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Abstract

We prove the equivalence of two different Hessian evaluation
algorithms in AD. The first is the Edge Pushing algorithm
of Gower and Mello, which may be viewed as a second
order Reverse mode algorithm for computing the Hessian.
In earlier work, we have derived the Edge Pushing algorithm
by exploiting a Reverse mode invariant based on the concept
of live variables in compiler theory. The second algorithm
is based on eliminating vertices in a computational graph of
the gradient, in which intermediate variables are successively
eliminated from the graph, and the weights of the edges
are updated suitably. We prove that if the vertices are
eliminated in a reverse topological order while preserving
symmetry in the computational graph of the gradient, then
the Vertex Elimination algorithm and the Edge Pushing
algorithm perform identical computations. In this sense, the
two algorithms are equivalent. This insight that unifies two
seemingly disparate approaches to Hessian computations
could lead to improved algorithms and implementations for
computing Hessians.

1 Introduction

Gower and Mello [1] have recently proposed an Edge
Pushing algorithm to compute Hessians, which may be
viewed as an algorithm that implements the second or-
der Reverse mode in Algorithmic Differentiation. Wang,
Gebremedhin and Pothen [2] have revisited this algo-
rithm and offered a simpler derivation based on the
notion of live variables from data flow analysis. Here,
we offer a third interpretation of the new algorithm, as
a symmetry-preserving vertex-elimination process on a
gradient graph to compute the Hessian.We show that
a major benefit of the Edge Pushing algorithm is that
unlike a traditional vertex-elimination approach, it does
not require the full gradient graph to be explicitly
formed. With this new interpretation, we open the
door to considering other elimination orderings in the
vertex-elimination approach without explicitly forming
the gradient graph.
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The Live Variables Algorithm for Hessians (LivarH)
has been implemented paying careful attention to issues
of efficiency and correctness, and statement-level preac-
cumulation has been incorporated into it to further im-
prove performance [2]. The time complexity of the al-
gorithm is bounded by O(l · s), where l is the number of
elementary functions in the code list of the function, and
s is the maximum number of live variables during the
objective function evaluation. (Live variables will be de-
fined in Section 4). The new algorithm can speed up the
currently used compression-based methods that employ
graph coloring for computing Hessians by factors of ten
or more on a collection of test cases [2]. It also requires
memory sizes smaller by a factor of two or three rel-
ative to the latter algorithms. The compression-based
methods evaluate a Hessian-vector product in a single
run, and the entire Hessian is recovered by combining
the results of multiple Hessian-vector products. Hence
these methods lack the ability to fully exploit the sym-
metry in the Hessian matrix. The new algorithm, in
contrast, is able to exploit the symmetry and the spar-
sity in the Hessian during its evaluation, and this is a
major advantage of the new approach.

2 Background on AD

2.1 Notations and Concepts of AD Given an ob-
jective function y = f(x),x ∈ Rn,y ∈ Rm implemented
as a program, the execution of the objective function
can be decomposed as:

for k = 1, · · · , l :
vk = ϕk(vi){vi:vi≺vk}.

See Fig 1 (a) for an example. In the decomposition, each
vk = ϕk(vi){vi:vi≺vk} represents an elemental function
(we will also call it a single assignment code (SAC)).
In each step, the value of vk results from evaluating
the elemental function ϕk, which takes all the variables
{vi : vi ≺ vk} as operands. Here vi ≺ vk denotes that
variable vk directly depends on variable vi. We read vi
precedes vk, or vi is a predecessor of vk. We can also
write vk � vi to denote the same relationship, and read
vk succeeds vi, or that vk is a successor of vi. The set
{vi : vi ≺ vk} represents all precedents of vk. Following
the convention in [3], we assume {v1−n, · · · , v0} are the



n independent variables x, {vl−m+1, · · · , vl} are the m
dependent variables y, and the remaining variables vj ,
where 1 ≤ j ≤ l −m, are intermediate variables. Since
we are interested in evaluating Hessian matrices in this
paper, we assume that the objective function f is a
scalar function, and hence m = 1. Also, l denotes the
total number of SACs, which represents the complexity
of the objective function. The objective function f can
be computed by evaluating the SAC sequence.

