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Abstract

Crop residues are potential biofuel feedstocks, but residue removal may reduce soil carbon (C). The inclusion of
a cover crop in a corn bioenergy system could provide additional biomass, mitigating the negative effects of resi-
due removal by adding to stable soil C pools. In a no-till continuous corn bioenergy system in the northern US
Corn Belt, we used '*CO, pulse labeling to trace plant C from a winter rye (Secale cereale) cover crop into differ-
ent soil C pools for 2 years following rye cover crop termination. Corn stover left as residue (30% of total stover)
contributed 66, corn roots 57, rye shoots 61, rye roots 50, and rye rhizodeposits 25 g C m 2 to soil. Five months
following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil
C pools than were aboveground inputs, and much of the root-derived C was in mineral-associated soil fractions.
After 2 years, both above- and belowground inputs had declined substantially, indicating that the majority of
both root and shoot inputs are eventually mineralized. Our results underscore the importance of cover crop
roots vs. shoots and the importance of cover crop rhizodeposition (33% of total belowground cover crop C
inputs) as a source of soil C. However, the eventual loss of most cover crop C from these soils indicates that
cover crops will likely need to be included every year in rotations to accumulate soil C.
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Introduction

Bioenergy production could provide more sustainable
energy and reduce dependency on fossil fuels, while
using existing infrastructure for fuel delivery (Depart-
ment of Energy, 2011). Crop stover, not used for food,
represents an important potential feedstock for biofuel
production, but its removal could lead to lower soil car-
bon (C) stocks (Clapp et al., 2000; Anderson-Teixeira
et al., 2009) and thereby offset some of the greenhouse
gas benefits of biofuel production (Gelfand et al., 2010).
Removing 25% or 50% of stover biomass has been esti-
mated to reduce soil C by 3 and 8 Mg ha ™', respectively
(Anderson-Teixeira et al., 2009). Studies have reported
that maintaining soil C pools under corn requires 6—
12.5 Mg ha™! yr’l stover input (Zanatta et al., 2007;
Pikul et al., 2008; Johnson et al., 2014), depending on
edaphic properties and management practices (Wilhelm
et al., 2007). For example, Johnson et al., 2006 found that
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conventional tillage required more stover to maintain soil
C than no-till (7.6 vs. 5.3 Mg ha ' yr !, respectively). By
increasing plant C inputs to soil, cover cropping is one of
the more promising management practices that could
reduce the effects of stover removal on soil C stocks.

In annual temperate agroecosystems, cover crops are
often grown during seasonal windows when there are
no cash crops (e.g., fall-spring). Cover crops provide
many benefits to agricultural systems including weed
suppression and soil aggregation and are also known to
promote soil C formation (McDaniel ef al., 2014a; Kal-
lenbach et al., 2015; Tiemann et al., 2015). Thus, includ-
ing them in bioenergy cropping systems may counteract
the removal of aboveground crop residues by increasing
biomass inputs. Belowground cover crop inputs are
known to contribute disproportionately to soil carbon
(Puget & Drinkwater, 2001; Rasse et al., 2005; Kong &
Six, 2010; Mendez-Millan et al., 2010) and, as a result,
cover crops may serve as a useful tool for maintaining
soil C even if cover crop shoot biomass is harvested as a
biofuel feedstock (Moser et al., 2009). While the role of
aboveground cover crop biomass in building soil
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organic matter (SOM) has been widely discussed in the
literature (e.g., Barber, 1979; Hooker et al., 1982; Camp-
bell et al., 1991; Drinkwater et al., 1998; Marriott & Wan-
der, 2006; Calegari et al., 2008; Steele et al., 2012), little
attention has been paid to the role of belowground
cover crop inputs (but see Puget & Drinkwater, 2001;
Kong & Six, 2010), and whether they might be sufficient
to offset stover removal.

Several studies have shown that belowground root-
derived inputs contribute disproportionately to soil C
compared to aboveground shoot inputs (Balesdent &
Balabane, 1996; Clapp et al., 2000; Rasse et al., 2005;
Kong & Six, 2010; Mendez-Millan et al., 2010; Clem-
mensen et al., 2013; Mazzilli et al., 2015). Studies using
biomarkers specific to root and shoot tissue (Mendez-
Millan et al., 2010; Ji et al., 2015) and natural abundance
isotopes (Balesdent & Balabane, 1996, Mazzilli ef al.,
2015) show more root than shoot C in SOM, as do stud-
ies of cover crops using isotope labels (Puget &
Drinkwater, 2001; Kong & Six, 2010, 2012).

In addition to root biomass, rhizodeposits are an
additional source of belowground C. Annual grain
crops allocate 30-50% of photosynthate belowground,
and 30-50% of belowground C are attributed to rhi-
zodeposits although values as high as 40% of total plant
inputs have been reported (Barber & Martin, 1976;
Meharg & Killham, 1991; Puget & Drinkwater, 2001;
Kuzyakov et al., 2003; Butler et al., 2004; Jones et al.,
2009). Up to 75% of soil C inputs to SOM come from
belowground sources including root biomass and rhi-
zodeposits, whereas C from plant shoots is mostly lost
via respiration (Gale et al., 2000). As for shoots, the
majority of annual crop root biomass turns over in a
single pulse at the time of plant death. However, during
the growing season rhizodeposits are continuously
being added to SOM from root turnover, sloughed or
border cells, mycorrhizal hyphae, actively released
secretions, and passively released exudates (Jones et al.,
2009; Bradford et al., 2012). Rhizodeposits thus represent
a significant input to soil C that may differ from bio-
mass inputs because they are continuous, differ in
chemical composition, and enter SOM in close physical
proximity to soil minerals and microbial communities.
Continuous rhizodeposition can stimulate microbial bio-
mass production and activity, a key precursor for SOM
formation (Grandy & Neff, 2008; Schmidt et al., 2011;
Wieder et al., 2014, 2015; Kallenbach et al., 2015), and
rhizodeposits may be preferentially protected in aggre-
gates on mineral surfaces (Rasse ef al., 2005; Dungait
et al., 2012; Mazzilli et al., 2015).

