

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Characterizing Adhesion between a Micro-Patterned Surface and a Soft Synthetic Tissue

Journal:	<i>Langmuir</i>
Manuscript ID	la-2016-03643d.R2
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Kern, Madalyn; University of Colorado Boulder, Mechanical Engineering Qi, Yuan; University of Colorado Boulder, Mechanical Engineering Long, Rong; Univ. of Colorado Boulder, Mechanical Engineering Rentschler, Mark; University of Colorado Boulder, Mechanical Engineering

SCHOLARONE™
Manuscripts

1
2
3
4
5
6
7
8 **Characterizing Adhesion between a**
9
10 **Micro-Patterned Surface and a Soft Synthetic**
11
12 **Tissue**
13
14
15
16
17
18

19 Madalyn D. Kern, Yuan Qi, Rong Long, and Mark E. Rentschler*

22 *Department of Mechanical Engineering, University of Colorado, Boulder*

25 E-mail: mark.rentschler@colorado.edu

28 **Abstract**
29
30

31 Work of adhesion and work of separation are characteristic properties of a contact
32 interface which describe the amount of energy per unit area required to adhere or sep-
33 arate two contacting substrates, respectively. In this work, the authors present exper-
34 imental and data analysis procedures which allow the contact interface between a soft
35 synthetic tissue and a smooth or micro-patterned polydimethylsiloxane (PDMS) sub-
36 strate to be characterized in terms of these characteristic parameters. Due to physical
37 geometry limitations, the experimental contact geometry chosen for this study differs
38 from conventional test geometries. Therefore, the authors used finite element modeling
39 to develop correction factors specific to the experimental contact geometry used in this
40 work. A work of adhesion was directly extracted from experimental data while the work
41 of separation was estimated based on experimental results. These values are compared
42 to other theoretical calculations for validation. The results of this work indicate that
43 the micro-patterned PDMS substrate significantly decreases both the work of adhesion
44 and work of separation as compared to a smooth PDMS substrate when in contact with
45 a soft synthetic tissue substrate.

1 5 1 Introduction

2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

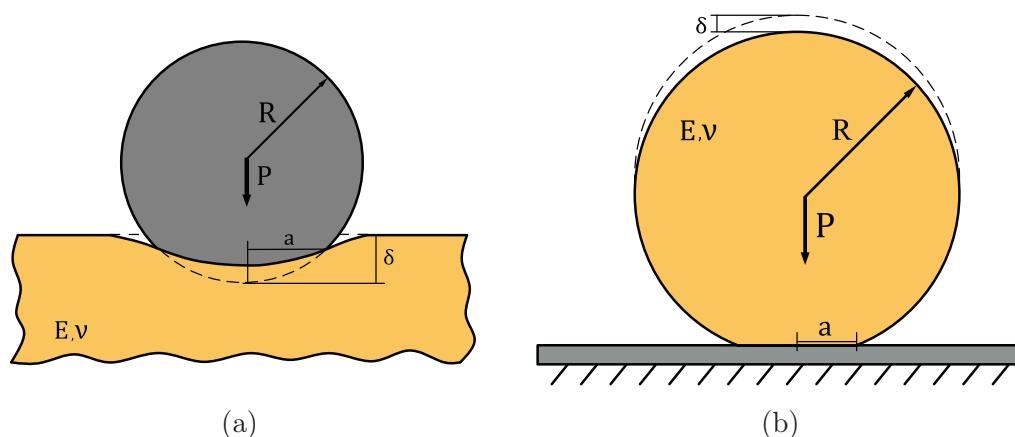
Adhesion is a complex phenomenon which continues to intrigue researchers and practitioners across many disciplines. As two surfaces approach and contact each other, an attractive force between the surfaces may be present, causing the surfaces to stick together and resist tensile loading. Several contact mechanics theories, dating back to the early 1970's, have been established to describe this adhesive response.¹⁻⁵ Of these theories, the Johnson-Kendall-Roberts (JKR) contact theory² is frequently used to interpret indentation experiments and to extract work of adhesion and work of separation, characteristic parameters of adhesion which are independent of contact geometry.⁶

More recently, robotic locomotion has given rise to a large body of adhesion literature where researchers have investigated the effect of adding surface patterns to a compliant surface to enhance adhesion when contacting a smooth, rigid surface.⁷⁻¹⁶ The addition of surface patterns was motivated by the natural ability of geckos and some insects to climb vertical and overhung walls, a behavior which has been attributed to the fibrillar structure on these animals' foot pads.^{17,18} In this body of literature, the diameter of the fibrils often spans both the nanometer and micrometer length scales and the fibril aspect ratio (height:diameter) is typically much greater than one.^{14,19} The physical mechanism for the enhanced adhesion is thought to be multi-faceted including effects from contact splitting,^{9,14,19} flaw insensitivity,^{8,10,20} and energy dissipation through dynamic instability.^{21,22}

On the other hand, the contact interface between a rigid, rough surface and a smooth, compliant substrate has been shown to decrease the adhesive response and is attributed to the decrease in actual contact area as a result of the surface roughness.^{3,23} However, it is also understood that if the compliant material is soft enough and the surface roughness shallow enough, adhesion can actually be increased due to the penetration of the compliant material into the rough surface profile, thus, increasing the contact area.^{24,25} Empirical models have been developed to predict the actual contact area as a function of normal applied load and

1
2
3 surface roughness geometry, although the experimental work done in this area has been with
4 two substrates of comparable modulus or where the roughness is modeled by sinusoidal waves
5 along the surface.^{26,27}
6
7

8 Clearly, the body of literature demonstrates that an adhesive response can be tuned to
9 achieve specific outcomes, allowing practitioners to optimize the behaviors of certain inter-
10 faces. One area of the authors' previous research has been in the design and development
11 of a Robotic Capsule Endoscope (RCE), a surgical device capable of traveling through the
12 gastro-intestinal (GI) tract for diagnostic and therapeutic purposes.^{28,29} For this specific ap-
13 plication, the authors are interested in optimizing the mobility of the RCE by maximizing the
14 tractive response while minimizing the adhesive response generated by the RCE's mobility
15 mechanism. Several different mobility mechanisms have been pursued for RCE's including
16 inchworm mobility,³⁰ legged mobility,³¹ magnetic mobility³² and, as in the authors' case,
17 wheeled mobility.^{28,29} The authors' wheeled mobility approach uses multiple tank-like poly-
18 dimethylsiloxane (PDMS) wheels with a micro-patterned surface to drive the robotic unit
19 through the GI tract.²⁹ The translational, tractive, response of the micro-structure against
20 a soft biological tissue has been studied previously and design optimization relationships
21 have been presented.³³⁻³⁵ While some normal adhesion characterization work has been com-
22 pleted,^{31,36,37} an experimental platform which characterizes the work of adhesion and work
23 of separation between the micro-patterned surface and a soft, tissue-like, substrate has not
24 yet been presented. Both the work of adhesion and work of separation are material surface
25 properties insensitive to experimental geometry and thus, valuable parameters which can be
26 compared across experimental tests.
27
28


29 In this work, the authors present two main contributions: (1) experimental and data anal-
30 ysis procedures for characterizing the adhesion energy between a smooth or micro-patterned
31 PDMS substrate and a soft synthetic tissue and (2) discussion of the effect on normal ad-
32 hesion when a cylindrical pillar micro-pattern is added to a PDMS surface in contact with
33 a soft synthetic tissue - an experimental configuration which has not yet been explicitly
34

1
2
3 tested. In Section 2 the authors describe the experimental methods used for material and
4 adhesion characterization and detail the computational methods used to define correction
5 factors to account for the unique experimental contact geometry. The experimental results
6 from material characterization, correction factor validation and adhesion characterization
7 are presented and discussed in Section 3. Finally, the conclusions of this work are presented
8 in Section 4.
9
10
11
12
13
14

18 2 Experimental

19

20 The conventional experimental indentation geometry used to support Hertz and JKR contact
21 theories are illustrated in Figure 1. Both the Hertz and JKR theories are based on the
22 assumption that the elastic substrates are infinitely thick such that they can be treated as an
23 elastic half-space. If, however, substrate thickness is finite, both the Hertz and JKR theories
24 will overestimate the substrate compliance. Thus, correction factors must be applied to ac-
25 count for the finite thickness of the substrate. A complete derivation of these finite thickness
26 correction factors can be found in Kenneth Shull's review paper⁶ and are summarized in this
27 paper in Section 2.2.
28
29
30
31
32
33
34
35
36
37

53 Figure 1: Conventional contact geometries for adhesion testing. Yellow shaded materials
54 represent compliant materials while gray shaded materials represent rigid materials.
55
56
57

58 Because the authors are ultimately interested in characterizing the adhesive response
59
60

between a micro-patterned PDMS substrate and a soft synthetic tissue material, the conventional indentation experimental geometries, as shown in Figure 1, present practical limitations. First, the soft synthetic tissue material is not easily grasped without shape deformation when in spherical form. Additionally, since the micro-patterned surface is fabricated on a planar field, wrapping the micro-patterned PDMS substrate around a rigid sphere would result in non-uniform pillar spacing. Therefore, the authors chose to lay the micro-patterned PDMS substrate ($h_{PDMS} = 1$ mm) atop a rigid glass plate and use an acrylic sphere ($R = 12.7$ mm) wrapped with a thin layer ($h_{syn} = 3$ mm) of the synthetic tissue as the contacting probe (Figure 2). Clearly, the experimental contact geometry (Figure 2) is different from conventional contact geometries (Figure 1) and thus, the interpretation of the experimental data will require modifications to the JKR theory.

