
Designing Scalable b-MATCHING Algorithms on

Distributed Memory Multiprocessors by

Approximation

Arif Khan∗, Alex Pothen∗, Md. Mostofa Ali Patwary†,

Mahantesh Halappanavar‡, Nadathur Rajagopalan Satish†, Narayanan Sundaram† and Pradeep Dubey†

∗Computer Science, Purdue University †Intel Labs ‡ Pacific Northwest National Lab

Email: ∗{khan58, apothen}@purdue.edu
†{mostofa.ali.patwary, nadathur.rajagopalan.satish, narayana.sundaram, pradeep.dubey}@intel.com

‡hala@pnnl.gov

Abstract—A b-MATCHING is a subset of edges M such that at
most b(v) edges in M are incident on each vertex v, where b(v) is
specified. We present a distributed-memory parallel algorithm,
b-SUITOR, that computes a b-MATCHING with more than half
the maximum weight in a graph with weights on the edges. The
approximation algorithm is designed to have high concurrency
and low time complexity. We organize the implementation of
the algorithm in terms of asynchronous supersteps that combine
computation and communication, and balance the computa-
tional work and frequency of communication to obtain high
performance. Since the performance of the b-SUITOR algorithm
is strongly influenced by communication, we present several
strategies to reduce the communication volume. We implement
the algorithm using a hybrid strategy where inter-node com-
munication uses MPI and intra-node computation is done with
OpenMP threads. We demonstrate strong and weak scaling of
b-SUITOR up to 16K processors on two supercomputers at
NERSC. We compute a b-MATCHING in a graph with 2 billion
edges in under 4 seconds using 16K processors.

I. INTRODUCTION

For the problem of computing a maximum weighted

b-MATCHING in a graph, we describe a distributed-memory

parallel algorithm that scales to 16K cores of a multiprocessor.

b-MATCHING is a generalization of the better known and stud-

ied MATCHING problem in graphs, and has applications to data

privacy [1], semi-supervised learning and data clustering [2],

finite element mesh refinement [3], preconditioning, etc. Our

work on scalable algorithms for b-MATCHING is motivated by

applications in data privacy and preconditioning.

We obtain a scalable parallel algorithm by careful algorithm

design and choices in implementation. First, by employing

approximation algorithms we avoid the polynomial, but still

impractical, time complexity of an algorithm for computing

the maximum weight, and obtain algorithms with near-linear

time complexity. These approximation algorithms nevertheless

guarantee that the b-MATCHING computed has at least half

the maximum weight, although in practice, the computed

weight is closer to 95% or more of the optimal weight.

Second, new approximation algorithms are designed to have

high concurrency, so that they can scale to ten-thousand cores

or more. The increase in concurrency is achieved by removing

ordering constraints from the approximation algorithm, albeit

at the cost of additional work. We make choices in the

algorithm to reduce the quantum of this extra work, so that

the gains from concurrency are not lost. Third, we choose

variants of the algorithm to implement that have proven to

have low time complexity and good practical performance

on serial and shared-memory computers. Fourth, we organize

the distributed-memory parallel computation in terms of su-

persteps that include computation and communication, and

balance the granularity of computation and the frequency of

communication in order to obtain high performance. Fifth,

by the choice of our parallel algorithm, we can make use of

asynchronous supersteps, so that a processor can continue to

compute after it receives a message from any processor that

holds information about the neighbors of the vertices it owns.

We can also make use of asynchronous communications to

hide the communication latency. By such algorithmic choices,

we decrease the communication and synchronization costs, and

achieve good scaling.

The rest of this paper is organized as follows. We provide

background on MATCHINGS and b-MATCHINGS in Section II.

A serial, recursive, version of the algorithm we consider in

this paper, the b-SUITOR algorithm, is briefly discussed in

Section III. This algorithm has each vertex u proposing to

match to its neighbors in decreasing order of weights, provided

the neighbor already does not have a better offer than the

weight u offers to it. Next we discuss the distributed-memory

parallel version of the b-SUITOR algorithm in Section IV.

Strategies to reduce the communication overhead are consid-

ered in Section V. Our experiments on two leadership class

distributed memory multiprocessors and results are described

in Section VI. We provide a summary of our results and

conclude in Section VII.

II. BACKGROUND AND RELATED WORK

We consider an undirected, simple graph G = (V,E),
where V is the set of vertices and E is the set of edges.SC16; Salt Lake City, Utah, USA; November 2016

978-1-4673-8815-3/16/31.00 c©2016 IEEE

We denote n ≡ |V |, and m ≡ |E|. Given a function b that

maps each vertex to a non-negative integer, a b-MATCHING

is a set of edges M such that at most b(v) edges in M
are incident on each vertex v ∈ V . (This corresponds to

the concept of a simple b-MATCHING in Schrijver [4].) An

edge in M is matched, and an edge not in M is unmatched.

Similarly, an endpoint of an edge in M is a matched vertex,

and other vertices are unmatched. If M has exactly b(v)
edges incident on each vertex v, then the b-MATCHING is

perfect. An important special case is when the b(v) values

are the same for every vertex, say equal to b. In this case, a

perfect b-MATCHING M is also called a b-factor. For future

use, we define β = maxv∈V b(v), and B =
∑

v∈V b(v). We

also denote by δ(v) the degree of a vertex v, and by ∆ the

maximum degree of a vertex in a graph G.

Now consider the case when there are non-negative weights

on the edges, given by a function w : E 7→ R≥0. The weight

of a b-MATCHING is the sum of the weights of the matched

edges. The objective we consider is maximizing the weight of

a b-MATCHING, and it is not necessarily a b-MATCHING of

maximum cardinality.

