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Core ldeas:

¢ Infrared spectroscopy and
chemometrics can be used to
quantify soil labile C.

¢ Soils amended with organic
materials need to be taken into
account during calibration
development.

¢ Selection of spectral regions can
give parsimonious predictions of soil
total and labile C.

(POXC) Using Infrared Spectroscopy

Labile soil carbon is an important component of soil organic matter because it
embodies the mineralizable material that is associated with short-term fertil-
ity. Permanganate-oxidizable C (POXC) is a widely used method for the study
of labile C dynamics in soils. Rapid methods are needed to measure labile
C, and better understand how this pool varies with soil C at regional scales.
Infrared spectroscopy is an inexpensive way to quantify SOC and observe fluc-
tuations in C functional groups. Using a sample set that encompassed several
soil types and plant communities (seven different research projects, n = 496),
soils were analyzed via diffuse reflectance Fourier transformed mid-infrared
(MidIR, 4000-400 cm™) and near-infrared (NIR, 10000-4000 cm~") spectros-
copy. Spectral data were used to develop calibrations for POXC, soil organic C
(SOQ), and total N (TN) using partial least squares (PLS) regression. The MidIR
predicted POXC slightly better than the NIR, with calibration and/or valida-
tion R2 values ranging from 0.77 to 0.81 depending on spectral pretreatments.
Predictions for POXC were better than SOC and TN, but site variability influ-
enced the calibration quality for SOC and TN. Using a selected MidIR region,
which included bands correlated to POXC (3225-2270 cm™), reduced the
calibration quality, but still gave acceptable R2 values of 0.76 to 0.77 for the
calibration and validation sets. We show that POXC can be predicted using NIR
and MidIR spectra. Selecting informative spectral bands offers an alternative to
using full spectra for PLS regressions.

Abbreviations: LFL, Living Field Laboratory; LTRAS, Long-Term Research on Agricultural
Systems; MidIR, diffuse reflectance Fourier transformed mid-infrared spectroscopy; MSC,
multiplicative scatter correction; OUG, Ohio Urban Garden; NIR, diffuse reflectance
Fourier transformed near-infrared spectroscopy; PLS, partial least squares; PCA, principal
components analysis; POXC, permanganate-oxidizable carbon; RMSE, root mean squared
error; SOC, soil organic C; SNV, standard normal variate; TN, total soil N.

ne of the most important aspects of agricultural soil quality pertains to

the soil’s capacity to cycle nutrients and make them available to grow-

ing crops. Permanganate oxidizable C reflects a fraction of labile soil C
that has been related to soil microbial biomass and particulate organic C, which
are fundamental for soil C cycling (Culman et al., 2012). Also, POXC has been
shown to be sensitive to changes in management as well as environmental con-
ditions (de Moraes S4 et al., 2014; Margenot et al.,, 2015; Panettieri et al., 2015;
Plaza-Bonilla et al., 2014; Xiang et al., 2015), sometimes more so than total soil C
(Wang ct al.,, 2014). The POXC is often, but not always, correlated to total soil C
content (Lucas and Weil, 2012; Veum et al., 2014). Furthermore, POXC is a frac-
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tion of total soil C that is thought to be easily degradable by soil
microbes and is also an important source of mineralizable N and
P for growing crops.

Diffuse reflectance mid-infrared (MidIR) and near-infra-
red (NIR) spectroscopy offer an alternative to traditional wet
chemistry-based soil analyses because they are inexpensive, high-
throughput, and require minimal sample preparation. The use of
spectra from whole soils is desirable given that the only sample
preparation needed before presentation to the instrument is dry-
ing and uniform grinding (Reeves, 2003). The MidIR spectral
region encompasses fundamental overtone absorbance bands
from several organic and mineral functional groups such as C=C,
$i-0, C-H, O-H, N-H, and C-N among others (Parikh et al,,
2014; Reeves et al., 2012). In contrast, the NIR spectral region
is largely made up of overtones, combination, and harmonics
of C-H, N-H, and O-H vibrations. Spectral interpretation is
more straightforward for the MidIR compared to the NIR due
to the nature of the absorbance bands in each region (Parikh et
al., 2014). Chemometric methods are necessary to obtain quan-
titative information from the large amount of data contained
in MidIR and NIR spectra (Bellon-Maurel and McBratney,
2011; Reeves et al,, 2006, 2012; Stenberg et al., 2010). Previous
work has shown that it is feasible to build reliable calibrations
based on heterogeneous soil samples provided that the spectral
and analyte data sets bracket the variation in the target samples
(Reeves et al.,, 2006). Even though the NIR and MidIR spectral
regions differ significantly at the theoretical level, soil properties
that give good calibrations with NIR tend to calibrate well us-
ing MidIR spectral data (Madari et al., 2005; Reeves, 2010). On
occasion, however, one of the spectral regions outperforms the
other depending on the soil property being quantified (Viscarra
Rossel et al., 2006). Besides using the full spectral range, spectral
region sclection can be a useful strategy in calibration develop-
ment, because the smaller number of spectral data points can
lead to more time efficient and parsimonious multivariate mod-
els (Fanget al., 2015).

