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ABSTRACT 

The development of environmentally and economically sound long term agricultural 

practices under changing climate conditions at the field scale requires implementation of 

predictive models that assess short and long term responses of agricultural systems to changing 

environmental conditions. Soil properties for such models are commonly taken from local or 

National Soil Surveys (SSURGO, STATSGO). This causes a mismatch between the modeling 

and data source scales. Different techniques can be implemented to upscale soil properties 

measured at plot scale for field-scale crop modeling, however little is known about the effect of 

scaling on the accuracy of crop models in predicting crop yields. The objective of this work was 

to examine: (i) the spatial variability of soybean yields across an agricultural field with different 

soils and inputs; (ii) how spatial variability in soil properties translates into the variability of 

measured and predicted yields; (iii) how scaling soil properties affects model accuracy in 

predicting soybean yields for different weather conditions. The study was conducted at LTER 

KBS in Michigan, USA. Soybean yield was measured at 2.2 ha and 4.9 ha fields at 2x5 m 

resolution in 2010. Soil properties were measured at the plot scale in 19 locations, selected to 

represent two soil types and two management practices on 3 topographical elements (i.e. summit, 

slope and depression). The DSSAT-CSM was calibrated and validated on soybean yield data 

measured at the plot scale in 2010 and 2013. The validated model was used to generate yields for 

22 years with varying weather conditions in all selected locations. Then the model parameters 

were scaled up using different techniques, such as averaging plot-scale measured soil properties, 

averaging the model parameters estimated for each plot using measured soil properties, and using 

typical soil profile descriptions and the SSURGO soil database. The results of this study showed 

high variability in soybean yield for two soils and two management practices, which was 
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associated with variability in soil texture and organic carbon content in the top 20-cm soil layer, 

but not with surface topography. Despite considerable differences in parameters, all upscaling 

techniques performed reasonably well for different weather conditions However, model 

performance appeared to be site specific in this study. 

Keywords: DSSAT-CSM model, soybean yield, spatial variability, field scale, upscaling.  

 

INTRODUCTION1 

The development of environmentally and economically sound long term practices under 

changing climate conditions at the field scale is unlikely without implementation of predictive 

models that are capable of assessing the response of agricultural systems to changing 

environmental conditions. Field experiments are labor intensive and time consuming, yet provide 

limited (in the spatial as well as temporal sense) information about changes in soil processes 

including soil water, carbon, and nutrient cycles. As an alternative to and support for field 

studies, process-based models are commonly used to predict short and long term changes in in 

these processes, as well as their impact on crop yield. Among others there are APSIM (Keating 

et al., 2003, Chaucan et al., 2013), CERES (Jones and Kiniry, 1986), EPIC (Williams et al., 

1989), STICS (Brisson et al., 2003), SUCROS (Spitters et al., 1990), SALUS (Basso et al., 

2011), CropSyst (Stöckle et al., 2003), and DSSAT (Jones et al., 2003).  

DSSAT-CSM has been used for predicting crop yield at multiple scales ranging from 

agricultural fields (Liu et al., 2011; Yang et al., 2013; Salmeron et al., 2014; Negm et al., 2014) 

                                                            
1 Abbreviations: DSSAT-CSM, Decision Support System for Agrotechnology Transfer with 
Crop Simulation Model; LTER KBS, the Long Term Ecological Research Kellogg Biological 
Station; SSURGO, Soil Survey Geographic database; ET, potential evapotranspiration; P, 
precipitation; TOC, total organic carbon content; RMSE, root mean squared error; RAE, relative 
absolute error; CN, runoff curve number. 
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to landscapes and regions (Zhan et al., 2012; Huffman et al., 2014). The input data, specifically 

soil properties, for the DSSAT-CSM model are commonly taken from soil descriptions, soil 

surveys or soil maps (e.g. SSURGO, STATSGO). The field scale is of particular interest for 

growers when making decisions on implementing new management practices in the context of a 

changing climate (Kaiser et al., 1993; Southworth et al., 2000). However, detailed soil properties 

data at this scale are typically not available, hence the reliance on these soil maps and surveys to 

obtain soil data for modeling. The information compiled in the SSURGO database was collected 

at scales ranging from 1:12,000 to 1:63,360 by the National Cooperative Soil Survey over the 

course of a century and represents “typical” properties of the soil units. These typical properties 

generally ignore field-scale spatial variability of the soil, which can be large even within 

relatively small areas (Pachepsky et al., 2001; Kreznor et al., 1989; Ovalles and Collins, 1986) 

and may have a significant effect on crop yield (Afyuni et al., 1993; Timlin et al., 1998; 

Kravchenko and Bullock, 2000; Chaves et al., 2013). Using soil data at a county scale 

(SSURGO) for field-scale modeling causes a mismatch between the modeling and data source 

scales. Little is known about how this mismatch affects the accuracy of crop models in predicting 

field-averaged crop yields. 

