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Abstract—The development of low complexity, high perfor-
mance spatial-multiplexing MIMO detectors continues to be an
important area of research capable of increasing the spectral
efficiency and capacity of wireless networks. The Markov Chain
Monte Carlo (MCMC) detector has shown promise as a high
performance method with low complexity growth. We present a
solution to the high SNR stalling problems of previous MCMC
detectors. Near-MAP performance is verified in simulation and in
real-world measurements on an 8-antenna MIMO testbed using
the 802.11ac WiFi protocol. This demonstration shows that the
channel models predominantly used in the MCMC literature are
too well-conditioned to provide an understanding of performance
and complexity for indoor channels. Additional information is
provided on the methods and techniques to match simulation to
measurement and to construct a low cost and effective 8-antenna
MIMO testbed.

I. INTRODUCTION

The use of spatial-multiplexing multiple-input multiple-

output (MIMO) is increasingly being adopted in wireless

protocols as higher spectral efficiency is needed to meet

the capacity requirements of modern wireless networks [1],

[2]. It has the potential to linearly increase spectral reuse

and capacity as the number of streams increases. Up to 8-

stream MIMO is defined in 802.11ac WiFi and LTE Advanced

Release 10 protocols. With these large sizes, the performance

and complexity scaling of the MIMO detector is extremely

important.

The sphere-decoding (SD) class of MIMO detectors are

known to have near maximum-a-posteriori (MAP) performance

[3]. Specifically the K-Best variations of sphere-decoding

have been demonstrated in effective VLSI designs, but their

complexity increases quickly with the number of antennas, the

number of transmitted bits per channel use, and the list size [4].

Therefore, the search for lower complexity MIMO detectors is

ongoing.

Markov Chain Monte Carlo (MCMC) has been shown to

have near optimal performance at low signal-to-noise-ratio

(SNR) and to have efficient hardware implementations [5],

[6]. It has recently been demonstrated on a 4-antenna MIMO

testbed limited to 4 QAM constellations operating at low SNR

[7]. Counterintuitively, MCMC performance decreases with

SNR due to a characteristic stalling behavior [8].

We have solved the high SNR stalling problem in our excited

MCMC (X-MCMC) detector. Its implementation is similar to

static, fixed value temperature scaling methods [9], but is able to
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dynamically calculate the scaling as needed. This enhancement

does not require hybridization with another detector, such as

initialization with MMSE or SD solutions [8], [10].

The X-MCMC detector is shown to have near-MAP perfor-

mance at 4- and 8-antenna 64 QAM sizes. Simulations are

matched with real-world measurements using 802.11ac WiFi

packets. We show that most MCMC results in the literature use

an insufficiently difficult, uncorrelated channel model to draw

conclusions on their potential real-world indoor performance

and complexity. Details on constructing a low cost and effective

8-antenna testbed are also provided.

This paper is structured as follows. There is a brief statement

of the MIMO system model in Section II. The MAP and

K-Best MIMO detectors used for comparison purposes are

explained in Section III. A basic MCMC detector is outlined

in Section IV and then expanded upon with the proposed X-

MCMC enhancements in V. Sections VI and VII describe the

models and metrics needed in simulating and measuring the

channel and interference characteristics. Finally, Section VIII

covers the hardware and software details of the testbed used

in collecting the measurements matched to simulation results

in Section IX. Concluding remarks are made in Section X.

II. SYSTEM MODEL

The goal of a spatial-multiplexing MIMO transceiver is to

exploit the multipath of the environment to support overlapping

data streams. This concept allows reuse of the spectrum and

therefore has the potential to dramatically increase the data

rates and capacity of wireless networks.

To perform the spatial-multiplexing, the transmitter sends

independent data streams simultaneously on the Nt transmit

antennas and is received at the Nr receiver antennas. For the

802.11ac WiFi protocol used in this paper, orthogonal frequency

division multiplexing (OFDM) is specified with 4, 16, 64,

or 256 quadrature amplitude modulation (QAM) on each of

the active frequency-domain subcarriers. This leads to the

frequency-domain system model

y = Hs+ n. (1)

Here, y is the received signal vector, H is a slow flat fading

complex channel matrix containing the pairwise gain and phase

between antennas, s is the vector of transmitted QAM constel-

lation symbols, and n is a noise vector. The noise elements are

assumed to be independent and identically distributed (i.i.d.)

complex Gaussian random variables with variance of σ2

n per

each real and imaginary dimension. Assuming the transmit

and receive side have the same number of antennas N , the

dimensions of the vectors and matrices are N × 1 and N ×N .
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Fig. 1. Turbo loop structure with a MAP, MCMC, X-MCMC, or K-Best
MIMO detector iteratively exchanging soft information with a forward error
correction decoder to perform joint detection.

