
1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2608965, IEEE

Transactions on Smart Grid


Abstract—With the installation of synchrophasors widely

across the power grid, measurement-based oscillation monitoring

algorithms are becoming increasingly useful in identifying the

real-time oscillatory modal properties in power systems. When

the number of PMU channels grows, the computational time of

many PMU data based algorithms is dominated by the

computational burden in processing large-scale dense matrices. In

order to overcome this limitation, this paper presents new

formulations and computational strategies for speeding up an

ambient oscillation monitoring algorithm, namely, Stochastic

Subspace Identification (SSI). Based on previous work, two fast

Singular Value Decomposition (SVD) approaches are first applied

to the SVD evaluation within the SSI algorithm. Next, block

structures are exploited so that the large-scale dense matrix

computations can be processed in parallel. This helps in memory

savings as well as in overall computational time. Experimental

results from three sets of archived data of the Western

Interconnection demonstrate that the new approaches can

provide significant speedups while retaining modal estimation

accuracy. With proposed fast parallel algorithms, the real-time

oscillation monitoring of the large-scale system using hundreds of

PMU measurements becomes feasible.

Index Terms—Power system oscillations, Stochastic Subspace

Identification, large-scale dense matrix computations, parallel

computing, Synchrophasors

I. INTRODUCTION

EVELOPMENT of wide-area measurement system

(WAMS) which is composed primarily of phasor

measurement units (PMUs) [1] has enabled a variety of

measurement-based algorithms for system-wide stability

analysis [2], [3] and control [4], [5] in recent years. Among

them, measurement-based oscillation monitoring algorithms

have matured considerably and played an important role in the

small signal stability analysis of power systems [6]-[16].

The computational complexity of the above PMU-based

oscillation monitoring algorithms largely depends on the

number of PMU measurements being processed in the analysis.

Currently, only a handful of PMU signals can be handled in

real-time implementations. On the other hand, there are several

hundreds of PMUs installed in the Western and the Eastern

systems of North America already, and it is important to

T. Wu, and V. Venkatasubramanian are with the School of Electrical

Engineering and Computer Science, Washington State University, Pullman,

WA 99163, USA.

A. Pothen is with Department of Computer Science, Purdue University,

West Lafayette, Indiana 47907, USA.

develop fast algorithms that can process all available PMU data

together to detect and to locate the likely cause of any

oscillatory problems in the observed PMU measurements.

More generally, there is an urgent need to develop new

computational strategies that can overcome the limitations of

PMU processing algorithms in handling hundreds of PMU

measurements simultaneously.

Among various methods, Stochastic Subspace Identification

(SSI) methods [4], [6], [12]-[16] are recognized as effective

algorithms for the modal estimation of systems with unknown

inputs like the power system. SSI was first introduced to power

systems in [12] to identify the critical modes from the ambient

noise measurements. In [14], a recursive adaptive SSI method

was proposed in order to reduce the computational burden.

Recursive methods generally are more sensitive to data quality

issues compared to data block approaches, and our focus in this

paper is on fast implementation of the block SSI approach

SSI-Covariance in [14]. A recent work [15] tackled the

challenge of model-order determination and extended the

application of SSI to ring-down analysis.

SSI methods in general are known for accurate estimation of

electromechanical modes and their mode shapes from ambient

data [3]-[16]. Specifically SSI-Covariance method (denoted

simply as SSI in the rest of this paper) has a special advantage

over other ambient oscillation identification methods in its

ability to simultaneously estimate forced oscillations and

inter-area modes even when their frequencies are close to each

other [17]-[18].

The main challenge in applying SSI method for real-time

ambient modal analysis in power systems is the computational

burden in SSI from SVD processing of large dense matrices

[16]. An improved parallel SVD algorithm has been introduced

in [19]. In [16], we took advantage of the properties of the SVD

problem in power systems and introduced two fast SVD

approaches for speeding up the SVD: Randomized SVD

method [20], and the augmented Lanczos bidiagonalization

method [21]. They were tested on SSI algorithm of [14].

This paper shows that the faster SVD methods from [16] by

themselves are not sufficient. The construction of the matrix

that requires SVD is in itself an extremely time consuming task

because of the enormity of the matrix size. We first note that the

matrix whose SVD needs to be computed in PMU is large and

dense, not sparse [16]. While there exists a rich history of

Fast Parallel Stochastic Subspace Algorithms for
Large-Scale Ambient Oscillation Monitoring

Tianying Wu, Student Member, IEEE, Vaithianathan “Mani” Venkatasubramanian, Fellow, IEEE,

 and Alex Pothen

D

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2608965, IEEE

Transactions on Smart Grid

native parallel computing features of NMath.NET matrix

routines.