Edmonds [5] devised the first exact algorithm for

b-MATCHING. Pulleyblank [6] gave a pseudo-polynomial time

algorithm with time complexity O(mnB). Several other al-

gorithms for exact b-MATCHING were proposed in [7], [8],

[9], [10], [11], [12], [13]. A survey of exact algorithms for

b-MATCHING was provided by [3]. More recently, Huang

and Jebara [14] proposed an exact b-MATCHING algorithm

based on belief propagation which assumes that the solution

is unique, and otherwise it does not guarantee convergence.

Since algorithms for computing a b-MATCHING of maximum

weight have high time complexities, they are not practical for

massive graphs with billions of edges, and they do not have

much concurrency either. Hence we consider approximation

algorithms for b-MATCHING here.

Relatively little work has been done on approximate

b-MATCHING. Mestre [15] showed that a b-MATCHING is

a relaxation of a matroid called a k-extendible system with

k = 2, and hence that the Greedy algorithm gives a 1/k =
1/2-approximation for a maximum weighted b-MATCHING.

He generalized the Path-Growing algorithm of Drake and

Hougardy [16] to obtain an O(mβ) time 1/2-approximation

algorithm. He also generalized a randomized algorithm for

MATCHING to obtain a (2/3−ε)-approximation algorithm with

expected running time O(mβ log 1
ε
) [15]. Morales et al. [17]

have adapted the GREEDY algorithm and an integer linear

program (ILP) based algorithm to the MapReduce environment

to compute b-MATCHING in bipartite graphs. There have been

several attempts at developing fast b-MATCHING algorithms

using linear programming [18], [19], but these are slow relative

to the approximation algorithms discussed here.

The fastest serial as well as shared memory multi-threaded

algorithm, b-SUITOR, was proposed by us [20]. In this paper,

we compared a number of approximate b-MATCHING algo-

rithms, and identified key algorithmic issues for this problem

in general. We also showed that the b-SUITOR algorithm is

suitable for parallelization and demonstrated that the algorithm

scales up to 240 cores in shared memory settings.

There are few papers on approximate b-MATCHING in

distributed memory settings. Koufogiannakis and Young [21]

showed a randomized algorithm which guarantees 1/2- ap-

proximation. However, the authors did not mention an im-

plementation or any performance results in that paper. Man-

shadi et al. [19] proposed (1 − ε)-approximate algorithm for

bipartite graphs. The algorithm uses a linear programming

(LP) formulation and it is implemented on a MapReduce

environment. Geogiadis and Papatriantafilou [22] implemented

a distributed 1/2-approximation for b-MATCHING, based on

local dominating edges. To the best of our knowledge, this

is the only implementation for approximate b-MATCHING for

general graphs; however, the largest graph considered by these

authors has 1K vertices with 500K edges, and they did not

report the runtime performance of the algorithm.

In case of approximate MATCHING, (b(v) is 1 for all v),

there are several algorithms proposed in [23], [24], [25] for

distributed memory settings. An algorithm based on locally

dominant edges was first proposed for computing a 1/2-

approximate MATCHING by Preis [26]. (An edge is locally

dominant if it is at least as heavy as all other edges in-

cident on its endpoints.) Manne and Bisseling [27] have

described a distributed-memory parallel implementation of

the locally dominant edge algorithm. The SUITOR algorithm

was proposed by Manne and Halappanavar [28], on which

the b-SUITOR algorithm is based; the former algorithm was

implemented on shared memory parallel architectures by these

authors. Since we describe the b-SUITOR algorithm in the

next Section, we do not discuss the SUITOR algorithm in

detail here. Manne et al. [29] proposed a distributed memory

MATCHING algorithm which has the so called self-stabilizing

property. In a self-stabilizing algorithm in a distributed mem-

ory setting, every vertex has only local information, i.e., it

has knowledge about itself and only its neighbors. A self-

stabilizing algorithm neither requires any global knowledge

nor any fixed initial ordering to reach a stable solution. Lotker

et al. [23], [30] proposed another algorithm which can handle

dynamic graphs, i.e., where vertices leave and join the graph.

Blelloch, Fineman and Shun [31] have shown that the

maximal (not maximum) matching problem can be solved in

parallel in O(log2n) rounds with high probability using the

locally dominant edge algorithm. They prove that the maximal

independent vertex set (MIS) problem can be solved in this

many rounds with high probability, and the maximal matching

problem can be reduced to the MIS problem on the line graph

of the original graph.

III. SEQUENTIAL b-SUITOR

We begin by justifying our choice of a specific variant of the

b-SUITOR algorithm which we implement to be scalable on a

distributed memory multiprocessor. The b-SUITOR algorithm

has several attractive properties that make it a good choice to

be implemented on a distributed memory multiprocessor. First,

it is a half-approximation algorithm that computes the same

b-MATCHING as the one obtained by a GREEDY algorithm

and a Locally Dominant Edge (LD) algorithm (see Theorem

1 in the next Section, and [20]). Second, it has increased

concurrency over the GREEDY and the LD algorithms: unlike

the GREEDY algorithm which considers edges to match in

decreasing order of weights, and the LD algorithm which

matches an edge only when it becomes locally dominant, in the

b-SUITOR algorithm vertices can extend proposals in arbitrary

order, thus increasing concurrency in the algorithm. A vertex

has to extend proposals to its neighbors in decreasing order

of weights, but since each vertex can propose independent

of others, this exposes sufficient parallelism in the algorithm.

Second, the b-SUITOR algorithm has low serial running times

relative to the GREEDY and the LD algorithms, as we will

report in the next paragraph. It can be proved that the expected

number of proposals in the SUITOR algorithm is O(n log n)
if the weights of the edges are chosen randomly, although in

the worst-case it can be O(n2) [32], [33]. (This follows from

the connection of the SUITOR algorithm to an algorithm for

the stable matching problem.) Finally, it can be proved that

the expected value of the ranks (the sum over the vertices of

the position of the matched neighbor in the sorted adjacency

list of each vertex) is O(n log n), again when the weights are

assigned randomly [33]. This last result suggests that each

vertex needs to examine on the average at most O(log n)
neighbors in its sorted adjacency list to find a mate in the

SUITOR algorithm. We believe that these results, which hold

for the SUITOR algorithm, can be generalized to the b-SUITOR

algorithm as well.