The SAC sequence defines a computational graph
G = (V,E) of the objective function. The vertices
V are the independent variables, dependent variables
and intermediate variables. The edges E represent
dependency relations between variables, i.e., an edge
(vi, vk) ∈ E if and only if vi ≺ vk. See Fig 1(b) for
an example. In the graph G, a variable is a dependent
variable if and only if it has out-degree zero, a variable
is an independent variable if and only if it has in-
degree zero, and all other variables are intermediate
variables (v1, · · · , vl−m). The computational graph
contains all the information about the SAC sequence.
Since most elemental functions are unary or binary, the
computational graph often has the property that the in-
degree of a vertex is at most two. In the computational
graph, we define vk as a common successor of vi and vj
if vi ≺ vk and vj ≺ vk. In this case vi is a neighbor of
vj , and vice versa.

2.2 Vertex Elimination For Jacobian Given a
computational graph G = (V,E), we can augment each
edge (vi, vk) with a weight c(i, k) that represents the
local partial derivative c(i, k) = ∂vk

∂vi
, when vi ≺ vk.

(We can assume all other edges c(i, k) have weight
0 when vi ⊀ vk, and we use the notation c(i, k)
instead of c(vi, vk) for simplicity.) Then the Jacobian
of the objective function can be computed via a vertex

elimination procedure, studied by Griewank and Reese
and Naumann, and described in Algorithm 1 [4, 5].
Fig. 1 illustrates this process for an example function
and its computational graph.

The vertex elimination procedure has several prop-
erties stated as follows.

• The rule for eliminating a vertex vj is to add
an edge (vi, vk), for all vi ≺ vj and vj ≺ vk,
with weight c(i, j) · c(j, k). If the edge (vi, vk)
already exists, we add this weight to the existing
edge (vi, vk). So the number of updates of edge
weights for eliminating a vertex vj is its current
Markowitz degree, the product of its indegree and
its outdegree.

• The order in which vertices are eliminated does not
affect the final result, and we can eliminate the in-

Algorithm 1 Vertex elimination for computing the
Jacobian

Input: The computational graph G = (V,E) aug-
mented with local partial derivatives c(i, k) = ∂vk

∂vi
as edge weights

1: while G = (V,E) still contains intermediate vertex
do

2: Pick an intermediate vertex vj
3: for all vi : vi ≺ vj do

4: for all vk : vj ≺ vk do

5: c(i, k)+ = c(i, j) · c(j, k)
6: end for

7: end for

8: Remove vj from G
9: end while

Output: The remaining edges in G represent the Ja-
cobian of the objective function f .

termediate variables in any order. Figure 1 (c) and
(d) gives an example where we first eliminate v2
and then v1 on the computational graph in Figure 1
(b). Eliminating v1 and then v2 will give the same
result. However, the number of operations and the
intermediate storage needed to compute the Jaco-
bian will depend on the elimination ordering. Find-
ing an optimal elimination order that minimizes the
number of operations is an NP-complete problem
[6].

• Now we consider the closure of the ≺ relation, ≺∗,
which relates a vertex to all of its ancestors in
the computational graph (i.e., vertices related to
it by a sequence of ≺ relations). A path in the
computational graph joins each ancestor to a vertex
vi, and we define the weight of this path as the
product of all the weights of the edges on this path.
Then we have

∂vk
∂vi

=
∑

P |path from i to k

w(P ).

The correctness of the elimination algorithm ex-
ploits this fact.

2.3 First Order Non-Incremental Reverse

Mode Though the Vertex Elimination algorithm on
the computational graph can compute the gradient of
the objective function, there are some difficulties in
practically implementing this algorithm. The main is-
sue is that to eliminate a vertex vj , we need to know
all predecessors and successors of vj , which requires the
computational graph to be explicitly generated from the



y = pow(pow(x*x, 2.0), x); (x > 0)

v0 <<= x

v1 = ϕ1(v0) = v0 ∗ v0

v2 = ϕ2(v1) = pow(v1, 2.0)

v3 = ϕ3(v2, v0) = pow(v2, v0)

v3 >>= y

(a) SAC decomposition
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(b) Augmented computational graph
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(c) After eliminating vertex v2

v3

v0

c(0, 3) = ∂v3
∂v0

= log v2 · v3
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= 4 · log v0 · v
4v0
0

+4 · v4v00

(d) After eliminating vertex v1

Figure 1: SAC decomposition and an illustration of vertex elimination on the corresponding computational graph.