Since most crop models are one-dimensional, they simulate processes in a single soil 

profile assuming that the soil is laterally homogeneous. Therefore, simulation results are relevant 

to the plot scale. For the plot scale, the model parameters are typically measured (Sadler et al., 

1999; Sau et al., 2004; Naab et al., 2004), estimated from other measured soil properties (Ritchie 

et al., 1999; Liu et al., 2011), or estimated by solving an inverse task and fitting the parameters to 

measured data (Negm et al., 2014; He et al., 2014). Most soils are not homogeneous at a scale 

large than the plot (e.g. field, landscape, and watershed). For this reason, prediction of average 
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crop yield at a larger scale even for a single management practice, set of weather conditions, and 

crop type across a field involves upscaling due to spatial variability of soil properties. The 

upscaling techniques are well developed for a regional scale. A comprehensive review of the 

scaling techniques and issues associated with crop modeling for a regional scale can be found in 

Faivre et al. (2004). A good example of upscaling for spring wheat on the Canadian prairies was 

published by Huffman et al. (2014). The authors demonstrated that aggregation of yield 

predictions made for multiple soil units based on percentage of soil occupied area produced a 

reasonable estimate for the yield at a regional scale.   

For field-scale simulations, representative soils or soil properties are commonly used in 

crop modeling (Sadler et al., 2000). To take into account the soil variability, homogeneous zones 

with different representative soils must be identified within the field (Faivre et al., 2004). Next 

steps include measuring the soil properties, estimating the model parameters, running the model 

for each of these zones, and finally aggregating yields predicted for all zones into the field-scale 

yield. In reality this approach is difficult to implement particularly for small farm fields due to 

the high cost of soil measurements and difficulties to define soil homogeneous zones within the 

field. These zones are associated with the spatial and temporal variability of soil properties and 

crop yield. Limited grower resources in most cases preclude conducting soil surveys, and soil 

moisture or yield monitoring which could be used for model calibrations and parameter 

estimation. However, the accuracy of crop predictions relies heavily on high-quality measured 

soil properties and the correctness of model assumptions.  

In this study, we aimed at testing different techniques for upscaling soil properties 

measured at a plot scale or estimated from publically available data to predict crop yield 

averaged across the field. We assumed that only soil properties were known a priori and this was 
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the only information available to parameterize DSSAT-CSM. The objective of this work was to 

examine: (i) the spatial variability of soybean yields across an agricultural field with different 

soils and inputs; (ii) how spatial variability in soil properties translates into the variability of 

measured and predicted yields; (iii) how scaling soil properties affects model accuracy in 

predicting soybean yields for different weather conditions.  

 

MATERIALS AND METHODS 

1.1 Field experiment 

Field data for this study were collected at two experimental fields at Michigan State 

University’s LTER Scale-up experiment at the Kellogg Biological Station (KBS) located at 42˚ 

24’N, 85˚ 24’W in Southwest Michigan. Two soil series (i.e. Oshtemo and Kalamazoo), formed 

as a glacial outwash and marine complex during the last Wisconsin glaciation, were represented 

in these experimental fields. Glacial Michigan and Saginaw Bay lobes caused great disturbance 

of the surface topography and upon retreat left a complex landscape of highly heterogeneous 

deposits (Crum and Collins, 1995). Both soil series belong to the soil taxonomic class of mixed, 

active, mesic Typic Hapludalfs, with the Oshtemo series being coarse-loamy textured and the 

Kalamazoo series being fine-loamy. Oshtemo soil prevailed in the North field, while both 

Oshtemo and Kalamazoo soils were present in the South field (Fig. 1).  

The experimental fields used in this study represented two different management 

practices. The South field was under reduced chemical input (4.9 ha) and will be further referred 

to as reduced input, and the North field (2.2 ha) was under zero chemical input (organic). The 

reduced input field received only one starter application of nitrogen at planting and one banded 

application of herbicide. This was a 50% reduction in relation to the conventional input 
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management practice of the Scale-up experiment. Both management scenarios used for this study 

included chisel plow tillage and row cultivation. In the organic treatment a rotary hoe was used 

for weed control. A detailed description of the LTER Scale-up agronomic protocols are available 

from the KBS LTER website (Simmons, 2012). 