Rapid and inexpensive methods are needed to assess soil
constituents and labile SOC. A previous study showed that
photacoustic Fourier transform infrared spectroscopy data can
be used to accurately predict labile C determined by incubation
and curve ficting (Peltre et al., 2014). Similarly, Thomsen et al.
(2009) showed that NIR can be used to assess C lability as deter-
mined by NaOCl oxidation. Veum et al. (2014) used MidIR and
NIR spectra from demineralized samples to predict POXC in
soils from Missouri, USA. A more comprehensive study is need-
ed to ascertain the potential of infrared spectra of whole soils to
predict labile C, as a proxy for soil quality, in a wider geographic
context. Our objectives were to (i) determine if MidIR and NIR
could be used to determine POXC, SOC, and TN on a wide
range of soils, (i) compare the calibration quality of the MidIR
and NIR, and (iii) test if a specific spectral regions can be used
instead of the full MidIR spectrum to develop more parsimoni-
ous calibrations for POXC.

MATERIALS AND METHODS
Soils

Samples included in the study came from seven different
agricultural research projects with a total number of samples of
496 (Table 1). The W.K. Kellogg Biological Station (KBS) site
was located in Hickory Corners, MI (42°24" N, 85°22’ W), on
Kalamazoo (fine-loamy, mixed, mesic Typic Hapludalfs) and
Oshtemo (coarse-loamy, mixed, mesic Typic Hapludalfs) soil se-
ries. The Long-Term Research on Agricultural Systems (LTRAS;
currently known as the Russell Ranch Sustainable Agriculture
Facility) site was located in Winters, CA (38°36’ N, 121°50" W)
on a Yolo silt loam (fine-silty, mixed nonacid, thermic Typic
Xerorthents) and Rincon silty clay loam (fine, montmorillon-
itic, thermic Mollic Haploxeralfs). The Niles site was located
in Niles, KS (38°58' N, 97°28' W) on a Geary silt loam (fine-
silty, mixed, superactive, mesic Udic Argiustolls). The NY-Grain
site was located in Seneca and Yates Counties, NY (42°39’ to
42°44' N, 77°04' to 76°43' W) on sandy clay loams, silt loams,
and clay loams (mixed, active Hapludalfs). The Watkinsville site
was located in Watkinsville, GA (33°52 N, 83°25’' W) on Cecil-
Madison-Pacolet (fine, kaolinitic, thermic Typic Kanhapludult)
soil series with sandy loam, loam, or sandy clay loam surface
textures. The Ohio Urban Garden (OUG) samples came from
urban vacant lots in Youngstown, OH (41°04’ N, 80°40" W).
The soils were obtained from an experiment testing the use of
organic amendments, which included unamended soils, com-
post amended soils, as well as compost-biochar combinations
(Beniston et al., 2015). The Living Field Laboratory (LFL) proj-
ect was established in 1993 to examine the effect of cover crops
on corn rotations at the KBS site (42°24’ N, 85°24’ W/, 288 m
a.s.l.) on sandy loam Haplic Luvisols (Snapp et al., 2010). All
samples were collected, composited and air-dried immediately.
Sampling dates and depth varied by study, as outlined in the ref-
erences listed in Table 1.

Permanganate oxidizable C analyses were based on the labo-
ratory procedures and calculations of Weil et al. (2003). Briefly,
2.5 gof soil were mixed with 18 mL of deionized water and 2 mL
of 0.2 M KMnOj solution. The mixtures were shaken for 2 min
at 240 oscillations per minute. Samples were allowed to settle
for 10 min., after which 0.5 mL of the supernatant was mixed
with 49.5 mL of deionized water. Then, 200 mL of each sample
was loaded into a 96-well plate containing a set of KMnO) stan-
dards. Absorbance was measured at 550 nm with a SpectraMax
M5 (Molecular Devices, Sunnyvale, CA). Total SOC and TN
were measured with a direct combustion analyzer, as detailed in
Culman et al. (2012).

Infrared Spectroscopy

Diffuse reflectance mid-infrared and NIR calibrations were
performed with spectra from neat soil samples, not diluted with
KBr (Reeves et al,, 2001). The samples were ground with a mor-
tar and pestle, then dried at 60°C overnight before scanning. The
dried and ground samples were scanned using a Pike AutoDIFF
diffuse reflectance accessory (Pike Technologies, Madison, W1)
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in line with a Digilab FT'S 7000 spectrometer (Varian, Inc., Palo
Alto, CA). Potassium bromide and sulfur were used as back-
ground samples for the MidIR and NIR, respectively. A quartz
beam splitter and lead selenide detector were used for the NIR
scans, and a KBr beam splitter and deuterated triglycine sulfate
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Partial Least Squares Calibrations

The nonlinear iterative partial least squares PLS method
of Unscrambler 10.3 (Camo Software, Oslo, Norway) was used
to generate the calibration and validation results (Martens and
Naes, 1989). The PLS regression is commonly used to deal with
correlated prediction variables (such as infrared spectra), and
can be applied when the prediction variables are more numerous
than the observations. No spectral outliers were omitted from
the calibration models. All NIR and MidIR spectral data were
mean centered before the PLS regressions. As explained below,
samples from one of the sites were excluded from a subsequent
set of calibrations due to a deviation in the SOC to POXC re-
lationship. Separate PLS regressions were performed with de-
trending, multiplicative scatter correction (MSC), and standard
normal variate (SNV) pretreatments of the absorbance data.
Detrending involves subtraction of a polynomial or linear fit to
reduce baseline artifacts such as tilt, which is sometimes an issue
in NIR spectra. The MSC, SNV, and detrending pretreatments
were all done in combination with mean centering. The optimal
number of factors was determined by the software using the rela-
tionship between the explained variances for the calibration and
validation sets.