SAC sequence.
Two major practical modes of AD which evaluate

the first order derivatives are known as the Forward
mode and the Reverse mode. They can be viewed
as two extreme orderings for applying the chain rule
on composite functions defined by the SAC sequence.
The forward mode evaluates the derivatives in the
same order in which the SAC sequence is evaluated.
The reverse mode evaluates the derivatives in an order
opposite to one in which the SAC sequence is evaluated.
The reverse mode has a time complexity proportional to
the number of dependent variables and the complexity
of the objective function [7]. Hence for a scalar function,
the complexity of evaluating the gradient using reverse
mode is a constant times the complexity of the objective
function. The cost is that reverse mode requires a trace
of the SAC sequence (the values of the intermediate
variables needed to evaluate the derivatives) to be stored
so that a reverse sweep on the SAC sequence is possible.

There are two further variations of the first order re-
verse mode: incremental and non-incremental versions.
They are mathematically equivalent but differ in the
order in which they compute the derivative values.

Algorithm 2 describes the first order incremental
reverse mode. The elemental derivatives vi ≡ ∂f

∂vi
are

called the adjoints. The SACs vk = ϕk(vi){vi:vi≺vk} are

processed in the order k = l, l−1, · · · , 1 (reverse order).
In each step when processing vk = ϕk(vi){vi:vi≺vk}, the
algorithm updates the adjoints of all predecessors of vk,
i.e, vi where vi ≺ vk. The output of the algorithm is
the gradient of the objective function, vi = ∂f

∂vi
, 1 −

n ≤ i ≤ 0. The algorithm is the incremental version
because each update just adds one term to a partially
computed value of the adjoint. The incremental version
is practically preferred because all predecessors of vk
can be obtained using only local information about the
SAC sequence (it is directly available in the processed
SAC vk = ϕk(vi){vi:vi≺vk}); hence it can be efficiently
implemented.

Algorithm 2 First order incremental reverse mode

Input: The objective function f as a SAC sequence
vk = ϕk(vi){vi:vi≺vk}

1: vl = 1, vl−1 = · · · = v1−n = 0
2: for k = l − 1, l − 2, · · · , 1 do

3: for all vi ≺ vk do

4: vi+ = ∂vk
∂vi

vk
5: end for

6: end for

Output: The gradient ∇f = {v1−n, · · · , v0}



Algorithm 3 First order non-incremental reverse mode

Input: The objective function f as a SAC sequence
vk = ϕk(vi){vi:vi≺vk}

1: vl = 1
2: for i = l − 1, l − 2, · · · , 1− n do

3: vi =
∑

vk�vi

∂vk

∂vi
vk

4: end for

Output: The gradient ∇f = {v1−n, · · · , v0}

For the first order nonincremental reverse mode
shown in Algorithm 3, in each step, the adjoint vi is
determined by summing the contributions from all its
successors vk, vi ≺ vk. So in each step we need to know
all successors of vi. A disadvantage of the nonincremen-
tal mode is that it requires global information about the
SAC sequence to determine all successors of vi. How-
ever, the nonincremental reverse mode is theoretically
important because it can be used to generate a compu-
tational graph of the gradient as we discuss in the next
Section.

3 Evaluating Hessian via Vertex Elimination

3.1 Computational Graph of Gradient We begin
by augmenting the computational graph of a scalar
objective function into a computational graph of its
gradient. The construction views the assignment of
each adjoint value vi in the first order non-incremental
reverse mode as an “elemental” function, i.e, a single
assignment code for vi. Thus vi =

∑

vk�vi

∂vk

∂vi
vk is viewed

as a function of all vk where vk is a successor of vi and
all vj where vj is a neighbor of vi.