Soybeans (Blue River soy seed and Pioneer 92Y30) were planted in June 7 and June 13, 

and harvested in October 6 and October 15 in 2010 and 2013, respectively, using a combine 

equipped with precision agriculture software to allow yield measurements with coincident GPS 

latitude and longitude data (Robertson et al., 2012). Grain flow rate was measured across each 

field at a 2 m x 5 m resolution. Yield data were processed by removing errors using Yield Editor 

Software (Sudduth and Drummond, 2007). Nineteen locations were selected at three 

topographical elements across two fields (i.e. summit, slope and depression) to measure soil 

properties (Fig.1). We assumed that spatial yield variability observed in these fields was 

associated with surface soil topography in a manner that yield in some of these locations 

persistently deviated from the average yield across each field. The measured properties were soil 

texture, bulk density, and total organic carbon (TOC) content at depths of 20, 35, 50, 70 and 100 

cm. Soil texture was measured using the pipette method (Gee and Bauder, 1986). TOC in soil 

samples was determined via the dry combustion method using a Costech ECS 4010 CHNSO 

analyzer (Costech Analytical Technologies, Inc. Valencia, CA, United States).  Approximately 

200 g of soil were taken at the 19 selected locations from each depth for soil texture and TOC 

measurements. Soil for bulk density measurements was sampled using a soil core sampler, 2-1/4 

in. diameter (Soilmoisture Equipment Corp., Santa Barbara, CA). The sample volume was 153 

cm3. To characterize the plot-scale variability of yield we extracted yield monitor data points to a 

10m radius buffer created around each sampling location using ArcMap 10.2 (ESRI, Redlands, 
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CA, United States). In order to run different weather scenarios, we used historical weather data 

recorded by the Gull Lake Biological Station COOP weather observatory from 1993 to 2014. 

This weather station is located on the Kellogg Biological Station grounds approximately 1,100 m 

from the fields (Bohm and Robertson, 2015). 

 

1.2 Crop growth model  

DSSAT-CSM (version 4.6, Hoogenboom et al., 2015) was used to compute soybean yield 

for different weather scenarios with field-measured and up-scaled model parameters. The model 

implements a curve number technique (SCS, 1972; Williams et al., 1984) combined with a 

tipping bucket approach (Ritchie, 1985) to compute infiltration and vertical distribution of 

rainfall or irrigation water in soil profiles. Soil water flow parameters of the model include the 

runoff curve number (CN), which controls partitioning of precipitation into surface runoff and 

infiltration; the soil lower water limit LL, below which plants are unable to extract water from 

soil; the soil water content at the drained upper limit DUL, above which the soil drains water at a 

rate equal to the soil saturated hydraulic conductivity Ksat; saturated water content sat, the 

maximum possible content of water in the soil; and Ksat. 

For the plot scale, the model parameters were estimated from soil texture and bulk density 

measured in the 19 selected locations. Specifically, Ksat values were estimated using ROSETTA 

software (Schaap et al., 2001), sat was calculated from soil bulk density, while LL and DUL 

were estimated using pedotransfer functions as described in Ritchie et al. (1999): 

pDULLL

Sand
p

bDUL

e












 %015.06

-0.141

105.2132.0

y%)(Sand%/Cla 186.0

   (1) 



9 
 

where b is the soil bulk density (g cm-3); Sand% and Clay% are percent sand and clay; p is the 

plant extractable water (cm3 cm-3).  

The CN values were obtained in the DSSAT-CSM calibration to the soybean yield data 

measured in the selected locations in 2010. The crop parameters were taken from the DSSAT-

CSM database and were not changed in the simulations. The simulations started at a date of 

soybean planting (June 10th) and finished at soybean maturity, which typically occurred between 

October 3rd and 17th. We assumed that due to proper management practices plant nutrient 

demands were satisfied throughout the growing season and any differences in soybean yield 

could be solely attributed to soil water deficiency.  

The DSSAT-CSM model was first calibrated on the soybean yield data measured in the 

19 selected locations in 2010 and then validated on data of 2013. Only yield on reduced 

management was available in 2013. To calibrate the model we varied the CN values separately 

for each of 19 selected locations to achieve a minimum deviation of the simulated yield from the 

measured yield. All other soil parameters were fixed in the calibration. In validation the fitted 

CN values were used to compute yields in the selected locations for weather data of 2013. The 

goodness of the model prediction was evaluated using the index of agreement d (Willmott, 

1981): 
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where o
iY is the yield observed at location i (kg ha-1), oY  is the average observed yield (kg ha-1), 

m
iY is the yield predicted by the model at location i (kg ha-1), and l is the number of locations. 

