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Abstract

We describe a 3/2-approximation algorithm, LSE, for
computing a b-EDGE COVER of minimum weight in a
graph with weights on the edges. The b-EDGE COVER
problem is a generalization of the better-known Fdge
Cover problem in graphs, where the objective is to
choose a subset C' of edges in the graph such that at
least a specified number b(v) of edges in C are inci-
dent on each vertex v. In the weighted b-EDGE COVER
problem, we minimize the sum of the weights of the
edges in C. We prove that the LSE algorithm com-
putes the same b-EDGE COVER as the one obtained
by the GREEDY algorithm for the problem. However,
the GREEDY algorithm requires edges to be sorted by
their effective weights, and these weights need to be up-
dated after each iteration. These requirements make
the GREEDY algorithm sequential and impractical for
massive graphs. The LSE algorithm avoids the sorting
step, and is amenable for parallelization. We imple-
ment the algorithm on a serial machine and compare its
performance against a collection of approximation al-
gorithms for the b-EDGE COVER problem. Our results
show that the LSE algorithm is 3x to 5x faster than
the GREEDY algorithm on a serial processor. The ap-
proximate edge covers obtained by the LSE algorithm
have weights greater by at most 17% of the optimal
weight for problems where we could compute the lat-
ter. We also investigate the relationship between the
b-EpcE COVER and the b-MATCHING problems, show
that the latter has a faster implementation since edge
weights are static in this algorithm, and obtain a heuris-
tic solution for the former from the latter.

1 Introduction

We describe a new 3/2-approximation algorithm, LSE,
for computing a b-EDGE COVER of minimum weight in
a graph, implement it on a serial machine and compare
its performance against a collection of approximation
algorithms for this problem. The b-EDGE COVER prob-
lem is a generalization of the Fdge Cover problem in
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graphs, where the objective is to choose a subset C' of
edges in the graph such that at least a specified number
b(v) of edges in C are incident on each vertex v, and
subject to this restriction we minimize the sum of the
weights of the edges in C'. The LSE algorithm itera-
tively adds a set of locally sub-dominant edges to the
current edge cover, where an edge (u,v) is locally sub-
dominant if it has the minimum weight among all edges
incident on its endpoints u and v.

The Edge Cover and b-EDGE COVER problems are
special cases of the Set Cover and Set Multi-cover
problems, respectively. In the Set Multi-cover problem,
we are given a universe N of n elements, and a family
F of m sets, where each set in F is a subset of V.
Associated with each set F' € F is a non-negative
cost cg, and the objective is to find a minimum cost
sub-family F/ C F such that each element ¢ € N is
covered b(i) times. In the case of the edge cover, each
element corresponds to a vertex, each set corresponds
to an edge with exactly two elements (vertices), and
the cost of a set corresponds to the weight on an
edge. Although both Set Cover and Set Multi-cover
problems are NP-complete, the corresponding FEdge
Cover and b-EDGE COVER problems can be solved
in polynomial time. Omne context for application of
the b-EDGE COVER problem is in communication or
distribution problems where reliability is important,
i.e., each communication node has to be ”covered”
several times to increase reliability in the event of a
communication link failing.

Our interest in the b-EDGE COVER problem was
stimulated by its application to the adaptive anonymity
problem [2]. Here we are given a binary matrix con-
sisting of values whose rows correspond to individuals
and columns to features. The problem is to publish
the data matrix while respecting the privacy preference
of every individual. Each individual v wishes to be
confused with at least b(v) — 1 others in the published
data. Choromanski, Jebara and Tang [2] approximately
solved this problem by means of a variational optimiza-
tion algorithm, in each iteration of which they compute
a b-MATCHING using an exact algorithm for the match-
ing. In joint (unpublished) work with these authors, we
have shown that the adaptive anonymity problem can
be solved approximately using a b-EDGE COVER formu-



lation, with an approximation ratio of (33)/2, where g
is the maximum value of b(v) over all vertices. An ap-
proximate b-MATCHING algorithm can also be employed
here to obtain a heuristic solution that is nonetheless
close to the approximate solution, and that in practice
can be computed faster than with the b-EDGE COVER
approach. Both approximation algorithms are one to
three orders of magnitude faster than one that uses ex-
act b-MATCHING; approximate b-MATCHING can also
reduce the memory requirements of the adaptive anon-
mity problem from quadratic to linear in the number of
individuals, thus enabling the solution of problems with
a million individuals and hundreds of features.