Recent work suggests occlusion in soil aggregates or
mineral association may be more important mechanisms
for long-term SOM stability than reduced decomposition
rates via chemical recalcitrance (Grandy & Neff, 2008;

Dungait ef al., 2012; Wieder et al., 2014; Kallenbach et al.,
2015, 2016). Thus, organic matter occlusion in soil aggre-
gates or association with minerals influences its accessi-
bility to microbes, and thus potential to persist in soil (Six
et al., 2002; Grandy et al., 2009). In order to capture func-
tionally different SOM pools, fractionation methods are
used to separate SOM into pools with distinct protection
mechanisms (Zimmermann et al., 2007). The simplest
density fractionation defines two pools: a light fraction
containing minimally processed inputs known as partic-
ulate organic matter (POM) and the remaining heavy
fraction (Gregorich et al., 2006). Occluded POM can be
isolated by breaking up aggregates prior to density frac-
tionation, and sonication can disrupt a variety of associa-
tions between organic matter and mineral surfaces.
Complex fractionation schemes may seive multiple sizes
of soil aggregates or use multiple sonication steps to iso-
late SOM with increasingly strong mineral associations
and, presumably, turnover times (von Lutzow et al.,
2007). Cover crop residues in free POM may represent a
short-term SOM pool compared to cover crop inputs in
aggregates or in the heavy, mineral-associated fraction.

While past studies highlight the potential utility of
cover crops for restoring soil C lost to stover removal,
their potential to do so under different agricultural man-
agement scenarios has not been well studied. For
instance, tillage intensity is likely to impact the relative
contribution of root vs. shoot C to SOM (Allmaras et al.,
2004). Presumably incorporation of aboveground cover
crop biomass via tillage would lead to increased shoot C
storage; however, studies of root and shoot contributions
to SOM have usually taken place in tilled systems (Puget
& Drinkwater, 2001; Kong & Six, 2010). Thus, it remains
uncertain whether cover crop root and/or shoot inputs
could help counteract the negative effects of residue
removal on soil C in no-till bioenergy cropping systems.

Here, we examine the relative contributions of cover
crop root and shoot to soil C in order to determine
whether belowground cover crop C could help offset
the deleterious effects of residue removal in a no-till
continuous corn bioenergy cropping system. We labeled
cereal rye (Secale cereale), a common winter cover crop,
in situ with '*CO,, tracked inputs from rhizodeposits
during the growing season, and tracked root and shoot
inputs into different soil C pools over the following
2 years. We address four specific questions: (1) What
are the relative contributions of different cover crop
inputs to so0il C? (Cshootr Crootr aNd Cynizo; Table 1); (2a)
How much Ciiyo is incorporated into MBC during
cover crop growth; and (2b) is Cgpoot OF Cpg preferen-
tially incorporated into MBC during cover crop decom-
position? (3) How are Cgpoor and Cpg distributed among
three soil density fractions?; and (4) How long do Cgpeot
and Cyg persist in soils?
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Table 1 Abbreviated terms are defined for four cover crop C inputs, two experiments, and three soil density fractions

Abbreviation Definition

Cover crop carbon inputs: Pulse labeling of cover crops in situ provides realistic estimates of above and belowground C inputs
without disturbing root-soil interactions. At the time of cover crop termination we measured root biomass and soil C from

cumulative rhizodeposits during cover crop growth. However, after termination it is not possible to distinguish between rhizodeposit
13C, which occurred during the growing season, and 13C from decomposing root biomass following cover crop death. We therefore
define a fourth pool of belowground C inputs resulting in four specific plant C inputs, defined below.

Cahoot Carbon input from cover crop shoot biomass

Croot Carbon input from cover crop root biomass, measured at the time of cover crop harvest

Crhizo Carbon inputs from rhizodeposits during cover crop growth (e.g., exudates, sloughed cells, root hair turnover)

Cog Carbon from all belowground cover crop inputs: root biomass and rhizodeposits. (After cover crop termination, C,oor

and Cipizo combine into Cypg.)

Experiments: We performed an initial labeling experiment in 2013 to assess the fate of cover crop C inputs following cover crop
termination. Early results indicated that growing season rhizodeposits represented a significant source of cover crop C inputs. We
therefore performed a second labeling experiment in 2014 to measure belowground cover crop inputs during plant growth.

EXP1 Experiment one: Labeling took place in five pulse labeling events during April and May 2013. Samples were
measured at 0, 5, 12, and 17 months following cover crop termination.
EXP2 Experiment two: Cover crops were labeled in five pulse labeling events during April and May 2014. Samples were

measured during cover crop growth 24 h following the first and third labeling events, and 0, 5, and 12 months

following cover crop termination.

Soil density fractions: We define three soil density fractions based on separation with 1.6 g L™! sodium polytungstate and calculated

as a proportion of sand-free soil.

FLF Free light fraction: particulate organic matter <1.6 g L' density
OLF Occluded light fraction: particulate organic matter <1.6 g L™' density released by shaking to disrupt soil aggregates
MHF Mineral heavy fraction: >1.6 g L™" density

Materials and methods

Experimental design and labeling

The Great Lakes Bioenergy Research Center (GLBRC) Biofuel
Cropping System Experiment (BCSE, http://glbrc.org/) was
established in 2008 at the Kellogg Biological Station LTER site
(42° 24’ N 85° 24" W, 288 m asl) in Southwest Michigan, USA.
Temperature at the site ranged from —26.5 °C to 34.4 °C during
the period of experimentation (2013-2014), and mean annual
air temperature was 8.8 °C in 2013 and 7.6 °C in 2014. Precipi-
tation was 1177 mm in 2013 and 933 mm in 2014. The domi-
nant soil series is Kalamazoo (fine-loamy, mixed, mesic Typic
Hapludalfs; Munoz & Kravchenko, 2011; Tiemann & Grandy,
2015). Cover crops were added to the no-till continuous corn
treatment in 2012. The treatment was replicated in five
30 x 40 m replicate plots with a subplot (4.6 x 13.1 m) in
which cover crops were terminated via glycophosphate appli-
cation. The winter cover crop Secale cereale (winter rye) was
planted November 10, 2012 and October 29 and 30 of 2013. The
cover crop in the subplot was terminated with herbicide just
prior to planting of corn (Zea mays, Pioneer PS906AM Corn
Hybrid) on June 5, 2013 and May 30, 2014.