The d-values close to 1.0 indicate better agreement between the model and observations.  
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The calibrated and validated DSSAT-CSM was then used to predict soybean yield at the 

plot scale in the 19 selected locations for different weather scenarios. For these scenarios we 

used observed weather data for 1993 to 2014 obtained from the Gull Lake Biological Station 

COOP weather observatory. Predicted values of yield were considered as the equivalent of plot-

measured yields for different weather scenarios, and used further to evaluate the accuracy of 

DSSAT-CSM predictions made using the upscaling techniques described in section 1.3.  

 

1.3 Upscaling techniques 

The parameters used in the DSSAT-CSM simulations represented plot and field scales. 

The plot scale corresponded to the scale of the soil properties and yield measurements. This scale 

was primarily used to calibrate and validate the model, and generate soybean yields in 19 

selected locations for years with different weather conditions. As mentioned above, these yield 

data were further considered as the equivalent of plot-scale measurements, since direct 

measurements of the yield were available only for two years (2010 and 2013).  

Field-scale properties and parameters of the model were derived from plot-measured soil 

properties. We used two techniques for upscaling (Fig. 2). In the first technique soil texture and 

bulk density data measured in the 19 selected locations were averaged across all locations by 

each soil layer. Averaging was done separately for Kalamazoo and Oshtemo soils, and for 

reduced and organic inputs, and produced three “representative” soil profiles with specific 

properties for each soil and management practice. Then, these averaged soil properties were used 

to estimate DSSAT-CSM parameters Ksat, LL, DUL andsat values according to the procedure 

described in section 1.2. This upscaling technique is referred further to as “Upscaling by 

averaging plot-scale soil properties”. In the second technique Ksat, LL, DUL andsat values were 
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estimated separately for each of 19 locations and soil layers, and then these model parameters 

were averaged for each soil layer of the two soils and inputs, producing total of 3 sets of model 

parameters. Arithmetic averaging was used for LL, DUL andsat, while geometric averaging was 

used for Ksat values. This technique was referred further to as “Upscaling by averaging plot-scale 

DSSAT parameters”. The CN values for both techniques were set at 73 according to the 

SSURGO database. 

Field-scale parameters of the model were also estimated from soil properties obtained 

from the LTER KBS and SSURGO soil databases. Both databases provide a description of the 

typical or “representative” soil profile for each soil series. The LTER KBS database provides soil 

descriptions specifically for their facility (Crum and Collins, 1995), while the SSURGO 

(Bockheim and Gennadiyev, 2015) database provides data at a county scale. Therefore, soil 

properties differed between the two databases. Despite the differences in scale (i.e. experimental 

station vs. county scale) both databases use the concept of the presence of morphological 

horizons specific for different soil types. We used soil texture and bulk density from both 

databases to estimate LL, DUL andsat as was described earlier. The Ksat values were estimated 

using the ROSETTA software for the LTER KBS database, while taken from the database in 

case of SSURGO. The SSURGO database also provides CN values for Kalamazoo and Oshtemo 

soils, while the LTER KBS database lacks these data. For this reason we used CN = 73 (taken 

from the SSURGO database) in simulations that used the LTER KBS soil data. The same CN 

numbers were used for the plot-scale derived parameters, therefore the differences in yield 

predictions between the different scaling techniques can be solely attributed to upscaling the LL, 

DUL,sat and Ksat parameters. 
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1.4 Statistics 

The yield simulations were performed for weather conditions of 1993 through 2014 with the 

field scale parameters obtained using the two upscaling techniques and from the two databases. 

Each year was simulated separately with the same initial conditions that were used in the model 

calibration. The results were compared with yield values predicted for the same years using the 

calibrated model. The accuracy of the model predictions was evaluated using the index of 

agreement d (Eq. 2), root mean squared error (RMSE) and relative absolute error (RAE):   
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where c
mY is the average yield predicted using the calibrated model parameters for m-weather 

scenario (kg ha-1);  u
mY  is the yield predicted for the same weather scenarios using the up-scaled 

model parameters (kg ha-1); u is the up-scaling technique index; M is the number of weather 

scenarios (M = 22). Values of RMSE and RAE, in conjunction, provided a summary of the 

overall model performance with up-scaled parameters. 

The effect of surface topography on the soybean yield was evaluated using PROC MIXED 

procedure (SAS 9.4, SAS Institute Inc., Cary, NC). The studied factor, topography, with three 

levels (summit, slope and depression) was treated as a fixed effect. Comparisons between the 

topographical positions were conducted if the main effect of topography was statistically 

significant at p<0.05.  

