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Abstract—The development of low complexity, high perfor-
mance spatial-multiplexing MIMO detectors continues to be an
important area of research capable of increasing the spectral
efficiency and capacity of wireless networks. The Markov Chain
Monte Carlo (MCMC) detector has shown promise as a high
performance method with low complexity growth. We present a
solution to the high SNR stalling problems of previous MCMC
detectors. Near-MAP performance is verified in simulation and in
real-world measurements on an 8-antenna MIMO testbed using
the 802.11ac WiFi protocol. This demonstration shows that the
channel models predominantly used in the MCMC literature are
too well-conditioned to provide an understanding of performance
and complexity for indoor channels. Additional information is
provided on the methods and techniques to match simulation to
measurement and to construct a low cost and effective 8-antenna
MIMO testbed.

I. INTRODUCTION

The use of spatial-multiplexing multiple-input multiple-
output (MIMO) is increasingly being adopted in wireless
protocols as higher spectral efficiency is needed to meet
the capacity requirements of modern wireless networks [1],
[2]. Tt has the potential to linearly increase spectral reuse
and capacity as the number of streams increases. Up to 8-
stream MIMO is defined in 802.11ac WiFi and LTE Advanced
Release 10 protocols. With these large sizes, the performance
and complexity scaling of the MIMO detector is extremely
important.

The sphere-decoding (SD) class of MIMO detectors are
known to have near maximum-a-posteriori (MAP) performance
[3]. Specifically the K-Best variations of sphere-decoding
have been demonstrated in effective VLSI designs, but their
complexity increases quickly with the number of antennas, the
number of transmitted bits per channel use, and the list size [4].
Therefore, the search for lower complexity MIMO detectors is
ongoing.

Markov Chain Monte Carlo (MCMC) has been shown to
have near optimal performance at low signal-to-noise-ratio
(SNR) and to have efficient hardware implementations [5],
[6]. It has recently been demonstrated on a 4-antenna MIMO
testbed limited to 4 QAM constellations operating at low SNR
[7]. Counterintuitively, MCMC performance decreases with
SNR due to a characteristic stalling behavior [8].

We have solved the high SNR stalling problem in our excited
MCMC (X-MCMC) detector. Its implementation is similar to
static, fixed value temperature scaling methods [9], but is able to
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dynamically calculate the scaling as needed. This enhancement
does not require hybridization with another detector, such as
initialization with MMSE or SD solutions [8], [10].

The X-MCMC detector is shown to have near-MAP perfor-
mance at 4- and 8-antenna 64 QAM sizes. Simulations are
matched with real-world measurements using 802.11ac WiFi
packets. We show that most MCMC results in the literature use
an insufficiently difficult, uncorrelated channel model to draw
conclusions on their potential real-world indoor performance
and complexity. Details on constructing a low cost and effective
8-antenna testbed are also provided.

This paper is structured as follows. There is a brief statement
of the MIMO system model in Section II. The MAP and
K-Best MIMO detectors used for comparison purposes are
explained in Section III. A basic MCMC detector is outlined
in Section IV and then expanded upon with the proposed X-
MCMC enhancements in V. Sections VI and VII describe the
models and metrics needed in simulating and measuring the
channel and interference characteristics. Finally, Section VIII
covers the hardware and software details of the testbed used
in collecting the measurements matched to simulation results
in Section IX. Concluding remarks are made in Section X.

II. SYSTEM MODEL

The goal of a spatial-multiplexing MIMO transceiver is to
exploit the multipath of the environment to support overlapping
data streams. This concept allows reuse of the spectrum and
therefore has the potential to dramatically increase the data
rates and capacity of wireless networks.