There have been a few recent studies on minimum
cardinality Set Multi-cover, a special case where each set
has unit cost. Optimal algorithms for this problem re-
quiring exponential time were proposed in [8, 15]. The
fastest optimal algorithm that is based on a dynamic
programming model was proposed by Hua et al. [9].
Let H, =1+1/24...41/n denote the n-th harmonic
number. The greedy algorithm which iteratively adds
the largest number of uncovered elements to a current
solution was shown to be H,-approximate by Johnson
[10] and Lovasz [13]. Let a denote the maximum num-
ber of elements in a set. Berman et al. [1] described a
randomized (1 + In a)-approximation algorithm for this
problem when b(i) = 1, and considered an application
of minimum cardinality Set Multi-cover in systems biol-
ogy for reverse-engineering protein and gene networks.
They also showed that as b(¢) increases, the algorithm
asymptotically becomes a 2-approximation algorithm.
Chvatal [3] extended the results of Johnson [10] and
Lovasz [13] to the minimum cost Set Cover problem. A
useful summary of other approximation algorithms for
the minimum cost Set Cover problem is discussed by
Rajagopalan and Vazirani [18].

An integer linear programming formulation for the
minimum cost Set Multi-cover was given by Hall and
Hochbaum [6]. These authors later proposed an a-
approximation algorithm for this problem [7]. Dobson
[5] extended Chvatal’s results and proposed an H,-
approximation algorithm. The authors in [18] showed
a parallel randomized algorithm in RNC* for this
problem which has an approximation guarantee of 32H,,
with high probability. Heuristic algorithms based on
local search have been described by Pessoa et al. [17]
and Wang et al [19].

In this paper, we adapt the approximation algo-
rithms for the minimum cost Set Multi-cover proposed
in [7] and [5] to solve the b-EDGE COVER problem.
We also propose a new 3/2-approximation algorithm,
the LSE algorithm that iteratively adds locally sub-
dominant edges to the cover. We discuss several al-

gorithmic issues in efficiently implementing these algo-
rithms on a serial machine, and compare the results of
these algorithms.

The rest of this paper is organized as fol-
lows. We discuss serial approximate algorithms for
b-EDGE COVER and the algorithmic insights they are
based on in Section 2. Next we discuss our proposed
approximation algorithm LSE in Section 3, and the 3/2-
approximation guarantee of LSE is proved in Section 4.
Our experiments and results are described in Section 5.
We provide a summary of our results and conclude in
Section 6.

2 b-EDGE COVER, b-MATCHING, and
Approximation Algorithms

2.1 Background In the b-EDGE COVER problem we
assume that the value of b(v) satisfies 0 < b(v) < d(v)
for every vertex v, where J(v) denotes the degree of
a vertex. Then every b-EDGE COVER problem has a
feasible solution, namely the graph G itself.

The b-EDGE COVER problem is also related to the
b-MATCHING problem, where we choose a set of edges
M such that at most b(v) edges of M are incident on
each vertex v. Here one considers a maximum weight
b-MATCHING problem, where subject to the constraints
on M, we seek to maximize the sum of the weights of
the matched edges. A b-MATCHING is perfect if there
are exactly b(v) edges incident on every vertex v. Every
b-MATCHING problem has a feasible solution, namely
the empty matching, but a perfect b-MATCHING might
not exist in a given graph. One easy way to show this is
to choose b(v) values so that they sum to an odd value.

Let B=) .y b(v), and let 3 = max,ey b(v). The
b-MATCHING problem can be solved in polynomial time,
although the O(mnB) time complexity of exact algo-
rithms make them impractical on graphs with billions
of edges. A number of half-approximation algorithms
have been designed for this problem, and a discussion
of several algorithms including the currently fastest al-
gorithm, the b-SUITOR algorithm, is described in [12].

A b-MATCHING can be used to compute a
b-EDGE COVER as follows. For each vertex v, denote
b'(v) = §(v) — b(v). If there is a perfect b'-MATCHING
in G, then let M(l)’;,t denote the maximum weight of
such a matching. We can obtain a minimum weight
b-EpCGE COVER in G by taking all the unmatched edges
in a maximum weight perfect &’-MATCHING. Let C’gpt
denote the minimum weight of a -EDGE COVER in G,
and w(FE) denote the sum of the weights of all the edges
in G; then we have

ch ., =w(BE) - M2

opt*

Thus if we have an optimal perfect matching



for a b-MATCHING problem, then the unmatched
edges of that graph constitute an optimal solution
for b-EDGE COVER. If we relax one or both of the
optimality or perfect matching restriction then the
b-EDGE COVER solution will not be optimal but will
still be a b-EDGE COVER. We use this observation to
implement a heuristic algorithm for b-EDGE COVER us-
ing an approximation algorithm for b-MATCHING later
in this paper.