Note that depending on context, the bit vector x, which is

the unmapped version of the symbols s, may be described as

comprising of 1’s and 0’s or equivalently +1’s and -1’s.

The primary challenge in a MIMO transceiver is to accurately

estimate the K = N log
2
(NQAM) bits in x, where NQAM is

the QAM constellation size.

Notation

In the equations that follow, some specialized notation is

used for compactness and clarity. Vectors and matrices are

expressed with bold fonts and the latter are capitalized. The

removal of the kth element of a vector is shown with set notation

as {·}\k. A variable or vector in which the kth transmitted bit

has been forced to a one or zero is shown with {·}k+ and {·}k-,
respectively. When two nearly identical equations are needed

differing only in use of k+ or k-, k± is used to represent both

versions.

III. MIMO DETECTOR INTRODUCTION

The MIMO detector uses the received signal y and estimated

channel H to calculate an estimate of the transmitted bit se-

quence x. There are many different MIMO detector approaches

explored in the literature, but here we only touch on MAP, K-

Best, MCMC, and X-MCMC. MAP is needed in our analysis as

it provides a theoretical bound against which the other methods

can be compared. K-Best is a useful reference as it has been

shown to have near-MAP performance while being realizable.

Yet, there is still an interest in lower complexity near-MAP

MIMO detectors as K-Best complexity becomes large as the

number of antennas and QAM size increases.

The above mentioned MIMO detectors are all compatible

with turbo iterations, the exchange of soft-information between

the detector and decoder as in Fig. 1. This allows for the

iterative joint detection of the signal for enhanced performance.

Here and in the equations that follow, the soft-information is

in the form of log likelihood ratios (LLRs) and represented by

λa and λe for the a priori and extrinsic probability versions.

The maximum-a-posteriori (MAP) detector is the theo-

retically optimal soft-output MIMO detector utilizing prior-

information input. It tests every 2K permutation of the sequence

x against the received signal and calculate the probability

of each bit being a one or zero. These probabilities are

typically calculated as log likelihood ratios (LLR) to improve

stability and lower complexity. We use MAP with the max-

log approximation as in [3] to provide a fair comparison

with MCMC, X-MCMC, and K-Best which also use this

approximation. Unfortunately, the complexity of such a detector

increases exponentially with the number of transmitted bits,

making it unrealizable except for the most trivial of cases. For

comparison, we have implemented max-log MAP (Max-MAP)

on a graphics processing unit (GPU), allowing up to 4-antenna

64 QAM Max-MAP results to be presented.

For comparison purposes, we have implemented the K-Best

variation of the sphere-decoder described in [4]. This was cho-

sen because efficient VLSI designs have been demonstrated that

will allow for future performance and complexity comparisons.

IV. MCMC DETECTOR

The Markov Chain Monte Carlo (MCMC) detector estimates

the output LLR statistics by means of Monte Carlo sampling

[5]. This can be thought of as a method to identify a list of

important bit permutation samples to approximate the full list

of permutations used in the MAP detector. The challenge is to

make the process computationally efficient by using an easy

to calculate short list that accurately captures the statistics

of the full permutation list. We select the bitwise MCMC

algorithm described in [6] as our foundational method because

it is shown to be efficiently implementable in hardware. The

two main components of the MCMC detector is the Gibbs

sampler, which identifies the short permutation list, and the

LLR output calculation, which uses the sample list.

The Gibbs sampler starts with an initial estimate of the

transmitted bit sequence, either randomly selected or initialized

with prior information. It then cycles through the bits, making

a weighted random decision to change the kth bit where each

cycle through the bits is an iteration. The weighting is based

on the probability Pgibbs of the bit being a +1 as in

Pgibbs = P (xk =+1 |y,x\k,λa) =
1

1 + e−γk
(2)

with

γk =
1

2σ2
n

(

∥

∥y −Hsk-
∥

∥

2 −
∥

∥y −Hsk+
∥

∥

2
)

+ λa
k. (3)

The chain of bit flips can be thought of as a probabilistically

guided random walk where each calculation of
∥

∥y −Hsk±
∥

∥

2

can be used as a sample.