RESULTS AND DISCUSSION 

Measured soybean yield varied spatially and temporally in the studied years. The yield 

was higher on Oshtemo than on Kalamazoo soil and on the reduced input compared with the 
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organic input in Oshtemo soil (Fig.3). The differences in yield on the reduced input fields 

between two soils were more pronounced for 2010 than for 2013. This can likely be attributed to 

the growing conditions, which were more favorable for soybeans in 2010 than they were in 2013, 

and yield in 2013 was more affected by insufficient precipitation than by the ability of the soil to 

conduct and retain infiltrated precipitation. Surface topography did not have a statistically 

significant influence on the soybean yield in 2010 (p<0.05). High yield variability was observed 

on all topographical elements, and could be likely attributed to the natural spatial variation in 

physical, chemical and biological properties (Long et al., 1963; Karlen et al., 1990). Despite the 

differences in the absolute values of the yield, the locations selected at different topographical 

elements for soil sampling represented the yields in a wide range of cumulative relative 

frequencies reasonably well, thus providing adequate datasets for the DSSAT-CSM calibration 

and validation (Fig. 3).  

As expected, a high variability was present in soil texture measured at different locations 

across the two fields. Soil texture measured at the same depths varied across seven textural 

classes from sand to clay (Fig. 4a). High variability was observed at all depths, indicating that 

the differences in soil texture could not be attributed solely to surface erosion of slopes and 

sediment deposition in depressions, which typically alter soil properties in the top soil layer, but 

could rather be attributed to the glacial formation of these soils. The variability in soil texture 

was also high for data taken from the two soil databases. In spite of the small number of soil 

layers the texture varied across 5 textural classes for both the LTER KBS and SSURGO 

databases (Fig. 4b). Soil texture provided by the databases differed markedly from the 

measurements taken at our 19 selected locations. For the same sand contents, clay contents were 
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higher in the field measurements compared to those from the databases, and the difference in 

clay content increased as sand content decreased (Fig. 4).  

The variability in soil bulk density and organic carbon was also high in the selected 

locations. Coefficients of variation ranged from 0.048 to 0.113 and from 0.48 to 1.31 at five 

depths in these locations for soil bulk density and TOC, respectively. In general, bulk density 

increased while TOC decreased with depth (Fig. 5). However, the spatial variability of BD 

decreased with depth, as assessed by the coefficient of variation (CV), while the CV values for 

TOC did not show any trend by depth. The measured soil properties differed from those 

estimated from the two databases. Specifically, the LTER KBS database overestimated, while 

SSURGO database underestimated field-measured values of soil bulk density (Fig. 5a). The 

values of TOC content were somewhat higher in the top 30-cm soil layer for the database data in 

comparison to those measured in the selected locations (Fig. 5b). 

The spatial variability in soybean yield can be in part attributed to the variability in soil 

properties in the top 20-cm soil layer. The yield measured at the 17 locations correlated with 

TOC (r=0.66, P=0.005) in 2010 and with clay to sand content ratio (r=-0.765, P=0.01) in 2013. 

However, correlations between the yield and clay to sand content ratio in 2010, and between the 

yield and TOC in 2013 were not statistically significant at P = 0.05. This is an indication that 

TOC and clay to sand content ratio are not robust predictors of soybean yield in the studied soil. 

Interestingly, the yield in 2010 did not correlate with TOC measured in two locations with the 

highest TOC (4.2% and 7.3%) in the top soil layer. This concurs with the results of Kravchenko 

and Bullock (2001), who studied corn and soybean variability in Haplaquolls and Argiudolls of 

central Illinois and eastern Indiana. These authors found that that OM content was a more 

important yield-affecting factor in soils with low (OM < 3%) than with high OM (OM > 3%) 
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content. For comparison, in our study a good correlation between yield and OM was observed in 

2010 for OM values ranging from 0.5% to 2.0%.   

Spatial variability in soil properties translated into different values of the DSSAT-CSM 

parameters calculated using Eq.1 and estimated using ROSETTA software (Schaap et al., 2001). 

These values are shown in Fig. 6 a-d. The spatial variability of the DSSAT-CSM parameters was 

more pronounced for Ksat and less pronounced for sat values. Coefficients of variation ranged 

from 0.20 to 0.28, from 0.12 to 0.24, from 0.055 to 0.087 and from 1.08 to 0.65 at five depths in 

the selected locations for LL, DUL, sat and Ksat, respectively.   

