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1 INTRODUCTION
�e recent �nancial crisis has accentuated the need for e�ective
monitoring, oversight and regulation of �nancial markets and insti-
tutions. In response, governments around the world have created
new regulatory frameworks. For instance, in the U.S., enhanced
oversight and regulation was introduced through the Dodd-Frank
act, and similarly the European Union introduced a number of
supervisory bodies (European Banking Authority, European Secu-
rities and Markets Authority, etc.). Internationally, the Financial
Stability Board has been created with the mandate of promoting
international �nancial stability.

One consequence of launching these new regulatory regimes
in the Digital age is a vast and increasing amount of data that is
available to regulators on the behavior of market participants. For
instance, a main thrust of Dodd-Frank was to create transparency
and accountability in markets through a myriad of data recording
and reporting requirements that apply to exchanges and their mar-
ket participants. Yet, in spite of increased reporting requirements,
regulators have access only to data directly related to their legal
purview. Given the signi�cant number of agencies and fragmented
nature of the overall oversight ecosystem, it remains a major chal-
lenge for regulators to gain deep insight into the balance sheet of
�nancial institutions. �us, a common and important problem faced
by regulatory bodies around the world is how to integrate �nan-
cial data streams together in a principled manner that yields new
insights, thus realizing the potential of these modern regulatory
frameworks with more informative risk monitoring systems.

�e aim of this work is to help address this key issue in a se�ing
where regulators have access to two linked data sources: (i) equities
(stock movements) and (ii) interbank lending data. Stock move-
ments are of course widely and publicly available, whereas the la�er
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data source would be accessible to central banks, like the Federal
Reserve Board or the European Central Bank. By using these two
data sources, and by building on existing accounting frameworks
[3, 4, 9, 10], we partition the balance sheet of the banking sector to
isolate the underlying (and unobserved) portfolios held by banks.
�is partitioning, when combined with balance sheet identities,
implies a non-negative matrix factorization problem [6], which
has been extensively studied in other domains. Solving the matrix
factorization problem provides estimates of a bank’s underlying
portfolio along di�erent asset classes (equities, bonds, commodities,
etc.), thus giving regulators meaningful information synthesized
from data sources that are not typically integrated or studied to-
gether in this manner.

2 AN ACCOUNTING FRAMEWORK FOR
BANKS

We follow the setup of previous works [3, 4, 9, 10]. Before introduc-
ing the accounting framework and factorization problem, we �rst
introduce some notation. Let there be n banks under consideration
and X be the vector of interbank debt (the total value of liabilities
held by other banks). Πi j is the share of bank i’s liabilities held by
bank j,Wik is the weight invested in each of the k assets by bank
i (
∑
kWik = 1), Vik denotes the market value of bank i’s assets,

including loans to �rms and households as well as k asset classes
(equities, bonds, commodities, etc.), Ei indicates the market value
of bank i’s equity, and Di is the total value of liabilities of bank i
held by non-banks.

Consider a �nancial system in which banks connect lenders to
borrowers as intermediaries, collecting deposits from households
and �rms and investing the deposits in a portfolio of assets, includ-
ing loans to the household sector (via mortgages and consumer
debt) and �rms. �e balance sheet for a bank can be partitioned as
in Table 1.

Assets Liabilities∑
kWikVik ei

xi∑
j x jΠi j di

Table 1: Representation of the balance sheet of a bank i.

We obtain the balance sheet identity by summing assets and
liabilities respectively∑

j
x jΠi j +

∑
k

WikVik = ei + xi + di . (1)



DSMM’17, May 14, 2017, Chicago, IL, USA Shawn Mankad, Celso Brune�i, and Je�rey Harris

Wri�en using matrix notation (with capital le�ers), the balance
sheet identity is

ΠX + (W � V )u = E + X + D, (2)
whereu is a vector of ones and � is the Schur product (element-wise
multiplication).

�us, one can see thatW and V are a function of the equity,
interbank market, and household debt, which we ignore since it is
roughly constant [9].