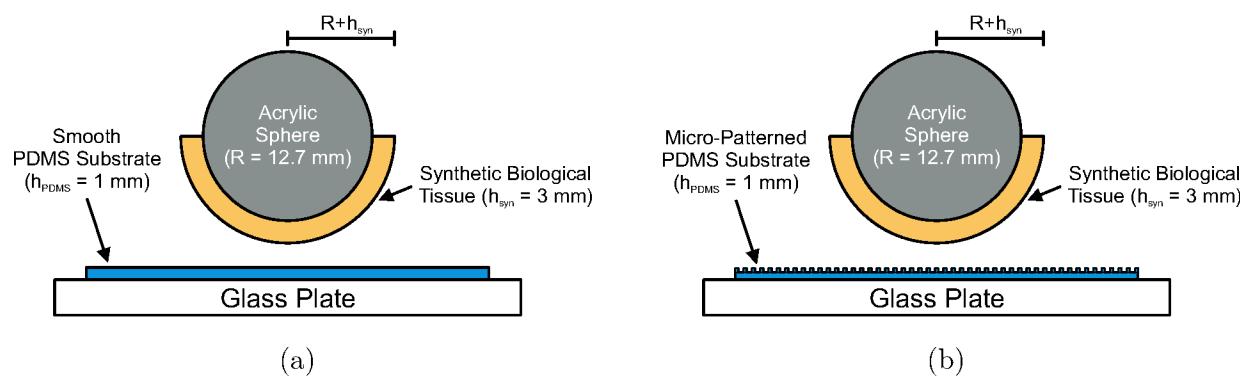


Figure 2: This is a schematic of the experimental geometry used for this work (not drawn to scale). The same spherical probe was used to test both the smooth PDMS (2a) and the micro-patterned PDMS (2b).

The experimental work of this study is organized into three parts: Section 2.1 - material property characterization, Section 2.2 - correction factor determination, and Section 2.3 - adhesion characterization for smooth and micro-patterned surfaces. All experimental work was done using an MTS Insight™ II Material Testing System (MTS Systems Corporation, Eden Prairie, MN) and a 2 N load cell. The contact area at the interface between substrates was measured using an Olympus I-Speed high-speed camera (iX Cameras, Woburn, MA) with a frame rate of 100 fps. Contact area images were post-processed using Matlab R2014b

(Mathworks, Inc., Natick, MA) to identify the contact region and calculate a contact radius (see supporting information document for more details). During experimental testing the spherical probe was lowered at a rate of 0.01 mm/s and retracted at approximately 2 mm/s. The data acquisition rate was set to 100 Hz. While load and displacement data were collected for both the down-stroke (approach) and up-stroke (retraction) test phases, the contact radius data was only collected during the down-stroke test phase. Additional details as to why the authors made this limiting decision can be found in the supporting information for this document. The authors directly extract a work of adhesion from experimental data and estimate the corresponding work of separation. Several test method validation steps were performed before comparing the adhesion response between the synthetic tissue and smooth PDMS or micro-patterned PDMS. Additionally, both the work of adhesion and work of separation values are validated against theoretical bounds.

2.1 Material Property Characterization

The adhesion response of a contact interface is dependent on the elastic modulus and Poisson's ratio of the contacting materials. The authors used Sylgard® 184 Silicone Elastomer (Dow Corning Corporation, Midland, MI) at a 10:1 base:curing agent weight ratio to fabricate the micro-patterned PDMS substrate and a synthetic soft Poly-Vinyl-Chloride (PVC) material (M-F Manufacturing Co, Fort Worth, TX) to fabricate the synthetic tissue substrate. For simplicity, the authors assume that both the PDMS and synthetic tissue materials are incompressible, thus assuming a Poisson's ratio of 0.5. Two different approaches were taken to measure the elastic moduli of the PDMS and synthetic tissue materials.

2.1.1 PDMS Modulus

The elastic modulus of the PDMS material was extracted from an experimental indentation test using a rigid acrylic sphere probe. Load and displacement were measured as the probe approached and contacted a smooth PDMS substrate. An elastic modulus was extracted

1
2
3 by comparing the experimental data to Hertz contact theory using a correction factor⁶ to
4 account for the finite thickness of the PDMS. Hertz contact theory, rather than JKR contact
5 theory, was used because no measurable adhesion was observed during the down-stroke test
6 phase.
7
8
9
10

11 2.1.2 Synthetic Tissue Modulus

12

13 The authors chose to extract the elastic modulus for the synthetic tissue substrate using
14 an experimental configuration from which adhesion forces were not observed during the
15 down-stroke test phase. This is because at this point, the work of adhesion and work of
16 separation for the specific contact interface is unknown. As presented and discussed in detail
17 in Section 3.3.1.2, no measureable adhesion forces were observed during the down-stroke
18 test phase of the synthetic tissue probe contacting the micro-patterned PDMS substrate.
19 The experimental data cannot be analyzed using conventional Hertz theory because the
20 experimental contact geometry (Figure 2b) differs from the conventional contact geometries
21 (Figure 1). Therefore, the authors developed a finite element model for the micro-patterned
22 PDMS substrate experimental geometry using ABAQUS 6.14 (Dassault Systemes Americas
23 Corp., Waltham, MA). The elastic modulus of the synthetic tissue material was varied
24 between 10 kPa and 20 kPa and the resulting simulation load-displacement output curves
25 were compared to the corresponding experimental data. More details for the finite element
26 model are provided in the supporting information of this document.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46 2.2 Correction Factor Determination

47

48 As mentioned in Section 2.1.2, the conventional JKR contact theory² cannot be used to
49 interpret the indentation experiments used for adhesion characterization because the exper-
50 imental contact geometry (Figure 2) is significantly different from the conventional contact
51 geometry (Figure 1). There are two key features of the authors' specific experimental contact
52 geometry which differ from the conventional contact geometry.
53
54
55
56
57
58
59
60

1
2
3 First, the layer of synthetic tissue around the rigid spherical core is not thick enough
4 to neglect the presence of the rigid core, suggesting that there is a finite thickness restriction.
5 Kenneth Shull has previously developed correction factors which account for the finite
6 thickness of a compliant substrate using finite element analysis and comparing simulation
7 results to various experimentalists' results.^{6,38} For Hertz-type contact, Shull defines the finite
8 thickness correction factors for load (f_P), displacement (f_δ) and compliance (f_C) in a general
9 form using Equations 1-3.
10
11
12
13
14
15
16
17
18

$$f_P \left(\frac{a}{h} \right) = \frac{P'}{P_H} = \left(1 + \beta \left(\frac{a}{h} \right)^3 \right) \quad (1)$$

$$f_\delta \left(\frac{a}{h} \right) = \frac{\delta'}{\delta_H} = \left(0.4 + 0.6 \exp \left(\frac{-1.8a}{h} \right) \right) \quad (2)$$

$$\frac{1}{f_C \left(\frac{a}{h} \right)} = \frac{C_o}{C} = 1 + \left(\frac{0.75}{\left(\left(\frac{a}{h} \right) + \left(\frac{a}{h} \right)^3 \right)} + \frac{2.8 + (1 - 2\nu)}{\left(\frac{a}{h} \right)} \right)^{-1} \quad (3)$$

33 Here, a represents the contact radius, h represents the substrate thickness, and P_H , δ_H and C_o
34 are the Hertz form of load, displacement and compliance, respectively, as defined in Equations
35 4-6. P' , δ' and C are the measured load, displacement and compliance, respectively.
36
37
38

$$P_H = \frac{4E^*a^3}{3R} \quad (4)$$

$$\delta_H = \frac{a^2}{R} \quad (5)$$

$$C_o = \frac{1}{2E^*a} \quad (6)$$

54
55 E^* is the effective modulus as defined below.
56
57
58
59
60

$$E^* = \frac{E}{1 - \nu^2} \quad (7)$$

Once the Hertz-type contact correction factors were defined, Shull used them to determine finite thickness correction factors for JKR-type contact. This was done using the general equations for energy release rate (\mathcal{G}). The energy release rate describes the energetic driving force for interfacial attraction or separation and the consequent increase or decrease in contact area, respectively. During the attraction regime, once the energy release rate reaches a critical value ($\mathcal{G}_{c,adh}$), the two surfaces will "jump" into contact and the contact area will grow such that the system reaches an equilibrium. Similarly, upon retraction, once the energy release rate reaches a new critical value ($\mathcal{G}_{c,sep}$), the interfacial crack between the two contacting surfaces will propagate and the two surfaces will separate. The critical energy release rate for both the attraction and separation regimes is equal to what is termed the work of adhesion (w_{adh}) and work of separation (w_{sep}), respectively. Load (P') and displacement (δ') are related through compliance (C), thus the energy release rate can be written in terms of load (Equation 8) or displacement (Equation 9).

$$\mathcal{G}_P = -\frac{(P' - P)^2}{4\pi a} \frac{\partial C}{\partial a} \quad (8)$$

$$\mathcal{G}_\delta = -\frac{(\delta' - \delta)^2}{4\pi a C^2} \frac{\partial C}{\partial a} \quad (9)$$