Now we compare the run times of the exact b-MATCHING

algorithm, and the half-approximate GREEDY, LD, and

b-SUITOR algorithms on serial and shared memory processors.

Since exact b-MATCHING algorithms are challenging to im-

plement, there are few implementations that are publicly avail-

able. We compare our sequential b-SUITOR algorithm with two

exact algorithms: the first, an algorithm that solves the Integer

Linear Programming (ILP) formulation of b-MATCHING and

the second, an algorithm based on belief propagation (BP)

[14]. The BP algorithm is not guaranteed to converge if the

b-MATCHING is not unique. The serial b-SUITOR algorithm is

895× faster than ILP, and 287× faster than the BP algorithm

on the test set used in [20]. When compared with other approx-

imation algorithms, b-SUITOR is 17× faster than the GREEDY

algorithm, and 3× faster than the Locally Dominating edge

(LD) based algorithm [20] on a serial machine. On a shared

memory multiprocessor with 16 threads, b-SUITOR is 14×
faster than LD algorithms, and the former scales better than

the latter with increasing numbers of threads. In summary,

b-SUITOR algorithm is the fastest among these algorithms,

and it is scalable in a multithreaded shared memory context.

The b-SUITOR algorithm requires only local information, as

described later in this section, which is advantageous in the

distributed memory context.

We now describe a serial version of the b-SUITOR algo-

rithm. This algorithm is a 1/2-approximation algorithm for

maximum edge weighted b-MATCHING, and was proposed in

[20]. For each vertex u, we maintain a priority queue S(u)
that contains at most b(u) elements from its adjacency list

N(u). The intent of this priority queue is to maintain a list of

neighbors of u that have proposed to u and hence are Suitors of

u. The priority queue enables us to update the lowest weight

of a Suitor of u in log b(u) time. If u has fewer than b(u)
Suitors, then this lowest weight is defined to be zero. The

operation S(u).insert(v) adds the vertex v to the priority

queue of u with the weight w(u, v). If S(u) has b(u) vertices,

then the vertex with the lowest weight in the priority queue is

discarded on insertion of v. This lowest weight Suitor is stored

in S(u).last; if the priority queue contained fewer than b(u)
vertices, then a value of NULL is returned for S(u).last.

In what follows, we will need to break ties consistently

when the priorities of two vertices are equal. Without loss of

generality, we will say that w(u, x) > w(v, x) if the weights

are equal but vertex u is numbered lower than v.

It is also conceptually helpful to consider an array T (u)
which contains the vertices that u has proposed to. These are

all the vertices v such that u is a Suitor of v. Again, there

are at most b(u) neighbors of u in the set T (u), and so this

is a subset of N(u). The operation T (u).insert(v) inserts a

vertex v into the array T (u), and T (u).remove(v) removes the

vertex v from T (u). Throughout the algorithm, we maintain

the property that v ∈ S(u) if and only if u ∈ T (v). When the

algorithm terminates, we satisfy the property that v ∈ S(u)
if and only if u ∈ S(v), and then (u, v) is an edge in the

b-MATCHING.

Consider what happens when we attempt to find the i-
th neighbor for a vertex u to propose to. At this stage u
has made i − 1 outstanding proposals to vertices in the set

Ti−1(u), the index showing the number of proposals made

by u. We must have i ≤ b(u), for u can have at most

b(u) outstanding proposals. If a vertex u has fewer than b(u)
outstanding proposals, then we say that it is unsaturated; if

it has b(u) outstanding proposals, then it is saturated. The

b-SUITOR algorithm finds a partner for u, pi(u), according to

the following equation:

pi(u) = argmax
v∈N(u)\Ti−1(u)

{w(u, v) |w(u, v) > w(v, S(v).last)}

(1)

In words, the i-th vertex that u proposes to is a neighbor v
that it it has not proposed to yet, such that the weight of the

edge (u, v) is maximum among such neighbors, and is also

greater than the lowest weight offer v has currently. We will

call such a vertex v an eligible partner for u at this stage in

the algorithm. Note that the vertex pi(u) belongs to Ti(u) but

not to Ti−1(u).
We present the pseudo-code for the sequential b-SUITOR

algorithm in Algorithm 1. A recursive version of the algorithm

is described since it is easier to understand, although the

versions we have implemented for both serial and parallel

algorithms use iteration rather than recursion. The algorithm

processes all of the vertices, and for each vertex u, it seeks

to propose to b(u) neighbors. In each iteration a vertex u

Algorithm 1 b-SUITOR(G, b)
1: for all u ∈ V do

2: for i = 1 to b(u) do

3: x = argmax
v∈N(u)\T (u)

{w(u, v) : w(u, v) > w(v, S(v).last)}

4: if x = NULL then

5: break

6: else

7: MakeSuitor(u, x)

Algorithm 2 MakeSuitor(u, x)

1: y = S(x).last
2: S(x).insert(u)
3: T (u).insert(x)
4: if y 6= NULL then

5: T (y).remove(x)
6: z = argmax

v∈N(y)\T (y)

{w(y, v) : w(y, v) > w(v, S(v).last)}

7: if z 6= NULL then

8: MakeSuitor(y, z)

proposes to a heaviest neighbor v it has not proposed to yet,

if the weight w(u, v) is heavier than the weight offered by

the last (b(v)-th) Suitor of v. If it fails to find such a vertex,

then we break out of the loop. If it succeeds in finding an

eligible vertex x to propose to, then the algorithm calls the

function MakeSuitor to make u the Suitor of x. This function

updates the priority queue S(u) and the array T (u). When

u becomes the Suitor of x, if it annuls the proposal of the

previous Suitor of x, a vertex y, then the algorithm looks for

an eligible partner z for y, and calls MakeSuitor recursively

to make y a Suitor of z.