RESULTS
Bands in the MidIR and NIR Spectra by Site

The NIR spectra from the different sites had relatively few
features compared to the MidIR region (Fig. 1). Peaks observed
in the NIR spectra consist of combinations and overtones from
the MidIR, with mixed information about organic material, iron

oxides, clays and carbonates (Stenberg et al., 2010). Absorbance

at the higher wavenumbers approaches the visible range and
could be indicative of darker soils with iron containing miner-
als. The main NIR absorbance peaks observed occurred in three
spectral ranges: around 7070 cm™! between the first and second
overtone region, between 5330 and 4920 cm~!in the first over-
tone region and combination region, and at 4400 to 4325 cm™!
in the combination region.

In the MidIR range, absorption near 3624 to 3620 cm™!, ob-
served as a sharp peak in all sites (Fig. 1b), is due to inner hydroxyl
groups in clay lattice sheets (Madejovd, 2003). A weak band at
3695 em™! in most of the sites could be attributed to clay O-H
stretching. This band is more pronounced in the Watkinsville
soil, which also has sharp peaks at 3455 and 3535 cm™! due to
clay O—H stretching. Between 3450 to 3300 cm™! is a broad and
slight rise in absorbance due to hydrogen bonded O-H and N-H
stretching (Parikh et al., 2014), which has greater O-H influence
at the higher range. Between 2925 to 2850 cm™! are the aliphatic
C-H anti-symmetric and symmetric stretch bands, observable in
most sites except LTRAS, which has low SOM. It has to be noted
that absorbance between 2925 to 2850 em™! can also be due to
carbonates (Legodi etal,, 2001). The carbonate band at 2520 cm™!
(Calderén etal., 2011b), is only observed as a very small rise, espe-
cially in the Niles average spectrum. The triplet of silicate peaks
between 2000 and 1780 cm™! is due to quartz or kaolinite, as well
as sands (Nguyen et al,, 1991). All soil spectra contain a peak at
1680 with a shoulder at 1611cm™! which can be assigned to sev-
eral moieties including amide C=0 stretch (amide I) and quinone
or ketone C=0 stretch at the higher wavenumbers, and/or aro-
matic C=C stretch and/or carboxylate C-O asymmetric stretch
at the lower wavenumbers (Parikh et al., 2014). The small peak

(A)

Absorbance (offset)

(B) KBS

LFL
LTRAS
NILES
NY Grain
ouG
Watkinsville )

,,///

10000 9000 8000 7000 6000 5000

4000 3500 3000 2500 2000 1500 1000 500

wn (cm'1)

Fig. 1. Diffuse reflectance Fourier transform near-infrared (A) and mid-infrared (B) average spectra for each site. The absorbance was offset to

avoid overlap and aid visualization.
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at 1520 cm™ is due to the amide II band, and/or aromatic C=C
from lignin (Baes and Bloom, 1989). The peak at 1420 cm™!,
with the shoulder at 1360 cm™! is due to aliphatic C~H bending
(Haberhauer and Gerzabek, 1999). The inverted peaks between
1220 and 1060 em™! are caused by specular reflection from soil
minerals in the neat samples. The peak at 810 emlis assigned to

amorphous silica.

Correlation of POXC with SOC and TN

Due to the diversity of the sample set, the SOC had a
wide range, from 0.8 to 108 g kg™! (Fig. 2). Likewise the TN
ranged from 0.3 t0 7.9 g kg_l. The POXC had maxima around
1400 mg C kg1 The best fit berween SOC and POXC was hy-
perbolic rather than linear (R? = 0.71), given that SOC values
higher than ~50 g kg_1 were not associated with further increas-
es in POXC values. The OUG samples are responsible for the
marked deviation from the regression line among the high SOC
soil samples (Fig. 2). Without OUG samples, the best fit relation-
ship is linear (R? = 0.99). This indicates that the POXC values for
QUG fall below the best fit line not due to POXC saturation but
rather to the different quality of the soil C caused by the history

1800
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1400 -
1200 -
1000 -
800
600 -

400 g ¢
/e
2004 o

POXC (mg C kg™)

Hyperbolic fit
f = 2328.5*x/(45.0+x)

0 R2=0.71

0 20 40 60 80 100 120

SOC (g kg™)
1800

1600 -

1400

1200 +

1000

800 -

POXC (mg C kg™)

600 -

Hyperbolic fit
° f=2571.1*x/(4.6+x)

. R2=0.60

400 -

200 A

TN (gkg™)

Fig. 2. Hyperbolic fit lines for the soil organic carbon (SOC) vs.
permanganate oxidizable carbon (POXC) (A), and soil total nitrogen
(TN) vs. POXC (B). Kellogg Biological Station samples are in black,
Living Field Laboratory samples are in red, Long-Term Research
on Agricultural Systems samples are in green, Niles samples are in
yellow, NY-Grain samples are in blue, Watkinsville samples are in
light blue, and Ohio Urban Garden samples are in pink.

of amendments that may not have entered the slightly more pro-
cessed POXC pool. The TN and POXC had very similar correla-
tion pattern to that of SOC and POXC, given that SOC and TN
were themselves highly linearly correlated (R* = 0.95).