To assess the fate of cover crop root and shoot C in bulk
soils, soil density fractions, and microbial biomass over a
2 year period, we established a reciprocal litter transfer experi-
ment with '*CO, labeled winter rye in the spring of 2013

(EXP1, Table 1). Early results indicated that rhizodeposition
could be an important component of belowground C inputs,
and we therefore established a second labeling experiment fol-
lowing the same methods in adjacent plots in 2014 (EXP2,
Table 1) to estimate belowground inputs to bulk soil and
microbial biomass during the growing season. At the start of
each experiment (EXP1 and EXP2), we established three 1 m?
plots in each block of the BSCE. One plot in each block was
randomly designated for '*CO, pulse labeling as described
below. We chose to establish the plots within the herbicide
treatment to minimize transfer of cover crop residues between
subplots by farm equipment. However, cover crops in our plots
were clipped prior to glycophosphate application (further
described below) and thus not terminated by herbicide.

Pulse labeling was carried out five times between snow melt
in early April and cover crop termination in late May. At the start
of each labeling event, the designated plot was enclosed under a
1 m” adjustable height chamber constructed of PVC and clear
vinyl sheeting. To seal the chamber to the soil, we placed sand-
bags along the vinyl where it met the ground. We monitored the
concentration of CO, in the chamber continuously using a porta-
ble infrared gas analyzer (Qubit CO, Analyzer, Model S-151;
Qubit Systems, Kingston, ON, Canada) and deployed a small fan
inside the chamber to maintain an even distribution of CO,. We
recorded initial CO, concentration in the chamber and added 99
atom percent enriched 13CO, at therate of 1 L min ™! for 2-3 min
to a maximum level of roughly double ambient CO,
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concentration (actual mean 853 ppm). The chamber was left in
place until the CO, concentration returned to ambient levels, the
duration of the period between peak CO, concentration and
removal of the chamber ranged from 18 to 96 min (mean
41 min). Because photosynthetic rate varies throughout the day,
all labeling occurred between the hours of 10 : 00 and 15 : 00
and the blocks were visited in random order each time. Labeled
plots were re-covered with the chambers at night to capture
13CO, lost from nighttime respiration for re-assimilation the fol-
lowing morning, thereby increasing our labeling efficiency.

Treatment establishment and plant sampling

Following pulse labeling and prior to corn planting, we termi-
nated rye cover crop by clipping aboveground biomass to
ground level on May 24, 2013 in EXP1 and May 24, 2014 in
EXP2. We collected rye and weeds separately, air-dried,
weighed, and cut the shoots into 2.5 cm pieces before returning
the material to the soil surface. Aboveground biomass was
transferred among three plots within each block to create a root
plot containing labeled roots and unlabeled shoots, a shoot plot
containing unlabeled roots and labeled shoots, and a control
plot containing unlabeled roots and shoots.

We estimated root biomass at the time of rye termination in
EXP2 by isolating roots from bulk soil cores; four soil cores
(5 cm diameter, 15 cm deep) were collected per plot, and roots
larger than 2 mm diameter were isolated by sieving fresh soil
collected at the rye termination date. To ensure we were accu-
rately estimating root biomass, two air-dried soil samples from
control plots were later wet sieved to 250 um and fine roots
and all discernible root material were collected under a dissect-
ing microscope. Because wet sieving resulted in negligible
increases in root biomass estimates, we consider soil sieved to
2 mm root free. Root biomass in EXP1 plots were estimated
using the aboveground biomass measures in EXP1 and the
ratio of total root biomass to shoot biomass in EXP2 plots.
Additional rhizodeposits were estimated using the 6'°C values
of bulk soil collected from the root plots at the time of cover
crop termination and sieved to 2 mm. Belowground C inputs
based on bulk soil 8'°C %, values at the time of cover crop ter-
mination were calculated as described below. The final isotopic
composition in the EXP1 rye was 757 (105) 3'°C %, for the
shoots and 701 (£83) 0'°C 9, in the roots; and 787 (+£149) §'°C
9, in shoots and 719 (+60) 6'°C %, in roots for EXP2 rye.

Soil sampling

To assess rhizodeposits, we collected soil 24 h after the first
and third labeling events during the spring cover crop labeling
period in EXP2. To calculate the relative contribution of rhi-
zodeposit C at the time of rye termination, we collected soils at
the time of rye termination and treatment establishment in both
EXP1 and EXP2, and to evaluate changes in cover crop C from
aboveground or belowground sources over time, we sampled
after 5 months of cover crop residue decomposition in both
EXP1 and EXP2, and after 12 and 17 months of residue decom-
position in EXP1. We calculated bulk density using four 5 cm
diameter, 10 cm long cores taken from each plot.

Density fractionation

To assess the contribution of root and shoot C to different soil
fractions, we performed sodium polytungstate (NaPT) fractiona-
tion on EXP1 soils collected 5 and 17 months following rye termi-
nation. We followed a standard protocol for density fractionation
(Sohi et al., 2001) with modifications described below. Air-dried
soils were first rewetted using capillary action (Haney & Haney,
2010). About 50 g of air-dried soil from each sample was added
to a beaker with holes drilled in the bottom, which was placed in
a glass jar (473 mL) with 10 mL deionized water on a glass
microfiber filter (Whatman, GF/D 1823 - 043, GE Healthcare Life
Sciences, Buckinghamshire, UK). Soils were monitored and in
the case that the soil surfaces were dry after 1 h, water was added
in 1 or 2 mL increments up to 5 mL (15 mL added total) until
moisture had permeated the soil sample.