There are some modifications that can improve the perfor-

mance of the basic b-SUITOR algorithm.

One modification is to sort the adjacency lists of the vertices

to list edges in decreasing order of weights to reduce the time

complexity of the algorithm. With sorting, the adjacency list of

each vertex needs to be scanned from the highest to the lowest

only once in the entire algorithm. This feature reduces the time

complexity of the b-SUITOR algorithm from O(m∆ log β)
to O(m log(β∆). This could be further reduced by partially

sorting the adjacency lists, since only some multiple of the

b(v) heaviest edges incident on v are likely to be involved in

an approximate b-MATCHING. The complexity of the partially

sorted variant is O(m(c + log β), where c is the maximum

number of subsets in an adjacency list that is sorted; this is

typically bounded by a constant.

The second modification concerns what to do when a vertex

u has one of its proposals annulled. Either we can process

vertex u immediately so that it proposes to its next eligible

neighbor, or we can put u into a queue for later processing

after all vertices in the current iteration. The second, delayed

processing option, leads to better cache accesses, and to

fewer proposal annulments (since a vertex whose proposal is

annulled is likely to have a low weight relative to other eligible

vertices). It is this Delayed, Partial sorting (DP) variant that

we consider in the distributed-memory setting.

IV. MULTINODE b-SUITOR

We describe the distributed memory b-SUITOR algorithm

in this section. If we set aside implementation details that

arise due to the distributed-memory setting, the algorithm is

conceptually simple. Referring to the Algorithms 1 and 2

discussed in the previous section, the heart of the b-SUITOR

algorithm is that a vertex u makes a proposal to another vertex

v by following a rule (corresponding to the invariant of the

algorithm, Equation 1), and in doing so it may annul a proposal

to v which was made earlier by another vertex w. Also, when

u proposes to v, its current value of the best offer that v has

might not be correct, and thus v might need to send a rejection

message to u. In a distributed-memory algorithm, the three

vertices u, v, and w could be in three different compute nodes,

and hence we need an inter-node message passing interface to

coordinate the operations.

The input graph, G(V,E,w) is distributed among the par-

ticipating compute nodes. For each compute node, we denote

the resident graph as Gl = (V,El, wl) where V = Vl ∪ Vr;

i.e., Vl is the set of vertices local to that node, and Vr is the

set of vertices remote to that node. For a specific compute

node, we do not need to consider all the remote vertices but

the subset of the remote vertices which are neighbors of at

least one local vertex. We call this subset of vertices as ghost

vertices, and denote them by Vg ⊆ Vr. We call the subset of

compute nodes that own the ghost vertices on a compute node

as its neighboring nodes. The set El denotes the edges induced

by Vl, where at least one end point of an edge e(u, v) ∈ El

is local, and wl denotes the set of weights of such edges. The

heap data structures for the local vertices S(vl) are exactly

same as we have described in the previous section. However,

for the ghost vertices, we keep only the last Suitor information.

We have three types of messages: i) PROP for proposals,

ii) REJ for rejections and iii) ANL for annulments. In the

sequential b-SUITOR algorithm, there was no notion of re-

jections, and this is one of the critical differences for the

algorithm in the distributed setting. Processors do not send

messages one at a time but in batches for obvious performance

reasons. A processor maintains separate sending and receiving

buffers for each neighboring compute node. If a compute node

needs to communicate with a ghost vertex v, the algorithm first

identifies the remote node r which owns vertex v, and then

creates an appropriate message for that vertex and adds it to

the send buffer SBr, assigned to that remote node.

Now we describe our multi-node b-SUITOR in Algorithms

3 and 4. The algorithm uses iteration rather than recursion.

Since the Delayed Partial (DP) variant of the b-SUITOR

algorithm performs the best in both sequential as well as multi-

thread shared memory settings [20], our base algorithm in

the distributed-memory setting is this variant. As our imple-

mentation employs a hybrid shared and distributed memory

programming model, the intra-node computation is done in

parallel with OpenMP, and the inter-node communication is

done using the MPI library.

The algorithm maintains a queue of unsaturated vertices Q

for which it tries to find partners by extending proposals, and

also a queue of vertices Q′ that become unsaturated during the

current iteration (through annulments) to be processed again

in the next iteration. When there is no more vertex to be

processed, the algorithm terminates. The algorithm attempts

to find b(u) partners for each vertex u in Q, (line 5) as long

as its neighborhood has not been exhausted.

Consider the situation when a vertex u has i − 1 < b(u)
vertices outstanding proposals and the vertex u finds an

eligible partner p by satisfying Equation 1 (line 8). There are

two possible scenarios, i.e., p is either a local or a ghost vertex.

If it is a ghost vertex then the algorithm creates a Proposal

message and adds it to the appropriate send buffer (line 21).

If p is a local vertex then the thread processing the vertex u
attempts to acquire the lock for the priority queue S(p) so that

other vertices do not simultaneously become Suitors of p. This

attempt might take some time to succeed since another thread

might have the lock for p, or could be competing for it. Once

the thread processing u succeeds in acquiring the lock, then it

needs to check again if p continues to be an eligible partner,

since by this time another thread might have found another

Suitor for p, and its lowest offer might have changed. If p is

still an eligible partner for u, then we make u as a suitor of

p. By making u a suitor of p, we may dislodge the lowest

weight Suitor v of p, i.e., we annul the proposal that v made

to p earlier (line 14). Again, what happens next depends on

whether vertex v is a local or ghost vertex. If it is a local vertex

then we add v to the queue of vertices Q′ to be processed in

the next iteration (line 15) and the thread releases the lock

on S(p). If v is a ghost vertex, then the algorithm creates an

annulment message and adds it to the appropriate send buffer.