Strategy 3: Apply a block algorithm based on NMath.NET

native parallel computing. The block structure is introduced in

this strategy. We first decompose the PMU data matrices Yp and

Yf into I blocks as in (9). Then, we assemble each block of Yp or

Yf directly from the PMU data matrices without constructing

the Yp and Yf matrices. The computational complexity is the

same with Strategy 2, which is O (I·l·J·h) or O (I·l·J·k) flops.

Strategy 4: Apply a block algorithm based on explicit

parallel computing. In Strategy 4, parallel computing is applied

to the SVD decomposition as discussed in Section III (steps 2

and 4 in the Randomized SVD, and pseudo code lines 1, 4, and

8 in the partial Lanczos bidiagonalization). We parallelize the

matrix computations in the above steps into I independent tasks,

since I is 90, which is higher than the number of threads for our

testing machines. The computational cost of Strategy 4 is O

(I·l·J·h /T) or O (I·l·J·k /T) flops.

IV. CASE STUDIES

The proposed block SSI methods are applied to analyze the

measurement data from three recent recordings in the Western

Interconnection with a total of 102, 271 and 400 available PMU

channels, respectively. The results in this section are tested with

the implementations on the C# platform of Visual Studio 2012.

The computational time is reported from the tests on four

machines with different numbers of threads. The processor and

memory information of the four test machines are listed in

Table II.

TABLE II

TESTING MACHINE INFORMATION

Mach.

No.
CPU

No. of

Threads

RAM

(GB)

Level 1

Cache

(KB)

1
Intel Core i7-4930MX @ 3.0 GHz

(Turbo Boost up to 3.9 GHz)
8 32 128

2
Intel Xeon E5-2643 v2 @ 3.5 GHz

(Turbo Boost up to 3.8 GHz)
24 64 384

3
Intel Xeon E5-2650 v2 @ 2.6 GHz

(Turbo Boost up to 3.4 GHz)
32 32 512

4
Intel Xeon E5-2697 v2 @ 2.7 GHz

(Turbo Boost up to 3.5 GHz)
48 128 768

A. Case 1 with 102 Voltage Phase Angle Channels

PMU measurements provide a choice of different signal

types for ambient oscillation monitoring. The different signal

choices include bus voltage phase angles, bus voltage

magnitudes, bus frequencies, line current magnitudes and line

current phase angles. Bus voltage phase angles have been

widely used in the literature and in industry installations

because they have excellent observability of electromechanical

modes [6]-[15]. Phase angle signals are relatively easy to

detrend by subtracting a suitable phase angle [6]-[15]. In later

sections of this paper such as in Section IV-B, we show that line

current magnitudes also serve as good signals for ambient

oscillation monitoring. Typically the number of available PMU

line current measurements is much higher than that of bus

voltage phase angle measurements. In this context, line current

magnitudes provide more observability especially of local

oscillatory properties when compared with bus voltage phase

angle measurements. In general, the ambient modal estimation

results should be consistent across different signal types.

The first case analyzes 102 PMU channels of voltage phase

angle measurements. Fig. 1 shows three randomly chosen

examples of bus voltage phase angle channels for this case after

subtracting a reference phase angle from all of them. The angle

reference here is arbitrarily chosen to be a pre-specified PMU

bus voltage phase angle. The size of the covariance matrix H is

9,180 × 9,180. The system order for SSI is chosen to be 10.

According to the discussion in [16], h = 20 and q = 1 are

selected for the Randomized SVD method, and k = 16 is chosen

for the augmented Lanczos bidiagonalization method.

Vo
lta

ge
 P

ha
se

 A
ng

le
(ra

d)

Time (hh:mm:ss)

Vo
lta

ge
 P

ha
se

 A
ng

le
(ra

d)

Time (hh:mm:ss)

Vo
lta

ge
 P

ha
se

 A
ng

le
(ra

d)

Time (hh:mm:ss)
Fig. 1. PMU bus voltage phase measurements of Case 1.

Fig. 2. Plots of the estimation results for different SSI algorithms for Case 1.

TABLE III

SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 1

Mode Results Full SVD
 Randomized SVD

h = 20, q = 1

Lanczos SVD

k = 16

f (Hz)
Mean 0.2317 0.2316 0.2317

SD 0.0063 0.0063 0.0063

ζ (%)
Mean 11.8046 11.8088 11.8046

SD 1.3161 1.3104 1.3161

Ten minutes of PMU data are analyzed and the estimation

results of the traditional SSI with full SVD are compared with

the two fast SVD methods in Fig. 2. The analysis uses an initial

window of four minutes, and is repeated every 15 seconds in a

moving window formulation. So J is 7200, and there are 24

moving windows, which implies 24 SSI computations in total.

The mean value and the standard deviation (SD) of the

frequency and the damping ratio for the mode are calculated

and are listed in Table III.