Following an 8 h incubation, a soil subsample was dried at
70 °C to assess gravimetric water content, and 10 g of moist
soil were added to each of three 50 mL centrifuge tubes along
with 30 mL of NaPT at 1.7 g mL ™" density (final density after
addition of wet soil was 1.68 g mL™"). Tubes were then rolled
along the counter one full rotation to promote mixing of the
soil with the NaPT and then allowed to settle overnight. The
floating light fraction (hereafter free light fraction (FLF,
Table 1)) was then vacuumed from the surface and collected
on preweighed, ash-free 8 pm pore size filter paper (Whatman,
1540- 055, GE Healthcare Life Sciences, Buckinghamshire, UK).
The centrifuge tubes with soil were then placed on a shaker at
250 rpm for 3 h to break apart aggregates, and tubes were sub-
sequently removed from the shaker and placed in a rack over-
night. The floating particulate organic matter (hereafter
occluded light fraction (OLF, Table 1)) was vacuumed from the
surface and processed as for the FLF. Approximately 5 g of the
remaining soil was rinsed of residual NaPT by adding 25 mL
deionized water, shaking for 1 h at 200 rpm and centrifuging
at 966 ¢ for 2 min; the supernatant was removed, and the rinse
was repeated once more. Following centrifugation, the sample
contained the mineral heavy fraction (MHF, Table 1) at the sur-
face, increasing concentrations of sand toward the bottom. A
small portion of sand-free MHF collected from the surface was
dried and analyzed for °C and total C and N contents. Sand
content was determined on approximately 10 g of air-dried
bulk soil after dispersing soil in 2.5 mL 5% hexametaphosphate
and collecting the sand on a 53 pm sieve.

Microbial biomass

We measured microbial biomass C (MBC) and '*C content in
bulk soil on three sample dates in EXP1, 5, 12, and 17 months
following termination, and four sample dates in EXP2, 24 h fol-
lowing the first and third labeling events, at time of termina-
tion, and 5 months after termination. Soils were subsampled
after sieving to 2 mm, and subsamples were transported on ice
to the laboratory where they were refrigerated at 4 °C and ana-
lyzed for MBC within 5 days of sampling. MBC was extracted
from five grams of field moist soil using a modified chloroform
fumigation and extraction with 40 mL of 0.5 M K,SO4 (McDaniel
et al., 2014b).
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BC measurements

Plant and soil "*C values were analyzed on a Finnigan Delta Plus
XP isotope ratio mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) with a peripheral Costech 4010 elemental
analyzer (Costech Analytical Technologies, Valencia, CA, USA)
at the University of New Hampshire Stable Isotopes Laboratory
at the Institute for study of Earth, Oceans and Space. Samples
were ground to a fine powder in a ball mill grinder (SPEX Sam-
plePrep 8000D Mixer/Mill, Metuchen, NJ, USA), and ground,
homogenized samples were weighed into Costech aluminum
tins (9-11 mg soil or MHF and 2-2.5 mg plant material, FLF, or
OLF). Microbial biomass extracts were analyzed for C content
and "°C content at the Stable Isotope Facility at the University of
California, Davis using an O.I. Analytical model 1030 TOC Ana-
lyzer (OI Analytical, College Station, TX, USA) interfaced to a
PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon Ltd.,
Cheshire, UK) with a GD-100 Gas Trap Interface (Graden Instru-
ments, Oakville, ON, Canada).

Calculations

The fraction of a given C pool (bulk soil C, FLF C, OLF C,
MHF C, and MBC) coming from a cover crop source material
(Feover) Was calculated using the following mixing model:

_ 5sample - (Scor\trol (1)

fcover - 5 5 )
source — Ycontrol

where dsample refers to the 613C value of the soil sample in ques-
tion, dcontrol Tefers to the relevant control (or unlabeled plot), and
Osource Tefers to the labeled plant source material (root or shoot).
We used the 6"°C value of root material as the dource fOr feover Of
rhizodeposits (Puget & Drinkwater, 2001). The f.over Value was
multiplied by the C concentration of each sample material to cal-
culate the new C incorporated from each source material (Cpew)-
The 6'3C value of MBC (JMBC) was calculated as:

((513CFUM * CFUM) - (513CUF * CUF))
(Crum — Cur) '

where 0"°Crypm and 6'°Cy are the §6'°C value of the fumigated
and unfumigated samples, respectively, and Cgyy and Cyr are
the carbon content of the fumigated sample and unfumigated
samples, respectively.

We calculated a standardized measure of root vs. shoot con-
tribution to soil C (i.e., the relative contribution factor) as

OMBC =

)

Cyg insoil /Cpg inputs

- p ; 3
Cihoot in 5011/ Cghoot inputs ®)
(Rasse et al., 2005). Thus, a relative contribution factor greater
than one indicates preferential storage of Cpg to Cgpoot in soil C.

Statistical analysis

All data manipulation and statistical analyses were performed
in R (R Core Team 2014). The following response variables were
log-transformed to meet the assumptions of normality: Foyer Of
bulk soil C, Fyyer of MBC, new FLF C, new OLF C, and ¢'°C in
EXP2 bulk soil. To test differences between F qyer in bulk soil

or MBC in root and shoot plots at each sampling date after ter-
mination (5, 12, and 17 months in EXP1; 2 weeks and 5 months
in EXP2), we performed separate one-way aANovas at each date.
To compare whether F.,ver in MBC plots was different from
zero, we performed separate one-way t-tests for root and shoot
treatments at each date. To compare C inputs from cover crop
material in soil density fractions, we performed separate one-
way aNovas on FLF, OLF, and MHF fractions in EXP1 at 5 and
7 months. To test whether §"°C values increased in bulk soil in
root treatment plots during the growing season in EXP2 plots,
we compared root and control plots in a two-way ANOvA with
date and treatment as discrete independent variables and per-
formed one-way f-tests on the difference in §'°C values (3'°C
root plot — §"*C control plot). We report mean values + stan-
dard error and consider « < 0.05 a statistically significant effect.