After a sufficient quantity of important samples have been

taken in this manner, the list Z of all sampled bit permutations

can be used to calculate the output LLR

λe
k ≈1

2
min
x∈Zk-

(

1

σ2
n

∥

∥y −Hsk-
∥

∥

2 − x\k ·λa,\k

)

−1

2
min
x∈Zk+

(

1

σ2
n

∥

∥y −Hsk+
∥

∥

2 − x\k ·λa,\k

)

. (4)

One of the convenient features of this algorithm is that

a designer can trade between performance, implementation

complexity, and latency by adjusting Ngibbs, the number of

parallel Gibbs samplers, and Niter, the number of cycles

performed across the bit sequence.

The primary issue with the MCMC detector is that its

performance is known to degrade as SNR increases [5]. This

is due to a high SNR stalling problem which we will attempt

to solve in the following section.
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In this paper, we have chosen to use the MMSE hybrid

version from [8] for comparison purposes. This method suggests

initializing one of the parallel Gibbs samplers with the hard-

decision from an MMSE detector solution. The initialization is

meant to help mitigate the high SNR stalling problem, but, as

will be seen in the results of Section IX, the MMSE initialized

method fails on real-world correlated channels.

V. X-MCMC DETECTOR

Here we propose a dynamic method to solve the high SNR

stalling problem of MCMC we refer to as excited MCMC

(X-MCMC). It is based on the observation that the root cause

of the stalling problem is that γk in (3) reaches extreme values

when sampling far from a correct solution region. This results

in the probability values in (2) saturating, creating a nearly

deterministic walk that quickly stalls.

When the γk values have a small magnitude, Pgibbs prob-

abilities are moderate and the desired guided random walk

behavior is seen. This occurs when the Euclidean squared

distance ‖y −Hs‖2 is small, and thus the Gibbs sampler is

likely close to a correct solution. This distance metric is defined

for convenience as

dk± =
∥

∥y −Hsk±
∥

∥

2

. (5)

Based on these observations, it is apparent that a scaling

variable is needed. It should have no effect near the correct

solution, and it must keep the sampler active with moderated

values of γk when far away from the correct solution region.

This can be accomplished by applying a linear scaling factor to

(3). Thus the Pgibbs calculation should use the modified value

γ′
k =

1

rγ

(dk-− dk+)

2σ2
n

+ λa
k (6)

where rγ is a time varying, confidence adjusting factor. This

factor should be unity when close the the solution region, and

should become larger as the distance from the correct solution

becomes greater. This behavior can be accomplished by taking

the ratio between the distance in the current state space region

and the expectation of correct solution distances, 2Nσ2

n. This

suggests that rγ should take the form

rγ =
mind∈Dγ

(d)

2Nσ2
n

(7)

where the minimum is taken over the list Dγ , the dk± distances

observed since the last change in the Gibbs state x. By using

the recent history of distances, the scaling factor takes into

account the error in the current region instead of just the most

recently calculated kth distance. This heuristic approach has

the desired scaling behavior and has proven to work well in

practice.

After applying the dynamic excitation coefficient rγ to solve

the high SNR stalling problem, one finds that the Gibbs sampler

will converge quickly to the region of a potentially valid

solution. Once this happens, rγ will be approximately one and

the Gibbs sampler will stop exploring new solution regions,

repeatedly sampling the same bit permutations and collect

no new samples. This is referred to as pseudo-convergence

and appears to be less understood in MIMO communications

applications, but has been noted in the wider MCMC literature

[11]. This is problematic because it is insufficient to simply

find the transmitted bit sequence. Solution diversity is needed

to calculate quality output LLR information.

Although symptomatically similar, pseudo-convergence is

different from the stalling problem discussed previously. It

occurs when the posterior probability distribution is multi-

modal with weak connections between modes, i.e. important

solution regions are weakly connected to other important

regions through very low transitional probabilities. Thus,

the Gibbs sampler may stay in one mode, i.e. similar bit

permutations connected with likely transition probability, and

collect a large number of highly correlated samples. When

encountered, pseudo-convergence decreases the sampling effi-

ciency of MCMC, resulting in a need for a large number of

parallel Gibbs samplers.