Then we append the non-incremental reverse mode
for computing the gradient after the SAC sequence of
the objective function, as shown in Figure 3. Hence
symbolically we have an SAC sequence which evaluates
the objective function and its gradient, and correspond-
ingly we can associate a computational graph with it,
that we will denote the computational graph of the gra-
dient, Gg

1.
Figure 2(a) gives an example of the computational

graph of the gradient for the function given by Fig-
ure 1(a). The vertices of the graph Gg consist of two
disjoint yet symmetric sets V and V . The vertex set V

1In [3], the graph Gg is called Hessian graph since the Hessian
can be computed using it. Here we use the term computational

graph of the gradient to be consistent with the definition of
the computational graph G of the objective function. First
order algorithms working on G give the first order derivatives
of the objective function, i.e, the gradient. Similarly first order
algorithms working on Gg give the first order derivatives of the
gradient, i.e, the Hessian.

represents the variables involved in the function evalu-
ation v1−n, · · · , vl, and the vertex set V represents the
adjoints for each variable in the non-incremental reverse
mode v1−n, · · · , vl. The vertices vi in V are also called
primal vertices and the vertices vi in V are also called
dual/adjoint vertices. In the graph Gg, v1−n, · · · , v0 are
independent variables, and v1−n, · · · , v0 are dependent
variables.

The edges of Gg consist of three parts : EG, EG

and EC . We use different colors to represent different
kinds of edges in Fig. 2(a). The set EG is colored red,
EG is colored violet, and EC is colored green. The edge
weights are also annotated accordingly.

The set EG consists of edges of the form (vi, vk) ∈
EG ⇐⇒ vi ≺ vk, with weight c(i, k) = ∂vk

∂vi
. In

fact, (V,EG) is the computational graph of the objective
function embedded in the computational graph of the
gradient. The set EG consists of edges of the form
(vk, vi) ∈ EG ⇐⇒ vk ≺ vi ⇐⇒ vi ≺ vk. The
equivalence can be seen by taking partial derivatives of
vi w.r.t vk, which yields

c(k, i) =
∂

∂vk
[vi] =

∂

∂vk
[
∑

vj�vi

∂vj
∂vi

vj ] =
∂vk
∂vi

.

We can think of (V ,EG) as a symmetric image of
(V,EG) with the edge directions reversed and the edge
weights preserved. Finally the set EC consists of edges
of the form (vi, vj) ∈ EC ⇐⇒ ∃vk, s.t, vi ≺ vk, vj ≺

vk, with c(i, j) =
∑

vi≺vk,vj≺vk

∂2vk
∂vi∂vj

vk. These edges arise

when we compute a partial derivative of vj w.r.t vi,
which yields

c(i, j) =
∂

∂vi
[vj ] =

∂

∂vi
[
∑

vk�vj

∂vk
∂vj

vk]

=
∑

vi≺vk,vj≺vk

∂2vk
∂vi∂vj

vk.(3.1)

This part is symmetric, i.e., c(i, j) = c(j, i). Notice that
vk is a common successor of vi and vj . Also there is no
ordering relation between vi and vj , and it is possible
to have vi = vj .

3.2 Vertex Elimination for Hessian If we run the
Vertex Elimination algorithm on the graph Gg, the
result will be the first order derivative of the gradient,
which is the Hessian of the original objective function,

Hij =
∂vj

∂vi
= ∂2f

∂vi∂vj
. Figure 2(b-d) gives an example of

one possible vertex elimination sequence on Figure 2(a).
The elimination order is {v3, v3, v2, v2, v1, v1}. Notice
that since vertex elimination is order independent,
any other elimination order will also give the same



v1 = v0 ∗ v0 c(0, 1) = c(1, 0) = 2 · v0
v2 = pow(v1, 2.0) c(1, 2) = c(2, 1) = 2 · v1
v3 = pow(v2, v0) c(0, 3) = c(3, 0) = log(v2) · v3
v3 = 1.0 c(2, 3) = c(3, 2) = v3

v2
· v0

v2 = ∂v3

∂v2

v3 c(0, 0) = log2(v2)v3 + 4v1v0
v3
v2

v1 = ∂v2

∂v1

v2 c(1, 1) = 2v3
v2
v0

v0 = ∂v3

∂v0

v3 +
∂v1

∂v0

v1 c(2, 2) = v3

v2

2

v0(v0 − 1)

c(0, 2) = c(2, 0) = v3
v2

(

1 + log(v2) · v0)

v3

v2

v1

v0

c(0, 3) c(2, 1)

c(3, 2)

c(1, 0)

v3

v2

v1

v0

c(0, 3) c(1, 2)

c(2, 3)

c(0, 1)

c(0, 0) c(1, 1)c(2, 2)

c(0, 2)

c(2, 0)