There are a few advantages in using b-MATCHING
to solve b-EDGE COVER problems. First, approxima-
tion algorithms for b-MATCHING do not need to com-
pute and update effective weights in the course of the
algorithm, unlike the b-EDGE COVER algorithms we
consider here. Hence these algorithms can be imple-
mented faster than b-EDGE COVER algorithms. They
are also more amenable to parallelization on both multi-
threaded shared memory machines and distributed
memory machines with large numbers of processors.
Second, the approximation algorithms for b-MATCHING
usually find a solution that is close (96%-99%) to the
weight of the optimal matching, and they compute a
b-EDGE COVER that is within a few percent of the op-
timal as well. We use b-SUITOR, a new 1/2— approxi-
mation algorithm for >-MATCHING, in order to compute
a heuristic solution for b-EDGE COVER.

Together with other colleagues, we have proposed
the b-SUITOR algorithm in earlier work [12]. The al-
gorithm is based on a proposal extend-accept-annul
scheme where a vertex extends proposals to its neigh-
bors in decreasing order of their edge weights. Vertices
may propose in any order. Each vertex v can receive
at most b(v) proposals, and it keeps track of the weight
of its b(v)-th (lowest) proposal thus far. A vertex v ex-
tends a proposal to a neighbor w only if the weight of
the edge (v,w) is greater than the b(w)-th lowest pro-
posal that w currently holds. A vertex v may annul a
proposal received by its neighbor w, if the weight of the
edge (v,w) is greater than the lowest proposal that w
currently has, say from a neighbor = of w. In this case,
x would need to extend a proposal to its next eligible
neighbor. When two vertices propose to each other,
then they are matched.

The b-SUITOR algorithm is currently the fastest
algorithm in serial, mutli-threaded, and distributed
memory settings. This algorithm is about 300 times
faster than an exact b-MATCHING algorithm based
on belief propagation on a set of test problems [12].
On the multithreaded shared memory Intel Xeon with
16 threads, b-SUITOR is 14x faster than the Locally
Dominant edge algorithm. It scales upto 240 threads
of an Intel Xeon Phi as well. The b-SUITOR algorithm
is also suitable for distributed memory settings because

vertices are free to extend proposals in any order, thus
increasing the concurrency in the algorithm. We have
shown that the distributed b-SUITOR algorithm scales
up to 16 K processors of an extreme-scale computer such
as Cori at NERSC, where it can solve both synthetic
and real world problems with billions of edges under 4
seconds [11].

2.2 Approximation Algorithms In this Sec-
tion, we describe two approximation algorithms for
b-EDGE COVER: GREEDY and DELTA. Both of these
are special cases of the algorithms for set multi-cover
proposed in [5] and [7] respectively. We discuss algo-
rithmic issues in implementing these, and motivate the
need to develop a new approximation algorithm which
solves these issues.

2.2.1 GREEDY algorithm: The GREEDY algorithm
is a 3/2-approximation algorithm for b-EDGE COVER.
We will need the concept of the effective weight, w’(u,v)
of an edge (u,v), which is the weight of an edge divided
by the number of its endpoints v whose b(v) values are
not satisfied by the edges in the current b-EDGE COVER
(this value is either zero or one or two). We will say that
such vertices are uncovered. We also need the concept of
a neighboring edge of an edge (u, v), an edge that shares
one of its endpoints, u or v. Hence the effective weight
of an edge that is not in the current edge cover is its
weight divided by the number of uncovered endpoints
of the edge. Initially the edge cover is empty, and the
effective weight of each edge is half its weight, but as
the algorithm adds an edge to the cover, the effective
weight of its neighboring edges could double, and finally
when both end points are covered become infinite.

Algorithm 1 Algorithm GREEDY(G(V, E,w),b)

EC =)

Compute the effective weights, w’ of FE;

Create a min priority heap, Q using w’ of E;
while Graph Q # () AND constraints are not
satisfied do

5 e(u,v) = Q.pop();

6 EC = EC Ue(u,v);
7: for x € {u,v} do
8
9

if b(xz) > 0 then

: b(z) =b(z)—1
10: if b(z) == 0 then
11: Update effective weights of
12: e(z,y) € ENy # v;
13: if any change in effective weights then
14: Q.heapify(); > Update Q with new weights

15: return b-EDGE COVER EC




The GREEDY Algorithm 1, considers edges to add
to the b-EDGE COVER in increasing order of effective
weights. It uses a minimum priority queue which
enables it to find an edge with globally lowest effective
weight. It adds an edge (u,v) of lowest effective weight
to the cover, and decrements the values b(u) and b(v)
by one. If either value b(u) (or b(v)) becomes zero, then
the effective weights of all other edges incident on that
endpoint u (v) are updated. If there is a change in any
existing effective weight then the algorithm rebuilds the
queue to bring it to heap order. When there are no more
edges to process or all the b(v) constraints are satisfied
then the algorithm terminates. The time complexity of
the algorithm is O(8mlogm).