4 5 6 7 8 9 10
0.21

0.22

0.23

0.24

0.25

0.26

Time (min)

F
re

q
u

e
n

c
y
 (

H
z
)

Randomized

Lanczos

Full SVD

4 5 6 7 8 9 10
8

10

12

14

16

Time (min)

D
a
m

p
in

g
 R

a
ti

o
 (

%
)

Randomized

Lanczos

Full SVD

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2608965, IEEE

Transactions on Smart Grid

TABLE IV

COMPUTATIONAL TIME COMPARISON OF DIFFERENT SSI ALGORITHMS FOR CASE 1

 Mac.

No.

Full SVD

(sec)

Randomized SVD

h = 20, q = 1

Lanczos SVD

k = 16

Strategy 1

sec (speedup)

Strategy 2

sec (speedup)

Strategy 3

sec (speedup)

Strategy 4

sec (speedup)

Strategy 1

sec (speedup)

Strategy 2

sec (speedup)

Strategy 3

sec (speedup)

Strategy 4

sec (speedup)

1 112,075 105,826 (1.06x) 206.8 (542x) 135.4 (828x) 105.7 (1060x) 106,234 (1.05x) 81.2 (1380x) 100.2 (1119x) 96.0 (1167x)

2 125,807 121,007 (1.04x) 237.9 (529x) 174.0 (723x) 141.8 (887x) 115,458 (1.09x) 87.4 (1439x) 148.0 (850x) 122.0 (1031x)

3 138,236 135,304 (1.02x) 298.4 (463x) 230.3 (600x) 134.2 (1030x) 133,961 (1.03x) 101.9 (1357x) 177.0 (781x) 115.0 (1202x)

4 170,518 168,617 (1.01x) 304.4 (560x) 226.2 (754x) 140.0 (1218x) 163,028 (1.05x) 104.8 (1627x) 158.0 (1079x) 138.3 (1233x)

According to Fig. 2 and Table III, the estimation results of

the block SSI algorithms based on the two fast SVD methods

are comparable to the estimations of the full SVD-based

traditional SSI algorithm, which demonstrates the accuracy of

the proposed block SSI algorithms.

The four implementation strategies discussed in Section III

as considered in this case for testing the computational

performance of the block algorithm. First let us summarize the

values for all the variables in the flop computation formulas for

this test case: I = 90, l = 102, J = 7200, h = 20, q = 1, and k = 16.

In the Randomized SVD-based method, the computational

complexity is dominated by the construction of the covariance

matrix H (only for Strategy 1), the sample matrix Y, and the

small matrix B. The construction of matrix H requires the

multiplication of matrices Yf and Yp
T, which costs 2×(Il)2×J

flops, i.e. 1.214 × 1012 flops in this test case. And it costs

2×(Il)2×h×(2q+1) flops and 2×(Il)2×h flops in order to build

the matrices Y and B, respectively. So there are 1.348 × 1010

more flops in Strategy 1. Strategy 2 requires 4×Il×J×h×(2q+1)

flops and 4×Il×J×h flops to obtain matrices Y and B,

respectively. So it costs only 2.115 × 1010 flops in total, which

is a 58-fold speedup compared to Strategy 1.

In the Lanczos SVD-based method, the flop counts of

Strategy 1 include 2×(Il)2×J flops for building matrix H and

2×(Il)2×(2k+1) flops for the partial Lanczos bidiagonalization,

whereas Strategy 2 requires only 4×Il×J×(2k+1) flops for the

partial Lanczos bidiagonalization. So the speedup of Strategy 2

over Strategy 1 is 140. (The flop counts are 1.220 × 1012 and

8.725 × 109 for Strategy 1 and Strategy 2, respectively.)

For both Randomized and Lanczos SVD-based methods,

Strategy 3 costs same number of flops as Strategy 2 in theory.

Strategy 4 applies parallel computing, so the time savings

compared to Strategy 3 is based on the number of the threads

available in the test server.

The computational time of the entire analysis is tested on

four different machines and the results are listed in Table IV.

The comparison is made among all the four strategies for both

fast SVD methods as well as the traditional SSI method with

full SVD calculation. The fastest times for the two SVD

methods are each marked in bold.

After subtracting the initial window, a total of 360 seconds of

PMU data have been analyzed. The traditional SSI method

which calculates the full SVD costs almost two days to finish

the analysis of six-minute data. Moreover, it costs 642.9 MB of

memory to store matrix H, which can be saved in Strategy 2.

The number of flops is the same for Strategy 2 and Strategy 3

for both fast SVD methods. Strategy 3 will cost additional time

in order to assemble the blocks. However, since the

construction of the Yp and Yf matrices is avoided in Strategy 3, it

can save 0.985 GB of memory storage in this test case. By

introducing the two fast SVD methods (Strategy 1), we have

saved around one hour in the computation time, which is

insignificant compared to the total computational time.