Results

In EXP1, 151 (£73)g m2 and in EXP2, 123
(£59) g m~? aboveground rye biomass was added to
each subplot (oven dry weight), corresponding to
669 + 3.2 and 54.5 + 2.6 gC m 2 (Cgnoor, Table 1). In
EXP2, 151 (£37.2) gm > of belowground biomass
(44.8 + 11.0 gC m % Croo, Table 1) was measured in
each subplot and belowground biomass inputs in EXP1
were estimated to be 186 g m > (55.0 £ 2.7 gC m ).
When rye was cut in EXP1, plots contained 26.6
(48.7) g m ™2 of rhizodeposit C (in addition to measured
root biomass, Cp, Table 1) and in EXP2, this value was
23.4 (£3.3) gC m  (Table 3).

After 5 months, the contribution of Cy, to bulk soil C
in EXP1 was approximately four times greater than that
of Cenoot (145 +25¢gCm 2 vs. 35+08gCm?
Fig. 1a; Fu8 =263, P <0.001). One year following
cover crop termination, seven times more C,g remained
in bulk soil (14.8 + 1.3 gC m ™2 or 0.7% of total soil C)
than Cgpoor 233 £22 ¢ m~2 or 0.1% of total soil C;
Fig. 1a; Fug =176, P =0.003). However, after
17 months, there was no difference in bulk soil C
derived from Cpg and Cgoot in EXP1  (Fig. 1a,
Fa,s) =03, P =0.63). During the period of cover crop
growth in EXP2 plots, Cp,; accumulated in bulk soil in
the root plots (Fig. la, Treatment Fpee = 33.2,
P < 0.0001; Date F ¢6) = 5.59, P = 0.02). As soon as 24 h
following the first labeling event, 12.7 £ 1.9 gC m 2
was attributable to belowground cover crop inputs. This
number peaked at 23.4 £ 3.3 gC m~? at the time of rye
termination. C,g remained more abundant than Cgpot
up to 5 months following rye termination, similar to
observations in EXP1 (10.9 + 3.4 g m > Cpg and
329+ 20¢g m 2 Canoots Fig. 1a, F1,9) = 6.7, P = 0.03).

Total MBC in soil ranged from b56.1 &+ 19.3 mg
MBC kg ' soil to 240.1 + 20.9 g MBC kg ! for the dif-
ferent sampling events across EXP1 and EXP2 (Table 2).
Microbial biomass in EXP1 contained over three times
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Fig. 1 (a) New cover crop carbon from Cog (black) and Cgpoor (gray) sources in EXP1 (left) and EXP2 (right) plots. About
266 £87¢g m 2 of Crnizo Was present in bulk soil at the time of cover crop termination in EXP1, and significantly more Cpg than
Cshoot Was present after up to 1 year of decomposition. However, after a second growing season (17 months after termination), there
was no detectable difference between root and shoot carbon present in the soils (left). Similarly, 23.41 + 3.3 g m 2 of Cypipo Was pre-
sent in bulk soils in EXP2 at the time of termination and the label in the bulk soil decreased during the first 5 months of cover crop

decomposition (right). Gray boxes represent comparable periods after cover crop termination (0-5 months of decomposition). Error
bars display standard error. (b) Percent of total MBC comprised of Cyg (black) and Cypeot (gray) in EXP1 (left) and EXP2 (right) plots.
Belowground C accumulated in EXP2 root label plots during cover crop growth (right) and C,, was present in the MBC up to
17 months following rye termination in EXP1 (left). MBC contained more Cpg than Cpoor up to 1 year following cover crop termina-
tion, but after a second growing season, there was no difference between Cpg and Cgpoor in MBC in EXP1 (left).

more Cpg (1.9 + 0.2% of MBC) as compared to that of
Cahoot (0.6 £0.1% of MBC) after 5 months (Fig. 1b,
Fag =582, P<0.001) and seven times more Cig
(0.8 £ 0.4% of MBC) than Cspoor (0.1 = 0.1% of MBC)
12 months following rye termination (Fig. 1b, F g) = 6.4,
P = 0.04). Following 17 months of cover crop decompo-
sition, there was no difference in the fraction of MBC
derived from Cpg or Cguoor in EXP1 (Fq s = 0.78,
P =0.41) although both Cyz (0.8 + 0.2%, P = 0.01) and

Cshoot (0.6 = 0.06%, P = 0.002) were present in MBC. We
measured significant Cp,g inputs to MBC in EXP2 at each
sampling date during cover crop growth (P <0.01 at
each date, Fig. 1b), comprising 2.9 + 0.4% of MBC 24 h
following the first labeling event. The fraction of MBC
traced to Cp, peaked after the third label at 10.0 & 3.8%
of total MBC. At rye termination in EXP2, 8.8 £ 3.0% of
MBC was derived from C,g. There was no significant dif-
ference in the proportion of MBC from Cyg (3.2 £ 31.9%)
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Table 2 Soil properties in the continuous corn plus cover
crops rotation at the Great Lakes Bioenergy Research Center
biofuel cropping systems experiment. Soil fractions (FLF, OLF,
and MHF) are calculated as a proportion of sand- free soil and
values are averaged for 5 and 17 months sample dates in EXP1
(n = 30)

Mean (SE)
Total soil C (%) 1.1 (0.02)
pH 6.7 (0.2)
Sand content (%) 51 (12)
Bulk density (g cm ™) 1.47 (0.03)
MBC (mg kg soil) 115.8 (12.4)
FLF (mg g~ soil) 7.28 (2.3)
OLF (mg g ' soil) 6.03 (0.6)

MHF (mg g~ soil) 476.57 (21.6)

and the proportion from Cgoor (1.3 £ 0.5%) after
5 months of cover crop decomposition in EXP2
(Fag = 0.27, P = 0.62) although both Cy, (P = 0.004) and
Cshoot (P = 0.002) were present in MBC (%2MBC > 0).