THEOREM 2.1. The  GREEDY algorithm — com-
putes a 3/2-approximation to the minimum weight
b-EDGE COVER problem.

Proof. The Set Multi-cover problem defined in Section
1 reduces to the b-EDGE COVER problem on a simple
graph when each set has exactly two elements. [5]
(Theorem 3.1) proves that the GREEDY algorithm has
the approximation ratio of H(a) for the Set Multi-cover
problem, where ¢ is the maximum number of elements
in any set. In the context of b-EDGE COVER, a = 2,
and thus Algorithm 1 is an H(2) = 1+ 1/2 = 3/2-
approximation algorithm. m

The GREEDY algorithm does not have much con-
currency since it must process the edges in increasing
order of effective weights, and these weights need to be
updated during the algorithm. Maintaining the edges
in increasing order of effective weights is also expensive.

2.2.2 DeLrA algorithm: We describe the DELTA
Algorithm 2, a A-approximation algorithm for the
b-EDGE COVER, where A is the maximum degree in the
graph. At each step, the algorithm arbitrarily chooses
an uncovered vertex v, and adds the lightest weight edge
e(v,u) incident on it to the solution. The algorithm then
updates b(v) and b(u), and subtracts the edge weight
w(v, u) from all other edges incident on v. It terminates
when all b(v) constraints are satisfied. The algorithm
has time complexity of O(Sm). From the discussion, it
should be clear that this algorithm is highly sensitive
to the order in which vertices are processed. This is
specifically problematic in parallel computing: in the
shared memory context the scheduling of threads is
determined by the underlying operating system and is
non-deterministic. From one parallel run to another, the
order in which threads are scheduled will also determine
the order which vertices are processed. Another issue
with the DELTA algorithm is that its approximation

guarantee is high relative to the GREEDY algorithm,
since the maximum degree of a graph can be large.

Algorithm 2 Algorithm DELTA(G(V, E,w),b)

1: EC = 0;

2: while constraints are not satisfied do

3: arbitrarily choose a vertex v;

4 if b(v) > 0 then

5 find e(v,u) ¢ EC, the lightest weight edge,
6: w(v,u) incident on v;

7: EC =ECUe(v,u)

8 b(v) = b(v) — 1;

9: if b(u) > 0 then

10: b(u) = b(u) — 1;

11: for each edge (v,z) Az # u do

12: w(v, x) = maz(0,w(v, z) —wv,u));

13: return b-EDGE COVER EC

3 A new 3/2—Approximate Algorithm: LSE

In this Section, we describe the LSE algorithm that
iteratively computes a set of locally sub-dominating
edges to add to the edge cover. Recall that an edge
(u,v) is a locally sub-dominating edge if its effective
weight is minimum relative to the effective weights of
all neighboring edges. The effective weight of an edge
is calculated as in the GREEDY algorithm. Ties are
broken by say, choosing an edge with a lower numbered
endpoint. With this tie-breaking scheme, locally sub-
dominant edges in each iteration are uniquely defined,
and are independent of each other, i.e., they do not share
an endpoint.

Algorithm LSE iteratively finds a set of locally
sub-dominant edges, adds them to the edge cover, and
updates effective weights and b(.) values. It is described
in Algorithm 3.

At each iteration, we calculate the set of locally
sub-dominant edges S as follows. Each vertex u sets
a pointer to the edge of least effective weight incident
on it. If the end points of an edge point each other,
then the edge is locally sub-dominating. We pick each
such edge, add it to the cover, remove it from further
consideration, and finally decrement the b(.) values of
the end points.

When the graph becomes empty, we break the loop
and algorithm terminates with a b-EDGE COVER, EC.
The time complexity of the algorithm is O(8m).

4 Proofs

In this section, we prove that the GREEDY and the LSE
algorithms compute the same b-EDGE COVER, provided
ties in weights are broken consistently.