However, by simply switching the order of the matrix

computations (Strategy 2), the calculation times drop to

minutes instead of days. The speedup for the Randomized

SVD-based algorithm is around 500 times, and is over 1000

times for the Lanczos SVD-based method. The actual speedup

from Strategy 2 to Strategy 1 is even higher than the theoretical

one. This is because the matrix H is too big to fit inside the

cache memory, which costs extra time when processing it.

The block structure is utilized in Strategy 3. The

computations are faster than Strategy 2 on all the four machines

for the Randomized SVD-based method. But they are slower

for the Lanczos SVD-based method. This is because, the matrix

H multiplies a vector x in the Lanczos SVD method, whereas it

multiplies a small matrix in the Randomized SVD method. The

vector x can be stored in 71.7 KB of memory, so it fits inside the

Level 1 cache for all the machines. However, in the

Randomized SVD method, the small matrix requires 1.40 MB

of memory, which is larger than the Level 1 cache size. The

block algorithms decompose the matrix into smaller blocks to

make them fit inside the Level 1 cache, so that the computations

become faster with blocking in this case.

Parallel computing is applied in Strategy 4. The

computational time is faster than Strategy 3 on all the machines.

Since NMath.Net library has the inherent multi-threading

feature, even in Strategies 2 and 3, almost half of the threads

have been used in the computation. Therefore, the speedup for

Strategy 4 is not significant compared to Strategies 2 and 3,

although the manual parallel computing in Strategy 4 uses all

the available threads for calculation.

Comparing the four machines in our tests, Machine 1 takes

the shortest time to complete the entire analysis for all the

strategies, because of its higher CPU clock rate. However, if we

consider the speedup of the block SSI methods compared to the

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2608965, IEEE

Transactions on Smart Grid

traditional SSI, Machine 4 is the best. It has the largest number

of threads among four machines, so more speedup can be

obtained on Machine 4 with parallel computing.

For the Lanczos SVD-based algorithm, Strategy 4 is still

slightly slower than Strategy 2. This suggests that changing the

order of the matrix multiplication is good enough for this test

case. However, the block structure and parallel computing are

necessary for the Randomized SVD-based algorithm.

Based on the results in Table IV, Strategy 4 is the fastest for

the Randomized SVD-based algorithm. And, Strategy 2 is the

fastest for the Lanczos SVD-based algorithm. Both of them

take less than three minutes on all four machines which are

faster than real time. This is remarkable given that the

traditional SSI-Covariance algorithm implementation would

take more than one day to analyze the same set of PMU data on

the same machines.

B. Case 2 with 271 Current Magnitude Channels

In order to test the proposed block SSI algorithms for a

large-scale system, we analyze the second case with 271 PMU

channels of current magnitude measurements. Fig. 3 shows

three examples of PMU line current magnitude measurements

for this case.

The size of the covariance matrix H in this case is 24,390 ×

24,390. Same parameters with Case 1 are chosen for different

SSI algorithms. Ten minutes of PMU data are analyzed.

In this test case, the traditional SSI algorithm is no longer

feasible. The program will generate an error says “Array

dimensions exceeded supported range” in the process of

constructing the covariance matrix H. This is because of the

memory limitations in the C# platform that “No single object
can be larger than 2GB”. Whereas the matrix H in this test case

costs 4.43 GB of memory to store it.

The mean and standard deviation (SD) of the estimation

results of the two fast SVD methods are shown in Fig. 4 and

Table V. The analysis uses an initial window of four minutes,

and is repeated every 15 seconds in a moving window

formulation.

Based on Fig. 4 and Table V, the estimation results of the two

block SSI algorithms agree with each other. The proposed

block SSI algorithms can guarantee the accuracy when the

number of PMU channels being processed has increased. Same

strategies are considered to test the computational time for the

two block SSI algorithms. Because the construction of the

matrix H is infeasible, Strategy 1 is only analyzed in theory, but

not implemented for this test case.

The construction of the covariance matrix H costs 8.566 ×

1012 flops in this test case. The flop counts speedups of Strategy

2 from Strategy 1 are 154 times and 371 times for the

Randomized SVD-based and Lanczos SVD-based algorithms,

respectively. Strategy 3 requires extra time for addressing the

blocks, but can save 2.62 GB of memory for not constructing

the Yp and Yf matrices in this test case. With parallel computing

applied in Strategy 4, more time savings can be achieved

compared to Strategy 3.

Cu
rre

nt
 M

ag
nit

ud
e

(A
)

Time (hh:mm:ss)

Cu
rre

nt
 M

ag
nit

ud
e

(A
)

Time (hh:mm:ss)

Cu
rre

nt
 M

ag
nit

ud
e

(A
)

Time (hh:mm:ss)
Fig. 3. PMU line current magnitude measurements of Case 2.