Spectral Diversity

Ideally, the spectra for a calibration set should form a co-
hesive set to avoid calibration performance artifacts caused by
bimodal distributions. The spectra from the different sites all
formed a single cloud in multivariate space, although scores
along PC1 and PC2 do show separations between individual
sites within that cloud (Fig. 3a). Samples from KBS and some
samples from Watkinsville had low Component 1 scores, and
loadings indicate that this was due to low clay (3620 cm™!) and
clay/amide-like absorbance (1649 cm™!; Fig. 3b). Component
2 clearly separated LFL from Niles and LTRAS due to differ-
ences in texture as shown by loadings from clay and Si-O bands.
Component 2 also separates KBS from Niles and LTRAS. A
few MidIR spectral outliers in the LFL and LTRAS sets were
detected according to the Hotelling T2 statistic. However, these
samples were not excluded from the PLS regressions as there was
no specific reason to suspect that their C pool data were faulty,

and because of our aim to ascertain the value of infrared-based
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Fig. 3. Principal components analysis of the mid-infrared spectra data
of all the sites. Scores (A), and component 1 and 2 loadings (B). The
variation explained by each component is shown in parenthesis. The
Hotelling T2 ellipse in Panel A shows the spectral outliers.
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calibrations for POXC in a wide geographic scale. The OUG
samples, which had an anomalous relationship between POXC
and SOC (Fig. 2), were not spectral outliers (Fig. 3).

MidIR and NIR Partial Least Squares Calibrations
for POXC

The MidIR and NIR spectral data were used to generate
predictive PLS models for POXC (Fig. 4). The MidIR spectra
produced calibrations for POXC, with R? that varied from 0.78
to 0.81 depending on the mathematical pretreatment of the ab-
sorbance data (Table 2). The validation R? were similar to the
calibration R2. The SNV, detrending, and MSC pretreatments
all gave small improvements in R and RMSE over the mean
centering alone with SNV but detrending was slightly better.
Calibrations performed with the NIR attained R? 0f 0.73 t0 0.88,
but the validation R? were lower, ranging from 0.66 to 0.76. As
with the MidIR, the detrended pretreatment of the NIR spectra
gave best calibration and validation results compared to the rest
of the pretreatments. Figure 5 shows the degradation of the vali-
dation quality after eight PLS factors with the NIR. Calibrations
for SOC and TN had R? and RMSE of lower quality than those
for the POXC regardless of the spectral range used, with calibra-
tion R always below 0.59 for all three spectral pretreatments.

2000

A
Mid IR

1500 -

1000 -

500 -
14
§ o
©
w
[ee]
9]
S
n_ B
B 1500 NIR ° °
ket .
g o f
2 .
o ‘0 ° '{. °

1000 - ®

500 1

0 4
0 200 400 600 800 1000 1200 1400 1600

Reference POXC, mg kg'1

Fig. 4. Partial least squares regression predicted permanganate
oxidizable carbon (POXC) vs. reference POXC values for the
calibration (black dots) and the validation (red dots) for the mid-
infrared and near-infrared data. The spectral data were pre-treated
with detrending for both the mid-infrared range (A) and the near-
infrared range (B).

Correlation of POXC with MidIR and NIR
Spectral Bands

A correlation analysis between the MidIR absorbance and
the POXC, SOC, and TN data shows that the three analytes
were positively correlated with absorbance at 2930 to 2850 cm™!
(R > 0.38), attributed to aliphatic C-H stretch (Fig. 6a). The
correlation with POXC and the peak at 2920 cm™! was slightly
stronger (R? = 0.43) than the correlation with SOC (R? = 0.39).
In contrast, the POXC, SOC, and TN were all negatively cor-
related to quartz absorbance between ~2050 and 1835 em L.
Permanganate oxidizable C has a higher R? than SOC and
TN for the region between 2730 and 2530 cm L, a region as-
signed to carboxylic acid H-bonded O-H (Parikh et al,, 2014).
Conversely, POXC has a negative correlation coefficient for the
3380 to 3100 cm™! region assigned to O—H, N-H and at lower
range to aromatic C—H stretch.

The correlation patterns with the NIR data were similar
for POXC, SOC, and TN. The highest R scores were achieved
between 4875 and 4650 cm™!, whereas the lowest R scores oc-
curred between 5350 and 5180 cm™! (Fig. 6b). The POXC had
the highest absolute values for the R scores in these two NIR
spectral regions. While it is not straightforward to assign spe-
cific chemistries to absorbances within the NIR, soil absorbance
bands between 2050 and 2150 nm (4875-4650 cm™!) have been
assigned to 4v, overtones of polysaccharide C-O, and to over-
tones of amine N—H (Viscarra Rossel and Behrens, 2010).