(a) Computational graph of the gradient

v2

v1

v0

c(2, 1)

c(1, 0)

v2

v1

v0

c(1, 2)

c(0, 1)

c(0, 0) c(1, 1)c(2, 2)

c(0, 2)

c(2, 0)

(b) After eliminating v3 and then v3

v1

v0 c(1, 0)

v1

v0 c(0, 1)

c(0, 0)
c(1, 1)
+c(1, 2)c(2, 2)c(2, 1)

c(0, 2)c(2, 1)

c(1, 2)c(2, 0)

(c) After eliminating v2 and then v2

v0

v0

c(0, 0) +c(0, 2)c(2, 1)c(1, 0)
+c(0, 1)c(1, 2)c(2, 0)
+c(0, 1)

[

c(1, 1)
+c(1, 2)c(2, 2)c(2, 1)

]

c(1, 0)

(d) After eliminating v1 and then v1

Figure 2: Vertex elimination on the computational graph of the gradient of Figure 1(a). From (a) to (b), vertices
v3 and v3 are eliminated. As there are no outgoing edges for v3 and no incoming edges for v3, no edge will be
created. From (b) to (c), vertices v2 and v2 are eliminated. When eliminating v2, an edge c(1, 2) = c(1, 2)c(2, 2)
is created. Then when eliminating v2, we add c(1, 2)c(2, 2)c(2, 1) to c(1, 1). From (c) to (d), vertices v1 and v1
are eliminated. The final result is the second order derivative of f .



Input: Initial values of {v1−n, · · · , v0}
For k = 1, · · · , l

vk = ϕk(vj){vj :vj≺vk}

vl = 1
For i = l − 1, · · · , 1− n

vi =
∑

vk�vi

∂vk

∂vi
vk

Output: {v1−n, · · · , v0}

Figure 3: Augmented objective function fG

final Hessian, although the number of operations and
the intermediate storage needed could differ with the
ordering. Griewank and Walther have conjectured [3]
(Chapter 10) that the optimal elimination order on Gg

should preserve symmetry, i.e, a primal and its dual
vertex (vi, vi) should be eliminated one after another.
Some empirical evidence for the conjecture can be found
in Table 1 of [8].

As discussed earlier, to perform vertex elimination
on the computational graph of the gradient Gg, we
require this graph to be explicitly constructed. To do
this, we need to know not only all predecessors and
successors of every vertex vi, but also all neighbors of
every vertex vi. The need to know global information
on the SAC sequence impacts the efficiency of the
algorithm.

4 Evaluating Hessian via Edge Pushing

Algorithm 4 Non-incremental second order reverse
mode (Edge Pushing) algorithm

Input: The objective function f as a SAC sequence
vk = ϕk(vi){vi:vi≺vk}

1: Sl+1 = {vl}, hl+1(vl, vl) = 0,
vl = 1, vl−1 = · · · = v1−n = 0

2: for k = l, · · · , 1 do

3: Sk = Sk+1 \ {vk} ∪ {vi : vi ≺ vk}
4: for all vi ≺ vk do

5: vi = vi +
∂vk
∂vi

vk
6: end for

7: for all unordered pairs (vi, vj) over Sk do

8: hk(vi, vj) = hk+1(vi, vj) +
∂vk
∂vi

hk+1(vj , vk)

+∂vk
∂vj

hk+1(vi, vk) +
∂vk

∂vi

∂vk

∂vj
hk+1(vk, vk)

+ ∂2vk

∂vj∂vk
vk

9: end for

10: end for

Output: Hessian for f as ∂2f
∂vi∂vj

= h1(vi, vj)

The Edge Pushing (EP) algorithm of Gower and
Mello [1], may be viewed as a second order reverse
mode algorithm for the Hessian. In earlier work, we
have provided a simpler derivation of the algorithm
based on a data flow analysis (from compiler theory)
of the reverse mode of AD [2]. During the function
evaluation, a variable is live if it holds a value that will
be used in the future. In the reverse mode for computing
the derivatives of a scalar function, referring to the first-
order incremental reverse mode, Algorithm 2, the initial
live variable set consists of the dependent variable vl,
and the final live variable set is the set of independent
variables. We denote the set of live variables at the end
of step k by Sk. At the kth step, when an elemental
function vk = ϕk(vi){vi:vi≺vk} is processed, the set of
live variables is updated as

Sk = Sk+1 ∪ {vi : vi ≺ vk} \ {vk}.