In these equations, primed variables represent Hertz forms of load and displacement while un-primed variables represent JKR forms of load and displacement. Shull defined the corresponding finite thickness correction factors with respect to load ($f_{\mathcal{G}_P}$) and displacement ($f_{\mathcal{G}_\delta}$). When the contacting substrates are assumed incompressible (i.e. $\nu = 0.5$), Shull's finite thickness correction factors are written as:

$$\mathcal{G}_P = \frac{(P' - P)^2}{8\pi E^* a^3} f_{\mathcal{G}_P}, \quad f_{\mathcal{G}_P} = \left(\frac{0.56 + 1.5 \left(\frac{a}{h} \right) + 3 \left(\frac{a}{h} \right)^3}{\left(0.75 + \left(\frac{a}{h} \right) + \left(\frac{a}{h} \right)^3 \right)^2} \right) \quad (10)$$

$$\mathcal{G}_\delta = \frac{E^*(\delta' - \delta)^2}{2\pi a} f_{\mathcal{G}_\delta}, \quad f_{\mathcal{G}_\delta} = \left(1 + 2.67 \left(\frac{a}{h} \right) + 5.33 \left(\frac{a}{h} \right)^3 \right) \quad (11)$$

The second feature of the authors' experimental contact geometries (Figure 2) which differs from the conventional contact geometries (Figure 1), is the curvature of the synthetic tissue substrate around the rigid spherical core. This curvature may result in different load, displacement and compliance measurements than those measured from a flat synthetic tissue substrate. Therefore, the authors performed additional finite element model simulations to quantify this influence while neglecting adhesion effects. The resultant load, displacement and compliance data from the simulations was used to determine correction factors for both of the experimental contact geometries shown in Figure 2. The same mathematical procedures used by Shull - and as described previously - were used to find the new correction factors. These correction factors will be referred to as, "modified-Shull" correction factors from this point on.

2.3 Adhesion Characterization

Once material properties were characterized and the new experimental contact geometry validated, experimental adhesion characterization tests were executed. Two experimental cases were tested: Case 1 - synthetic tissue probe on smooth PDMS and Case 2 - synthetic tissue probe on micro-patterned PDMS. Case 1 was used to validate the modified-Shull correction factors and as a control for comparison against Case 2.

3 Results and Discussion

The results and related discussion for the material characterization, correction factor determination and adhesion characterization are presented here.

3.1 Material Property Characterization

3.1.1 PDMS Modulus

Three experimental indentation tests were performed. Tests were displacement controlled, thus a mean of the three load measurements at each displacement point was calculated to construct a mean data set. Standard deviations of load measurements were calculated and are shown as vertical error-bars in Figure 3a. Because no adhesive forces were observed during the down-stroke test phase, Hertz contact theory with Shull's finite thickness correction factors⁶ - to account for the finite thickness of the PDMS substrate ($h_{PDMS} = 1$ mm) - were used to calculate theoretical force-displacement curves. The elastic modulus of the PDMS substrate was varied in the theoretical calculations and resultant curves were compared to the mean experimental data set. The authors found that a PDMS substrate elastic modulus equal to 2.9 MPa minimized the root-mean-square-error (RMSE) between the experimental and theoretical data (Figure 3a). In this case the magnitude of the RSME is 0.05 %. This result is consistent with other PDMS elastic modulus measurements reported in the literature.^{9,39}

3.1.2 Synthetic Tissue Modulus

As mentioned in Section 2.1.2, elastic modulus values ranging 10 kPa to 20 kPa were used to describe the synthetic tissue material in the finite element model. Load-displacement data was extracted from the simulations and compared to the experimental data to determine the synthetic tissue modulus which best reflected experimental results. RMSE values were calculated for each simulation-experiment combination. The minimized RMSE value

($RMSE = 0.0023\%$) corresponded to the simulation which defined the elastic modulus of the synthetic tissue as 15 kPa. The load-displacement curves for this particular simulation are shown in Figure 3b and are compared to the experimental data. Again, the experimental data is a mean data set calculated from three experimental trials. The mean load was calculated at each displacement point as well as standard deviations of the mean, represented as vertical error-bars. As can be observed in Figure 3b, the simulation data lies within the error-bars of the experimental data, thus indicating that the synthetic tissue modulus is well approximated by 15 kPa.

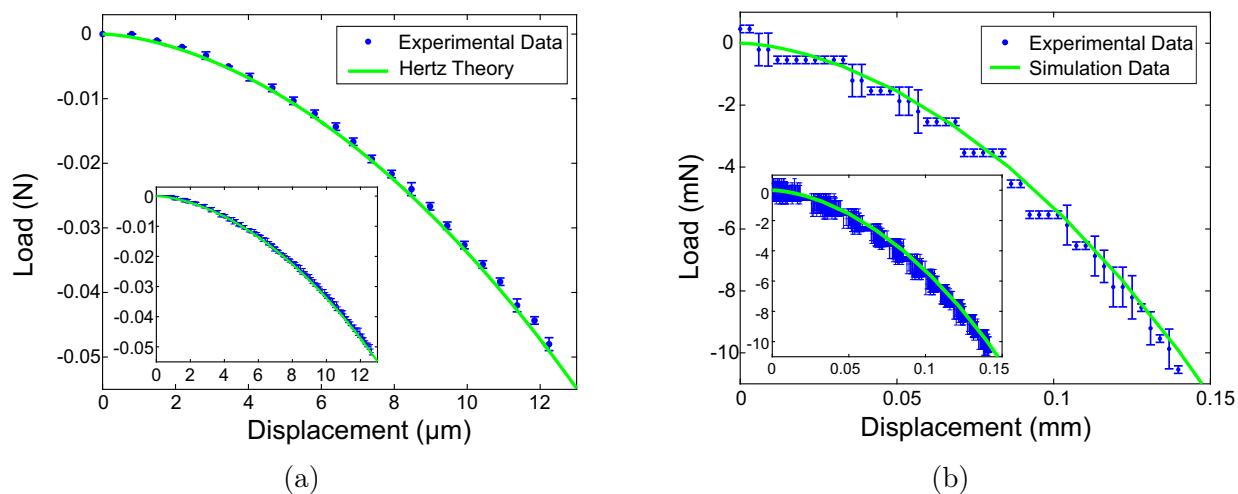


Figure 3: The results of the material characterization studies for the PDMS substrate and soft synthetic tissue are presented in Figure 3a and 3b, respectively. For clarity, seven data points and twenty nine data points have been suppressed between each visible data point in Figures 3a and 3b, respectively. The inset plots in 3a and 3b show all of the experimental data and error-bars with out suppression. In Figure 3b, the apparent steps in the data are due to the load cell resolution.

3.2 Correction Factor Determination

Modified-Shull correction factors for load, displacement and compliance were determined for both experimental contact geometries: Case 1 - synthetic tissue probe on smooth PDMS (Figure 2a) and Case 2 - synthetic tissue probe on micro-patterned PDMS (Figure 2b). As mentioned in Section 2.2, the resultant load-displacement data from the finite element mod-

1
2
3 els, developed for each experimental geometry, was used to help determine these correction
4 factors. The correction factors were determined by fitting a curve to the calculated results
5 of Equations 1-3, where the measured load and displacement were equal to the load and
6 displacement measurements from the finite element model simulations. The function forms
7 used for Shull's finite thickness correction factors were preserved in this curve fitting process.
8
9
10
11
12
13
14
15
16
17
18 Additionally, the curve fit was constrained to pass through the point (0, 1) to ensure when
19 finite thickness is no longer a necessary assumption (i.e. $\frac{a}{h} \rightarrow 0$), the conventional Hertz
20 forms of load, displacement and compliance are recovered.
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 The calculated Hertz-type correction factor data (blue markers) for load, displacement
46 and compliance are shown in Figures 4a-4c for the smooth PDMS experimental geometry case
47 and in Figures 4d-4f for the micro-patterned PDMS experimental case. The constraint point
48 is highlighted by the green "x" and the black curve represents the fitted correction factor
49 curve. The initial 1 to 6 calculated data points were excluded from the fitting procedure.
50 The contact radii which correspond to these initial points result in very small Hertz load
51 and displacement values. Therefore, the errors in the first six data points are magnified and
52 likely due to numerical artifacts. The authors recognize that choosing the points to exclude
53 is subjective; however, it was necessary to obtain accurate functions for the modified-Shull
54 correction factors. For comparison, Shull's finite thickness correction factors (red curves) are
55 also shown in Figure 4. It is clear that for each experimental geometry case, Shull's finite
56 thickness correction factors (red curves) are not sufficient to predict the response from the
57 finite element models (blue markers).
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 The authors observed an interesting behavior in the calculated compliance correction
61 factor data for the micro-patterned PDMS substrate case (Figure 4f). For values of $\frac{a}{h} <$
62 0.25, the calculated compliance correction factor drops below unity, whereas the calculated
63 compliance correction factor for the smooth PDMS substrate is greater than unity for all
64 values of $\frac{a}{h}$ greater than zero. This behavior indicates that the compliance measured during
65 the small contact radius region ($\frac{a}{h} < 0.25$) of the synthetic tissue probe compressing into the
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1