In the Remote msg handle procedure, the algorithm

sends all the messages gathered during the computation phase

to the respective remote nodes using the asynchronous MPI

send primitive. The reason for the asynchrony is that we do not

know when the computation phases of other compute nodes

will finish. Since b-SUITOR algorithm has the inherent self

stabilizing property and also has separate queues for receiving

messages, we do not need to wait for the outstanding send

primitives to finish. Thus we hide much of the communica-

tion latency. Next, the compute node waits until it receives

incoming messages from any of the remote nodes. As soon

as it receives an incoming message from a remote node r, it

starts to process the message. In doing so, we again hide the

communication latency because by the time the algorithm is

finished processing messages from r, it is likely that messages

from other remote nodes are already in the respective receive

buffers, RBs.

We process all the messages coming from a remote node

r in parallel (line 6). Consider a message m received from

remote node r, with u, p and w being the source (ghost) vertex,

destination (local) vertex and the weight for the message m,

respectively. There are two cases based on the message types.

1) Proposal message: If it is a Proposal message, then

we need to check whether it is a valid proposal or

not, i.e., if w > S(p).last. This validity checking is

required because when u decided that p is an eligible

partner to propose to (Algorithm 3 line 8), it made the

decision based on the ghost information about p, and

the information may not be current at that time. If the

proposal is still valid, then we make u a Suitor of p
with locking/unlocking mechanism for thread synchro-

nization as before. If during this process, u annuls a

proposal of v to p then again we handle it as described

in Algorithm 3.

However, if the proposal is not a valid one, the al-

gorithm replies to vertex u with a Rejection message.

An important point to note is that the proposal was

rejected because u made a decision based on the stale

information about the last Suitor of p. So when the

algorithm sends the Rejection message to u, it updates

the current last Suitor information S(p).last in the

Rejection message (line 18).

2) Rejection or Annulment message: We treat both types

of messages in the same manner because in effect, the

algorithm requires us to find a new partner for p for

both cases. In case of rejection, the proposal to u got

rejected because of the stale information of u. In case of

annulment, another vertex v made an better offer than

p. For both cases the worst suitor information of u has

been updated. So we update this information which is

encoded in the message (line 20) and add vertex p to

Q′ to process it in the next iteration.

The distributed b-SUITOR algorithm is a 1/2− approxima-

tion algorithm. Its proof directly follows from the proof of the

sequential b-SUITOR algorithm in [20]. We omit this proof

and the proof for termination of the algorithm due to space

limitations. We can prove a stronger result.

Theorem 1: All of the four algorithms: the distributed

b-SUITOR, the serial b-SUITOR, the GREEDY, and the Locally

Dominant edge algorithms, compute the same b-MATCHING,

and hence are 1/2-approximation algorithms for the maximum

weighted b-MATCHING problem.

V. STRATEGIES FOR REDUCING COMMUNICATION

The distributed memory b-SUITOR algorithm is

communication-intensive. The communication volume

depends on many factors such as the distribution of the edges

and their weights, the values of b(v), and the partitioning

of the graph among the processors, etc. Except for the last

factor, the other factors are input to the algorithm. We use a

simple vertex partitioning for our experiments, i.e., vertices

in the original order in the graph are equally distributed

among the participating compute nodes. We show and discuss

the effect on runtime for random permutation of vertices

among the nodes in the experimental section. Clearly, a

partition that minimizes the total number of cut edges should

reduce the communication volume but partitioning itself is a

heavy-weight task in distributed settings. Since we compute

matchings in our test problem under 10 seconds, and a good

partitioning algorithm requires much more time, partitioning

Algorithm 3 Distributed memory algorithm for approximate b-MATCHING. Input: A graph Gl = (V,El, wl) where V = Vl∪Vr,

vectors bl and sl. (Here l denotes local values, and r denotes remote values for this processor.) Output: A 1/2−approximate

edge weighted b-MATCHING M .

1: procedure MULTINODE b-SUITOR(Gl, b, s)

2: Q = Vl; Q
′ = ∅;

3: All buffers are initially empty;

4: while Q 6= ∅ do

5: for all vertices u ∈ Q in parallel do

6: i = 1;

7: while i <= b(u) and N(u) 6= exhausted do . Extend i-th proposal from u
8: Let p ∈ N(u) be an eligible partner of u;

9: if p 6= NULL then

10: if p is local then . Adding and updating the heap of a local vertex

11: Lock p;

12: if p is still eligible then

13: Make u a Suitor of p;

14: if u annuls the proposal of a vertex v then

15: if v is local then

16: Add v to Q′; Update db(v);
17: else . Remote annulments are added to Message queues

18: Let r be the node that owns v;

19: Add an Annulment message to the send buffer SBr(u, v, S(p).last, ANL)

20: i = i+ 1;
Unlock p;

21: else . Remote proposals are added to Message queues

22: Let r be the node that owns p;

23: Add a Proposal message to the send buffer SBr(u, p, w(u, p), PRP);

24: else

25: N(u) = exhausted;

26: /∗ Start of communication phase ∗/
27: Remote msg handle(SB,RB,Q′, db);
28: Update Q using Q′; Update b using db;

as a preprocessing step will not improve the performance

when the cost of partitioning is included.

Another source of redundant communications in Algorithm

3 is Proposal messages to vertices based on the ghost in-

formation. The ghost information on a processor might be

stale at the time of a decision to extend a proposal, and

this can generate many Rejection messages (we consider this

in line 9 in Algorithm 4). If the information was correct

and not stale, then we could have saved two messages (one

Proposal message and the corresponding Rejection message)

per decision. One extreme solution could be to send update

messages as soon as the S(u).last is updated for a vertex

u, to all the compute nodes where u is a ghost vertex. But

that would mean: i) all compute nodes have to be in lockstep

(synchronized communication) and ii) there would be many

small messages across the interconnection network. Both of

these lead to poor performance. So we consider three strategies

to reduce the number of messages in the following.