We can also express the objective function as an
equivalent function defined in terms of only the live
variables at each step. Referring to Algorithm 2,
initially fl+1(Sl+1) = vl. At the k-th step, we treat
vk in fk+1 as a composite function by replacing it by
vk = ϕk(vi : vi ≺ vk), and thus obtain an equivalent
function defined in terms of the current live variables
fk(Sk). An invariant in the first order incremental
reverse mode is that the adjoints computed in each
step during the algorithm are exactly the first order
derivatives of the dependent variable w.r.t current live
variables in the step. Figure 4 shows the live variable
sets Sk and the equivalent functions fk(Sk) for the
example function in this paper.

The following proposition explicitly states how the
invariant can be extended to second order.

Proposition 4.1. In reverse mode, after processing

the SAC vk = ϕk(vi){vi:vi≺vk}, the intermediate results

we maintain are the first and second order derivatives

of the equivalent function fk(Sk).

The relation between the derivatives of the func-
tions fk(Sk) and fk+1(Sk+1) is determined by the sec-
ond order chain rule:

∂2fk(Sk)

∂vi∂vj
=

∂2fk+1(Sk+1)

∂vi∂vj
+

∂vk
∂vi

∂2fk+1(Sk+1)

∂vj∂vk
(4.2)

+
∂vk
∂vj

∂2fk+1(Sk+1)

∂vi∂vk
+

∂vk
∂vi

∂vk
∂vj

∂2fk+1(Sk+1)

∂2vk

+
∂2vk
∂vi∂vj

∂fk+1(Sk+1)

∂vk
.

The Edge Pushing algorithm is a transcript of
Eq (4.2), and is described in Algorithm 4. In the



algorithm, we use hk(vi, vj) to denote ∂2fk(Sk)
∂vi∂vj

. At

termination, the set of live variables S1 will be the set of
independent variables, and h1 will be the Hessian of the
objective function. Figure 4 is an example of how Edge
Pushing is performed on the objective function defined
in Figure 1(a). The complexity of the algorithm can
be shown to be O(l · s), where s is the maximum size
of all live variable sets during the algorithm [2]. The
complexity can be reduced by optimizing the algorithm
to exploit sparsity, and the details may be found in [2].

5 Equivalence between Vertex Elimination and

Edge Pushing

5.1 Parallel Edges on Computational Graph of

Gradient Before we can build the connection between
Vertex Elimination and Edge Pushing, we introduce
a finer definition of the computational graph of the
gradient. Previously we defined all edges in EC to be
(vi, vj) ∈ EC ⇐⇒ ∃vk, s.t, vi ≺ vk and vj ≺ vk, and

the weight c(i, j) =
∑

vi≺vk,vj≺vk

∂2vk
∂vi∂vj

vk. The weight

c(i, j) is the summation of ∂2vk

∂vi∂vj
vk over all common

successors vk of vi and vj .
Now we decompose each edge (vi, vj) into a set of

parallel edges, where each edge (vi, vj)
vk only carries the

weight ck(i, j) = ∂2vk

∂vi∂vj
vk of a single common successor

vk of vi and vj . For example, the edge c(0, 0) in Figure 2
becomes two edges c1(0, 0) and c3(0, 0). The summation
of ck(i, j) over all common successors vk will give the
final value of c(i, j). From now on we will only consider
the edges in EC in the form of ck(i, j). See Figure 5(a)
for an example. Notice that only edges in EC are
considered as parallel edges, and that edges in EG, EG

and EH (to be defined shortly) are all single edges.

5.2 Edge Pushing as Vertex Elimination We
will prove that the Edge Pushing algorithm does
the same computations as vertex elimination on the
graph Gg when vertices are eliminated in the order
{vl, vl, · · · , vk, vk, · · · , v1, v1}. As vertices are elimi-
nated, we add a set of edges on Gg denoted EH fol-
lowing two simple rules. The first rule is that newly
added edges are added only to EH . The second rule is
that when eliminate vk, we move all edges of the form
(vi, vj)

vk from EC to EH . See Figure 5(b, c, d) for an
example, in which edges in EH are drawn in black color.
Then we can prove the following lemma for the Vertex
Elimination algorithm on Gg with the elimination order
specified above.