We propose a simple detection and excitation strategy to

allow a Gibbs sampler to exit a pseudo-convergence mode and

visit other important regions of the solution space. When the

Gibbs sampler has not changed its state x in K steps, then

pseudo-convergence is detected. After detection, the next bit

is forced to change. We have found that this 1-bit forced-flip

strategy is effective in practice and has low implementation

complexity since a re-initialization is not necessary, unlike a

full Gibbs sampler restart.

Since X-MCMC has a variable convergence time, it is still

possible that for a small percentage of cases it does not converge

to a stationary posterior distribution in the predetermined fixed

number of iterations. With a large enough number of samples,

the probability of poor convergence is vanishingly small, but

since it is desirable to minimize the complexity of the design

and therefore the number of iterations, it should be considered

likely in practice. This can be detected and mitigated by similar

metrics and methods as in (7) and (6), by expanding it to use

the best distance observed across all Gibbs samplers. Therefore

we specify the metric

rλ =
mind∈Dλ

(d)

2Nσ2
n

(8)

where the minimum is taken over the list Dλ, of all dk±

distances calculated in all parallel Gibbs samplers.

This distance ratio has a desirable characteristic that it

becomes approximately unity when the MCMC detector has

sampled regions near the transmitted bit sequence. If the ratio

rλ is much larger than one, it can be directly used to scale

down the overly confident extrinsic LLR values that otherwise

could confuse the forward-error-correcting (FEC) decoder with

poor quality statistics. Thus we propose applying (8) to (4) to

condition the output LLRs as in

λe′
k =

1

2
min
x∈Zk-

(

1

rλσ2
n

∥

∥y −Hsk-
∥

∥

2 − x\k ·λa,\k

)

−1

2
min
x∈Zk+

(

1

rλσ2
n

∥

∥y −Hsk+
∥

∥

2 − x\k ·λa,\k

)

. (9)

Here, we have presented a brief heuristic explanation of

the X-MCMC detector. For a more complete derivation and

mathematical analysis see [12].
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VI. CHANNEL MODELS

Using the correct channel model in simulation has proven

to be an important aspect of understanding the performance,

complexity, and overall behavior of the MCMC and X-MCMC

detectors. If the channel model used is less ill-conditioned than

real channels, the MCMC detector converges easily with a small

number of Gibbs samples. This can lead to an overoptimistic

assessment of performance and complexity.

The condition of the channel matrix depends on how

correlated its columns are. When the columns are correlated,

it is more difficult to separate the spatial streams and noise

can more easily interfere with the signal. Thus, in addition

to the signal-to-noise ratio (SNR) of the channel, the near-

orthogonality of the columns of H is an important parameter

affecting the capacity of a MIMO channel. It has been shown

that the condition number (CN) of the matrix, the ratio between

the strongest and weakest singular values, is a good metric to

quantify the quality of a channel H [13]. This is defined as

CN(H) =
vmax

vmin

=

√
μmax√
μmin

(10)

where vmax and vmin are the maximum and minimum singular

values of H and μmax and μmin are the maximum and minimum

eigenvalues of H†H. It can also be expressed in dB by applying

20 log
10
(·) to the ratio.

To compare the orthogonality and therefore difficulty of

several common channel models, see the CN histograms in

Fig. 2. Each data point is the median CN of 52 frequency-

domain channels corresponding to the active OFDM subcarriers

in 20 MHz bandwidth 802.11ac. For the Gaussian i.i.d. model,

all channels were independently generated from i.i.d. complex

Gaussian variables of zero mean and 0.5 variance per dimension.

In the Rayleigh and TGn models, a single time-domain

realization is used to produce the 52 frequency-domain channels

per data point. The Rayleigh model with non-zero r is generated

as in [7] where r adjusts the strength of the added correlation.

The TGn models are from the 802.11n WiFi specification in

[14] and is based on defined clusters of scatterers. The TGn

model letter designates differing clusters and delay profiles

which affects the degree of correlation and severity of fading.

The Rayleigh r = 0.25 model was confirmed as a valid

model for 4-antenna indoor environments with measurements

in our prior work [7], but to allow better comparisons with

other papers in the literature, we now use the standard 802.11n

WiFi TGn specified channel models. As can be seen in Fig. 2,

the previous model matches well with the statistics of the TGn

Model-D for 4-antenna situations.