Partial Least Squares using Selected MidIR
Spectral Region

Besides the calibrations utilizing the full MidIR spectral
range, calibrations were also calculated using a selected spectral
region determined by the R coefficient between the MidIR spec-
tral data and POXC. The region between 3225 and 2270 cm™!
encompasses absorbance for aliphatic C-H and O-H plus
N-H, and contains spectral bands that are the most positively
correlated with the POXC (Fig. 6). This region is mainly or-
ganic, and has little mineral interference in soils that are low in
carbonates, such as those in the data set (Reeves, 2012). The se-
lected region contains 27% of the data in the full MidIR range,
with a total 0f 496 spectral data points. In both the SOC and TN
cases the calibration quality deteriorated by using the selected re-
gion rather than the full MidIR spectrum. The SOC prediction
with the selected region had R? of 0.48 and 0.60 for the calibra-
tion and validation, with RMSE of 9.0 and 7.6. The TN predic-
tion attained R? of 0.46 and 0.55 for the calibration and valida-
tion, with RMSE of 0.67 and 0.61. The POXC prediction with
the selected region, however, had a slight deterioration in quality
compared to the PLS using the full MidIR spectrum, with an R?
of 0.76 and 0.77 for the calibration and validation, and RMSE of
162.0 and 154.0 (Fig. 7). It should be noted that a correlation of
the single absorbance at 2920 cm™! and the POXC data had a R?
of 0.43, showing that a single point calibration is not sufficient
for predicting POXC.
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Site Effects on
Calibration Quality
The predictive ability of the cali-

brations varied widely between sites

(Table 3). Calibrations based on the

Table 2. Spectral pretreatment effects on partial least squares calibration quality using
mid-infrared (MidIR) and near-infrared (NIR) spectral data. Calibration (Cal) and valida-
tion (Val) sets consisted of different samples selected using the Kennard-Stone function.
Permanganate oxidizable C units are mg C kg™ soil, SOC and TN units are g C kg' soil.
Note that the standard normal variate (SNV), detrending (Detrend), and multiplicative
scatter correction (MSC) were all applied together with mean centering.

full MidIR spectrum had the best POXC SOC N
predictions for the LTRAS and Niles Factors 12 | RI\IASEI R2 (CalVal) R"IASE[ R2 (Cal/Val) RI\IASEI
samples, while the OUG had the (Calval)— (Cal/val) MidiR (Cal/val) (Cal/vah
I
largest RMSE, regardless of Wthbcr Mean center 6  0.78/0.77 157.1/156.0  0.44/0.55 9.4/80  0.45/0.55 0.68/0.61
the full spectrum or selected region gy 9 0.81/0.81 1443/1443 054/0.70 85/6.7  0.54/0.66 0.62/0.53
was used for the PLS regression. The Detrend 8 0.81/0.81 145.8/143.8 0.52/0.64 8.6/7.2  0.52/0.63  0.63/0.55
POXC prediction for KBS, LFL, and MSC 9  0.81/0.80 145.1/146.6  0.55/0.69  8.5/6.8 0.54/0.65  0.62/0.53
Niles deteriorated with the selected NIR
MidIR region relative to the full spec-  Mean center 9 0.83/0.75 126.6/1749 0.58/0.52 7.59.1  0.56/0.51 0.57/0.67
As with the MidIR. the pLs SNV 7 0.83/0.71 130.0/188.5 0.56/0.47 7.7/9.5  0.54/0.47  0.59/0.70
trum. s With the MUALE, the Detrend 8 088076 110.1/169.5 059050 7.4/9.2  0.580.51  0.56/0.67
regression based on the NIR also had 5 5  0.73/0.66 161.7/201.4  0.49/0.40 8.3/10.1  0.43/0.37  0.65/0.76

the LTRAS site with the lowest RMSE
of the prediction, and OUG with the
poorest predictions for the three analytes. The NIR-based pre-
dictions for TN and SOC followed similar patterns to those of
the POXC, with the OUG site samples having the poorest cali-
bration results.

The unusual relationship between POXC and SOC ob-
served in the OUG samples (Fig. 2) prompted us to carry out
additional PLS calibrations leaving out the OUG samples
(Table 4). A comparison of the PLS calibrations including all
sites (Table 2) with the PLS calibrations without the OUG sites
(Table 4) shows that predictions for POXC were not mark-
edly affected by the removal of the OUG samples from the set.
However, predictions for SOC and TN were markedly better
when the OUG samples were excluded, as indicated by increased
R? and decreased RMSE.

DISCUSSION

Our results show that both the MidIR and NIR data can be
used to determine POXC on a wide range of soils. Calibrations
for TN and SOC were not as good as they were for POXC
when the full sample set was used. However, calibration qual-
ity improved markedly when the OUG samples were removed.
Therefore, this work shows that anomalous soils in the sample
set have to be identified and taken into account to properly pre-
dict soil C pools with infrared spectral data. Selected spectral
regions could be used instead of the full MidIR spectrum in cali-
brations for POXC, albeit a slightly increased RMSE.