Algorithm 3 Algorithm LSE(G(V, E,w),b)

1. EC = (Z)

2: Compute the effective weights of £
while Graph G is not exhausted AND constraints
are not satisfied do

ol

4: Compute locally sub-dominating edges S of G

5: for each e(u,v) € S do

6: EC = ECUe(u,v)

7: E =FE\ e(u,v)

8: for z € {u,v} do

9: if b(x) > 0 then

10: b(xz) =b(x) —1

11: if b(x) == 0 then

12: Update effective weights of
e(r,y) € E

13: return b-EDGE COVER EC

LEMMA 4.1. The effective weight of any edge will only
increase during the execution of the GREEDY or LSE
algorithm.

Proof. The effective weight of an edge is its weight
divided by the number of its uncovered end points.
As the algorithm progresses, the number of uncovered
vertices can only decrease, and hence the effective
weight can only increase. =

LEMMA 4.2. Locally sub-dominating edges in an itera-
tion of the LSE algorithm are independent.

Proof. By definition, when we use the tie-breaking
scheme on effective weights, each vertex can be incident
on at most one locally sub-dominant edge. Therefore
within an iteration, locally sub-dominating edges are
independent. =

LEMMA 4.3. If an edge becomes locally sub-dominating
at some point in the LSE algorithm, then it remains so
until the algorithm adds it to the b-EDGE COVER.

Proof. This Lemma is a direct consequence of Lemmas
4.1 and 4.2. We define the edge neighborhood of an
edge (u,v) € E as N(u,v) = {(u,w) € EA(w # v)} U
{(2,v) € E A (z # u)}. Consider two arbitrary locally
sub-dominating edges (u,v) and (x,y) that belong to
the same iteration of the LSE algorithm. Without loss
of generality, assume that the edge (u, v) is added to the
edge cover first. When (u, v) is added to the edge cover,
the effective weights of the edges in N(u,v) increase
by Lemma 4.1. But the edge (x,y) is independent of
(u,v) by Lemma 4.2, and hence it does not belong to
the neighborhood set N (u,v). Thus its effective weight
remains unchanged, and it continues to be a locally sub-
dominating edge. =

Lemma 4.3 is an important property not only for
the proof of the approximation guarantee but also in
the context of concurrent computations. The Lemma
shows that the order in which the algorithm adds the
locally sub-dominating edges into the cover does not
matter. Hence we can choose all these edges in parallel
without changing the computed b-EDGE COVER.

LEMMA 4.4. When the GREEDY algorithm adds an
edge to the b-EDGE COVER, it is a locally sub-
dominating edge in the current graph.

Proof. The GREEDY algorithm chooses the next edge
which is currently an edge with the least effective weight
among all uncovered edges. Denote this edge by (u,v).
Then any other edge that belongs to the neighborhood
N (u,v) (hence of the form (w,u) or (v, z)), has either a
higher effective weight than (u,v), or the same effective
weight but has a higher numbered endpoint than the
minimum value of {u,v}. Thus (u,v) is a locally sub-
dominant edge in the current graph. =

The GREEDY and LSE algorithms do not necessar-
ily choose edges to include in the b-EDGE COVER in
the same order; since the effective weights of neighbor-
ing edges could change after an edge is added to the
cover, at some point during their execution, an (un-
covered) edge could have two different weights in these
algorithms. We now prove a result that holds despite
these differences.

LEMMA 4.5. For any vertex v, the GREEDY and LSE
algorithms choose the same set of edges incident on v to
cover v; furthermore, the edges are chosen in the same
order by both algorithms.

Proof. Let the degree of the vertex v be d(v) = d, and
let the edges incident on v be numbered from 1 to 4.
The algorithms choose at least b(v) < § edges to add to
the b-EDGE COVER. Let the GREEDY algorithm choose
edges denoted g1, g2, ..., gy in that order; and let the
LSE algorithm choose edges denoted 1, I3, ..., Iy in
that order. Note that b > b(v) and b > b(v). The
Lemma claims that b =0, and g; = ;, for j =1, 2, ..,
b.

We prove this result by contradiction. If the two
sets are not identical, then choose the smallest index j
such that g; # [;.

First consider the case that 1 < j < min{b,b'}.
Delete the j — 1 edges from the two lists chosen earlier
to cover v, since these are identical by choice of the
index j. Since the GREEDY algorithm chooses the edge
gj, it is now the edge of least effective weight incident
on v, and it is also a locally subdominant edge incident



on v by Lemma 4.4. Now since the LSE algorithm
picks the edge [; # g¢; to add to the b-EDGE COVER
l; is also a locally subdominant edge incident on vertex
j. But since the edges are ordered by weight and ties
are broken by the indices of their endpoints, the locally
subdominant edge incident on v at this point in each
algorithm must be unique. Hence we have g; = [;
contrary to assumption.