The most important observation to note in Fig. 2 is that

the Gaussian i.i.d. channels, the most commonly used model

in the MCMC literature [5], [6], [9], have a much lower

condition number and therefore is much easier than the other

models. This means that any performance and complexity

analysis analysis performed using an i.i.d. Gaussian channel

model should be considered overoptimistic compared to real

indoor environments. This will be revisited with the results in

Section IX.

(a) 4-antenna channels generated.

(b) 8-antenna channels generated.

Fig. 2. Comparison of channel distributions using various models. Each data
point is the median of a set of 52 frequency-domain channels corresponding
to the active OFDM subcarriers in 802.11ac.

VII. NOISE AND INTERFERENCE METRICS

One of the challenging aspects of comparing communications

system simulations to testbed measurements is quantifying

interference. During simulations, often the only form of external

interference is additive white Gaussian noise (AWGN) with

constant variance over a test. This type of interference is

quantified well with a typical signal-to-noise-ratio (SNR)

metric comprising the average signal energy over the average

noise energy. In real-world systems, there are many types of

interference including noise, distortion, channel estimation error,

and other active transmissions which all vary over both time

and frequency. This variability is not effectively represented

by an SNR measurement only made with training fields or

pilot symbols. Physical methods to control a test such as

cabling the receiver to transmitter or using an anechoic chamber

are inappropriate for spatial-multiplexing MIMO because it

removes the multipath environment needed for spatial reuse.

A metric often used in lab testing is the error-vector-

magnitude (EVM) [15]. It uses knowledge of the transmitted

data to calculate the ratio of signal energy to interference

directly using the payload. This makes it useful in capturing

time varying conditions. The inverse-EVM (IEVM) can be

extended to MIMO with

IEVM2

MIMO =

Nsubc
∑

i

‖si‖2

Nsubc
∑

i

‖ŝi − si‖2
=

Nsubc
∑

i

‖si‖2

Nsubc
∑

i

∥

∥

∥
Ĥ−1

i yi − si)
∥

∥

∥

2

(11)

where Nsubc is the number of active OFDM subcarriers within

a frame and {̂·} designates an estimate. The problem with this

method is that when the channel is ill-conditioned, the matrix

inverse H−1

i can create a large amount of noise enhancement.

This results in an overestimate of the interference which
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Fig. 3. 8-antenna experimental testbed based on Ettus USRP B210 software
defined radios.

near maximum-likelihood detectors such as MAP, MCMC,

X-MCMC, and K-Best do not experience. During our testing,

this overestimate was commonly in the order of 10-20 dB

which made it misleading and unreliable. Improvements could

be made by replacing the channel inverse based estimate of ŝ

with an alternative, such as MMSE, which creating less noise

enhancement, but instead we propose removing the need for

the estimate completely.

We have developed the harmonic-mean-signal to arithmetic-

mean-distortion ratio (HSADR) metric as an SNR measure that

uses the payload and avoids the noise enhancement of IEVM.

It is defined as

HSADR =

(

1

Nsubc

Nsubc
∑

i

(

∥

∥

∥
Ĥisi

∥

∥

∥

2
)−1

)−1

1

Nsubc

Nsubc
∑

i

∥

∥

∥
yi − Ĥisi

∥

∥

∥

2

. (12)

There are two important features of this definition. First, the

channel in IEVM is moved from the bottom of the ratio to the

top, thus removing the problematic noise enhancement. Next,

the arithmetic-mean-signal, which emphasizes large values, is

replaced with the harmonic-mean, which emphasizes small

values [16]. In a single-input single-output (SISO) EVM

calculation, taking the arithmetic-mean of the noise over

channel gain (n/h) results in emphasizing small, weak channel

conditions, i.e. deep fades. When the channel is moved to the

top of the ratio and no longer inverted, poor channels have

little effect on the metric. By taking the harmonic-mean of

Ĥs, weak channels have a larger impact on the mean which

is desirable.

Using the HSADR metric of (12) on testbed measurements

with irregularly interfered and distorted packet payloads results

in a more consistent analysis with smooth BER curves. Note

that the HSADR metric requires prior knowledge of the

transmitted payload and so is only used for analysis and plotting

purposes and not by the signal processing blocks.