There was more new C incorporated from Cyp,, com-
pared to Cghoor, in OLF and MHF 5 months following
rye termination in EXP1 (Fig. 2). In the OLF, four times
more C was derived from Cyg (6.84 + 1.7 gC m?) than
from Cgpoor (1.54 £ 0.5 gC m 2 representing 1.64 and
0.39% of total OLF, respectively (Fqg) = 10.4, P = 0.01;
Fig. 2). In the MHF, six times more C,; was present
(11.0 £ 23 g Cm 2 than Cgoer (1.68 + 1. g Cm ?)
representing 0.77 and 0.18% of total MHF (F = 15.0,
P =0.005; Fig. 2). A year later, 17 months following
cover crop termination in EXPI1, there were no differ-
ences in Cpg and Cgpoor contributions to FLF, OLF, and
MHF C (FLF: Fg g = 0.004, P = 0.95; OLF: F( 5 = 0.10,
P =0.76; MHEF: F gy = 0.07, P = 0.79; Fig. 2).

Discussion

Our CO, pulse labeling results showed belowground
cover crop C inputs (C,g) present in higher concentra-
tions than cover crop shoot biomass C inputs (Cgpeor) in
bulk soil, MBC, OLF, and MHF for at least 12 months fol-
lowing cover crop termination. The relative contribution
factor suggests that C, is three times more likely to be
maintained in potentially stable soil pools than Cgpeor
12 months following cover crop termination, and Cpg
was most abundant in the mineral-associated fraction.

What are the relative contributions of cover crop shoots,
rhizodeposits, and total belowground C inputs (Cgpor,
Crnizo, and Cg) to soil C?

Total Cgpoot and Cpg inputs (cover crop shoot C inputs
and belowground C inputs, Table 1) were similar,
although a high proportion of Cgpoor may be lost via

w
(@~
B Root
# # O Shoot
=z S
2 o
g
=
£
g »n
20 o=
B
&
E
g8 =
g =
ou
o
5
5
g wn
i =}
o -i
2 L
FLF OLF MHF FLF OLF MHF
5 months 17 months
(b) .
- E Ed
B Root
O Shoot

12

10

y >
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from cover crop source material

FLF OLF MHF FLF OLF MHF

5 months 17 months

Fig. 2 (a) Percent of soil carbon coming from C,g (black) or
Cshoot in three density fractions 5 months following rye termi-
nation in EXP1 and 17 months following rye termination in
EXP1. A greater proportion of the occluded light fraction (OLF)
and mineral heavy fraction (MHF) were comprised of Cy, than
of Canoot after 5 months (left); however, after a second growing
season (17 months), there was no significant difference in the
fraction of soil carbon coming from G, or Cgpeor SOUTces in any
density fraction (right). (b) New carbon inputs from below-
ground cover crop inputs (Cpg, black) and shoots Cgpeo in three
density fractions of bulk soil carbon 5 and 17 months following
rye termination in EXP1. Total belowground C inputs to the
OLF and MHF were greater than those from shoot sources after
5 months (left); however, there was no difference in the C
remaining from Cpg vs. Cghoor after 17 months and a second
growing season (right).

respiration before entering the soil; one study estimated
that approximately 75% of C entering the soil was from
Cpg (Gale & Cambardella, 2000). A substantial portion
of G, inputs were attributed to Cipi (Table 3). We
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estimate that rhizodeposition during cover crop growth
accounted for 33% and 34% of total Cp,g inputs in EXP1
and EXP2, respectively (Table 3). These values are simi-
lar to those reported in the literature, which range from
30% to 50% of total Cyg, although values as high as 40%
of total plant inputs have been reported (Barber & Mar-
tin, 1976; Meharg & Killham, 1991; Puget & Drinkwater,
2001; Kuzyakov et al., 2003; Butler ef al., 2004; Jones
et al., 2009).

We observed significantly more Cpg than Cgpoor in all
measured soil pools, except FLF, for up to 1 year fol-
lowing termination. Our mean relative contribution fac-
tor across the two experiments is 3.06 (3.36 in EXP1 and
2.77 in EXP2), indicating that on average 3.06 times
more Cpg than Cgppor, per unit C input, was converted
to SOM. This value is comparable to others reported in
the literature; for example, Puget & Drinkwater (2001)
estimated a relative contribution factor of 3.7 using
in situ isotopic labeling of a hairy vetch cover crop and
Kong & Six (2010) found a relative contribution factor of
3.24 for a hairy vetch cover crop in a maize/tomato
rotation. Rasse et al. (2005) compared the relative contri-
bution factor of roots to shoots across various in situ
studies of different plant types and found relative con-
tribution factors ranging from 0.77 to 3.7 and an average
value of 2.4.

The greater abundance of Cpg vs. Cgpoor in SOM, and
its higher efficiency of conversion to SOM, is likely due
to differences in the size, chemical composition, loca-
tion, and timing of the two inputs (Rasse et al., 2005;
Loecke & Robertson, 2009a,b; Mendez-Millan ef al.,

2010; Dungait et al., 2012). Greater physical protection
of Cpg may result from the small size and close proxim-
ity of belowground inputs to soil aggregate formation
(Tiemann & Grandy, 2015). Many belowground inputs,
especially rhizodeposits, are orders of magnitude smal-
ler in size than shoot inputs that must be shredded, lea-
ched, or otherwise broken down prior to incorporation
in soil aggregates (Jones et al., 2009). Roots play an
important role in structuring soil and contribute to
aggregate formation; therefore, rhizodeposits are inher-
ently positioned to be enmeshed in soil aggregates
(Puget & Drinkwater, 2001; Denef & Six, 2006; Clem-
mensen et al., 2013). Increased mineral association of
Cpg may be facilitated by the close proximity of rhizode-
posits to mineral surfaces and the chemical composition
of soluble rhizodeposits.