To perform the spatial-multiplexing, the transmitter sends
independent data streams simultaneously on the N, transmit
antennas and is received at the NV, receiver antennas. For the
802.11ac WiFi protocol used in this paper, orthogonal frequency
division multiplexing (OFDM) is specified with 4, 16, 64,
or 256 quadrature amplitude modulation (QAM) on each of
the active frequency-domain subcarriers. This leads to the
frequency-domain system model

y =Hs+n. (1)

Here, y is the received signal vector, H is a slow flat fading
complex channel matrix containing the pairwise gain and phase
between antennas, s is the vector of transmitted QAM constel-
lation symbols, and n is a noise vector. The noise elements are
assumed to be independent and identically distributed (i.i.d.)
complex Gaussian random variables with variance of o2 per
each real and imaginary dimension. Assuming the transmit
and receive side have the same number of antennas N, the
dimensions of the vectors and matrices are NV x 1 and N x N.
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Fig. 1. Turbo loop structure with a MAP, MCMC, X-MCMC, or K-Best

MIMO detector iteratively exchanging soft information with a forward error
correction decoder to perform joint detection.

Note that depending on context, the bit vector x, which is
the unmapped version of the symbols s, may be described as
comprising of 1’s and O’s or equivalently +1’s and —1’s.

The primary challenge in a MIMO transceiver is to accurately
estimate the K = N log,(Ngam) bits in x, where Noam is
the QAM constellation size.

Notation

In the equations that follow, some specialized notation is
used for compactness and clarity. Vectors and matrices are
expressed with bold fonts and the latter are capitalized. The
removal of the k™ element of a vector is shown with set notation
as {-}\¥. A variable or vector in which the £ transmitted bit
has been forced to a one or zero is shown with {-}**and {-}¥",
respectively. When two nearly identical equations are needed
differing only in use of k+ or k—, k+ is used to represent both
versions.

III. MIMO DETECTOR INTRODUCTION

The MIMO detector uses the received signal y and estimated
channel H to calculate an estimate of the transmitted bit se-
quence x. There are many different MIMO detector approaches
explored in the literature, but here we only touch on MAP, K-
Best, MCMC, and X-MCMC. MAP is needed in our analysis as
it provides a theoretical bound against which the other methods
can be compared. K-Best is a useful reference as it has been
shown to have near-MAP performance while being realizable.
Yet, there is still an interest in lower complexity near-MAP
MIMO detectors as K-Best complexity becomes large as the
number of antennas and QAM size increases.

The above mentioned MIMO detectors are all compatible
with turbo iterations, the exchange of soft-information between
the detector and decoder as in Fig. 1. This allows for the
iterative joint detection of the signal for enhanced performance.
Here and in the equations that follow, the soft-information is
in the form of log likelihood ratios (LLRs) and represented by
A% and \° for the a priori and extrinsic probability versions.

The maximum-a-posteriori (MAP) detector is the theo-
retically optimal soft-output MIMO detector utilizing prior-
information input. It tests every 2 permutation of the sequence
x against the received signal and calculate the probability
of each bit being a one or zero. These probabilities are
typically calculated as log likelihood ratios (LLR) to improve
stability and lower complexity. We use MAP with the max-
log approximation as in [3] to provide a fair comparison

with MCMC, X-MCMC, and K-Best which also use this
approximation. Unfortunately, the complexity of such a detector
increases exponentially with the number of transmitted bits,
making it unrealizable except for the most trivial of cases. For
comparison, we have implemented max-log MAP (Max-MAP)
on a graphics processing unit (GPU), allowing up to 4-antenna
64 QAM Max-MAP results to be presented.

For comparison purposes, we have implemented the K-Best
variation of the sphere-decoder described in [4]. This was cho-
sen because efficient VLSI designs have been demonstrated that
will allow for future performance and complexity comparisons.

IV. MCMC DETECTOR

The Markov Chain Monte Carlo (MCMC) detector estimates
the output LLR statistics by means of Monte Carlo sampling
[5]. This can be thought of as a method to identify a list of
important bit permutation samples to approximate the full list
of permutations used in the MAP detector. The challenge is to
make the process computationally efficient by using an easy
to calculate short list that accurately captures the statistics
of the full permutation list. We select the bitwise MCMC
algorithm described in [6] as our foundational method because
it is shown to be efficiently implementable in hardware. The
two main components of the MCMC detector is the Gibbs
sampler, which identifies the short permutation list, and the
LLR output calculation, which uses the sample list.