Now we consider the case that j > min{b,b’'}. Note
that the minimum of the two values could be greater
than b(v). In this case either the GREEDY or LSE
algorithm adds an edge to the b-EDGE COVER, while
the other algorithm does not. Let the other end point
of the edge incident on v added to the b-EDGE COVER
be z. Now this edge is added to the cover because x is
unsaturated although v already has at least b(v) edges
incident on it in the cover. Since both the GREEDY
and the LSE algorithms add edges to the cover in the
same order for the unsaturated vertex x (by the previous
paragraph since v was an arbitrary vertex), if one of
these algorithms includes the edge in the cover, the
other also includes it in the cover. =

THEOREM 4.1. Both the GREEDY and LSE algorithms
choose exactly the same set of edges provided that both
algorithms break ties consistently.

Proof. We prove this result by induction on the number
of iterations in the GREEDY algorithm. We claim that
every edge (u,v) chosen by the GREEDY algorithm will
also be chosen by the LSE algorithm at some iteration
of the latter algorithm.

Initially both the GREEDY and the LSE algorithms
begin with the empty edge cover, and the claim is true.
Hence by the inductive hypothesis assume that claim
is true at the end of the k-th iteration of the GREEDY
algorithm, and consider its (k + 1)-st iteration.

By Lemma 4.4, when an edge (u,v) is chosen by the
GREEDY algorithm to belong to the b-EDGE COVER, it
is a locally sub-dominating edge in the current graph.
Let N(u,v) denote the neighboring edges in the current
graph relative to the GREEDY algorithm. Only edges
in the set N(u,v) can satisfy the currently unmet b(u)
or b(v) requirements of the b-EDGE COVER. At this
stage in the GREEDY algorithm, fewer than b(u) or
b(v) (or both) edges belong to the partial edge cover
computed by it, for otherwise its effective weight would
be infinite (both endpoints covered), and the algorithm
would not choose this edge. When the LSE algorithm
considers the edge (u,v) to add to the edge cover at
the iteration when it becomes locally subdominant, by
Lemma 4.5 edges incident on u (and v) are added to the
b-EDGE COVER in the same order in the GREEDY and
LSE algorithms. Hence at least one of the b(u) or b(v)

requirements have not been met in the LSE algorithm
also, and this edge will be added to the b-EDGE COVER.
]

THEOREM 4.2. Algorithm LSE is a 3/2-approzimation
algorithm.

Proof. This follows immediately from the previous The-
orem since the GREEDY algorithm satisfies this approx-
imation ratio. =

5 Experiments & Results

5.1 Experimental Setup: For the experiments, we
used an Intel Xeon E5-2660 processor based system
(part of the Purdue University Community Cluster),
called Snyder!. The machine consists of two processors,
each with ten cores running at 2.6 GHz (20 cores in
total) with 25 MB unified L3 cache and 256 GB of
memory. The operating system is Red Hat Enterprise
Linux 6. All the code was developed using C++
and compiled using the Intel C++ Composer XE 2013
compiler (version: 1.1.163) using the -O3 flag.

Our testbed consists of both real-world and syn-
thetic graphs. Synthetic datasets were generated using
the Graph500 RMAT data generator [14]. We generate
three different synthetic datasets varying the RMAT pa-
rameters (similar to previous work [12]). These are (i)
rmat_b with parameter set (0.55, 0.15, 0.15, 0.15), (ii)
rmat_g with parameter set (0.45, 0.15, 0.15, 0.25), and
(iii) rmat_er with parameter set (0.25, 0.25, 0.25, 0.25).
These graphs have varying degree distributions repre-
senting different application areas. We also consider a
random geometric graph (geo_14) [16] that has recently
attracted attention in the study of neural networks, as-
trophysics, etc.

Additionally we consider eight real-world datasets
taken from the University of Florida Matrix collection
[4] covering mutually exclusive application areas such
as medical science, structural engineering, and sensor
data.

Table 1 shows the sizes of our testbed. Our testbed
is divided into two subsets: the first nine problems with
tens of millions of edges or greater, and the last three
with low edge counts. The larger problems are the
five largest symmetric problems from Florida Matrix
collection. The other three out of these eight real world
problems have fewer than a million edges, and we use
these to compare the weight of the edge covers computed
by the approximation algorithms relative to the exact
edge cover. The reason for using smaller datasets for
comparing edge cover quality is that we do not have a
fast implementation for exact weighted b-EDGE COVER.

https://www.rcac.purdue.edu/compute/snyder/



Problem Vertices Edges | Avg. Max.