Fig. 4. Plots of the estimation results for different SSI algorithms for Case 2.

TABLE V

SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 2

Mode Results
Randomized SVD

h = 20, q = 1

Lanczos SVD

k = 16

f (Hz)
Mean 0.2445 0.2446

SD 0.0039 0.0038

ζ (%)
Mean 12.1434 12.1522

SD 1.0809 1.0646

TABLE VI

COMPUTATIONAL TIME (SEC) COMPARISON FOR CASE 2

Mac.

No.

Randomized SVD

h = 20, q = 1

Lanczos SVD

k = 16

Strat.2 Strat.3 Strat.4 Strat.2 Strat.3 Strat.4

1 539.7 306.7 289.0 200.2 199.0 171.0

2 573.0 373.4 269.8 212.0 220.0 197.0

3 674.0 425.2 269.4 226.6 249.7 208.7

4 785.8 491.6 262.5 209.6 261.0 203.0

Table VI summarized the comparison results for the

computational time of different strategies tested on four

different machines.

Similar to Case 1, Strategy 4 is the fastest for the

Randomized SVD-based block algorithm. For the block SSI

algorithm based on the Lanczos SVD method, Strategy 3 is still

slower than Strategy 2, except on Machine 1 where the times

for the two strategies are almost the same. But with the parallel

computing technique, Strategy 4 becomes faster than Strategy 2

in this test case. Therefore, when the number of PMU channels

increases, exploiting the block structure and employing the

parallel computing are useful for the Lanczos SVD-based

algorithm.

4 5 6 7 8 9 10
0.23

0.24

0.25

0.26

Time (min)

F
re

q
u

e
n

c
y
 (

H
z
)

Randomized

Lanczos

4 5 6 7 8 9 10
8

10

12

14

16

Time (min)

D
a
m

p
in

g
 R

a
ti

o
 (

%
)

Randomized

Lanczos

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2608965, IEEE

Transactions on Smart Grid

The fastest times for both block SSI algorithms are in bold in

Table VI. They are faster than real time on all the machines,

whereas the traditional SSI algorithm is not even feasible.

C. Case 3 with 400 Current Magnitude Channels

In the third case, there are 400 PMU channels of current

magnitude measurements.

The size of the covariance matrix H in this case is 36,000 ×

36,000. Same parameters with the first two cases are chosen for

comparing different SSI algorithms. Ten minutes of PMU data

are analyzed.

A memory space of 9.65 GB is needed to store the

covariance matrix H, which is higher than the single object

memory limit of the C# platform. Therefore, it is impossible to

construct the matrix H, which means the traditional SSI

algorithm is infeasible in this case. The mean and standard

deviation (SD) of the modal estimation results of the two fast

SVD methods are shown in Fig. 5 and Table VII. The analysis

uses an initial window of four minutes, and is repeated every 15

seconds in a moving window formulation.

Fig. 5. Plots of the estimation results for different SSI algorithms for Case 3.

TABLE VII

SUMMARY RESULTS OF DIFFERENT SSI ALGORITHMS FOR CASE 3

Mode Results
Randomized SVD

h = 20, q = 1

Lanczos SVD

k = 16

f (Hz)
Mean 0.2425 0.2425

SD 0.0052 0.0052

ζ (%)
Mean 12.7344 12.7331

SD 0.3521 0.3677

TABLE VIII

COMPUTATIONAL TIME (SEC) COMPARISON FOR CASE 3

Mac.

No.

Randomized SVD

h = 20, q = 1

Lanczos SVD

k = 16

Strat.2 Strat.3 Strat.4 Strat.2 Strat.3 Strat.4

1 787.0 553.0 482.5 285.8 301.2 253.0

2 804.5 553.7 426.0 282.8 266.0 225.0

3 928.5 641.3 371.0 303.0 301.4 231.8

4 1122.5 768.3 386.0 301.0 378.0 270.4

According to Fig. 5 and Table VII, the estimations of the two

block SSI algorithms match well with each other. Again, this

indicates good performance of the proposed algorithms in

terms of estimation accuracy. We use the same implementation

strategies to test the computational time. Similar to Case 2,

Strategy 1 is only analyzed in theory, but not implemented for

this test case, owing to memory limitations.

It takes 1.866 × 1013 flops to construct the matrix H in this

400-channel case. Strategy 2 provides a 227-fold speedup in

flops compared to Strategy 1 for the Randomized SVD-based

algorithm, and the speedup for the Lanczos SVD-based method

is 548 times. The matrices Yp and Yf in this case take up 3.862

GB of memory space, and this can be reduced in Strategy 3.