The Gibbs sampler starts with an initial estimate of the
transmitted bit sequence, either randomly selected or initialized
with prior information. It then cycles through the bits, making
a weighted random decision to change the k™ bit where each
cycle through the bits is an iteration. The weighting is based
on the probability Pyipps of the bit being a +1 as in

1
Pyivbs = P(ay,=+1]y,x\¥,A%) =

T lte @

with

1
=5 (Il =B~y - H") + 25 3

The chain of bit flips can be thought of as a probabilisticall
guided random walk where each calculation of H y — HskiH
can be used as a sample.

After a sufficient quantity of important samples have been
taken in this manner, the list Z of all sampled bit permutations
can be used to calculate the output LLR

S z% min <012||y - Hsk’H2 - x\k.)\“’\k>

—= min <012||y - Hsk+||2 - x\k~)\a’\k>. (4)

One of the convenient features of this algorithm is that
a designer can trade between performance, implementation
complexity, and latency by adjusting Nipps, the number of
parallel Gibbs samplers, and N, the number of cycles
performed across the bit sequence.

The primary issue with the MCMC detector is that its
performance is known to degrade as SNR increases [5]. This
is due to a high SNR stalling problem which we will attempt
to solve in the following section.
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In this paper, we have chosen to use the MMSE hybrid
version from [8] for comparison purposes. This method suggests
initializing one of the parallel Gibbs samplers with the hard-
decision from an MMSE detector solution. The initialization is
meant to help mitigate the high SNR stalling problem, but, as
will be seen in the results of Section IX, the MMSE initialized
method fails on real-world correlated channels.

V. X-MCMC DETECTOR

Here we propose a dynamic method to solve the high SNR
stalling problem of MCMC we refer to as excited MCMC
(X-MCMQ). It is based on the observation that the root cause
of the stalling problem is that ~; in (3) reaches extreme values
when sampling far from a correct solution region. This results
in the probability values in (2) saturating, creating a nearly
deterministic walk that quickly stalls.

When the 7;, values have a small magnitude, Pjpps prob-
abilities are moderate and the desired guided random walk
behavior is seen. This occurs when the Euclidean squared
distance ||y — Hs||” is small, and thus the Gibbs sampler is
likely close to a correct solution. This distance metric is defined
for convenience as

¥ = |ly — Hs**||”. )

Based on these observations, it is apparent that a scaling
variable is needed. It should have no effect near the correct
solution, and it must keep the sampler active with moderated
values of 7, when far away from the correct solution region.
This can be accomplished by applying a linear scaling factor to
(3). Thus the Pgpps calculation should use the modified value

i (dkf _ dk+)

Y 6
Ty 202 M ©)

W =
where 7, is a time varying, confidence adjusting factor. This
factor should be unity when close the the solution region, and
should become larger as the distance from the correct solution
becomes greater. This behavior can be accomplished by taking
the ratio between the distance in the current state space region
and the expectation of correct solution distances, 2/N 02. This
suggests that 7, should take the form

_ mingep, (d)

T TONo2 ™

where the minimum is taken over the list D.,, the d** distances
observed since the last change in the Gibbs state x. By using
the recent history of distances, the scaling factor takes into
account the error in the current region instead of just the most
recently calculated k" distance. This heuristic approach has
the desired scaling behavior and has proven to work well in
practice.

After applying the dynamic excitation coefficient 7, to solve
the high SNR stalling problem, one finds that the Gibbs sampler
will converge quickly to the region of a potentially valid
solution. Once this happens, r, will be approximately one and
the Gibbs sampler will stop exploring new solution regions,
repeatedly sampling the same bit permutations and collect
no new samples. This is referred to as pseudo-convergence

and appears to be less understood in MIMO communications
applications, but has been noted in the wider MCMC literature
[11]. This is problematic because it is insufficient to simply
find the transmitted bit sequence. Solution diversity is needed
to calculate quality output LLR information.

Although symptomatically similar, pseudo-convergence is
different from the stalling problem discussed previously. It
occurs when the posterior probability distribution is multi-
modal with weak connections between modes, i.e. important
solution regions are weakly connected to other important
regions through very low transitional probabilities. Thus,
the Gibbs sampler may stay in one mode, i.e. similar bit
permutations connected with likely transition probability, and
collect a large number of highly correlated samples. When
encountered, pseudo-convergence decreases the sampling effi-
ciency of MCMC, resulting in a need for a large number of
parallel Gibbs samplers.