Deg Deg
Fault_639 638,802 13,987,881 11 317
mouse_gene 45,101 14,461,095 160 8,031
bone010 986,703 35,339,811 18 80
dielF'il.V3real 1,102,824 44,101,598 20 269
kron.logn21 2,097,152 91,040,932 22 | 213,904
geo_14 16,384 54,689,168 3274 10,365
rmat_b 1,048,576 | 123,599,502 58 63,605
rmat_g 1,048,576 | 133,056,675 64 7,998
rmat_er 1,048,576 | 134,201,240 64 337
astro-ph 16,706 121,251 8 360
Reuters911 13,332 148,038 12 2265
cond-mat-2005 40,421 175,693 5 278

Table 1: The structural properties of our testbed for
b-EDGE COVER.

The exact b-EDGE COVER algorithm that we compare
LSE to is based on integer linear programming and is
programmed in Matlab. This implementation can run
only on the smaller datasets due to memory limitations,
and hence we selected the largest symmetric problems
that this implementation could solve.

5.2 Results: We analyze the serial performance of
three algorithms: GREEDY, LSE and DELTA. We
have considered two sets of b(v) values for the ex-
periments. First we fix b(v) = min{b,d(v)}, where
b € {1,3,5,10,15} for all the vertices. The reason for
using constant values of b(v) is to study how the algo-
rithms perform as the value of b(v) is varied. The second
set of b(v) values is motivated by the privacy application
in [2]. Here we randomly assign values of b(v) for each
vertex v, choosing b(v) uniformly between 1 and § (v)l/ 2,
We generate three sets of b(v) values for each problem,
and select the set which leads to the median weight for
its b-EDGE COVER. We use these randomized b(v) val-
ues for all the experiments. The average randomized
b(v) values for all the problems are between 3 and 9,
except for the relatively dense (geo_14) problem, where
the average value of b(v) is 40. In the experiments, we
explicitly list the b values unless we use randomized val-
ues for them.

5.2.1 Cover Weight: We have compared the weight
of the solution for all three algorithms. Both the
GREEDY and the LSE algorithms find the identical edge
cover irrespective of vertex ordering, and their weight
is not affected by the order in which the vertices are
processed. However, the DELTA algorithm is sensitive
both in terms of runtimes and solution weight to the
order in which the vertices are processed.

In Figure 1, we compare the total edge weight com-
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Figure 1: Solution quality w.r.t. optimal weight of LSE
with varying values of b(v).

puted by LSE (as well as GREEDY) and DELTA with re-
spect to the edge weight of an optimal b-EDGE COVER
for different choices of b(v) for the smaller three prob-
lems. It is to be noted that LSE is a 3/2—approximation
algorithm, i.e., the weight of the edge cover should be
less than 150% of the optimal algorithm. However,



DELTA is a A—approximation algorithm, and for the
three problems astro-ph, reuters911 and cond-mat-2005
the maximum degrees are 360, 2265 and 278, respec-
tively. We see that both algorithms find solutions much
better than their approximation guarantees. In partic-
ular, LSE gives less than 117% of the optimal weight
when b(v) = 1 for the three smaller problems where we
could run the exact algorithm, and it gives better solu-
tion than the DELTA algorithm. The figure also shows
the variations (as big as 11%) in the quality of solu-
tions for different vertex ordering for the DELTA algo-
rithm. However, the gap between the algorithms de-
creases with increasing b(v) values. The variability in
the solution for the DELTA algorithm also decreases with
the increase of b(v). This is an important insight for
the b-EDGE COVER problem overall relative to the Fdge
Cover problem. Given a fixed b value, the expected
number of edges in the cover is at least (n x b)/2, mean-
ing that the number of edges in the cover is larger with
higher values of b(v). As the solution set gets larger, it
is less likely that an approximate b-EDGE COVER algo-
rithm will miss out on a good edge. Therefore, the dif-
ference in solution quality will tend to be smaller among
the b-EDGE COVER algorithms than for Edge Cover al-
gorithms; this difference should also decrease with in-
creasing b(v) values.

5.2.2 Runtimes of the algorithms: Our main con-
tribution in this paper is to show that it is possible to
obtain an approximation algorithm as good as GREEDY
without sorting the edges. Hence the algorithm is ex-
pected to run faster on a serial machine. We provide
evidence for our claim in Figure 2, and show that in-
deed LSE is 2% to 5x faster (with geometric mean 3x)
than the GREEDY algorithm. The difference is bigger
with larger input instances. It is to be noted that LSE
has much more concurrency than GREEDY, but a par-
allel implementation is the scope of future work.