Strategy 4 applies parallel processing to save more time. The

comparison among different strategies on all four testing

machines is summarized in Table VIII.

According to Table VIII, Strategy 4 (in bold) is the fastest for

both block SSI algorithms. Especially for the Lanczos

SVD-based algorithm, the block structure with parallel

processing shows much better performance in terms of speed,

when the number of PMU signals becomes larger.

The computational time is longer than six minutes for the

Randomized SVD-based algorithm, especially on Machine 1

where it takes more than eight minutes to complete the entire

analysis. In fact, Machine 1 is the fastest one for the first three

strategies. But it becomes the slowest one after parallel

processing is employed. This is because it has only eight

threads which is the smallest among all the testing machines.

Since the overall computational time is less than six minutes

(360 seconds), the Lanczos SVD-based algorithm is still faster

than real time even with 400 signals on all four test machines.

D. Discussion

In Case 1, the block structure is not advantageous for the

Lanczos SVD-based algorithm when there are only around one

hundred PMU signals. However, the benefits of the parallel

computing gradually emerge when the number of PMU

channels keeps growing.

In order to identify the break-even point of number of PMU

channels that would result in nearly equal computational

performance between Strategies 2 and 4 for the Lanczos

SVD-based algorithm, we start with Case 2 in which Strategy 4

is faster than Strategy 2. Then, we keep decreasing the number

of PMU signals by 20 until the computational time of Strategy

2 becomes smaller than that of Strategy 4.

a) b)

c) d)

Fig. 6. Speed comparison of Strategies 2 versus 4: a) Machine 1, b) Machine 2,

c) Machine 3, and d) Machine 4.

4 5 6 7 8 9 10
0.22

0.24

0.26

0.28

Time (min)

F
re

q
u

e
n

c
y
 (

H
z
)

Randomized

Lanczos

4 5 6 7 8 9 10
10

12

14

16

Time (min)

D
a
m

p
in

g
 R

a
ti

o
 (

%
)

Randomized

Lanczos

110 130 150 170 190
80

100

120

140

160

Number of Channels

T
im

e
 (

s
e
c
)

Strat.2

Strat.4

190 210 230 250 270
140

160

180

200

220

Number of Channels

T
im

e
 (

s
e
c
)

Strat.2

Strat.4

190 210 230 250 270
160

180

200

220

240

Number of Channels

T
im

e
 (

s
e
c
)

Strat.2

Strat.4

190 210 230 250 270
140

160

180

200

220

Number of Channels

T
im

e
 (

s
e
c
)

Strat.2

Strat.4

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2608965, IEEE

Transactions on Smart Grid

TABLE IX

COMPUTATIONAL TIME COMPARISON OF DIFFERENT TEST CASES

Case
No.

No. of
PMU

Signals

Randomized SVD Lanczos SVD

Machine 1

sec (GF)
Machine 2

sec (GF)
Machine 3

sec (GF)
Machine 4

sec (GF)
Machine 1

sec (GF)
Machine 2

sec (GF)
Machine 3

sec (GF)
Machine 4

sec (GF)
1 102 105.7 (-) 141.8 (-) 134.2 (-) 140.0 (-) 96.0 (-) 122.0 (-) 115.0 (-) 138.3 (-)
2 271 289.0 (2.73x) 269.8 (1.90x) 269.4 (2.01x) 262.5 (1.88x) 171.0 (1.78x) 197.0 (1.61x) 208.7 (1.81x) 203.0 (1.47x)
3 400 482.5 (4.56x) 426.0 (3.00x) 371.0 (2.76x) 386.0 (2.78x) 253.0 (2.64x) 225.0 (1.84x) 231.8 (2.02x) 270.4 (1.95x)
4 800 - - - - 471.3 (4.90x) 536.7 (4.40x) 480.3 (4.18x) 463.4 (3.35x)
5 1200 - - - - 673.3 (7.01x) 662.5 (5.43x) 649.7 (5.65x) 652.7 (4.72x)

 Note: GF stands for growth factor.

Fig. 6 shows the computational time taken by Strategies 2

and 4 on the four testing machines with different number of

signals. According to Fig. 6, Machines 1, 2, 3, and 4 reach their

break-even points in terms of the same computational time

between Strategies 2 and 4 at around 130, 250, 210, and 250

PMU channels respectively. For all four machines, the

proposed block strategy is the fastest when the number of PMU

signals becomes high enough as shown in Fig. 6.

In order to test the performance of speed for the proposed

block SSI algorithms with more PMU channels, we duplicate

the measurement signals from Case 3 twice and three times to

make two larger test cases of 800 and 1200 channels,

respectively. The underlying assumption in deriving the

Randomized SVD method that the data is random does not hold

by repeating the channels, and the Randomized SVD-based

estimation results suffer for the cases of 800 and 1200 channels.