The differences in the CV values for different DSSAT-CSM parameters were associated 

with the differences in the CV values for the measured soil properties and the differences in 

methods of parameter estimation. The sat values were calculated as a linear function of soil BD, 

LL and DUL were calculated as a product of BD and nonlinear function of Sand to Clay ratio, 

while Ksat values were estimated from soil texture and BD using a strongly nonlinear neural 

network. The low CV values for BD (0.048 to 0.113) translated into relatively low CV values for 

sat, while high CV values for Sand to Clay ratio (1.32 to 3.35) translated into high CV values for 

LL and DUL though nonlinear transformation of soil properties to LL and DUL considerably 

reduced CV values for this parameters compared to CV values for Sand to Clay ratio. The CV 

values for Ksat were much higher than those for the measured soil properties, which likely 

resulted from high sensitivity of the ROSETTA software to changes in soil properties. 

Model calibration with fixed values of sat, LL, DUL, Ksat and variable CN values 

produced yield predictions  very close to the measured yields in 18 out of 19 selected locations 

(Fig. 7). The agreement index d equal to 0.99 in calibration and 0.84 in validation, which 

indicated adequate model performance. The calibration produced CN values ranging from 60 to 
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93 (CN=73±10, CV=0.136) in those 18 locations. It occurred that the differences in CN values 

were not associated with topographical locations, but rather with soil texture. A significant 

positive correlation (P = 0.002) was found between CN values larger than 70 and clay to sand 

ratio in the top 20-cm soil layer. The CN values increased from 72 to 93 with an increase in the 

clay to sand ratio from 0.05 to 1.7. The greater CN indicates greater runoff rates in the top soil 

with higher clay and lower sand contents. These results agree with the CN values recommended 

for different soil texture and soil hydraulic groups (Cronshey et al., 1986). Indeed, according to 

the soil texture measured in the top soil layer, our soil samples can be placed into three 

hydrologic groups (i.e. A, B and D) with the CN values of 73 (A), 73 to 78 (B), and 82 to 93 (D). 

For comparison, the CN estimates for straight row legumes are 66, 77 and 89 for groups A, B 

and D, respectively. 

When the DSSAT-CSM parameters were estimated from the measured soil properties 

and from the CN values calibrated to the yield measured in the selected locations in 2010, their 

spatial variability resulted in the spatially variable predictions of soybean yield. However, the 

yield variability was only partly attributed to the variability in the model parameters, and was 

mostly affected by the weather scenarios (Fig. 8). For 22 weather scenarios the CV values of the 

yield varied from 0.025 to 0.429 in the simulations with the same values of the DSSAT-CSM 

parameters. In these scenarios the total precipitation (P) and potential evapotranspiration (ET) 

values during the growing season varied from 166 to 566 mm and from 258 to 566 mm, 

respectively. The ET values exceeded precipitation in 16 out of 22 weather scenarios (Fig. 8), 

therefore plant water stress was possible in most of the scenarios. Predicted yield values did not 

correlate with P in our simulations. The reason for this was a non-uniformity of the precipitation 

distribution during the growing seasons and the fact that soybeans respond differently to water 
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stress depending on their developmental stage. Stress effects were reported by different authors 

before. For example, Pejić et al. (2011) observed that soybeans are most sensitive to water stress 

during the general yield formation stages, since this is when the plants’ water use is the highest 

(50.7% of total available water used) in comparison to the vegetative and flowering stages 

(28.2% and 21.1% of total available water used, respectively). Cox and Jolliff (1986) noted that 

although soybeans in general are unable to withstand prolonged drought, tolerance is the lowest 

during the seed enlargement or pod elongation stages. In a similar vein, Sionit and Kramer 

(1977) found that the seed enlargement stages are the most critical;  they obtained positive yield 

responses in soybeans that were only irrigated during these critical stages. Therefore, the 

existence of some water stress during the growing season does not automatically result in yield 

reductions. Whether or not the yield reductions will occur depends on the growth stage at which 

the water deficit takes place.  

To account for the water stress experienced by the crop, the DSSAT-CSM model 

implements a dual approach to the plant growth, i.e., a water deficit relationship (Ritchie, 1998). 

Soilwater deficit affects crop canopy photosynthesis, which controls rates of dry matter 

accumulation, and plant physiological processes (i.e. roots, leaf and stem development). 

Moreover, soybean physiological maturity has been shown to accelerate with an increase in the 

water deficit (Desclaux and Roumet, 1996; Ruíz-Nogueira et al., 2001). This is accounted for in 

the DSSAT-CSM (Boote et al., 2008). Therefore, water deficit may produce a mixed effect on 

the soybean growth and yield. Surprisingly, a significant correlation (P = 0.04) was observed 

between the predicted yield and absolute values of differences |P-ET| (data not shown).  