We also show the comparison between LSE and
DELTA in Figure 3 with the variations in runtimes
for DELTA algorithm for five different vertex orderings.
The variability in run times (£12 sec) for the DELTA
algorithm makes it difficult to draw any conclusion. We
compute how much LSE is faster with respect to the
average runtimes for DELTA and on average LSE is 1.1x
faster, i.e., these algorithms are comparable in terms of
their serial performance. However, the weights of the
edge covers computed by the DELTA algorithm varies
with vertex orderings, and this makes it unsuitable for
parallel implementation.

5.2.3 Relationship with the b-MATCHING prob-
lem: In this Subsection, we discuss how a b-MATCHING
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Figure 2: Comparison of serial run times between
GREEDY and LSE.
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Figure 3: Comparison of serial run times between
DEeLTA and LSE.

could be used to compute a b-EDGE COVER. Cur-
rently the fastest 1/2—approximation algorithm for
b-MATCHING is the b-SUITOR algorithm proposed in
[12]. Both b-SuiToR and LSE employ similar schemes
in iteratively finding a set of edges which have local
importance. More precisely, b-SUITOR(LSE) finds lo-
cally heaviest (lightest) edges to maximize (minimize)
the sum of weights of the solution edges where each
vertex v has at most (at least) b(v) edges incident on
it. These are different algorithms for solving differ-
ent problems with different approximation bounds, but
procedurally they are similar except that LSE has an
additional step that involves effective weight updates,
whereas b-SUITOR works with static weights.

Although these are different problems, we compare
the serial run times of the fastest variant of b-SUITOR
(the Delayed Partial variant) and LSE with the same
b(v) values for a set of problems in Figure 4. We have



b-Matching vs b-Edge Cover

%4_JJJJJJJ

Fault 639 | bone010 | dielfil.v3real | mouse gene | geo_14 g
“bsuitor| 115 w2 | 2 | 218 45 553 652 .48 7.5
LSE 222 324 8.80 691 2933 47.37 71.00 101.38 86.98

Run times (Sec)

Problems

HEC vs LSE
120

Run times (Sec)

0

|

I

k

-

—
|

|

o
Fault_639 bone010 | dielFil.v3real | mouse_gene | g

SHEC| 197 261 401 | 289 4.59 7.13 4512 46.08 47.63
LSE 222 3.24 880 691 2033 4737 71.00 101.38 86.98

Problems

Figure 4: Comparison of serial run times between
b-SurTor and LSE.

observed that b-SUITOR is about an order of magnitude
faster than LSE on larger problems (5X on an average).
We claim that the difference is mainly due to the
dynamic weight update phase.

Recall from Section 2 that we can use a per-
fect '-MATCHING of maximum weight to compute a
b-EDGE COVER of minimum weight, where ¥'(v) =
d(v) — b(v). If we relax one or both of the optimality or
perfect matching restriction then the b-EDGE COVER
will not be one of minimum weight. Nevertheless, we
can use this observation to implement a heuristic al-
gorithm for b-EDGE COVER using the b-SUITOR algo-
rithm; we call the resulting algorithm the heuristic al-
gorithm for b-EDGE COVER, HEC. We observe that the
weight of the b-EDGE COVER thus obtained is within
+1.5% that of LSE. We also compare the serial run
times with that of LSE in Figure 5, and b-SUITOR is
roughly 2.3x faster than LSE algorithm on the aver-
age.

6 Conclusions

We have designed and implemented a new 3/2-
approximation algorithm, the LSE algorithm, for com-
puting a minimum weighted b-EDGE COVER in graphs.
It computes the same edge cover as the one that would
be obtained by the GREEDY algorithm. We show that
LSE computes edge covers with weights that are com-
parable to or better than the DELTA algorithm for the
same problem; the latter algorithm has a worse approx-
imation ratio, and is also sensitive to the order in which
the vertices are processed. The LSE algorithm does
not require edges to be sorted by weight, and has more
concurrency relative to the GREEDY algorithm. The so-
lution obtained by LSE algorithm is insensitive to the
order in which vertices are processed. The LSE algo-

Figure 5: Comparison of serial run times between HEC
and LSE.

rithm outperforms the GREEDY algorithm by a factor
of three (geometric mean) with respect to runtimes on
an Intel Xeon processor.
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