Others have found that, depending on the soil, SOC can
sometimes be positively correlated with POXC (Lucas and
Weil, 2012; Culman et al,, 2012; Veum et al., 2014). Veum et
al. (2014) showed that POXC correlates positively with other
measures of soil quality such as enzyme activities and aggrega-
tion in a soil from the North American Corn Belt. In this study,
with a more geographically diverse sample set, POXC had a
hyperbolic correlation to SOC and TN. There was a point af-
ter ~50 g kg_1 of POXC content where POXC declined with
increasing SOC. This hyperbolic relationship is largely a result

of the OUG samples not conforming to the best fit line, and to
some extent a methodological artifact with the upper detection
limit of POXC. The methodological artifact occurs when calcu-
lating POXC with the assumptions laid out by Weil et al. (2003).
Using 2.5 g of soil, 1440 mg POXC kg soil~! is the maximum
amount detectable in a sample as 100% of the permanganate
is oxidized at 1440 mg POXC. Increasing the detection limits
would require method manipulation beyond the scope of this
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Fig. 5. Explained variances for the near-infrared and mid-infrared
partial least squares regressions. The spectral data were pre-treated
with detrending for both the mid-infrared range (A) and the near-
infrared range (B).

www.soils.org/publications/sssaj

283



0.6

A 2930-2850

4 (aliphatic CH)

—— POXC
—— 80C
™

04

3

c

o

= T T T

S 4000 3000 2000 1000

2

(o3

3 B 4875-4650
\

5350-5180

10000 9000 8000 7000 6000 5000

wn (cm'1 )

Fig. 6. Correlation coefficients of specific spectral bands with soil
organic carbon (SOC), permanganate oxidizable carbon (POXC) and
total soil nitrogen (TN) for the mid-infrared range (A) and the near-
infrared range (B).

study, such as increasing the concentration of permanganate or
decreasing the amount of soil reacted. Deviations from the con-
ventional POXC method would also make it impossible to com-
pare our results to those of others.

The main reason for the hyperbolic fit in our sample set was

due to the anomalous OUG samples, given that the relationship
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Fig. 7. Partial least squares (PLS) regression predicted permanganate
oxidizable carbon (POXC) vs. reference POXC values for the
calibration (black dots) and the validation (red dots) for a selected
region of the mid-infrared data. Only the region between 3225 and
2270 cm! was used for the PLS regression.

is linear without the OUG in the regression. The nonlinear re-
lationship below the upper limit occurs because OUG received
organic amendments that altered the relationship between labile
and total soil C. The OUG also have higher light fraction POM,
which is not well correlated with POXC (Culman et al., 2012).
The hyperbolic relationship may also be indicating that in gen-
eral, soils high in SOC tend to have proportionally less labile C
than soils with lower SOM. However, this would be difficult to
argue, given the previous consideration that maximum detection
of POXC was already achieved. While the relationship between
different C pools is still an active area of study, previous work
comparing asymptotic vs. linear C saturation fit has indicated
that relatively labile soil C can approach a maximum level as
SOC increases (Six et al., 2002).

Previous work has shown that MidIR bands in diffuse re-
flectance spectra can offer a semi-quantitative estimate of organ-
ic moieties and minerals (Calderdn et al., 2013). Diffuse reflec-
tance spectra do not fully conform to Beer-Lambert law due to
the uncertain path length and low penetration of the MidIR en-
ergy (Calderdn et al,, 2013; Margenot et al., 2015). Nevertheless,
increases in absorbance bands can lead to useful hypothesis gen-
eration and also to assessment of management effects on SOC of
soils with similar mineral backgrounds (Calderén et al., 2011a).
There was high spectral diversity between the sites included in
this study, although no single site formed a separate cluster from
the whole set as illustrated with the PCA. The main spectral
differences accounting for most of the variation between the
sites are due to mineral bands. Minerals make up a larger por-
tion of the soil’s mass than the organic materials, and it is thus
expected that soils of different age and parent material have
different MidIR absorbance patterns. The spectra associated
with Watkinsville and KBS have particularly high absorbance
for the lattice clay band at 3620 cm™1, as well as at 1649 cm™1,
which is often assigned to amides but is also present in clay spec-
tra (Madejovd, 2003). The Watkinsville and KBS samples also
have MidIR bands consistent with higher sand content, with
high absorbance at 1790 to 2000 cm™! and at the specular re-
flection inversion between 1220 and 1060 cm™!. The LFL also
has distinct clay and Si-O signals relative to Niles and LTRAS.
Given that excluding the mineral bands from the calibration set
did not drastically decrease the calibration performance, we can
conclude that mineral absorbances do not contribute to chemo-
metric analysis of labile C.