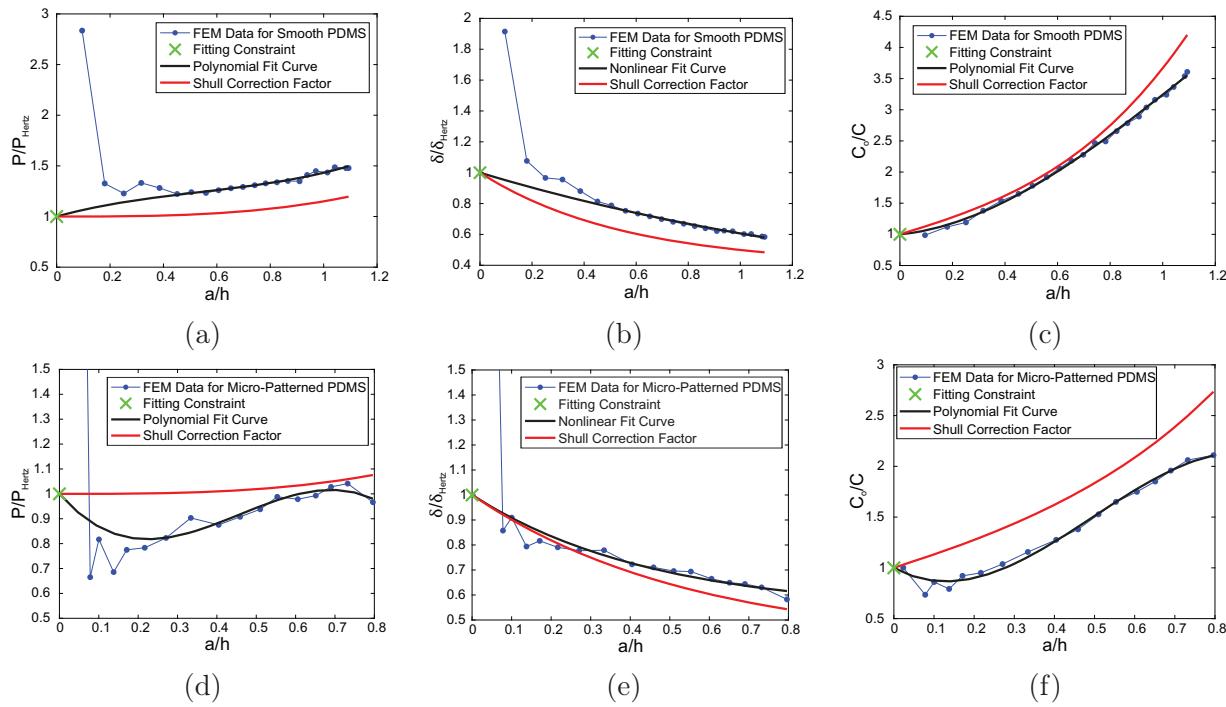


Figure 4: The calculated correction factor data (blue markers) from the finite element model simulations for the smooth PDMS (4a-4c) and micro-patterned PDMS (4d-4f) experimental geometries are shown as a function of $\frac{a}{h}$. These results are compared to the finite thickness correction factors defined by Shull (red curves). A polynomial or non-linear curve (black curve) was fit to the finite element data such that a new correction factor function was identified for each variable. The fitted functions were constrained to pass through the point $(0, 1)$.

micro-patterned PDMS substrate is greater than the Hertzian form of compliance (Equation 6). In other words, this indicates that the synthetic tissue material deforms more at small contact radii than it does at larger contact radii with respect to the same loading profiles. The authors suspect that the micro-pattern geometry (both pillar diameter and spacing) is a factor in this unique behavior. The exact characteristics of the micro-pattern structure which contribute to the increased material compliance are not studied in this work as they are outside the scope of work. However, the authors suspect that the micro-pattern geometry allows the synthetic tissue substrate to penetrate into the pillar spacing, thus increasing the system compliance. The authors plan to further investigate the micro-pattern geometry and determine how characteristics such as pillar spacing, pillar diameter and pillar height affect the contact response.

Table 1 lists the modified-Shull correction factors for load, displacement and compliance determined for both experimental cases.

Table 1: Modified-Shull correction factors for load (f_P), displacement (f_δ) and compliance $\left(\frac{1}{f_C}\right)$ for both experimental contact geometries, synthetic tissue probe on smooth PDMS and micro-patterned PDMS.

Correction Factor	Smooth PDMS	Micro-Patterned PDMS
Load:		
$f_P \left(\frac{a}{h}\right) = p_3 \left(\frac{a}{h}\right)^3 + p_2 \left(\frac{a}{h}\right)^2 + p_1 \left(\frac{a}{h}\right) + p_0$	$p_3 = 0.49$	-3.9
	$p_2 = -0.80$	5.3
	$p_1 = 0.74$	-1.8
	$p_0 = 1.0$	1.0
Displacement:		
$f_\delta \left(\frac{a}{h}\right) = d_2 + d_1 \exp \left(d_0 \frac{a}{h}\right)$	$d_2 = 0.05$	0.53
	$d_1 = 0.95$	0.47
	$d_0 = -0.54$	-2.1
Compliance:		
$\frac{1}{f_C \left(\frac{a}{h}\right)} = c_3 \left(\frac{a}{h}\right)^3 + c_2 \left(\frac{a}{h}\right)^2 + c_1 \left(\frac{a}{h}\right) + c_0$	$c_3 = -0.74$	-6.4
	$c_2 = 2.6$	9.5
	$c_1 = 0.42$	-2.1
	$c_0 = 1.0$	1.0

From the results of the experimental tests, as will be described in detail in Section 3.3, the authors observed a clear adhesion response (tensile forces upon the approach of

the synthetic tissue probe) in the down-stroke test phase for the synthetic tissue probe contacting the smooth PDMS substrate (Figure 6). However, the authors did not observe a measureable adhesive response for the synthetic tissue probe contacting the micro-patterned PDMS substrate (Figure 8). Therefore, correction factors for the energy release rate (\mathcal{G}) were only determined for the synthetic tissue probe contacting the smooth PDMS substrate case (Table 2).

Table 2: Modified-Shull correction factors for energy release rate in terms of load (\mathcal{G}_P) and displacement (\mathcal{G}_δ) for the synthetic tissue probe contacting the smooth PDMS substrate. The coefficients (c_3 , c_2 , c_1 , c_0) are defined in Table 1.

Load Form	Displacement Form
$\mathcal{G}_P = \frac{(P'-P)^2}{8\pi E^* a^3} f_{GP}$	$\mathcal{G}_\delta = \frac{E^*(\delta'-\delta)^2}{2\pi a} f_{G\delta}$
$f_{GP} = \frac{4c_3\left(\frac{a}{h}\right)^3 + 3c_2\left(\frac{a}{h}\right)^2 + 2c_1\left(\frac{a}{h}\right) + c_0}{\left(c_3\left(\frac{a}{h}\right)^3 + c_2\left(\frac{a}{h}\right)^2 + c_1\left(\frac{a}{h}\right) + c_0\right)^2}$	$f_{G\delta} = 4c_3\left(\frac{a}{h}\right)^3 + 3c_2\left(\frac{a}{h}\right)^2 + 2c_1\left(\frac{a}{h}\right) + c_0$

The energy release rate during the down-stroke (approach) test phase was calculated in terms of load (\mathcal{G}_P) and displacement (\mathcal{G}_δ), as defined by Equations 8 and 9, using the correction factors for load displacement and compliance as defined in Table 1. Both forms of the energy release rate were calculated and compared against contact radius as shown in the bottom panel of Figure 5. The energy release rate was also calculated using Shull's finite thickness correction factors and is shown in the top panel of Figure 5 for comparison.

As described in Section 2.2, the work of adhesion (w_{adh}) and work of separation (w_{sep}) of a contact interface are equal to the respective critical value of the energy release rate (\mathcal{G}_c). The critical value of the energy release rate can be extracted when comparing energy release rate to contact radius and is defined by the plateau value of the energy release rate. In theory, the two energy release rate equations (Equations 8 and 9) are equivalent, since compliance is a function of load and displacement. Thus, the work of adhesion (w_{adh}) or work of separation (w_{sep}) extracted from both energy release rate equations are equivalent.