We propose a simple detection and excitation strategy to
allow a Gibbs sampler to exit a pseudo-convergence mode and
visit other important regions of the solution space. When the
Gibbs sampler has not changed its state x in K steps, then
pseudo-convergence is detected. After detection, the next bit
is forced to change. We have found that this 1-bit forced-flip
strategy is effective in practice and has low implementation
complexity since a re-initialization is not necessary, unlike a
full Gibbs sampler restart.

Since X-MCMC has a variable convergence time, it is still
possible that for a small percentage of cases it does not converge
to a stationary posterior distribution in the predetermined fixed
number of iterations. With a large enough number of samples,
the probability of poor convergence is vanishingly small, but
since it is desirable to minimize the complexity of the design
and therefore the number of iterations, it should be considered
likely in practice. This can be detected and mitigated by similar
metrics and methods as in (7) and (6), by expanding it to use
the best distance observed across all Gibbs samplers. Therefore
we specify the metric
mindeD X (d)

2No2 ®

™\ =
where the minimum is taken over the list Dy, of all dF*
distances calculated in all parallel Gibbs samplers.

This distance ratio has a desirable characteristic that it
becomes approximately unity when the MCMC detector has
sampled regions near the transmitted bit sequence. If the ratio
rx is much larger than one, it can be directly used to scale
down the overly confident extrinsic LLR values that otherwise
could confuse the forward-error-correcting (FEC) decoder with
poor quality statistics. Thus we propose applying (8) to (4) to
condition the output LLRs as in

Iy~ st - xxe )

1 . 1
A7 == min 5
2 xezk\TAOZ

-5 mip(ly - -t ) o

Here, we have presented a brief heuristic explanation of
the X-MCMC detector. For a more complete derivation and
mathematical analysis see [12].
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VI. CHANNEL MODELS

Using the correct channel model in simulation has proven
to be an important aspect of understanding the performance,
complexity, and overall behavior of the MCMC and X-MCMC
detectors. If the channel model used is less ill-conditioned than
real channels, the MCMC detector converges easily with a small
number of Gibbs samples. This can lead to an overoptimistic
assessment of performance and complexity.

The condition of the channel matrix depends on how
correlated its columns are. When the columns are correlated,
it is more difficult to separate the spatial streams and noise
can more easily interfere with the signal. Thus, in addition
to the signal-to-noise ratio (SNR) of the channel, the near-
orthogonality of the columns of H is an important parameter
affecting the capacity of a MIMO channel. It has been shown
that the condition number (CN) of the matrix, the ratio between
the strongest and weakest singular values, is a good metric to
quantify the quality of a channel H [13]. This is defined as

CN(H) = Jmax _ VHimax (10)
Umin vV HMmin

where vpax and vy, are the maximum and minimum singular
values of H and piyax and iy, are the maximum and minimum
eigenvalues of HH. It can also be expressed in dB by applying
201og,(+) to the ratio.

To compare the orthogonality and therefore difficulty of
several common channel models, see the CN histograms in
Fig. 2. Each data point is the median CN of 52 frequency-
domain channels corresponding to the active OFDM subcarriers
in 20 MHz bandwidth 802.11ac. For the Gaussian i.i.d. model,
all channels were independently generated from i.i.d. complex
Gaussian variables of zero mean and 0.5 variance per dimension.
In the Rayleigh and TGn models, a single time-domain
realization is used to produce the 52 frequency-domain channels
per data point. The Rayleigh model with non-zero 7 is generated
as in [7] where r adjusts the strength of the added correlation.
The TGn models are from the 802.11n WiFi specification in
[14] and is based on defined clusters of scatterers. The TGn
model letter designates differing clusters and delay profiles
which affects the degree of correlation and severity of fading.

The Rayleigh r = 0.25 model was confirmed as a valid
model for 4-antenna indoor environments with measurements
in our prior work [7], but to allow better comparisons with
other papers in the literature, we now use the standard 802.11n
WiFi TGn specified channel models. As can be seen in Fig. 2,
the previous model matches well with the statistics of the TGn
Model-D for 4-antenna situations.