(W � V )u = E + (I − Π)X . (3)

2.1 Probability Factorization
To estimateW , one could pose an optimization problem based on
minimizing the Frobenius norm of the di�erence between a time-
series of the combination of stock returns and interbank lending
data (captured in Z = [Z1, . . . ,ZT ]) and the estimated factors

minW ,V | |Z −WV | |2F (4)
subject to W ∈ Rn×K

V ∈ RK×T

(W )i j ≥ 0 for all i, j
K∑
j=1
(W )i j = 1 for all i .

�e estimation approach we present alternates between optimiz-
ing with respect toW and V . �e algorithm solves forW using a
projected gradient descent method that has been e�ective at bal-
ancing cost per iteration and convergence rate for similar problems
posed in Nonnegative Matrix Factorization [7, 8]. A�er solving for
W , probability constraints are enforced without changing the over-
all quality of the solution sinceV can be rescaled without changing
the objective function value. Speci�cally, we haveWD and D−1V ,
where D is a diagonal matrix with positive entries, provides di�er-
ent solutions with identical objective function values.

2.1.1 Solving for V . When holdingW �xed, the remaining opti-
mization problem wri�en is exactly the usual least squares problem
from linear regression.

Starting the objective function,
O = | |Z −WVT | |22 (5)
= (Z −WVT )T (Z −WVT ) (6)
= ZTZ −VWTZ − ZTWVT +VWTWVT . (7)

HoldingW �xed and di�erentiating with respect to V yields
∂O

∂V
= −2ZTW + 2VWTW . (8)

Se�ing the partial derivative equal to zero and solving for V
yields

V = ZTW (WTW )−1. (9)
�is is the optimal update for the problem minV | |Z −WVT | |2F .

2.1.2 Solving forW . We now turn our a�ention to solving for
W , holding V �xed.

A standard gradient descent algorithmwould start with an initial
conditionW (0) and constants αi and iterate

(1) For i = 1, 2, . . .

(2) SetW (i+1) =W (i) − αi∆W ,
where the gradient of the objective function with respect toW is

∆W =WVTV − ZV .

Due to the substraction, the non-negativity of W cannot be
guaranteed. �us, the basic idea of projected gradient descent is to
project elements inW to the feasible region using the projection
function, which for our problem is de�ned as P(γ ) =max(0,γ ). �e
basic algorithm is then

(1) For i = 1, 2, . . .
(2) SetW (i+1) = P(W (i) − αi∆W ).

�e constants αi regulate the step size or amount of change in
the estimate at each iteration, and converge to zero with i . However,
the exact speci�cation of αi is a main challenge. If the step size
is too small, the algorithm will not converge to a stationary point.
If the step size is too large, then too many elements ofW will be
projected to zero and the quality of the estimate will su�er. To
guarantee a su�cient decrease at each iteration and convergence
to a stationary point, the “Armijo rule” developed in [1, 2] provides
a su�cient condition for a given αi at each iteration

| |Z −W (i+1)VT | | − | |Z −W (i)VT | | ≤ σ 〈∆W (i ) ,W (i+1)−W (i)〉, (10)
where σ ∈ (0, 1) and 〈·, ·〉 is the sum of element wise products of
two matrices. �us, for a given αi , one calculatesW (i+1) and checks
whether (10) is satisifed. If the condition is satis�ed, then the step
size αi is appropriate to guarantee convergence to a stationary
point.

3 EMPIRICAL RESULTS
We use data from e-MID interbank market and public stock returns
data to form Z and subsequently estimateW over monthly inter-
vals. Our preliminary results of one-way Granger causality2 of
factorization-based variables to the St. Louis Fed Financial Stress
Index [5] is an encouraging result. More work is needed to validate
the model before using it to gain insight into the balance sheets of
banks at a higher frequency than current disclosures allow, and thus
be�er estimate systemic risk and monitor the �nancial ecosystem.
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