A. Subsetting the b(v) values

We define 1 ≤ b′(v) ≤ b(v) for each node v. Instead of

finding b(v) partners for a vertex v (Algorithm 3, line 7), we

can find a batch of b′(v) partners at each iteration until all

partners are found. Since the adjacency lists are sorted, we

find partners with higher edge weights first. The reason for

this is that the weight of the last Suitor of a vertex can only

increase in the course of the algorithm, so we let a vertex

extend proposals to its heavier neighbors first and become their

Suitor, and the corresponding ghost information about the last

Suitor spreads in the graph first. Later on when the algorithm

tries to find Suitors with lower edge weights, there is a reduced

chance that the offers from lower weight neighbors can beat

the offer of the last Suitor even if the ghost information is

not fresh. We apply two different strategies for choosing the

b′ values: i) constant b′, where b′(v) ∈ {1, 3, 5, . . . , b(v)}, and

ii) variable b′, where b′(v) = 1/2b(v) or (b(v)/d(v))× b(v).

B. Subsetting the vertices on a compute node

Instead of subsetting the b(v) values, we can process the

vertices on a specific processor in subsets. Let us assume

Algorithm 4 Procedure for remote message handling. Input: Send and Receive buffers, SB and RB, for each remote node, a

queue Q′ and a vector db. Output: All messages in Receive buffers are processed. The values of SB, Q′ and db are updated.

1: procedure REMOTE MSG HANDLE(S,R,Q′, db)
2: for all Neighboring Nodes r do

3: Send message SBr;

4: for all Neighboring nodes do . Wait for message from any remote node

5: Let r be the node from which data is received;

6: for all messages m ∈ RBr in Parallel do

7: Let u be the remote vertex and p the local vertex in m;

8: if m is a Proposal then . Handling proposal messages

9: if valid Proposal then

10: lock p; Make u a Suitor of p; unlock p;

11: if u annuls the proposal of a vertex v then

12: if v is local then

13: Add v to Q′; Update db(v);
14: else

15: Let r′ be the node that owns v;

16: Add an Annulment message to the send buffer SBr′(p, v, S(p).last, ANL)

17: else

18: Add a Reject message to the send buffer SBr(p, u, S(p).last, REJ)

19: else . Handling annulment or reject messages

20: Update Last Suitor of u using S(u).last ∈ m;

21: Add p to Q′, update db(p);

that a compute node in its tth iteration has to process nt

unsaturated vertices. Instead of processing all nt at the same

time in parallel, we can process a subset of p vertices, and then

do the communications. In the distributed memory setting this

strategy has been called super-stepping, which has been shown

to load-balance the communications among the compute nodes

by making a trade-off between the freshness of the last Suitor

information and the volume of communication. In our case,

this strategy gives us an added benefit since by controlling the

number of vertices being processed in a superstep (one round

of computation and communication), we control the volume

of last Suitor updates in S(v). Since each S(v) update ideally

requires us to propagate the information, we reduce the number

of such updates by processing fewer vertices at each step.

We observe experimentally that the volume of stale updates

decreases by applying this strategy.

C. Ordering the vertices for extending proposals

Intuitively, edges with higher weights are more likely to be

matched since our goal is to find a matching of maximum

weight. Hence when a vertex makes a proposal with a higher

edge weight, it is less likely to be annulled later by another

vertex. So we sort the vertices according to the heaviest edge

incident on them, and process them in that order. For example,

if two vertices u and v have wu and wv respectively as their

heaviest remaining edges incident on them, we process u be-

fore v if wu > wv . (This simple strategy does as well as more

sophisticated ones that sort by estimating the value of the last

Suitor of a vertex.) For the sequential algorithm, processing

in this order indeed reduces the number of annulments by

Problems Vertices Edges Avg. deg

ER 28 268,434,430 2,147,483,648 8
ER 27 134,217,028 1,073,741,824 8
ER 26 67,107,760 530,160,025 8

SSCA 28 268,435,154 2,136,323,325 8
SSCA 27 134,217,728 1,066,851,217 8
SSCA 26 67,107,987 534,179,576 8

G500 27 134,217,726 2,111,641,641 16
G500 26 67,108,089 1,073,058,343 16
G500 25 33,554,330 532,507,217 16

twitter 41,652,230 1,468,365,182 36
gsh-2015-host 68,680,142 1,802,747,600 27

TABLE I
TEST PROBLEMS.

as much as 15% for problem with 500 million edges ([20]),

In the distributed setting, message-based communication is

costlier than the computation. As the number of compute

nodes increases, for the same graph, each node owns fewer

vertices, and the overhead cost of sorting the adjacency lists

decreases. Therefore, for each compute node, we sort Q
according to the heaviest remaining edge before processing

the vertices (before line 5 in Algorithm 3).

VI. EXPERIMENTS AND RESULTS

We conducted our experiments on Edison and Cori, two

leadership-class machines at NERSC, Berkeley. Edison is a

Cray XC30 supercomputer, whose compute node consists

of two 12-core 2.4 GHz Intel R© Ivy Bridge processors with

64GB RAM. Each core in a compute node has its own

subsets and b′ = 10 (i.e., no b(v) subsetting because b(v) ≤
10) gives the best performance. We plot the number of cores

on the x-axis and logarithms of the runtimes in seconds on

the y-axis.

We observe that for all three classes of graphs the basic

strategy, (b′10 N1 U), is the worst performer. For ER and

SSCA problems, the basic strategy scales up to 6K cores

where as for G500 27, it scales up to 1.5K cores. All of the

communication strategies make the algorithm scale better, and

the combination of sorting the vertices with vertex subsetting

but no b(v) subsetting, is the best strategy for all problems.

It is interesting to note that the behaviors of vertex subsetting

and b(v) subsetting are orthogonal to each other. When we use

b(v) subsetting, no vertex subsetting (i.e., N1) gives the best

result, and vice versa. In summary, the b-SUITOR algorithm

scales up to 12K cores with speed up of 47× (ideally, 64×) for

ER and SSCA problems. (Speedups are computed relative to

192 cores.) However for the G500 problem, it scales up only

to 6K cores with 15× (ideally, 32×). The under-performance

of this class of graph is due to its skewed degree distribution,

since the number of edges in each compute node can be highly

imbalanced.