The most important observation to note in Fig. 2 is that
the Gaussian i.i.d. channels, the most commonly used model
in the MCMC literature [5], [6], [9], have a much lower
condition number and therefore is much easier than the other
models. This means that any performance and complexity
analysis analysis performed using an i.i.d. Gaussian channel
model should be considered overoptimistic compared to real
indoor environments. This will be revisited with the results in
Section IX.
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(a) 4-antenna channels generated.
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(b) 8-antenna channels generated.

Fig. 2. Comparison of channel distributions using various models. Each data
point is the median of a set of 52 frequency-domain channels corresponding
to the active OFDM subcarriers in 802.11ac.

VII. NOISE AND INTERFERENCE METRICS

One of the challenging aspects of comparing communications
system simulations to testbed measurements is quantifying
interference. During simulations, often the only form of external
interference is additive white Gaussian noise (AWGN) with
constant variance over a test. This type of interference is
quantified well with a typical signal-to-noise-ratio (SNR)
metric comprising the average signal energy over the average
noise energy. In real-world systems, there are many types of
interference including noise, distortion, channel estimation error,
and other active transmissions which all vary over both time
and frequency. This variability is not effectively represented
by an SNR measurement only made with training fields or
pilot symbols. Physical methods to control a test such as
cabling the receiver to transmitter or using an anechoic chamber
are inappropriate for spatial-multiplexing MIMO because it
removes the multipath environment needed for spatial reuse.

A metric often used in lab testing is the error-vector-
magnitude (EVM) [15]. It uses knowledge of the transmitted
data to calculate the ratio of signal energy to interference
directly using the payload. This makes it useful in capturing
time varying conditions. The inverse-EVM (IEVM) can be
extended to MIMO with

?

Niube Niube
Z ||SiH2 Z ||Si||2
IEVM o = waf = N : - (11)
dollsi—sil? Y |H i — ) ‘
i

where Ny is the number of active OFDM subcarriers within
a frame and {-} designates an estimate. The problem with this
method is that when the channel is ill-conditioned, the matrix
inverse HZ._1 can create a large amount of noise enhancement.
This results in an overestimate of the interference which



IEEE ICC 2017 Wireless Communications Symposium

Fig. 3. 8-antenna experimental testbed based on Ettus USRP B210 software
defined radios.

near maximum-likelihood detectors such as MAP, MCMC,
X-MCMC, and K-Best do not experience. During our testing,
this overestimate was commonly in the order of 10-20 dB
which made it misleading and unreliable. Improvements could
be made by replacing the channel inverse based estimate of §
with an alternative, such as MMSE, which creating less noise
enhancement, but instead we propose removing the need for
the estimate completely.

We have developed the harmonic-mean-signal to arithmetic-
mean-distortion ratio (HSADR) metric as an SNR measure that
uses the payload and avoids the noise enhancement of IEVM.

It is defined as
Nsubc 2 -1
1
Nsubc Z < > >

Naube 2

2
Niube

(3

H;s;

HSADR = (

(12)
Yi— I:Iisi

There are two important features of this definition. First, the
channel in IEVM is moved from the bottom of the ratio to the
top, thus removing the problematic noise enhancement. Next,
the arithmetic-mean-signal, which emphasizes large values, is
replaced with the harmonic-mean, which emphasizes small
values [16]. In a single-input single-output (SISO) EVM
calculation, taking the arithmetic-mean of the noise over
channel gain (n/h) results in emphasizing small, weak channel
conditions, i.e. deep fades. When the channel is moved to the
top of the ratio and no longer inverted, poor channels have
little effect on the metric. By taking the harmonic-mean of
Hs, weak channels have a larger impact on the mean which
is desirable.

Using the HSADR metric of (12) on testbed measurements
with irregularly interfered and distorted packet payloads results
in a more consistent analysis with smooth BER curves. Note
that the HSADR metric requires prior knowledge of the
transmitted payload and so is only used for analysis and plotting
purposes and not by the signal processing blocks.