VIII. 8-ANTENNA MIMO TESTBED

The testbed shown in Fig. 3 is in its third generation and

is a useful contribution to the research community. Based on

the Ettus B210 software defined radio and Analog Devices

AD9361 chipset, it cost $10,000 US dollars to build, making it

affordable for many wireless researchers. This is in contrast to

most commercially available alternatives which cost $60,000 to

$250,000 US dollars, usually with less frequency coverage. The

main features that these expensive options additionally include

are increased bandwidth, improved noise figure, official >2-

stream MIMO support, and larger capture capabilities. Here,

official means that a company supports an intended functionality

whereas unofficial means it is possible but without the support

of the manufacturer. Our B210 solution is capable of 30.7

MHz instantaneous bandwidth, 70MHz-6GHz frequency range,

and unofficial 16-stream MIMO in bursts (largest number of

streams verified, larger may be possible). This provides the

ability to work with all of the 802.11ac and worldwide LTE

bands as well as produce the 20MHz bandwidth needed for

portions of the WiFi and LTE protocols.

The main hardware components of each side of the testbed

are four Ettus B210 radios (each containing two transceivers),

one synchronized source of four 10MHz clock and pulse-per-

second (PPS) signals, a powered 4-port USB3 hub, and a linux

computer. Optionally, we have added the Mini-circuits ZX60-

83LN-S+ 0.5-7GHz, 21dB gain, broadband amplifiers to the

transmit side. The powered hub is capable of powering both

a B210 and two amplifiers off of one USB3 cable, reducing

system cabling and complexity. A potential issue in this design

is avoiding low quality USB3 chipsets which are known to

create problems with the B210 radios. We have seen dropped

data, re-ordered data, and overheating chips that require hard

resets. Using a quality hub with good linux drivers avoids this

irregular behavior.

A MIMO synchronization source is available from Ettus

and others. We elected to build our own lower cost, higher

performance one based on a 5ppb 10 MHz ovenized oscillator,

an Atmel ATTiny85 microcontroller for PPS generation, and

SN74AC logic inverters as buffers. In testing, we achieved

<10ns synchronization offset between radios which was at

the limit of our testing procedures and a small fraction of the

shortest 400ns guard interval of 802.11ac WiFi.

Overall, the custom software was the most time consuming

and difficult portion of building the testbed. We based our

design on Python and C++. This provides flexibility and a

great degree of control of the hardware while still being

developer friendly. As Python is being used to produce all

of our simulation results, it was natural to use it to synthesize

and process 802.11ac packets. The packets are sent and received

through a socket to a separate C++ program controlling the

radios with the Ettus USRP hardware driver (UHD) API. Using

the burst mode is essential in doing large MIMO sizes as we

have found that the USB3 connection is limited to 1.1 Gbps in

practice, much less than the needed 6.4 Gbps for 8-antennas

streaming at 25Msps and 32 bits per raw RF sample. These

radios readily buffer 10k samples, allowing individual high

bandwidth MIMO packets to be sent and received using timed

commands despite the USB3 bottleneck. Finally, it should be

noted that the Ettus UHD library does not officially support

greater than 2x MIMO on the B210 as of UHD library version

3.9. Since we were using C++ it was straightforward to make

a custom wrapper which synchronizes and controls multiple
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(a) Testbed transmitted data using 802.11ac.

(b) Simulation with WiFi TGn Model-C channel model.

Fig. 4. 4 antenna, 64 QAM, 3/4 LDPC coding rate BER curves. MCMC
values are Ngibbs×Niter and K-Best values are the list length.

radios.

Several more implementation details specific to our mea-

surements may be helpful to those designing similar systems.

To align the receiver’s short capture window with the sparsely

transmitted packets, on startup it first captures 1-stream of 11

ms of data. By transmitting data at exactly 10ms intervals, the

long 1-stream collection can be used to identify a timing offset

between the two systems and align future 8-stream MIMO

collections which can only be done in short bursts. To make

the data in each packet randomized but still known, a heavily

coded extra field was added to the packet header containing

the random seed used in creating the payload data. This allows

the receiver to reconstruct the true transmitted bits for error

analysis. On each burst mode transmission of the B210, there

appears to be a phase instability for the first 10 micro-seconds

of non-zero data, thus a random pad must be placed at the

beginning of each packet.

IX. RESULTS

The following testbed measurement results were transmitted

using an 802.11ac packet structure over the system described

in Section VIII at 2.484 GHz. The low-density parity-check

(LDPC) code described in the protocol was used for both

measurement and simulation. Simulations were performed in

the frequency-domain without use of the WiFi time-domain

packet structure.