This study shows that PLS calibrations based on NIR and
MidIR spectral data can be used to generate useable calibrations
for POXC, with R? < 0.8, and the predictions were slightly bet-
ter for MidIR compared to NIR as shown by the validation coef-
ficient of determination. The RMSE is a measure of the disper-
sion of the calibration or validation samples around the regres-
sion line, and it showed the differences between POXC values
and the predictions using absorbance data in the same units as
those of the variable in question. The minimal advantage of the
MidIR over the NIR in terms of the POXC calibration quality is
reflected on the mixed RMSE results.
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Absorbance data pretreatments are sometimes useful
during calibration development because spectral variation
that is not associated to soil composition is minimized.
Artifact spectral variations can be due to particle size varia-
tions, changes in refractive index, sample packing variabili-
ty, and/or surface irregularities (Reeves et al., 2012). These
factors can affect the effective path length of the infrared
radiation, and cause additive or multiplicative wavelength-
dependent artifacts like baseline shifts, tilt or curvature
variation. Different pretreatments can improve the ac-
curacy of the prediction for specific spectral regions and
particular sample properties (Calderén et al., 2007, 2009).
However, this is not always the case. In a study to predict
soil total N, it was shown that several different pretreat-
ment methods did not improve PLS calibrations (Fang
et al., 2015). Particle size artifacts could have potentially
been a problem in a highly diverse sample set such as ours.
In this study, detrending plus mean centering pretreatment
resulted in very minor improvements in the calibrations
for both the NIR and MidIR compared to mean centering
alone. The small magnitude of the benefits attained with
the pretreatments suggests that textural artifacts were not
important in our analysis.

MidIR and NIR data have been used to success-
tully predict many soil attributes besides total C, such
as aromaticity, microbial biomass, mineralizable C, and
aggregate C (Reeves et al., 2006, 2012; Thomsen et al,,
2009). Infrared absorbance data have generated accurate
predictions of labile SOC (Chang et al., 2001; Thomsen
et al,, 2009). Soriano-Disla et al. (2014) found that both
MidIR and NIR predicted soil C, TN, soil water content,
texture, CEC, exchangeable calcium and magnesium, pH,
metal concentration, as well as microbial biomass and ac-
tivity. However, MidIR produced better predictions than
NIR in general, but NIR outperformed MidIR for several
biological properties like enzyme activities and N miner-
alization. Veum et al. (2014) showed that NIR tends to

outperform MidIR in the prediction of POXC. However, their
study was based on a localized soil type under a variety of ag-

ronomic management regimes, so these
results might not apply to soils from other
regions. Further, they used spectra from
soils demineralized with hydrofluoric acid
instead of whole soil spectra, thus their
results cannot be compared to our study.
In this study, the predictions for

Table 3. Predicted vs. reference root mean squared errors for the partial
least squares (PLS) regressions of the calibration set (Cal) and validation
set (Val). Analytes predicted are permanganate oxidizable C (POXC),
soil organic C (SOC), and soil total N (TN). The PLS for the near-infra-
red (NIR) and mid-infrared (MidIR) full spectrum used 8 factors and
had mean centering and detrending pretreatments. The PLS using the
selected MidIR region (3225-2270 cm™) used 5 factors and had a mean
centering pretreatment. Permanganate oxidizable C units are mg C kg™!

soil. SOC and TN units are g C kg™ soil.

MidIR full spectrum MidIR selected region

NIR full spectrum

Sitet Cal Val Cal Val Cal Val
POXC
All 145.8 143.8 162.0 154.0 110.1 169.5
KBS 174.7 131.9 248.5 165.1 100.5 198.5
LFL 109.3 118.3 121.7 153.0 66.6 131.7
LTRAS 60.7 90.9 60.3 80.2 55.2 73.3
Niles 84.4 95.2 144.8 131.4 143.4 173.9
NY-Grain 166.0 155.5 144.5 156.1 107.1 140.4
OuUG 246.7 150.7 249.8 119.1 181.0 251.7
Watkinsville 160.9 188.7 177.6 175.2 143.7 224.5
SOC
All 8.6 7.2 9.1 7.6 7.4 9.2
KBS 5.0 5.6 6.0 5.1 7.6 8.1
LFL 4.5 3.6 4.6 4.6 4.1 4.7
LTRAS 2.4 3.2 3.3 3.3 1.9 2.9
Niles 2.7 2.9 4.4 4.0 5.2 2.6
NY-Grain 7.4 7.1 5.5 6.4 4.9 4.5
OuUG 41.3 27.0 46.4 30.2 36.7 41.9
Watkinsville 4.6 4.9 3.3 4.0 3.2 4.0
N
All 0.63 0.55 0.67 0.61 0.56 0.67
KBS 0.37 0.68 0.49 0.72 0.66 0.56
LFL 0.31 0.25 0.29 0.33 0.25 0.32
LTRAS 0.16 0.20 0.23 0.26 0.16 0.24
Niles 0.34 0.33 0.34 0.27 0.31 0.30
NY-Grain 0.57 0.56 0.52 0.59 0.48 0.40
OuUG 2.87 1.70 3.22 1.89 2.37 2.85
Watkinsville 0.40 0.45 0.38 0.46 0.42 0.50

t KBS, Kellogg Biological Station; LFL, Living Field Laboratory; LTRAS, Long-

Term Research on Agricultural Systems; OUG, Ohio Urban Garden.

possible that the higher R? for POXC can be explained by the

higher correlation coefficients of the spectral data to POXC
than to SOC. This was especially true for the NIR, where the

Table 4. Partial least squares regression calibration quality using mid-infrared (MidIR)
and near-infrared (NIR) spectral data. Samples from the Ohio Urban Garden site were
left out of the model. Calibration (Cal) and validation (Val) sets consisted of different
samples selected using the Kennard-Stone function. Permanganate oxidizable C (POXC)
units are mg C kg™ soil, SOC and TN units are g C kg™ soil. Note that the detrending
pretreatment was applied together with mean centering. The calibration and validation
sets had 238 samples each.