The differences in soil properties measured in the field and derived from the soil 

databases translated into different values of DSSAT-CSM parameters (Table 1 and Table 2). The 
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LL and DUL values were consistently smaller in SSURGO-derived parameters for Oshtemo soil, 

while they were consistently larger in LTER KBS-derived parameters for Kalamazoo soil as 

compared to the field estimates in the same soil layers. These differences can be attributed to 

relatively high clay% to sand% ratios in the LTER KBS database and low ratios in the SSURGO 

database (Fig. 4b). The differences in LL and DUL values did not cause noticeable differences in 

plant extractable water, since p  values were estimated from sand, which was in the same range 

in the database and plot-scale measurements. Differences in soil bulk densities for the two 

databases resulted in overall low values of sat for the LTER KBS database, and high sat values 

for the SSURGO database compared with the sat values estimated from the plot measured bulk 

densities. Among all estimates, the Ksat values were the smallest in the top 0-70 cm layer of 

Kalamazoo soil for LTER KBS database and the largest in the bottom 96-152 cm layer of the 

same soil for the SSURGO database (Table 2).  

The differences in parameter values between the two field-scale upscaling techniques (i.e. 

averaging plot-scale DSSAT-CSM parameters and averaging plot-scale soil properties) were less 

pronounced compared to the differences in the database-derived parameters. The largest 

differences for the field scale were observed for Ksat values that were in many instances higher 

for the averaging plot-scale DSSAT-CSM parameters than for the averaged plot-scale soil 

properties (Table 1). These differences were attributable to high variability in soil properties 

measured at the same depth in different locations and strong nonlinearity between soil properties 

and log10(Ksat) in the ROSETTA software (Schaap et al., 2001). Indeed, the differences in Ksat 

values between upscaling by averaging plot-scale soil properties and upscaling by averaging 

plot-scale DSSAT-CSM parameters were less pronounced in the upper soil layers (0-20 cm and 
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20-35 cm) compared to the soil layers below depth of 35 cm (Table 1). This occurred due to 

relatively high variability of soil texture in the deep soil layers (Fig. 4).  

Comparison of the results of the soybean yield simulations using the calibrated and up-

scaled model parameters is shown in Fig. 8. Despite high yield variability between the different 

weather scenarios all upscaling techniques (with the exception of SSURGO on Kalamazoo soil) 

generated reasonable yields. Despite an overall acceptable performance indicated by the index of 

agreement d (Table 3), the values of the RMSE were different for different upscaling techniques. 

The smallest RMSE values were obtained for the averaged DSSAT-CSM parameters, while the 

largest RMSE occurred for the SSURGO-derived parameters in Kalamazoo soil and the LTER 

KBS parameters in Oshtemo soil on both management practices (Table 3). These differences in 

model performance for different soils and management practices were not associated with the 

model parameters estimated from highly variable soil properties, but were caused by differences 

in the yield values used for model calibration. The yield values in the calibrated dataset in 

Kalamazoo soil and in Oshtemo soil on organic input were considerably smaller compared to the 

yield on Oshtemo reduced input plots (Fig. 3). As a result, the calibrated model produced large 

yields on Oshtemo reduced input plots in relation to the yields on the two other plots. It also can 

be seen that in most DSSAT-CSM runs using upscaling the model tended to overestimate yields 

that were predicted using the calibrated parameters (Fig. 8). Therefore, the model predictions 

using upscaling were less accurate on plots with relatively low yield (Kalamazoo and Oshtemo 

organic input plots) than on the plot with high yield (Oshtemo reduced input).  

The accuracy of the model upscaling techniques, assessed as a relative error of yield 

prediction, also varied between the different simulations. The RAE values were smallest for the 

yield predictions with averaged plot-scale DSSAT-CSM parameters, the largest for the 
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SSURGO-derived parameters and intermediate in simulations with averaged plot-scale soil 

properties and LTER KBS-derived parameters Fig. 8a. Poor model performance with the 

SSURGO-derived parameters was mostly associated with large errors in Kalamazoo soil. The 

RAE values for Oshtemo soil did not differ significantly from those obtained using the other 

upscaling techniques on both reduced and organic inputs.  