Next, we investigate why these strategies improve the per-

formance by considering how it reduces the communication

volume with respect to the basic strategy. By subsetting on

b(v) values and the vertices, we aim to reduce the stale

information (last Suitor weights) to reduce rejections. Vertex

ordering for extending proposals aims to reduce annulments.

However, reducing annulments indirectly reduces rejections

also, because the algorithm chooses the vertices with heavier

edges to make proposals first. Hence we observe that sorting

the vertices coupled with vertex subsetting performs the best.

Table II verifies our claim and shows the percent reduction

in the number of proposals, rejections, annulments and total

number of messages with respect to the basic strategy for the

largest problems in the three graph classes.

Since the basic strategy scales up to 256 nodes for ER 28

and SSCA 28, and 128 nodes for G500 27, we compare the

number of different types of messages for the basic strategy

with the other strategies with these node counts. The number

of proposals and total number of messages are related to the

numbers of rejections and annulments, so we focus on these

two types. As claimed, subsetting b(v) and vertices (second

and third columns of Table II) reduces rejections for all the

problems (as much as 20% for ER 28). However, these two

strategies do not reduce the annulments that much. In fact

for SSCA 28 and G500 27, the annulments increase by 2%
with vertex subsetting. The last column of Table II shows the

reduction with vertex sorting and vertex subsetting. We see

that it reduces both rejections and annulments more than other

strategies for all problems, and this is why it performs the best

in terms of run times and scaling.

Next, we investigate the total number of proposal messages

and proposal messages per node (in log2 scale) as a function

of compute nodes in Figure 2. We observe that the number

of proposal messages initially increases and then stabilizes

ER 28 (256) b
′1/2 N1 U b

′10 N32 U b
′10 N16 S

Proposal 3.23% 3.58% 6.91%
Rejection 20.72% 11.15% 21.18%

Annulment 0.33% 12.75% 24.90%
Total 4.97% 5.51% 10.62%

SSCA 28 (256) b
′1/2 N1 U b

′10 N32 U b
′10 N16 S

Proposals 7.37% 8.13% 11.62%
Rejection 16.58% 17.63% 19.22%

Annulment 17.03% -1.55% 31.12%
Total 9.84% 8.62% 14.87%

G500 27 (128) b
′1/2 N1 U b

′10 N32 U b
′10 N64 S

Proposals 0.14% 5.75% 9.16%
Rejection 0.95% 12.16% 7.08%

Annulment 4.51% -2.19% 40.12%
Total 0.78% 7.12% 11.16%

TABLE II
REDUCTION IN NUMBER OF MESSAGES W.R.T THE BASIC STRATEGY FOR

THE LARGEST INPUT SIZE IN EACH PROBLEM CLASS.

for ER 28 and SSCA 28 graphs, but for G500 27 graph it

keeps increasing with the number compute nodes. This is

another indication of the relatively poor strong scaling for

G500 graphs. We observe that the average number of proposal

messages generated per node goes down for all the graphs, but

the slope is more negative for ER and SSCA graphs.

Now we investigate the sensitivity of the algorithm to

different distributions of vertices among the compute nodes.

In order to test this, we randomly permuted the vertices, and

then mapped contiguous subsets of vertices to different com-

pute nodes (keeping the number of local vertices the same).

Then we performed three sets of experiments on the largest

problems with different permutations for the basic and the best

strategies. We report the mean runtimes in the histogram and

the standard deviations as the error bars in Figure 3. The best

strategy is mostly insensitive to the permutation except for

G500 27. The result for the last graph class is expected since

here with different permutations the edge distribution will be

significantly changed.

Finally, we report results on Cori for the largest problems in

each class with their best strategies. Figure 4 shows the strong

scaling performance of b-SUITOR algorithm. We observe a

speedup of 39 (ideally it would be 64) in going from 256
cores to 16K cores for RMAT. Run times are faster for the

same number of compute nodes for Cori relative to Edison.

E.g., the ER 28 graph takes 59 seconds with 128 nodes on

Edison, whereas it takes 26 seconds on Cori, because a Cori

node has more cores than an Edison node. The G500 27 graph

scales up to 16K cores (512 nodes) on Cori, whereas it scaled

only to 6K cores on Edison. We also experiment with the two

real world problems on Cori. The smaller problem twitter

has 1.5 billion edges, and scales up to 8K cores; the larger

problem gsh-2015-host has 1.8 billion edges, and scales

up to 16K cores. We observe nearly constant weak scaling

performance on Cori in Figure 5.

REFERENCES

[1] K. M. Choromanski, T. Jebara, and K. Tang, “Adaptive anonymity via
b-matching,” in Advances in Neural Information Processing Systems,
2013, pp. 3192–3200.

[2] T. Jebara and V. Shchogolev, “b-matching for spectral clustering,” in
European Conference on Machine Learning. Springer, 2006, pp. 679–
686.

[3] M. Müller-Hannemann and A. Schwartz, “Implementing weighted b-
matching algorithms: Insights from a computational study,” J. Exp.

Algorithmics, vol. 5, Dec. 2000.
[4] A. Schrijver, Combinatorial Optimization - Polyhedra and Efficiency.

Volume A: Paths, Flows, Matchings. Springer, 2003.
[5] J. Edmonds, “Maximum matching and a polyhedron with 0,1-vertices,”

Journal of Research of the National Bureau of Standards - B, vol. 69B,
pp. 125–130, 1965.

[6] W. R. Pulleyblank, “Faces of matching polyhedra,” Ph.D. dissertation,
Faculty of Mathematics, University of Waterloo, 1973.

[7] H. N. Gabow, “An efficient reduction technique for degree-constrained
subgraph and bidirected network flow problems,” Proceedings of the

15th Annual ACM Symposium on the Theory of Computing, pp. 448–
456, 1983.