POXC were overall much better than the POXC SOC ™
predictions for TN and SOC when all Factors R2 RMSE R2 RMSE R2 RMSE
the sites were included in the PLS model. (Cal/val) (Cal/val) (Cal/val)  (Cal/val)  (Cal/val)  (Cal/val)
Better calibrations for POXC could have Micllit

. . Mean center 7  0.81/0.78 143.4/149.1 0.80/0.77 4.1/42  0.68/0.74 0.42/0.35
been explained by a larger coefficient of ' 6 070078 15121496 069078 4342 0660073 043/0.36
variation of the POXC data compared to IR
SOCand TN, except that thiswasnotthe  \ioan center 7 075/0.76 164.5/159.2  0.6800.70  5.2/4.9  0.69/0.56 0.38/0.49
case with our data set. Alternatively, it is petrending 6 0.84/0.80 133.7/146.5 0.74/0.69 4.7/49  0.71/0.57 0.37/0.49
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absorbance at 5350-5180 cm™! and at 4875 to 4650 cm™! were
better correlated to POXC than to SOC. In the MidIR, carbox-
ylic acid H-bonded O—H absorbances at 3380 to 3100 cm™1,
as well as bands at 2930 to 2850 cm™! were more correlated to
POXC content than to SOC content. Previous work has shown
that the asymmetric and symmetric stretching of C-H in CH,
at 2930 and 2850 cm™! is related to the decomposition state of
soils, and has been used in band ratio analysis to study labile soil
C (Veum et al., 2014), and could serve as an indicator of SOC
lability in some soils (Demyan et al., 2012). The aliphatic C-H
MidIR band correlates with total aliphatic C—H as measured by
NMR (Veum et al., 2014), but the presence of carbonates in the
soil sample can complicate this assignment in calcareous soils
(Legodietal., 2001). Because of this, future studies should evalu-
ate the relationship between absorbance at 2930 to 2850 cm™!
and POXC in highly calcareous soils.

The MidIR spectrum, when collected at the range and reso-
lution used in this study, contains more than 1800 data points.
This prompts the question of whether some of the spectral infor-
mation is in effect noise that could be omitted from the calibra-
tion. For this reason, we explored the possibility of using a re-
duced range of spectral data, informing the selection with a cor-
relation analysis between the POXC and the absorbance data. A
previous study showed that POXC correlates with the aliphatic
C-H spectral bands in soils from the Central Valley of California
under organic vegetable production (Margenot et al., 2015). The
results from our study on soils from a wide geographic area and
under different agricultural managements further corroborate
the finds that POXC was related to aliphatic C—H compounds.
Restricting the spectral range used in the chemometric analysis
to the aliphatic C-H region and adjacent bands, did not mark-
edly reduce the calibration quality for POXC. The region selec-
tion approach showed potential given that the resulting calibra-
tion could be considered useful if a R% of 0.77 is acceptable.

A fundamental issue affecting chemometric prediction of
soil attributes is how many different types of soils can be pre-
dicted with a single calibration (Viscarra Rossel and Behrens,
2010). In this study, we showed that removing the OUG sam-
ples from the calibration set markedly improved the prediction
of SOC, but not POXC. Several studies have examined the use
of localized versus large-scale calibrations (Cobo et al., 2010;
Guerrero et al., 2010; Minasny et al., 2009; Reeves and Smith,
2009; Wetterlind et al., 2010). However, there is no consensus
about the precise basis on which decisions about calibration
sets should be made. In this study it is apparent that the OUG
samples should require a separate calibration for SOC, while
they could be included with the rest of the sites when calibrating
for POXC. The OUG site was not a spectral outlier, but had a
relatively low number of samples, and high standard error for the
POXC and SOC. The different biochar and compost amend-
ments likely added inordinate amounts of non-resident and
stable SOC. Besides, the OUG project was based on a highly
diverse set of urban soils with high levels of spatial heterogeneity
(Beniston and Lal, 2012). We hypothesize that the addition of

compost might have altered the chemistry of the SOC enough
that the relationship between POXC and the molecular makeup
of the SOC was altered and the calibration was not able to prop-
erly predict POXC in those particular samples.

CONCLUSIONS

The PLS calibrations for POXC using NIR data gave ac-
ceptable results, whereas calibrations using MidIR were of slight-
ly better quality. Selecting specific regions within the MidIR
gave comparable calibrations to those using the whole spectrum.
Aliphatic C-H and carboxylic acid H-bonded OH bands were
highly correlated to POXC, suggesting that they should be con-
sidered of particular importance for the study of labile soil C,
and can be used in a reduced spectral data set to predict POXC.
The chemometric quantitation for SOC benefitted from the ex-
clusion of samples from an urban site in which a variety of or-
ganic amendments had been deployed, affecting the relationship
between SOC and POXC. Our results have broader implica-
tions for the study of SOC and soil quality given that a rapid and
accurate method for quantifying labile soil C is needed. Further
studies should examine the feasibility of using new generation
handheld spectrometers for the determination of soil quality pa-

rameters in the field.
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