Lemma 5.1. EH will only have edges of the type c(i, j).

Proof. We prove the result by induction. Initially EH

is empty, so the claim is true. To eliminate the primal
vertex vk, we do the following.

All edges in EG adjacent to vk are of the form
(vi, vk), because we are eliminating vertices in a reverse
topological order of G. The set of edges EG has no edges
incident on vk (having it as an endpoint). The set EC

has no edges incident on vk. Since we are following
a reverse topological order of G, all successors vu of
vk have been already eliminated. Hence every edge in
the form of (vk, vi)

vu originally in EC has been already
moved to EH before we reach vk. Combining these
three observations, when eliminating a vertex vk the
newly added edges are only of the type (vi, vj), where
(vi, vk) ∈ EG and (vk, vj) ∈ EH . When we move all
edges (vi, vj)

vk from EC to EH the claim continues to
hold.

Similarly, assume the claim is true before the elim-
ination of vk. Then to eliminate the dual vertex vk:
The set EG has no edge incident on vk. Edges in EG

incident on vk are of the form (vk, vj). The set EC

has no edge incident on vk. When eliminating vk the
newly added edges will only be of the type (vi, vj), where
(vi, vk) ∈ EH , and (vk, vj) ∈ EG. This completes the
proof.

Lemma 5.2. After eliminating vk and then vk, EH is

the Hessian of the equivalent function fk(Sk).

Proof. This is proved by showing that after eliminating
the vertex pair (vk, vk), the edges in EH exactly match
all nonzero entries in hk(Sk, Sk). Initially, EH is empty
and we have hl+1(vl, vl) = 0, which are in agreement.

Assume the claim is true before the elimination of
vk. Then consider the computation for eliminating vk.
The newly added edges will only be of the form (vi, vj),
where (vi, vk) ∈ EG and (vk, vj) ∈ EH . This means the
weights of edges in EH are updated as follows.

c′(i, j) = c(i, j) + c(i, k) · c(k, j)

= c(i, j) +
∂vk
∂vi

· c(k, j), j 6= k,

c′(i, k) = c(i, k) + c(i, k) · c(k, k)

= c(i, k) +
∂vk
∂vi

· c(k, k).

Next we move the edge ck
ij

from EC to EH . Hence we

have

c′′(i, j) = c′(i, j) + ck(i, j) = c′(i, j) +
∂2vk
∂vi∂vj

vk.

The computation done for eliminating vk creates new
edges only of the form (vi, vj), where (vi, vk) ∈ EH and
(vk, vj) ∈ EG.
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Figure 4: An illustration of the Edge Pushing algorithm. The live variable sets Sk, equivalent functions fk(Sk),
and the Hessians of equivalent functions hk(Sk, Sk) are listed. The live variables are also shown in dashed ellipses.

c′′′(i, j) = c′′(i, j) + c′(i, k) · c(k, j)

= c′′(i, j) +
∂vk
∂vj

· c′(i, k).

Combining these equations, we obtain

c′′′(i, j) = c(i, j) +
∂vk
∂vi

· c(k, j)

+
∂vk
∂vj

· c(i, k) +
∂vk
∂vi

∂vk
∂vj

· c(k, k) +
∂2vk
∂vi∂vj

vk.

Finally we compare the result with that from the Edge
Pushing algorithm. For the latter, we have

hk(vi, vj) = hk+1(vi, vj) +
∂vk
∂vi

hk+1(vj , vk)

+
∂vk
∂vj

hk+1(vi, vk) +
∂vk
∂vi

∂vk
∂vj

hk+1(vk, vk) +
∂2vk

∂vj∂vk
vk.

Comparing the last two displayed equations term by
term, we see that the computation in going from cij to
c′′′
ij

in the Vertex Elimination algorithm is exactly the

computation in going from hk+1 to hk.

Theorem 5.1. The Vertex Elimination algorithm on

the gradient graph Gg with a symmetry-preserving re-

verse topological ordering performs the same computa-

tion in each step as the Edge Pushing algorithm.