The most important factor for matching testbed to simulation

results is selection of a channel model with sufficient correlation

to produce similar distributions of ill-conditioned H matrices.

(a) Testbed transmitted data using 802.11ac.

(b) Simulation with WiFi TGn Model-D channel model.

Fig. 5. 8 antenna, 64 QAM, 3/4 LDPC coding rate BER curves. MCMC
values are Ngibbs×Niter and K-Best values are the list length.

In Fig. 6, condition number histograms are shown using the

same testbed data set as in Fig. 4a and 5a. By comparing these

distributions to the channel models in Fig. 2, we see that the

WiFi TGn Model-C is a reasonable match for the 4-antenna

measurements and Model-D for the 8-antenna measurements.

These specific models have been used in the corresponding

simulation results of Fig. 4b and 5b.

Secondly, channel realizations simulated over an LDPC

block should not be independent. A good procedure is to

generate a single time-domain channel realization for each

LDPC block, and then extract the same 52 active OFDM

subcarrier realizations as used in 802.11ac. If more than

52 realizations are needed for the LDPC block, then they

are reused. This results in the likelihood of an LDPC block

encountering many deep fades simultaneously much more likely

resulting in a significant shift of the BER curves to the right.

In the 4-antenna results of Fig. 4, it can be seen that X-

MCMC approaches near Max-MAP performance as the number

of Gibbs samplers increases. Similarly, the 8-antenna results of

Fig. 5 confirm this, but since MAP is too complex to calculate

on the 8-antenna results, a very large K-Best detector is used as

an estimate of the Max-MAP performance bound. A moderate-

sized K-Best detector is used as a reference point so that the

difficulty of this channel can be better appreciated. Notice

that the MMSE initialized MCMC detector does not converge

whereas the X-MCMC detector converges to near Max-MAP

performance. This verifies our claims that X-MCMC has solved

the high SNR stalling problem.
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Fig. 6. Distribution of the channels observed in the testbed data used to
generate BER curve results. Median is across the Nsubc channels needed for
one LDPC codeword.

Fig. 7. Simulated BER curves with i.i.d complex Gaussian channel model,
4 antennas, 64 QAM, 3/4 LDPC coding. This channel model is the most
common in the MCMC literature and is too well-conditioned. Notice that here
all of the detectors easily converge whereas some methods completely fail on
real indoor channels, Fig. 4.

It is useful to see how much of an impact the wrong channel

model can have on analysis conclusions. In Fig. 7, an i.i.d.

complex Gaussian channel is used as in most of the MCMC

literature [5], [6], [9]. Compared to the more accurate and

much more difficulty TGn Model-C in used in Fig. 4b and the

measurements in Fig. 4a, a much smaller MCMC Gibbs sampler

is needed for the BER to converge to Max-MAP performance.

Also, there is a large disagreement over the effectiveness of

the MMSE initialized MCMC detector. The Gaussian channel

model shows a functioning solution whereas both the real-

world and TGn simulated model performance shows strong

stalling.

Even after using a well matched channel model and the

HSADR interference metric in (12), the waterfall locations

of the simulation results do not perfectly match measurement

in Fig. 4 and 5. This is acceptable and to be expected as the

distribution of condition numbers do not perfectly match and

HSADR is an imperfect metric. What is important is that they

are close (within 1-2 dB), the convergence behavior of all

detector methods agree, and the parameters of MCMC and

K-Best necessary for convergence are similar. This means that

in the future these simulation techniques and models can be

used to perform a much deeper analysis of MCMC and X-

MCMC without performing real-world tests. If a closer match

between simulation and measurement results is desired, see our

previous work in [7] which uses condition number slicing to

control channel distributions. Slicing is no longer our preferred

method as it removes the contribution of outliers from the data

sets.

X. CONCLUSION

The previous MCMC algorithms introduced in the literature

display problematic stalling behavior at high SNR. Here

we have proposed the X-MCMC method and shown results

demonstrating that it solves this problem. We have also

described the construction of a low cost and effective 8-antenna

MIMO testbed which others may replicate to do testing at all

802.11ac and worldwide LTE frequency bands. We matched our

measurements with simulations and showed that the channel

models most often used in the MCMC literature are insufficient,

leading to overoptimistic conclusions.

Future work should include a VLSI implementation and

complexity analysis of the algorithm. A more thorough

mathematical investigation and analysis of X-MCMC is under

preparation [12].
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