The authors chose to calculate the work of adhesion (w_{adh}) for the contact between the

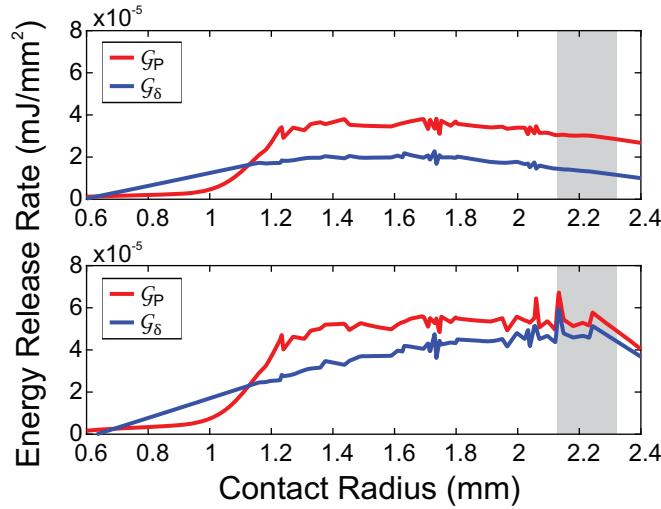


Figure 5: This figure plots the energy release rate vs. contact radius during the down-stroke (approach) test phase calculated from Equations 8 (\mathcal{G}_P) and 9 (\mathcal{G}_δ) using Shull's finite thickness correction factors (top panel) and the modified-Shull correction factors (bottom panel). For clarity, the raw data was fit with a smoothing spline curve. The smoothing parameters for each panel are equal to 0.999 and 0.985 for the energy release rate with respect to load (red curves) and displacement (blue curves), respectively. The highlighted region of each curve depicts the section of data used to extract the work of adhesion (w_{adh}).

smooth PDMS and synthetic tissue substrates from the final 300 data points of the energy release rate vs. contact radius curves (Figure 5). Clearly, the work of adhesion (w_{adh}) calculated from the energy release rate curves defined using Shull's finite thickness correction factors (Figure 5 top panel) are not equivalent, differing by a factor of approximately three (approximately 300 % error). Conversely, the work of adhesion (w_{adh}) calculated from the energy release rate curves defined using the modified-Shull correction factors (Figure 5 bottom panel) have an approximate error of 10 %. This is a validation that the modified-Shull correction factors, developed through the finite element model results, can be used to more accurately predict the experimental load-displacement behavior of the authors' specific experimental geometry. The authors attribute the small error between the two work of adhesion calculations using the modified-Shull correction factors to the manual synchronization between the load-displacement data from the MTS machine and the contact radius data from the high speed camera. The synchronization was done by analyzing the derivative of

1
2
3 the load-displacement data to identify the point of initial contact. Because the experimental
4 tests were displacement controlled, the authors chose to report the work of adhesion (w_{adh})
5 for the synthetic tissue probe contacting the smooth PDMS from the energy release rate from
6 the value calculated with respect to displacement (blue curve). Thus, the work of adhesion
7 (w_{adh}) for this experimental case is equal to 4.7×10^{-5} mJ/mm² (0.047 J/m²).
8
9
10
11
12
13
14

15 3.3 Adhesion Characterization

16
17

18 The overarching goal of this work is to determine if the adhesion response at the contact
19 interface of a synthetic tissue and PDMS substrate is affected by a micro-pattern on the
20 PDMS substrate. Two experimental tests were executed to study this interaction: Case 1 -
21 synthetic tissue probe contacting a smooth PDMS substrate and Case 2 - synthetic tissue
22 probe contacting a micro-patterned PDMS substrate. Experimental data was compared to
23 theoretical predictions using the modified-Shull correction factors as well as Shull's finite
24 thickness correction factors in order to directly extract a work of adhesion (w_{adh}) for each
25 experimental case. The work of separation (w_{sep}) for each experimental case was estimated
26 using the experimental data and correction factors developed from the approach test phase.
27
28

29 The authors would like to acknowledge that the work of adhesion (w_{adh}) and work of
30 separation (w_{sep}) values presented in this work are rate dependent and should only be used
31 directly for applications utilizing similar approach and retraction rates. In general, there
32 are two sources of rate dependence which can affect adhesion: (1) rate dependent surface
33 processes during approach and retraction testing phases and (2) viscoelasticity of the com-
34 pliant substrate. For the work presented here, the authors claim that the viscoelasticity of
35 the synthetic tissue substrate is not significant enough to contribute to the rate dependence
36 of the work of adhesion (w_{adh}) or work of separation (w_{sep}) because the instantaneous and
37 long-term indentation loads for the material only vary by approximately 4 % over the course
38 of 300 s (see supporting information for more details).
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3.3.1 Extracting the Work of Adhesion

3.3.1.1 Case 1: Synthetic Tissue Probe Contacting a Smooth PDMS Substrate

The experimental contact geometry for this case is the synthetic tissue probe contacting a smooth PDMS substrate (Figure 2a). Three experimental trials were executed and a mean load-displacement curve was generated. The experimental data for the down-stroke (approach) test phase is shown in Figure 6 where the error-bars indicate the standard deviation of the calculated mean load values. This experimental geometry was tested to serve as a control case as well as a validation case for the modified-Shull correction factors determined in Section 3.2.

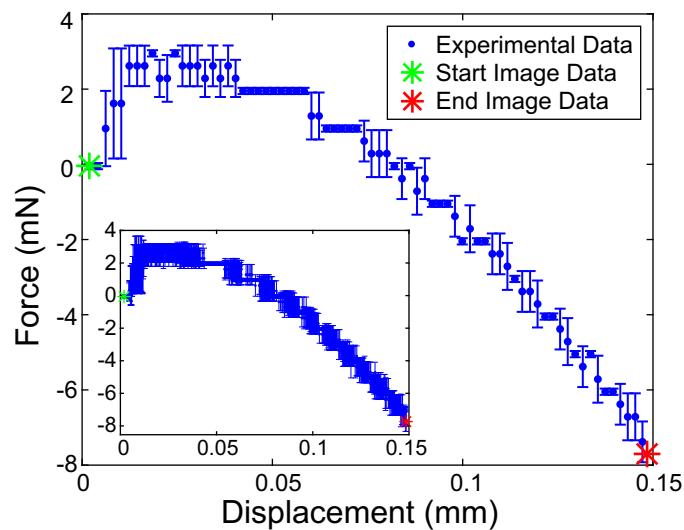


Figure 6: This plot shows the mean load-displacement data for the down-stroke (approach) test phase on smooth PDMS, where the error bars indicate the standard deviation of the mean load values. For clarity, 19 data points have been suppressed between each visible data point shown in this figure. The inset plot shows all experimental data and error-bars without suppression. Compression forces are represented as negative forces and tensile forces are positive. The green asterisk indicates the point just before initial contact occurs while the red asterisk indicates the location of the final image frame collected. The apparent steps in the data are due to the load cell resolution.

Using the work of adhesion (w_{adh}) and modified-Shull correction factors for the smooth PDMS experimental geometry case, determined in Section 3.2, theoretical predictions for load and displacement were calculated using the JKR formulations of load (P_{JKR}) and dis-

placement (δ_{JKR}) as defined in Equations 12 and 13, respectively.

$$P_{JKR} = P_H f_P \left(\frac{a}{h} \right) - 2\sqrt{2\pi E^* w a^3} \quad (12)$$

$$\delta_{JKR} = \delta_H f_\delta \left(\frac{a}{h} \right) - \sqrt{\frac{2\pi a w}{E^*}} \quad (13)$$

Figures 7a-7c compare the experimental (blue markers and error bars) and theoretical (red and black curves) load vs. contact radius, displacement vs. contact radius and load vs. displacement curves, respectively. In these figures, the theoretical predictions using the modified-Shull correction factors are depicted by the black curves while the theoretical predictions using Shull's finite thickness correction factors are depicted by the red curves. The authors observe that the modified-Shull correction factors predict the experimental response more accurately than Shull's finite thickness correction factors, thus validating the modified-Shull correction factors and extracted work of adhesion (w_{adh}).

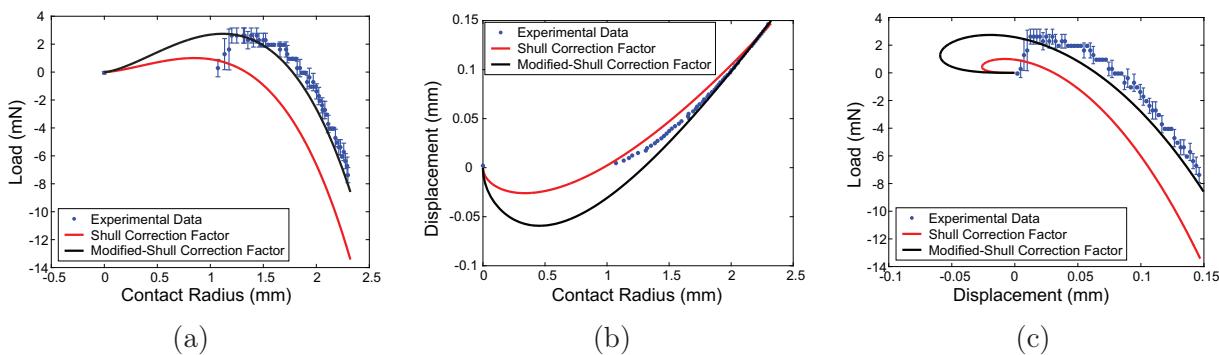


Figure 7: The experimental load, displacement and contact radius measurements (blue) are compared to the theoretical JKR curves using the modified-Shull correction factors (black) and Shull's finite thickness correction factors (red). For clarity, 24 data points have been suppressed between each visible data point shown in this figure. The apparent steps in the data are due to the load cell resolution.

3.3.1.2 Case 2: Synthetic Tissue Probe Contacting a Micro-Patterned PDMS Substrate

The experimental contact geometry for this case is the synthetic tissue probe contacting a micro-patterned PDMS substrate (Figure 2b). Three experimental trials were executed and a mean load-displacement curve was generated. The experimental data for the down-stroke (approach) test phase is shown in Figure 8, where the error-bars indicate the standard deviation of the mean load.