It has also been suggested that belowground inputs
decompose slowly due to the chemically complex com-
ponents of root biomass (e.g., lipids or waxes such as
suberin; Rasse et al., 2005; Mendez-Millan et al., 2012).
However, given that long-term SOM storage is not dri-
ven by chemical recalcitrance of direct plant inputs
(Dungait et al., 2012; Cotrufo et al., 2013) as much as it
is by the physical protection of plant and especially
microbial products by association with minerals
(Grandy & Neff, 2008; Heckman et al., 2013). Thus, an
alternative mechanism is that through transformation
via microbial consumption, root inputs may enhance
microbial processes that result in the preservation of
root-derived C. For example, the continuous input of
low molecular weight substrates in the rhizosphere may

Table 3 Mean biomass and C inputs from cover crop and corn plant fractions in 2013 (EXP1) and 2014 (EXP2), values in parentheses

represent standard error

Biomass (g m )

Carbon (gC m?)

EXP1 EXP2 EXP1 EXP2
Cover crop inputs
Shoot 151.3 (7.3) 123.2 (5.9) 66.9 (3.2) 54.5 (2.6)
Root 185.8 (9.0)F 151.3 (37.2) 55.0 2.7)% 448 (11.0)
Rhizodeposits - - 26.6 (8.7) 23.4 (3.3)
Belowground total - - 81.6 68.2
Total cover crop inputs 337.1 274.5 148.5 122.7
Corn residues
Harvested stover 367.0 (7.5) 499.3 (39.5) 163.2 (3.3) 222.0 (17.6)%
Stover residue 148.6 (11.4) 213.3 (15.2) 66.2 (5.2) 949 (6.7)
Root 128.1 (14.5) 177.0 5.7)T 57.3 (6.0) 79.5 5.7)%
Stover total 515.6 712.6 229.3 316.9
Total corn inputs 276.8 390.4 123.5 396.4

tValues for belowground productivity were estimated for cover crop in EXP1 and corn in EXP2 based on corresponding allometry

(root: shoot) in EXP2 and EXP1, respectively.

$Values for cover crop root C inputs in EXP1 and corn C inputs in EXP2 were estimated based on corresponding cover crop chem-

istry in EXP2 and corn in EXP1, respectively.
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promote greater carbon use efficiency (CUE), which
may in turn lead to greater rates of C retention in soils
(Puget & Drinkwater, 2001; Kallenbach et al., 2015;
Roller & Schmidt, 2015). Further, recent work suggests
that the majority of stabilized C in soils has been previ-
ously transformed by microorganisms or else is com-
posed of microbial necromass. (Grandy et al., 2007;
Kindler et al., 2009; Miltner et al., 2012). The rapid incor-
poration of root inputs to microbial biomass may fur-
ther promote its protection by association with minerals
(Grandy & Robertson, 2007; Tiemann & Grandy, 2015).

How much C,yz, is incorporated into MBC during cover
crop growth and is Cqpoor 01 Cyg preferentially
incorporated into MBC during cover crop decomposition?

Given the assertion that microbial belowground inputs
may be more rapidly incorporated into microbial bio-
mass and that microbial biomass serves as an impor-
tant pathway for the C stabilization, we examined the
incorporation of Crhizo, Cshoot, and Cpg into MBC.
Twenty-four hours following the first labeling event in
EXP2, 0.83 (£0.1) g m 2 Cpizo Was present in MBC,
constituting 2.9% of total MBC. At the time of rye ter-
mination, 2.31(£1.1) g m 2 Cupizo was in MBC, which
constituted 8.8% of total MBC. Pulse chase labeling
studies have found photosynthate in MBC as soon as
1 h following fixation, with peak concentrations occur-
ring roughly 3 h after fixation (Minchin et al., 1994;
Rattray et al., 1995; Dilkes et al., 2004). Rhizodeposit C
comprised 8.8% of total MBC at time of rye termina-
tion, which is lower than the 25-30% of MBC reported
by Williams et al. (2006) in a system of ryegrass and
clover with belowground biomass of 200-210 g m~2
(compared to 151-186 g in our study, Table 3). Fungi
and bacteria in the rhizosphere produce polysaccha-
rides and other binding agents, and transformation by
microbial decomposers can be an important precursor
to SOM protection on mineral surfaces (Six et al., 2006;
Grandy & Neff, 2008; Miltner et al., 2012; Mardhiah
et al., 2014; Kallenbach et al., 2015). The greater abun-
dance of Cpg than Cghor in MBC 5 months to 1 year
following termination indicates more belowground C is
entering the microbial biomass, which may help
explain the higher concentrations of Cpg in mineral-
associated fractions.

How are Cqpoor and Cyg distributed among three soil
density fractions?

In an effort to understand the turnover and stabilization
dynamics of Cpg and Cgpoor, we measured the incorpora-
tion of cover crop C into three different soil fractions.
Cover crop C derived from either Cpg or Cgpoor

accumulated most in MHF C, followed by FLF C, then
OLF C (Fig. 2b) and cover crop C comprised the great-
est proportion of FLF C, followed by OLF C, and MHF
C (Fig. 2a). Slowed decomposition of Cp, due to chemi-
cal recalcitrance should result in a buildup of particu-
late organic matter (POM); thus, if greater retention of
Cpg than Cgpoor is simply due to greater chemical recalci-
trance of roots (which are not likely to result in long-
term SOM accumulation), we would expect more Cpg
than Cgpoor in the FLF. If physical protection within
aggregates is primarily driving greater abundance of
Cpg than Cgoor in soil, we would expect to find a greater
abundance of Cpg than Cgpeor in the OLF. More Cp,g than
Cshoot in the MHF would suggest the possibility that
direct mineral association is playing a role in slowing
the turnover of Cyg.

We did not observe differences between Cpg and
Cshoot in FLF C, where POM is not physically protected
and decomposition is primarily driven by chemical
recalcitrance. If decomposition of C,,, was slower due
to chemical recalcitrance, we would expect to find a
greater proportion of Cpg in the FLF C pool. We did
observe greater quantities of Cpg compared to Cgpoor in
FLF C, and the lack of statistical significance between
these two sources may be due to greater variation in the
quantity of cover crop C in FLF C compared to the OLF
and MHEF fractions. However, recent evidence suggests
that chemical recalcitrance and unprotected POM such
as that found in FLF contribute little to SOM stability
(Carrington et al., 2012; Dungait et al., 2012). Physical
protection may result in more Cp; POM in the OLF C
pool. Root exudates and secretions may play a role in
promoting aggregation, and the small size and close
proximity of Cp; POM to aggregate formation may
result in greater occlusion of C,; POM compared to
Cshoot POM.