Therefore, only the Lanczos SVD-based methods are tested

with Case 4 and Case 5.

A comparison of the computational time for all the five test

cases is made in Table IX. The times for Strategy 4 are used

here, because they are the shortest among all the strategies for

most cases excepting Lanczos SVD-based method for Case 1.

From Case 1 to Case 2, the number of PMU measurements has

increased 2.66 times, but the computational time for Case 2 is

roughly twice of Case 1 for both methods, except for the

Randomized SVD-based method on Machine 1 which increases

2.73 times.

When the number of PMU channels increases by a factor of

3.92 in Case 3, the computational time grows by less than three

times compared to Case 1, except for the Randomized

SVD-based method on Machine 1 which grows 4.56 times. In

Case 4, the computational time increases by less than five times

on all the machines, compared to the fact that the number of

PMU signals is 7.84 times of Case 1. When there are more than

one thousand channels in Case 5, the computational time only

increases around seven times on Machine 1, and around five

times on Machine 2, 3, and 4.

To conclude, the computational time of the proposed fast

parallel methods rises in a linear fashion with the number of

PMU measurements.

The growth factor of Machine 1 for the Randomized

SVD-based method is much higher than the ones of other

machines, which suggests that eight threads are not enough for

processing large number of PMU signals. Parallel computing is

important for future power systems with a larger number of

PMU signals.

V. CONCLUSION

In this paper, two fast parallel SSI algorithms are proposed

based on the two fast SVD approaches introduced in [16]. The

algorithms have been tested using the measurement data from

three PMU recordings of the Western Interconnection. They

provide accurate estimation results and at the same time, speed

up the computation significantly.

The block structure and parallel processing are not necessary

for the Lanczos SVD-based algorithms in the first test case. But

they become useful when the number of PMU measurements

increases. The computational complexity of the traditional SSI

algorithm grows quadratically with the number of PMU

channels being processed in the analysis. However, the

strategies introduced in this paper show that proposed block

algorithms can make the growth linear.

In summary, this paper shows that large-scale dense matrices

in PMU problems can be handled effectively in parallel

implementations by employing strategies such as the ones

illustrated here for the SSI-Covariance algorithm.

VI. ACKNOWLEDGEMENT

We thank US Department of Energy for supporting this

research through funding from the Consortium for Electric

Reliability Technology Solutions, and also through grant

DE-SC0010205. We acknowledge National Science

Foundation grant 1552323. We also thank Dr. Ananth

Kalyanaraman, Washington State University for helpful

discussions on different test machines.

REFERENCES

[1] J. F. Hauer, et al., "Use of the WECC WAMS in wide-area probing tests

for validation of system performance and modeling," IEEE Trans. Power

Syst., vol.24, no.1, pp.250-257, Feb. 2009.

[2] H. Yuan and F. Li, “Hybrid voltage stability assessment (VSA) for N-1

contingency,” Electr. Pow. Syst. Res., vol. 122, pp. 65–75, May 2015.

[3] R. Eriksson, and L. Söder, “Wide-area measurement system-based

subspace identification for obtaining linear models to centrally coordinate

controllable devices,” IEEE Trans. Power Del., pp. 988- 997, Apr. 2011.

[4] P. Zhang, D. Y. Yang, K. W. Chan, and G. W. Cai, “Adaptive wide-area

damping control scheme with stochastic subspace identification and

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2016.2608965, IEEE

Transactions on Smart Grid

signal time delay compensation,” IET Gen., Transm,. Distrib., vol. 6, no.

9, pp. 844–852, Sep. 2012.

[5] H. Yuan, T. Jiang, H. Jia, F. Li, et al., “Real-time wide-area loading

margin sensitivity (WALMS) in Power Systems,” Proc. IEEE PES

General Meeting, Denver, CO, USA, Jul. 2015.

[6] N. Zhou, J. W. Pierre, and J. F. Hauer, “Initial results in power system

identification from injected probing signals using a subspace method, ”
IEEE Trans. Power Syst., vol.21, no.3, pp. 1296–1302, Aug. 2006.

[7] I. Kamwa, A. K. Pradhan, and G. Joós, “Robust detection and analysis of
power system oscillations using the Teager-Kaiser energy operator,”
IEEE Trans. Power Syst., vol. 26, no. 1, pp. 323–333, Feb. 2011.

[8] J. C. Peng, and N. C. Nair, “Enhancing Kalman filter for tracking
ringdown electromechanical oscillations,” IEEE Trans. Power Syst., vol.

27, no.2, pp. 1042-1050, May 2012.

[9] N. Zhou, J.W. Pierre, D. J. Trudnowski, and R. T. Guttromson, “Robust
RLS methods for online estimation of power system electromechanical

modes,” IEEE Trans. Power Syst., pp. 1240–1249, Aug. 2007.