[8] A. B. Marsh III, “Matching algorithms,” Ph.D. dissertation, The John
Hopkins University, Baltimore, 1979.

[9] R. P. Anstee, “A polynomial algorithm for b-matching: An alternative
approach,” Information Processing Letters, vol. 24, pp. 153–157, 1987.

[10] U. Derigs and A. Metz, “On the use of optimal fractional matchings
for solving the (integer) matching problem,” Computing, vol. 36, pp.
263–270, 1986.

[11] D. L. Miller and J. F. Pekny, “A staged primal-dual algorithm for perfect
b-matching with edge capacities,” ORSA J. of Computing, vol. 7, pp.
298–320, 1995.

[12] M. Padberg and M. R. Rao, “Odd minimum cut-sets and b-matchings,”
Math. Oper. Res., vol. 7, pp. 67–80, 1982.

[13] M. Grötschel and O. Holland, “Solving matching problems with linear
programming,” Math. Prog., vol. 33, pp. 243–259, 1985.

[14] B. C. Huang and T. Jebara, “Fast b-matching via sufficient selection
belief propagation,” in International Conference on Artificial Intelligence

and Statistics, 2011, pp. 361–369.
[15] J. Mestre, “Greedy in approximation algorithms,” in Algorithms–ESA

2006. Springer, 2006, pp. 528–539.
[16] D. E. Drake and S. Hougardy, “A simple approximation algorithm for the

weighted matching problem,” Information Processing Letters, vol. 85,
no. 4, pp. 211–213, 2003.

[17] G. De Francisci Morales, A. Gionis, and M. Sozio, “Social content
matching in Mapreduce,” Proceedings of the VLDB Endowment, vol. 4,
no. 7, pp. 460–469, 2011.

[18] C. Koufogiannakis and N. E. Young, “Distributed algorithms for cover-
ing, packing and maximum weighted matching,” Distributed Computing,
vol. 24, no. 1, pp. 45–63, 2011.

[19] F. M. Manshadi, B. Awerbuch, R. Gemulla, R. Khandekar, J. Mestre, and
M. Sozio, “A distributed algorithm for large-scale generalized matching,”
Proceedings of the VLDB Endowment, vol. 6, no. 9, pp. 613–624, 2013.

[20] A. Khan, A. Pothen, M. Patwary, N. Satish, N. Sundaram, and P. Dubey,
“Efficient approximation algorithms for weighted b-matching,” SIAM

Journal on Scientific Computing, p. 25, 2016, to appear.
[21] C. Koufogiannakis and N. E. Young, “Distributed fractional packing and

maximum weighted b-matching via tail-recursive duality,” in Distributed

Computing. Springer, 2009, pp. 221–238.

[22] G. Georgiadis and M. Papatriantafilou, “Overlays with preferences:
Distributed, adaptive approximation algorithms for matching with pref-
erence lists,” Algorithms, vol. 6, no. 4, pp. 824–856, 2013.

[23] Z. Lotker, B. Patt-Shamir, and A. Rosén, “Distributed approximate
matching,” SIAM Journal on Computing, vol. 39, no. 2, pp. 445–460,
2009.

[24] M. Wattenhofer and R. Wattenhofer, “Distributed weighted matching,”
in International Symposium on Distributed Computing. Springer, 2004,
pp. 335–348.

[25] J.-H. Hoepman, “Simple distributed weighted matchings,” arXiv preprint

cs/0410047, 2004.

[26] R. Preis, “Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs,” in Symposium on Theoretical

Aspects of Computer Science (STACS). Springer, 1998, pp. 259–269.
[27] F. Manne and R. H. Bisseling, “A parallel approximation algorithm for

the weighted maximum matching problem,” in The Seventh International

Conference on Parallel Processing and Applied Mathematics, 2007, pp.
708–717.

[28] F. Manne and M. Halappanavar, “New effective multithreaded matching
algorithms,” in 28th International Parallel and Distributed Processing

Symposium (IPDPS), May 2014, pp. 519–528.

[29] F. Manne and M. Mjelde, “A self-stabilizing weighted matching al-
gorithm,” in Stabilization, Safety, and Security of Distributed Systems.
Springer, 2007, pp. 383–393.

[30] Z. Lotker, B. Patt-Shamir, and S. Pettie, “Improved distributed approxi-
mate matching,” in Proceedings of the Twentieth Annual Symposium on

Parallelism in Algorithms and Architectures. ACM, 2008, pp. 129–136.

[31] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy sequential maximal
independent set and matching are parallel on average,” in Symposium

on Parallel Algorithms and Architectures (SPAA). ACM, 2012, p. 10.

[32] F. Manne, M. Naim, and M. Halappanavar, “On stable marriages and
greedy matchings,” in Proceedings of the SIAM Workshop on Combina-

torial Scientific Computing, 2016, p. 8 pp., to appear.

[33] B. Pittel, “On a random instance of a stable roommates problem: Likely
behavior of the proposal algorithm,” Combinatorics, Probabiltiy and

Computing, vol. 2, no. 1, pp. 53–92, 1993.

[34] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model
for graph mining.” in SDM, vol. 4. SIAM, 2004, pp. 442–446.

[35] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web

Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

[36] P. Boldi, A. Marino, M. Santini, and S. Vigna, “BUbiNG: Massive
crawling for the masses,” in Proceedings of the Companion Publication

of the 23rd International Conference on World Wide Web (WWW 2014).
International World Wide Web Conferences Steering Committee, 2014,
pp. 227–228.

[37] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” Cray User’s Group, 2010.

[38] D. Bader, K. Madduri, J. Gilbert, V. Shah, J. Kepner, T. Meuse, and
A. Krishnamurthy, “Designing scalable synthetic compact applications
for benchmarking high productivity computing systems,” CTWatch

Quarterly, vol. 2, no. 4B, pp. 41–51, 2006.