5.3 Discussion We have proved that the Edge Push-
ing algorithm can be interpreted as a symmetry-
preserving Vertex Elimination algorithm that eliminates
the primal vertices in reverse topological order and the
dual vertices in topological order. Then it is natural to
ask if Edge Pushing is an optimal form of Vertex Elim-
ination, that is, whether or not the number of updates
on edge weights is minimized. Unfortunately, it is not.

We can construct a counter-example to show that
the reverse topological order is not optimal when pre-
serving symmetry. In the example, the graph G has a
structure that each of its n independent variables passes
through h unary functions, and the results are merged
via a binary tree structure (binary functions). Figure 6
shows the case where n = 4 and h = 3. The opti-
mal symmetry-preserving elimination order in this ex-
ample should first eliminate the intermediate variables
on the unary chain, and then eliminate vertices of the
binary tree from leaf to root, which is the order given
by the smallest Markowitz degree. In this order, only
3 edge updates are needed for eliminating each pair of
vertices (vij , vij) on the unary chain. The reverse topo-
logical order first eliminates the binary tree from root to
leaf, and then eliminates the unary chain. In this order,
n(n + 1)/2 edge updates are needed to eliminate each
pair of vertices on the unary chain.

As discussed in Section 3.2, it has been conjectured
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Figure 5: Vertex elimination on the computational graph of gradient with parallel edges.

that the optimal elimination order preserves symme-
try [3]. From a practical perspective, preserving sym-
metry during vertex elimination can reduce the memory
requirement and number of updates by storing only half
of the graph.

Though it is not an optimal algorithm in theory, the
Edge Pushing algorithm is efficient in practice because it
can be easily implemented as a reverse sweep of the SAC
sequence that sequentially accesses the function trace.
The symmetry of the Hessian is fully preserved during
the evaluation. Another reason for its efficiency is that
an optimized incremental version of the Algorithm 4 can
exploit the sparsity in the elemental functions and the
Hessian, which leads to reduced time complexity. An
expression for this complexity is provided in [2].

Although the Edge Pushing and Vertex Elimina-

tion approaches are equivalent in the sense we have
proved, the Edge Pushing algorithm is capable of work-
ing on objective functions with high arithmetic com-
plexity, because it does not need to explicitly construct
the computational graph of the objective function nor
the computational graph of the gradient unlike Vertex
Elimination. For complex functions, where the func-
tion trace could exceed the memory or disk capacity,
the Edge Pushing algorithm can be incorporated with
check-pointing [9] to make the computation feasible.

6 Conclusion and Future Work

We showed that the Edge Pushing algorithm is equiv-
alent to a variant of the Vertex Elimination algorithm
that preserves symmetry and eliminates vertices in a
reverse topological order. Although the two algorithms
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Figure 6: A counter-example where reverse topological
order is not optimal when preserving symmetry. We
show only the computational graph G of the objective
function. The image part representing the gradient and
edges joining the two parts are omitted for simplicity.

are derived from different perspectives, their equivalence
suggests that there are essential relationships between
different AD algorithms evaluating the same derivative.
Understanding these relationships could give us insights
into how to improve current AD algorithms.

Beside vertex elimination, there are other elimina-
tion techniques, e.g, edge elimination and face elimina-
tion [5]. They can be viewed as a procedure for accu-
mulating the Jacobian on the computational graph and
can be put into a framework in which the Schur com-
plement of a triangular system is evaluated. The trian-
gular system is defined by the computational graph G
and the result gives the Jacobian matrix. Following this
paradigm, the Hessian evaluation can be considered as
computing the Schur complement of an augmented tri-
angular system defined by Gg, the computational graph
of the gradient. The work in this paper leads to insights
on this extended Schur complement model that could be
the scope of further study.

Another interesting future study considers that the
Edge Pushing algorithm is based on a second order
invariant in reverse mode AD considered in this paper,
and this invariant can be extended into any high order
derivatives by generalization. Thus we can derive high
order reverse mode algorithms by this methodology, and
we have done this in related work under submission. It
will be interesting to see if there are similar analogies
between the high order reverse mode and a form of
vertex elimination on a suitably defined graph.
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