In fact, we did observe a greater content of Cpg than
Cshoot in the OLF fraction, which indicates greater abun-
dance of root material than shoot residues as POM in
soil aggregates. The belowground POM inputs such as
root hairs, mycorrhizal hyphae, and to a lesser extent
fine roots are small enough to be incorporated into
microaggregates, which are usually defined as <250 um
but may be especially stable at the 2-20 pm scale (Krull
et al., 2003), which corresponds to the scale of the most
active components of mycorrhizal hyphae and root
hairs (Rasse et al., 2005). Conversely, shoot material
must be fragmented from the cm to pm scale before
incorporation into stable soil aggregates and some C
may be lost due to leaching or respiration during that
process. Thus, the relatively smaller size of some Cpg
components may promote enhanced physical protection
of belowground POM in soil aggregates. The decompo-
sition of POM in aggregates may be slowed by physical
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isolation from decomposers and low oxygen concentra-
tions (Six et al., 2002; Grandy & Robertson, 2007; Dun-
gait ef al., 2012).

Mineral association represents another mechanism
by which C,; may be preferentially stabilized in soil
(Dungait et al., 2012; Cotrufo ef al., 2013; Wieder et al.,
2014; Tiemann et al.,, 2015), and we did observe a
greater proportion of MHF derived from C,g than
from Cghoor after 5 months (Fig. 2a). Soluble rhizode-
posits include organic acids produced by plants such
as lactate, acetate, oxalate, malate, and citrate, which
adsorb to clay mineral surfaces via polyvalent cation
bonding (Kraffczyk et al., 1984). The highest contribu-
tion of rhizodeposits happens at the root tip, espe-
cially via mucilages, sloughed cells, and secretions
(Dakora & Phillips, 2002; Farrar ef al., 2003; Carvalhais
et al., 2011), and as the root tip grows between soil
pores, organic acids and mucilages are wiped along
the surface of soil minerals. Thus, Ci,,, contributing
one-third of total Cp, in this system, may have
greater likelihood of coming in contact with mineral
surfaces. Additionally, root inputs are in close prox-
imity to soil microbial communities, which can facili-
tate sorption on mineral surfaces. Greater mineral
association of Cpg than Cgpeor could result in greater
long-term storage of Cpg.

How long do Cyy and Cqypo persist in soil C?

Given six times greater abundance of Cpg than Cgpeor in
soils 12 months following termination, representing
three times greater relative contribution (relative to
inputs, see eq 3) of Cpg than Capeor, we would expect this
to result in the accumulation of SOM in the long term
as has been suggested in previous studies (Puget &
Drinkwater, 2001; Kong ef al., 2005; Rasse ef al., 2005;
Mendez-Millan et al., 2010). There are many cases in
which the presence of cover crops have led to increases
in soil C (Mullen et al., 1998, Mazzoncini et al., 2011;
Wang et al., 2012; Higashi et al., 2014; McDaniel et al.,
2014a; Tiemann et al., 2015), but others have shown no
effect (Kaspar et al., 2006; Steele et al., 2012). We did not
detect a difference between Cpg and Cgpoor in soils
17 months following termination in EXP1. The majority
of both Cpg and Cgpeot were mineralized after
17 months. This may indicate short-term persistence of
cover crop C in this system despite the lack of physical
disturbance from tillage, but further study could reveal
long-term stabilization of C,, in greater proportion than
Cshoot as observed in previous studies (Gale & Cam-
bardella, 2000; Puget & Drinkwater, 2001; Rasse et al.,
2005; Kong & Six, 2010; Mendez-Millan et al., 2010). A
stronger isotopic label may be required to detect the
long-term persistence of a single season’s cover crop

inputs in stable soil C pools, or repeated annual input
of labeled materials may reveal the accumulation of
cover crop carbon over time. The benefits of cover crop
to building soil may thus depend on continuous use of
cover crops in annual rotation with main crops.

Cover cropping could support partial harvest of corn
stover for biofuel production

Biofuel crop residues and cover crop biomass may pro-
vide substantial feedstock for bioenergy production
(Perlack et al., 2005; Graham ef al., 2007), but this
removal of potential soil C inputs could lead to reduced
SOM (Anderson-Teixeira et al., 2009; Blanco-Canqui &
Lal, 2009). However, several studies have found that
decreased aboveground inputs do not necessarily corre-
late with decreased SOM (Tonitto et al., 2006; Steele
et al., 2012; Adler et al., 2015). One potential mechanism
for this discrepancy is a disproportionate contribution
to SOM from belowground inputs (Balesdent & Bala-
bane, 1996; Rasse et al., 2005; Kong & Six, 2010; Men-
dez-Millan et al., 2010). A meta-analysis of residue
inputs required to maintain soil carbon in corn systems
estimated that a mean of 638 + 219 g m 2 corn stover
is required to maintain soil carbon (Johnson et al., 2014),
a value roughly equivalent to total annual stover input
at the GLBRC BCSE site (Table 3).

We estimate that the use of cereal rye as a winter
cover crop in a no-till continuous corn rotation at this
site could replace about 80% stover removal based on
productivity and carbon content of crops in 2013 and
2014, although conversion rates of stover to soil carbon
will vary with litter quality, soil type, management
practices, climate, and other factors. Total cover crop C
inputs are roughly equal to 80% of harvested stover C,
whereas belowground cover crop carbon inputs are
roughly equal to 42% of harvested stover C. As Gy, is
three times more likely to be stored in soil C than Cgpoot,
the incorporation of winter cover crop roots could sub-
stantially remediate the effects of stover removal in this
system in the short term. Including winter cover crops
in annual rotation could increase biofuel feedstocks
directly and indirectly; aboveground cover crop resi-
dues could contribute to biofuel feedstocks and below-
ground cover crop inputs could offset the C removal
associated with the use of main crop stover as a biofuel
feedstock.
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