[10] J. Ning, X. Pan, V. Venkatasubramanian, “Oscillation modal analysis
from ambient synchrophasor data using distributed frequency domain

optimization,” IEEE Trans. Power Syst., pp. 1960-1968, May 2013.

[11] H, Khalilinia, V. Venkatasubramanian, “Modal analysis of ambient PMU

measurements using orthogonal wavelet bases,” IEEE Trans. Smart

Grid, vol. 6, no. 6, pp. 2954-2963, Nov. 2015.

[12] H. Ghasemi, C. Canizares and A. Moshref, “Oscillatory stability limit

prediction using stochastic subspace identification, ” IEEE Trans. Power

Syst., vol.21, no.2, pp. 736-745, May 2006.

[13] T. Jiang, et al., “A Novel Dominant Mode Estimation Method for
Analyzing Inter-Area Oscillation in China Southern Power Grid,” IEEE

Trans. Smart Grid, vol. 7, no. 5, pp. 2549-2560, Sept. 2016.

[14] S. A. Nezam Sarmadi, and V. Venkatasubramanian, “Electromechanical
mode estimation using recursive adaptive Stochastic Subspace

Identification”, IEEE Trans. Power Syst., pp. 349–358, Jan. 2014.

[15] T. Jiang, H. Yuan, H. Jia, N. Zhou, and F. Li, “Stochastic subspace
identification-based approach for tracking inter-area oscillatory modes in

bulk power system utilising synchrophasor measurements,” IET Gen.,

Transm., Distrib., vol. 9, no. 15, pp. 2409-2418, Nov. 2015.

[16] T. Wu, S. A. Nezam Sarmadi, V. Venkatasubramanian, A. Pothen, and A.

Kalyanaraman, “Fast SVD computations for synchrophasor algorithms,”

IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1651-1652, Mar. 2016.

[17] S. A. N. Sarmadi and V. Venkatasubramanian, “Inter-area resonance in

power systems from forced oscillations,” IEEE Trans. Power Syst., vol.

31, no. 1, pp. 378–386, Jan. 2016.

[18] S. A. N. Sarmadi, V. Venkatasubramanian, and A. Salazar, “Analysis of

November 29, 2005 Western American Oscillation Event,” IEEE Trans.

Power Syst., DOI: 10.1109/TPWRS.2016.2521319, to appear.

[19] A. Haidar, J. Kurzak, and P. Luszczek, “An improved parallel singular

value algorithm and its implementation for multicore hardware,” Proc. of

SC13: International Conference for High Performance Computing,

Networking, Storage and Analysis, Denver, CO, USA, Nov. 2013.

[20] N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate

matrix decompositions”, SIAM Rev., vol. 53, no. 2, pp. 217–288, 2011.

[21] J. Baglama and L. Reichel, “Augmented implicitly restarted Lanczos

bidiagonalization methods,” SIAM J. Sci. Comput., pp. 19–42, 2005.

[22] P. Kundur, Power System Stability and Control, McGraw-Hill, 1992.

[23] P.V. Overchee and B.D. Moore, Subspace Identification for Linear

Systems: Theory, Implementation and Applications, Dordrecht: Kluwer

Academic Publishers, 1996.

[24] http://www.centerspace.net/products/nmath

[25] https://software.intel.com/en-us/intel-mkl

Biographies

Tianying Wu (S'13) received the B.Sc. degree in electrical
engineering from Southeast University, Nanjing, China, in
2011. She is currently pursuing the Ph.D. degree at School
of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA, USA. Her
research interests include power system stability and power
system dynamics.

Vaithianathan “Mani” Venkatasubramanian is currently a Professor at

Washington State University, Pullman, WA. His research interests include

nonlinear system theory, power system stability and control.

Alex Pothen is a professor of computer science at Purdue

University. His research interests are in combinatorial scientific

computing (CSC), high-performance computing, and

bioinformatics. Alex received an undergraduate degree from

the Indian Institute of Technology, Delhi, and a PhD from

Cornell University. He helped found the CSC community,

which organizes a Society for Industrial and Applied

Mathematics (SIAM) Workshop on CSC every two years, since

2004. He was the Director of the Combinatorial Scientific

Computing and Petascale Simulations (CSCAPES) Institute, a

pioneering research project funded by the U.S. Department of
Energy during 2006-2012 to design combinatorial algorithms

for extreme-scale computers. He serves as an editor of the

Journal of the Association for Computing Machinery (ACM)

and the SIAM Review, and has served on the editorial board of

SIAM Books, SIAM Spotlights, SIAM Journal on Scientific

Computing, and other publications.

https://software.intel.com/en-us/intel-mkl