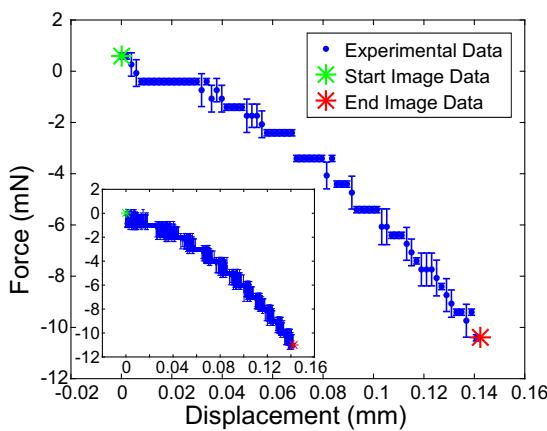


Figure 8: This plot shows the mean load-displacement data for the down-stroke (approach) test phase on micro-patterned PDMS, where the error bars indicate the standard deviation of the mean values. For clarity, 19 data points have been suppressed between each visible data point shown in this figure. The inset plot shows all experimental data and error-bars without suppression. Compression forces are represented as negative forces and tensile forces are positive. The green asterisk indicates the point just before initial contact occurs while the red asterisk indicates the location of the final image frame collected. The apparent steps in the data are due to the load cell resolution.

As mentioned previously, the authors observed no measurable adhesive forces during the down-stroke (approach) test phase for this experimental contact geometry. This is most likely due to the discontinuity of true contact as a result of the micro-patterned cylindrical pillar geometry. Not only is the total surface energy of the micro-patterned PDMS less than that of the smooth PDMS, but the fact that the available contact sites are separated, likely decreases the attraction between the two surfaces. Therefore, the authors used the Hertz form of the contact equations (Equations 4 and 5) along with the modified-Shull correction factors for

1
2
3 the micro-patterned PDMS experimental geometry, determined in Section 3.2, to calculate
4 theoretical predictions for load and displacement. Shull's finite thickness correction factors
5 were also used to calculate theoretical predictions and compared to both the experimental
6 and modified-Shull theoretical results.
7
8

9 Figures 9a-9c compare the experimental (blue markers and error bars) and theoretical
10 (red and black curves) load vs. contact radius, displacement vs. contact radius and load
11 vs. displacement curves, respectively. In these figures, the theoretical predictions using
12 the modified-Shull correction factors are depicted by the black curves while the theoretical
13 predictions using Shull's finite thickness correction factors are depicted by the red curves.
14 When the contact is described only by load and displacement (Figure 9c), the theoretical
15 curve calculated from the modified-Shull correction factors predict the experimental data
16 more accurately than the theoretical curve calculated using Shull's finite thickness correc-
17 tion factors. However, when the contact radius measurements are included (Figures 9a and
18 9b), the error between the modified-Shull correction factor theoretical curves and the exper-
19 imental data is greater, especially at large contact radius values. The authors attribute the
20 error observed between the modified-Shull theoretical curves and the experimental curves in
21 Figures 9a and 9b to the fact that the contact radius was manually measured in the finite
22 element model. In the finite element simulation, only the tops of the pillars were actually
23 in contact with the synthetic tissue substrate. ABAQUS calculates a contact radius from
24 the actual contact area rather than an effective contact area expanding the entire region of
25 contact. Therefore, contact radius measurements from the simulation were much less than
26 the experimentally observed contact radii. As a result, the authors chose to estimate the
27 contact radius manually from the finite element model simulation results. Three node points
28 along the contact periphery were selected and distances were calculated from a common
29 central point. The mean distance was calculated and this was done at each time iteration of
30 the simulation. The authors believe the uncertainty in the manual contact radius measure-
31 ments contribute to the errors observed between the theoretical curves when contact radius
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

measurements were used (Figures 9a and 9b). The authors recognize this as a limitation of the finite element model.

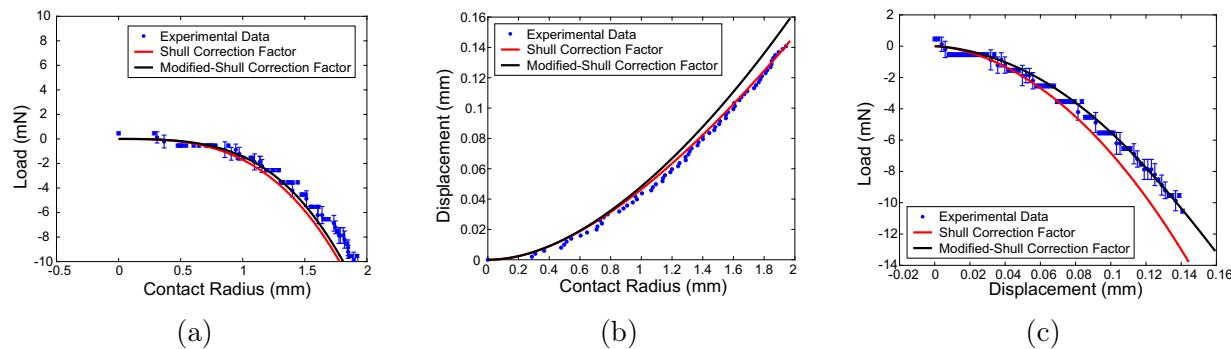
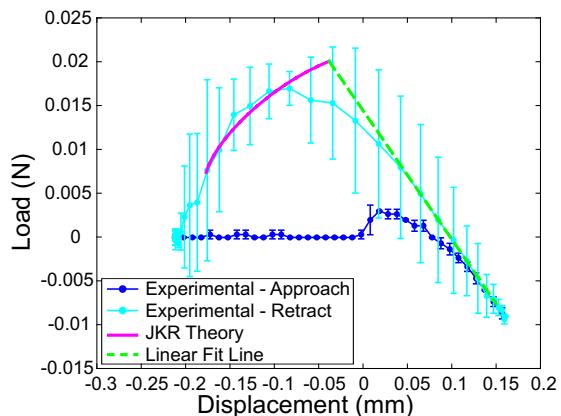


Figure 9: The experimental load, displacement and contact radius measurements (blue) are compared to the theoretical JKR curves using the modified-Shull correction factors (black) and Shull's finite thickness correction factors (red). For clarity, 19 data points have been suppressed between each visible data point shown in this figure. The apparent steps in the data are due to the load cell resolution.

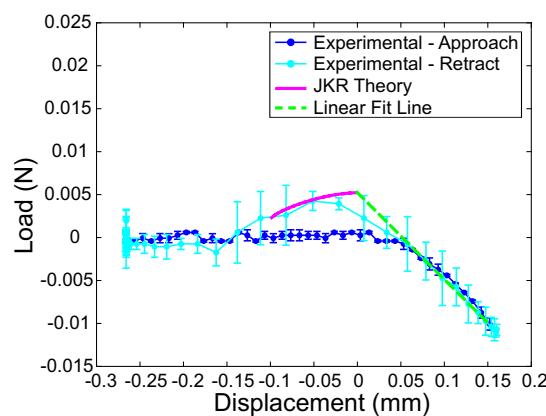
Although no measurable tensile forces were observed during the down-stroke (approach) test phase for the micro-patterned PDMS experimental geometry, the authors wanted to provide an upper limit for what the work of adhesion (w_{adh}) for this case may be. By using the JKR formulation of the contact response (Equations 12 and 13) and the same modified-Shull correction factors, the authors varied the work of adhesion (w_{adh}) variable and compared the resulting theoretical curves to the experimental load-displacement data. Figure 10 illustrates the theoretical curve using the JKR contact equations and the modified-Shull correction factors with a work of adhesion (w_{adh}) equal to $7.2 \times 10^{-7} \text{ mJ/mm}^2$ ($7.2 \times 10^{-4} \text{ J/m}^2$). This analysis indicates that the work of adhesion (w_{adh}) for the micro-patterned PDMS experimental contact geometry is less than $7.2 \times 10^{-7} \text{ mJ/mm}^2$ ($7.2 \times 10^{-4} \text{ J/m}^2$).

3.3.2 Estimating the Work of Separation

For the case of an RCE, it is also critical to analyze the up-stroke (retraction) test phase as an RCE tread will be coming in and out of contact with biological tissue as it moves. As observed in Figure 11, a measurable adhesion response during retraction is observed for


Figure 10: The experimental load and displacement is compared to the theoretical load-displacement prediction using the JKR formulation for the contact response and the modified-Shull correction factors. A work of adhesion equal to $7.2 \times 10^{-7} \text{ mJ/mm}^2$ ($7.2 \times 10^{-4} \text{ J/m}^2$) was used in the calculations, indicating that the work of adhesion for this experimental case is less than $7.2 \times 10^{-7} \text{ mJ/mm}^2$ ($7.2 \times 10^{-4} \text{ J/m}^2$). For clarity, 19 data points have been suppressed between each visible data point shown in this figure. The apparent steps in the data are due to the load cell resolution.

both experimental contact geometries. A similar data analysis procedure, as was described for the down-stroke (approach) test phase (Section 3.3.1), was done to estimate the work of separation for the smooth and micro-patterned PDMS experimental cases.


Due to camera memory and experimental limitations the contact radius was not measured during the retraction test phase (further explanation can be found in the supporting information). Thus, the authors calculated theoretical JKR adhesion curves using a range of work of separation (w_{sep}) values and a linearly spaced contact radius vector ranging from the maximum contact radius measured during the down-stroke test phase to zero. The theoretical load-displacement curves were compared to the experimental data and the estimated work of separation (w_{sep}) value was chosen based on which theoretical curve visually matched the experimental data best.