VIII. 8-ANTENNA MIMO TESTBED

The testbed shown in Fig. 3 is in its third generation and
is a useful contribution to the research community. Based on
the Ettus B210 software defined radio and Analog Devices

AD9361 chipset, it cost $10,000 US dollars to build, making it
affordable for many wireless researchers. This is in contrast to
most commercially available alternatives which cost $60,000 to
$250,000 US dollars, usually with less frequency coverage. The
main features that these expensive options additionally include
are increased bandwidth, improved noise figure, official >2-
stream MIMO support, and larger capture capabilities. Here,
official means that a company supports an intended functionality
whereas unofficial means it is possible but without the support
of the manufacturer. Our B210 solution is capable of 30.7
MHz instantaneous bandwidth, 70MHz-6GHz frequency range,
and unofficial 16-stream MIMO in bursts (largest number of
streams verified, larger may be possible). This provides the
ability to work with all of the 802.11ac and worldwide LTE
bands as well as produce the 20MHz bandwidth needed for
portions of the WiFi and LTE protocols.

The main hardware components of each side of the testbed
are four Ettus B210 radios (each containing two transceivers),
one synchronized source of four I0MHz clock and pulse-per-
second (PPS) signals, a powered 4-port USB3 hub, and a linux
computer. Optionally, we have added the Mini-circuits ZX60-
83LN-S+ 0.5-7GHz, 21dB gain, broadband amplifiers to the
transmit side. The powered hub is capable of powering both
a B210 and two amplifiers off of one USB3 cable, reducing
system cabling and complexity. A potential issue in this design
is avoiding low quality USB3 chipsets which are known to
create problems with the B210 radios. We have seen dropped
data, re-ordered data, and overheating chips that require hard
resets. Using a quality hub with good linux drivers avoids this
irregular behavior.

A MIMO synchronization source is available from Ettus
and others. We elected to build our own lower cost, higher
performance one based on a Sppb 10 MHz ovenized oscillator,
an Atmel ATTiny85 microcontroller for PPS generation, and
SN74AC logic inverters as buffers. In testing, we achieved
<10ns synchronization offset between radios which was at
the limit of our testing procedures and a small fraction of the
shortest 400ns guard interval of 802.11ac WiFi.

Overall, the custom software was the most time consuming
and difficult portion of building the testbed. We based our
design on Python and C++. This provides flexibility and a
great degree of control of the hardware while still being
developer friendly. As Python is being used to produce all
of our simulation results, it was natural to use it to synthesize
and process 802.11ac packets. The packets are sent and received
through a socket to a separate C++ program controlling the
radios with the Ettus USRP hardware driver (UHD) API. Using
the burst mode is essential in doing large MIMO sizes as we
have found that the USB3 connection is limited to 1.1 Gbps in
practice, much less than the needed 6.4 Gbps for 8-antennas
streaming at 25Msps and 32 bits per raw RF sample. These
radios readily buffer 10k samples, allowing individual high
bandwidth MIMO packets to be sent and received using timed
commands despite the USB3 bottleneck. Finally, it should be
noted that the Ettus UHD library does not officially support
greater than 2x MIMO on the B210 as of UHD library version
3.9. Since we were using C++ it was straightforward to make
a custom wrapper which synchronizes and controls multiple
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(b) Simulation with WiFi TGn Model-C channel model.

Fig. 4. 4 antenna, 64 QAM, 3/4 LDPC coding rate BER curves. MCMC
values are Ngibbs X Niger and K-Best values are the list length.

radios.

Several more implementation details specific to our mea-
surements may be helpful to those designing similar systems.
To align the receiver’s short capture window with the sparsely
transmitted packets, on startup it first captures 1-stream of 11
ms of data. By transmitting data at exactly 10ms intervals, the
long 1-stream collection can be used to identify a timing offset
between the two systems and align future 8-stream MIMO
collections which can only be done in short bursts. To make
the data in each packet randomized but still known, a heavily
coded extra field was added to the packet header containing
the random seed used in creating the payload data. This allows
the receiver to reconstruct the true transmitted bits for error
analysis. On each burst mode transmission of the B210, there
appears to be a phase instability for the first 10 micro-seconds
of non-zero data, thus a random pad must be placed at the
beginning of each packet.

IX. RESULTS

The following testbed measurement results were transmitted
using an 802.11ac packet structure over the system described
in Section VIII at 2.484 GHz. The low-density parity-check
(LDPC) code described in the protocol was used for both
measurement and simulation. Simulations were performed in
the frequency-domain without use of the WiFi time-domain
packet structure.

