testing machines. 

Since the overall computational time is less than six minutes 

(360 seconds), the Lanczos SVD-based algorithm is still faster 

than real time even with 400 signals on all four test machines. 

D. Discussion 

In Case 1, the block structure is not advantageous for the 

Lanczos SVD-based algorithm when there are only around one 

hundred PMU signals. However, the benefits of the parallel 

computing gradually emerge when the number of PMU 

channels keeps growing. 

In order to identify the break-even point of number of PMU 

channels that would result in nearly equal computational 

performance between Strategies 2 and 4 for the Lanczos 

SVD-based algorithm, we start with Case 2 in which Strategy 4 

is faster than Strategy 2. Then, we keep decreasing the number 

of PMU signals by 20 until the computational time of Strategy 

2 becomes smaller than that of Strategy 4.  

 

 

a)              b) 

 

c)              d) 

Fig. 6.  Speed comparison of Strategies 2 versus 4: a) Machine 1, b) Machine 2, 

c) Machine 3, and d) Machine 4. 
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TABLE IX 

COMPUTATIONAL TIME COMPARISON OF DIFFERENT TEST CASES 

Case 
No. 

No. of 
PMU 

Signals 

Randomized SVD Lanczos SVD 

Machine 1 

sec (GF) 
Machine 2 

sec (GF) 
Machine 3 

sec (GF) 
Machine 4 

sec (GF) 
Machine 1 

sec (GF) 
Machine 2 

sec (GF) 
Machine 3 

sec (GF) 
Machine 4 

sec (GF) 
1 102 105.7 (-) 141.8 (-) 134.2 (-) 140.0 (-) 96.0 (-) 122.0 (-) 115.0 (-) 138.3 (-) 
2 271 289.0 (2.73x) 269.8 (1.90x) 269.4 (2.01x) 262.5 (1.88x) 171.0 (1.78x) 197.0 (1.61x) 208.7 (1.81x) 203.0 (1.47x) 
3 400 482.5 (4.56x) 426.0 (3.00x) 371.0 (2.76x) 386.0 (2.78x) 253.0 (2.64x) 225.0 (1.84x) 231.8 (2.02x) 270.4 (1.95x) 
4 800 - - - - 471.3 (4.90x) 536.7 (4.40x) 480.3 (4.18x) 463.4 (3.35x) 
5 1200 - - - - 673.3 (7.01x) 662.5 (5.43x) 649.7 (5.65x) 652.7 (4.72x) 

 Note: GF stands for growth factor. 

Fig. 6 shows the computational time taken by Strategies 2 

and 4 on the four testing machines with different number of 

signals. According to Fig. 6, Machines 1, 2, 3, and 4 reach their 

break-even points in terms of the same computational time 

between Strategies 2 and 4 at around 130, 250, 210, and 250 

PMU channels respectively. For all four machines, the 

proposed block strategy is the fastest when the number of PMU 

signals becomes high enough as shown in Fig. 6.  

In order to test the performance of speed for the proposed 

block SSI algorithms with more PMU channels, we duplicate 

the measurement signals from Case 3 twice and three times to 

make two larger test cases of 800 and 1200 channels, 

respectively. The underlying assumption in deriving the 

Randomized SVD method that the data is random does not hold 

by repeating the channels, and the Randomized SVD-based 

estimation results suffer for the cases of 800 and 1200 channels. 

Therefore, only the Lanczos SVD-based methods are tested 

with Case 4 and Case 5. 

A comparison of the computational time for all the five test 

cases is made in Table IX. The times for Strategy 4 are used 

here, because they are the shortest among all the strategies for 

most cases excepting Lanczos SVD-based method for Case 1. 

From Case 1 to Case 2, the number of PMU measurements has 

increased 2.66 times, but the computational time for Case 2 is 

roughly twice of Case 1 for both methods, except for the 

Randomized SVD-based method on Machine 1 which increases 

2.73 times. 

When the number of PMU channels increases by a factor of 

3.92 in Case 3, the computational time grows by less than three 

times compared to Case 1, except for the Randomized 

SVD-based method on Machine 1 which grows 4.56 times. In 

Case 4, the computational time increases by less than five times 

on all the machines, compared to the fact that the number of 

PMU signals is 7.84 times of Case 1. When there are more than 

one thousand channels in Case 5, the computational time only 

increases around seven times on Machine 1, and around five 

times on Machine 2, 3, and 4. 

To conclude, the computational time of the proposed fast 

parallel methods rises in a linear fashion with the number of 

PMU measurements. 

The growth factor of Machine 1 for the Randomized 

SVD-based method is much higher than the ones of other 

machines, which suggests that eight threads are not enough for 

processing large number of PMU signals. Parallel computing is 

important for future power systems with a larger number of 

PMU signals. 

V. CONCLUSION 

In this paper, two fast parallel SSI algorithms are proposed 

based on the two fast SVD approaches introduced in [16]. The 

algorithms have been tested using the measurement data from 

three PMU recordings of the Western Interconnection. They 

provide accurate estimation results and at the same time, speed 

up the computation significantly. 

The block structure and parallel processing are not necessary 

for the Lanczos SVD-based algorithms in the first test case. But 

they become useful when the number of PMU measurements 

increases. The computational complexity of the traditional SSI 

algorithm grows quadratically with the number of PMU 

channels being processed in the analysis. However, the 

strategies introduced in this paper show that proposed block 

algorithms can make the growth linear.  

In summary, this paper shows that large-scale dense matrices 

in PMU problems can be handled effectively in parallel 

implementations by employing strategies such as the ones 

illustrated here for the SSI-Covariance algorithm. 
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