The theoretical load-displacement curves and experimental data are compared for both the smooth and micro-patterned PDMS substrates in Figure 11. In addition to the theoretical curve (magenta line) and experimental data (blue and cyan markers and error bars), a linear fit line (green line) is shown in both plots in Figure 11. This line was fit from the first

12 experimental data points in the retraction curve. The linear fit line intersects with the
JKR theoretical curve at the point where the theoretical curve should begin to follow the
experimental data. Upon retraction of the soft probe, the contact radius remains constant
(thus producing a linear load-displacement response in the case of an elastic material) until
the energy release rate reaches the critical value - work of separation (w_{sep}). Once this occurs,
the contacting materials begin to separate and the contact radius decreases. Therefore,
because the authors used a linearly spaced vector for the contact radius when determining
the theoretical adhesion response, the experimental data is not expected to follow the entire
JKR predicted curve. Only the portion of the the JKR curve which is expected to follow
the experimental data is shown in Figure 11. A summary of the work of adhesion (w_{adh})
and work of separation (w_{sep}) values for both experimental contact geometries are listed in
Table 3.

(a)

(b)

Figure 11: The retraction test phase for both the smooth and micro-patterned PDMS experimental contact geometries were analyzed to extract the work of separation values. JKR theory was used to compare the theoretical response (magenta curves) to the experimental response (cyan curves). The linear fit line (green curve) intersects with the JKR theoretical curve at the point where the the theoretical curve begins to approximate the experimental data.

Table 3: Estimated work of adhesion and work of separation values for both experimental geometries.

Contact Geometry	Work of Adhesion, w_{adh} mJ/mm ² (J/m ²)	Work of Separation, w_{sep} mJ/mm ² (J/m ²)
Smooth	4.7×10^{-5} (0.047)	3.0×10^{-4} (0.30)
Micro-Patterned	$< 7.2 \times 10^{-7}$ (7.2×10^{-4})	8.0×10^{-5} (0.080)

4 Summary and Conclusion

In this work, the authors have presented experimental and data analysis methods for characterizing the contact and adhesive response between a soft synthetic tissue and a smooth or micro-patterned PDMS substrate. Correction factors for both experimental contact geometries (Tables 1 and 2) were defined using a finite element model and mathematical procedures presented by Shull.^{6,38} Additionally, the authors observed that the specific micro-pattern geometry used for experimental testing significantly decreases the attractive response between the two substrates. For the application case of RCEs, this is an optimal response. A micro-pattern geometry which maximizes traction and minimizes adhesion allows for optimal mobility. Maximizing traction ensures the robot is advancing, rather than slipping, within the GI tract while minimizing adhesion reduces stress on the wheel driving motors and minimizes potential tissue damage.^{29,35–37}

To further validate the work of adhesion (w_{adh}) and work of separation (w_{sep}) values presented in this paper, the authors have provided expected upper and lower bounds for both experimental contact geometry cases. For the case of the contact between the synthetic tissue and the smooth PDMS (Case 1), the authors would expect the work of adhesion (w_{adh}) and separation (w_{sep}) to have the following relationship:

$$w_{adh} \approx \gamma_{PDMS} + \gamma_{synthetic} - \gamma_{PDMS,synthetic} < w_{sep} \quad (14)$$

where γ refers to the surface energy of each material separately (γ_{PDMS} , $\gamma_{synthetic}$) or in

1
2
3 contact with one another ($\gamma_{PDMS, synthetic}$). The relationship between the surface energy
4 expression and the work of adhesion (w_{adh}) is a well known relationship derived by Dupree.⁶
5 Further, due to the phenomenon of adhesion hysteresis⁶ the work of separation should be
6 greater than the work of adhesion. In the literature, the authors found values for the surface
7 energy of PDMS to be approximately 23 mJ/m² and for a plasticized PVC material to
8 be approximately 35 mJ/m².⁴⁰ No values were found for the surface energy of this specific
9 contact pair, PDMS to plasticised PVC material. If this term is neglected, a maximum upper
10 bound value can be calculated as the sum of the two individual surface energies. This upper
11 bound is equal to 58 mJ/m² which indeed is greater than 45 mJ/m² and less than 300 mJ/m²,
12 the work of adhesion (w_{adh}) and work of separation (w_{sep}) reported for the contact between
13 the synthetic tissue and smooth PDMS in this paper, respectively.
14
15

16 For the case of the contact between the synthetic tissue and the micro-patterned PDMS
17 (Case 2), one may expect that the work of adhesion (w_{adh}) and work of separation (w_{sep}) could
18 be directly scaled with the actual contact area fraction of the micro-patterned substrate. The
19 micro-pattern geometry has cylindrical pillars which are 140 μ m in diameter, 70 μ m in height
20 and equally spaced center-to-center by 256 μ m. Thus, the area fraction for actual contact
21 area (area of the tops of the pillars) can be expressed by the following:
22
23
24

$$f_{area} = \frac{\text{pillar area within hex unit}}{\text{hex unit area}} = \frac{3\pi r_p^2}{3a_{hex}^2} = 0.23 \quad (15)$$

25 where r_p is the radius of a pillar and a_{hex} is the center-to-center spacing between pillars in
26 a hexagonal packing arrangement. Thus, one would expect the work of adhesion (w_{adh}) and
27 work of separation (w_{sep}) for the micro-patterned cases to follow the expressions below:
28
29
30

$$w_{adh, pillar} \approx f_{area} w_{adh, smooth} = 10 \text{ mJ/m}^2 \quad (16)$$

$$w_{sep, pillar} \approx f_{area} w_{sep, smooth} = 70 \text{ mJ/m}^2 \quad (17)$$

1
2
3 These relationships assume that the actual contact area is the only factor affecting the
4 work of adhesion (w_{adh}) or work of separation (w_{sep}). This may be a valid assumption for the
5 case of the work of separation (w_{sep}) as the value estimated from Equation 17 (70 mJ/m^2)
6 is similar to that reported by the authors from experimental testing (80 mJ/m^2). However,
7 even the upper bound of the work of adhesion (w_{adh}) reported by the authors from the
8 experimental work (0.72 mJ/m^2) is much less than the estimated value from Equation 16
9 (10 mJ/m^2). This suggests that the actual contact area may not be the only mechanism
10 affecting the work of adhesion (w_{adh}) for the micro-patterned substrate. As mentioned in
11 Section 3.3.1.2, the authors speculate that the physical separation of the contact sites on
12 the micro-patterned PDMS substrate may also contribute to further reducing the work of
13 adhesion (w_{adh}). Due to the presence of the micro-patterned structure, the system behaves
14 more compliant due to the penetration of the synthetic tissue substrate between the pillars.
15 This speculation is further supported by the interesting behavior of the compliance correction
16 factor for the micro-patterned PDMS as mentioned in Section 3.2. Studying the specifics
17 governing how the micro-pattern geometry affects the contact response was not within the
18 scope of this paper. However, this work is ongoing and the authors plan to report how the
19 pillar geometry affects the adhesion response in the future.
20
21

22 The results of this work are critical for further investigation of the adhesion response
23 between a smooth compliant substrate and a stiff pillared surface, an area of research which
24 has been explored far less than that for compliant pillars contacting a smooth, rigid surface.
25 The experimental and data analysis procedures presented here can assist researchers and
26 practitioners from a variety of fields and can be applied to many applications.
27
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Acknowledgement

55 The authors would like to thank the National Science Foundation (NSF) for funding this
56 work through grants CCMI 1235532 and CCMI 1636203. Additionally, Madalyn Kern is
57
58
59
60

1
2
3 a Graduate Research Fellow through the NSF. Yuan Qi and Dr. Rong Long acknowledge
4
5 start-up support from the University of Colorado at Boulder.
6
7
8
9

10 Supporting Information Available 11

12 This material is available free of charge via the Internet at <http://pubs.acs.org/>.
13
14

15 References 16

17
18
19
20
21 (1) Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the
22 adhesion of particles. *Journal of Colloid and interface science* **1975**, *53*, 314–326.
23
24
25 (2) Johnson, K. L.; Kendall, K.; Roberts, A. D. Surface Energy and the Contact of Elas-
26 tic Solids. *Proceedings of the Royal Society of London. A. Mathematical and Physical*
27
28 Sciences **1971**, *324*, 301–313.
29
30
31
32 (3) Fuller, K.; Tabor, D. The effect of surface roughness on the adhesion of elastic solids.
33
34 Proceedings of the Royal Society of London **1975**, *345*, 327–342.
35
36
37 (4) Tabor, D. International Conference on Colloids and Surfaces: Surface forces and surface
38 interactions. *Journal of Colloid and Interface Science* **1977**, *58*, 2–13.
39
40
41
42 (5) Barquins, M.; Maugis, D. Tackiness of Elastomers. *The Journal of Adhesion* **1981**, *13*,
43
44 53–65.
45
46
47 (6) Shull, K. R. Contact mechanics and the adhesion of soft solids. *Materials Science and*
48
49 *Engineering: R: Reports* **2002**, *36*, 1–45.
50
51
52 (7) Glassmaker, N. J.; Jagota, A.; Hui, C.-Y.; Kim, J. Design of biomimetic fibrillar inter-
53 faces: 1. Making contact. *Journal of The Royal Society Interface* **2004**, *1*, 23–33.
54
55
56
57
58
59
60