The most important factor for matching testbed to simulation
results is selection of a channel model with sufficient correlation
to produce similar distributions of ill-conditioned H matrices.
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(b) Simulation with WiFi TGn Model-D channel model.

Fig. 5. 8 antenna, 64 QAM, 3/4 LDPC coding rate BER curves. MCMC
values are Ngipbs X Niter and K-Best values are the list length.

In Fig. 6, condition number histograms are shown using the
same testbed data set as in Fig. 4a and 5a. By comparing these
distributions to the channel models in Fig. 2, we see that the
WiFi TGn Model-C is a reasonable match for the 4-antenna
measurements and Model-D for the 8-antenna measurements.
These specific models have been used in the corresponding
simulation results of Fig. 4b and 5b.

Secondly, channel realizations simulated over an LDPC
block should not be independent. A good procedure is to
generate a single time-domain channel realization for each
LDPC block, and then extract the same 52 active OFDM
subcarrier realizations as used in 802.11ac. If more than
52 realizations are needed for the LDPC block, then they
are reused. This results in the likelihood of an LDPC block
encountering many deep fades simultaneously much more likely
resulting in a significant shift of the BER curves to the right.

In the 4-antenna results of Fig. 4, it can be seen that X-
MCMC approaches near Max-MAP performance as the number
of Gibbs samplers increases. Similarly, the §-antenna results of
Fig. 5 confirm this, but since MAP is too complex to calculate
on the 8-antenna results, a very large K-Best detector is used as
an estimate of the Max-MAP performance bound. A moderate-
sized K-Best detector is used as a reference point so that the
difficulty of this channel can be better appreciated. Notice
that the MMSE initialized MCMC detector does not converge
whereas the X-MCMC detector converges to near Max-MAP
performance. This verifies our claims that X-MCMC has solved
the high SNR stalling problem.
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Fig. 7. Simulated BER curves with i.i.d complex Gaussian channel model,
4 antennas, 64 QAM, 3/4 LDPC coding. This channel model is the most
common in the MCMC literature and is too well-conditioned. Notice that here
all of the detectors easily converge whereas some methods completely fail on
real indoor channels, Fig. 4.

It is useful to see how much of an impact the wrong channel
model can have on analysis conclusions. In Fig. 7, an i.i.d.
complex Gaussian channel is used as in most of the MCMC
literature [5], [6], [9]. Compared to the more accurate and
much more difficulty TGn Model-C in used in Fig. 4b and the
measurements in Fig. 4a, a much smaller MCMC Gibbs sampler
is needed for the BER to converge to Max-MAP performance.
Also, there is a large disagreement over the effectiveness of
the MMSE initialized MCMC detector. The Gaussian channel
model shows a functioning solution whereas both the real-
world and TGn simulated model performance shows strong
stalling.

Even after using a well matched channel model and the
HSADR interference metric in (12), the waterfall locations
of the simulation results do not perfectly match measurement
in Fig. 4 and 5. This is acceptable and to be expected as the
distribution of condition numbers do not perfectly match and
HSADR is an imperfect metric. What is important is that they
are close (within 1-2 dB), the convergence behavior of all
detector methods agree, and the parameters of MCMC and
K-Best necessary for convergence are similar. This means that
in the future these simulation techniques and models can be
used to perform a much deeper analysis of MCMC and X-
MCMC without performing real-world tests. If a closer match
between simulation and measurement results is desired, see our
previous work in [7] which uses condition number slicing to
control channel distributions. Slicing is no longer our preferred
method as it removes the contribution of outliers from the data
sets.

X. CONCLUSION

The previous MCMC algorithms introduced in the literature
display problematic stalling behavior at high SNR. Here
we have proposed the X-MCMC method and shown results
demonstrating that it solves this problem. We have also
described the construction of a low cost and effective §-antenna
MIMO testbed which others may replicate to do testing at all
802.11ac and worldwide LTE frequency bands. We matched our
measurements with simulations and showed that the channel
models most often used in the MCMC literature are insufficient,
leading to overoptimistic conclusions.

Future work should include a VLSI implementation and
complexity analysis of the algorithm. A more thorough
mathematical investigation and analysis of X-MCMC is under
preparation [12].
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