1
2
3 (8) Hui, C.-Y.; Glassmaker, N. J.; Tang, T.; Jagota, A. Design of biomimetic fibrillar
4 interfaces: 2. Mechanics of enhanced adhesion. *Journal of The Royal Society Interface*
5 **2004**, *1*, 35–48.
6
7
8
9
10 (9) Crosby, A. J.; Hageman, M.; Duncan, A. Controlling Polymer Adhesion with “Pan-
11 cakes”. *Langmuir* **2005**, *21*, 11738–11743.
12
13
14 (10) Tang, T.; Hui, C.-Y.; Glassmaker, N. J. Can a fibrillar interface be stronger and tougher
15 than a non-fibrillar one? *Journal of The Royal Society Interface* **2005**, *2*, 505–516.
16
17
18
19 (11) Greiner, C.; del Campo, A.; Arzt, E. Adhesion of Bioinspired Micropatterned Surfaces:
20 Effects of Pillar Radius, Aspect Ratio, and Preload. *Langmuir* **2007**, *23*, 3495–3502.
21
22
23 (12) Long, R.; Hui, C.-Y.; Kim, S.; Sitti, M. Modeling the soft backing layer thickness effect
24 on adhesion of elastic microfiber arrays. *Journal of Applied Physics* **2008**, *104*, 044301.
25
26
27 (13) Vajpayee, S.; Long, R.; Shen, L.; Jagota, A.; Hui, C.-Y. Effect of rate on adhesion
28 and static friction of a film-terminated fibrillar interface. *Langmuir: the ACS journal*
29 of surfaces and colloids **2009**, *25*, 2765–2771.
30
31
32 (14) Kamperman, M.; Kroner, E.; del Campo, A.; McMeeking, R. M.; Arzt, E. Functional
33 Adhesive Surfaces with "Gecko" Effect: The Concept of Contact Splitting. *Advanced*
34 *Engineering Materials* **2010**, *12*, 335–348.
35
36
37 (15) Vajpayee, S.; Jagota, A.; Hui, C.-Y. Adhesion of a Fibrillar Interface on Wet and Rough
38 Surfaces. *The Journal of Adhesion* **2010**, *86*, 39–61.
39
40
41 (16) Shahsavan, H.; Zhao, B. Conformal Adhesion Enhancement on Biomimetic Microstruc-
42 tured Surfaces. *Langmuir* **2011**, *27*, 7732–7742.
43
44
45 (17) Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.;
46 Fearing, R.; Full, R. J. Adhesive force of a single gecko foot-hair. *Nature* **2000**, *405*,
47 681–685.
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 (18) Autumn, K.; Sitti, M.; Liang, Y. A.; Peattie, A. M.; Hansen, W. R.; Sponberg, S.;
4 Kenny, T. W.; Fearing, R.; Israelachvili, J. N.; Full, R. J. Evidence for van der Waals
5 adhesion in gecko setae. *Proceedings of the National Academy of Sciences of the United*
6 *States of America* **2002**, *99*, 12252–12256.

7
8 (19) Arzt, E.; Gorb, S.; Spolenak, R. From micro to nano contacts in biological attachment
9 devices. *Proceedings of the National Academy of Sciences* **2003**, *100*, 10603–10606.

10
11 (20) Gao, H.; Wang, X.; Yao, H.; Gorb, S.; Arzt, E. Mechanics of hierarchical adhesion
12 structures of geckos. *Mechanics of Materials* **2005**, *37*, 275–285.

13
14 (21) Shen, L.; Hui, C.-Y.; Jagota, A. A two-dimensional model for enhanced adhesion of
15 film-terminated fibrillar interfaces by crack trapping. *Journal of Applied Physics* **2008**,
16 *104*, 123506.

17
18 (22) Liu, J.; Hui, C.-Y.; Jagota, A. Effect of fibril arrangement on crack trapping in a film-
19 terminated fibrillar interface. *Journal of Polymer Science Part B: Polymer Physics*
20 **2009**, *47*, 2368–2384.

21
22 (23) Persson, B. N. J.; Tosatti, E. The effect of surface roughness on the adhesion of elastic
23 solids. *The Journal of Chemical Physics* **2001**, *115*, 5597–5610.

24
25 (24) Martina, D.; Creton, C.; Damman, P.; Jeusette, M.; Lindner, A. Adhesion of soft
26 viscoelastic adhesives on periodic rough surfaces. *Soft Matter* **2012**, *8*, 5350.

27
28 (25) Menga, N.; Afferrante, L.; Carbone, G. Adhesive and adhesiveless contact mechanics
29 of elastic layers on slightly wavy rigid substrates. *International Journal of Solids and*
30 *Structures* **2016**, *88–89*, 101–109.

31
32 (26) Degrandi-Contraires, É.; Beaumont, A.; Restagno, F.; Weil, R.; Poulard, C.; Léger, L.
33 Cassie-Wenzel-like transition in patterned soft elastomer adhesive contacts. *EPL (Euro-
34 physics Letters)* **2013**, *101*, 14001.

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

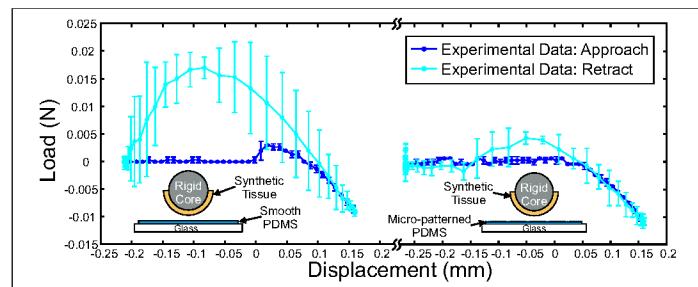
(27) Dies, L.; Restagno, F.; Weil, R.; Léger, L.; Poulard, C. Role of adhesion between asperities in the formation of elastic solid/solid contacts. *The European Physical Journal E* **2015**, *38*, 130.

(28) Sliker, L. J.; Wang, X.; Schoen, J. A.; Rentschler, M. E. Micropatterned Treads for In Vivo Robotic Mobility. *Journal of Medical Devices* **2010**, *4*, 041006–1–041006–8.

(29) Sliker, L. J.; Kern, M. D.; Schoen, J. A.; Rentschler, M. E. Surgical evaluation of a novel tethered robotic capsule endoscope using micro-patterned treads. *Surgical Endoscopy* **2012**, *26*, 2862–2869.

(30) Cosentino, F.; Tumino, E.; Passoni, G. R.; Morandi, E.; Capria, A. Functional evaluation of the Endotics System, a new disposable self-propelled robotic colonoscope: in vitro tests and clinical trial. *The International Journal of Artificial Organs* **2009**, *32*, 517–527.

(31) Buselli, E.; Pensabene, V.; Castrataro, P.; Valdastri, P.; Menciassi, A.; Dario, P. Evaluation of friction enhancement through soft polymer micro-patterns in active capsule endoscopy. *Measurement Science & Technology* **2010**, *21*.


(32) Ciuti, G.; Valdastri, P.; Menciassi, A.; Dario, P. Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. *Robotica* **2010**, *28*, 199–207.

(33) Kwon, J.; Cheung, E.; Park, S.; Sitti, M. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces. *Biomedical Materials* **2006**, *1*, 216.

(34) Sliker, L.; Rentschler, M. The Design and Characterization of a Testing Platform for Quantitative Evaluation of Tread Performance on Multiple Biological Substrates. *IEEE Transactions on Biomedical Engineering* **2012**, *59*, 2524–2530.

1
2
3 (35) Sliker, L. J.; Kern, M. D.; Rentschler, M. E. An Automated Traction Measure-
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(35) Sliker, L. J.; Kern, M. D.; Rentschler, M. E. An Automated Traction Measure-
ment Platform and Empirical Model for Evaluation of Rolling Micropatterned Wheels.
IEEE/ASME Transactions on Mechatronics **2015**, *20*, 1854–1862.

(36) Terry, B. S.; Passernig, A. C.; Hill, M. L.; Schoen, J. A.; Rentschler, M. E. Small intes-
tine mucosal adhesivity to in vivo capsule robot materials. *Journal of the Mechanical
Behavior of Biomedical Materials* **2012**, *15*, 24–32.

(37) Kern, M. D.; Ortega Alcaide, J.; Rentschler, M. E. Soft material adhesion characteriza-
tion for in vivo locomotion of robotic capsule endoscopes: Experimental and modeling
results. *Journal of the Mechanical Behavior of Biomedical Materials* **2014**, *39*, 257–269.

(38) Shull, K. R.; Ahn, D.; Mowery, C. L. Finite-Size Corrections to the JKR Technique for
Measuring Adhesion: Soft Spherical Caps Adhering to Flat, Rigid Surfaces.
Langmuir **1997**, *13*, 1799–1804.

(39) Carrillo, F.; Gupta, S.; Balooch, M.; Marshall, S. J.; Marshall, G. W.; Pruitt, L.; Put-
tlitz, C. M. Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking,
work of adhesion, and fluid environment on elastic modulus. *Journal of Materials Re-
search* **2005**, *20*, 2820–2830.

(40) Hild, F. Surface Energy of Plastics. 2009; [http://www.tstar.com/blog/bid/33845/
surface-energy-of-plastics](http://www.tstar.com/blog/bid/33845/surface-energy-of-plastics).

Graphical TOC Entry