Relatively small differences in yields predicted using different upscaling techniques for 

the same weather scenarios could be attributed to a relatively high model sensitivity to the CN 

values, which were the same in all upscaling techniques, and relatively low sensitivity to the soil 

parameters within their ranges. The high sensitivity to CN parameter can be illustrated by 

implementing another approach to estimating the CN values for the field-scale upscaling 

techniques. In this approach, using soil texture measured in the top soil layer we first identified 

soil hydrologic group for each soil and management practice, and then estimated the CN values 

for obtained groups (Cronshey et al., 1986). The generated CN values appeared to be much 

higher compared to those taken from SSURGO database and used in our simulations. 

Specifically, new CN values were 88, 89 and 76 for Kalamazoo soil, Oshtemo soil on reduced 

and Oshtemo soil on organic inputs, respectively. Higher CN values obtained on reduced 

management practice generated higher runoff and lower infiltration fluxes that led to a 

considerable decrease in predicted yields, particularly for high yield years (Fig. 8, dotted lines). 

Relatively low sensitivity of DSSAT-CSM to the differences in Ksat values obtained in different 

upscaling techniques can be explained by relatively high Ksat values in these soils that did not 

restrict water flow through soil profile under current weather scenarios. In other words, the CN 

parameter appeared to be a limiting factor for water influx into the soil profile that affected crop 

growth and controlled the yield. This conclusion concurs with the results of Kendall et al. (2012) 
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who conducted a global sensitivity analysis of DSSAT-CSM to estimate the effects of soil and 

crop parameters on corn yield with and without irrigation. These authors concluded that the Ksat 

parameter had no influence on corn yield within the range of Ksat values used in their sensitivity 

analysis. This could be due to greater importance of the parameter range for the output variable 

(i.e. yield) than the parameter variability within the range (Monod et al., 2006). 

Acceptable performance of the model using the SSURGO-derived parameters in this 

study was surprising, because the national soil survey was not designed as a site-specific or field-

scale agricultural tool (Mausbach et al., 1993), and soil properties taken from this database 

differed considerably from the field-measured properties. There is no general agreement on the 

correlation between the scale of yield averaging and of the soil survey map in the literature. For 

example, Karlen et al., (1990) found that field-scale variation in corn, wheat and sorghum yields 

was partly associated with different soil map units identified at a 15 m resolution in Ultisols soil, 

though yield variability within each soil unit was very high. Steinwand et al. (1996) found that 

the scale of soil mapping (1:3305 vs. 1:15840) had little effect on corn, soybean, oat, and hay 

yield estimates for a Clarion-Nicollet-Webster soil association area in central Iowa, despite the 

fact that between 35 and 100% of the soil units on the 1:6333 map overlapped with the same 

units on the 1:15840 soil survey map. The authors explained the small differences in the yield by 

the high percentage of similar soils included in both soil maps and concluded that county soil 

surveys and attribute data in central Iowa were acceptable to evaluate soil landscapes for crop 

yield interpretations. Sadler et al. (1998) found a significant though weak correlation between 

corn, wheat, soybean and sorghum yields and soil map units at the 1:1200 scale, which provided 

rather limited predictive yield values for precision farming.  Contrary to the results of the latter 
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study the SSURGO database (scale of 1:24000) provided reasonable estimates of soil properties 

in Oshtemo soil for yield prediction at the field scale in our study. 

The differences in RAE values obtained in our simulations were both attributed to the 

upscaling techniques and the weather conditions. Specifically, for Oshtemo soil on organic input 

averaged RAE values decreased in an order: LTER KBS database > averaging plot-scale soil 

properties > SSURGO database > averaging plot-scale DSSAT parameters, indicating better 

performance of the last upscaling technique (Fig. 9b). Analysis of the relationship between RAE 

and |P-ET| showed a general increase in the relative yield error with deviation of precipitation 

from potential evapotranspiration (though statistically significant for averaged soil properties and 

LTER KBS database, P = 0.05). This indicates that the errors of model prediction with the up-

scaled parameters will likely increase in unusually wet and dry years.  This finding is very 

important in the context of a changing climate characterized by a more frequent occurrence of 

extreme weather conditions. Interestingly, RAE values for averaging plot-scale DSSAT 

parameters ranged from 0.02 to 10.2% and were not affected by |P-ET|, demonstrating robustness 

of this upscaling technique for different weather conditions.  

CONCLUSIONS 

    The high spatial variability of soil properties (i.e. soil texture, bulk density, organic 

carbon) and soybean yield observed in two soils and two management practices which included 

reduced and organic inputs were not associated with topographical elements in this study. 

However, the locations selected at different topographical elements for soil sampling represented 

yield variability for the 2010 and 2013 growing seasons in both soils and management practices 

reasonably well, thus providing adequate datasets for the DSSAT-CSM calibration and 

validation. 
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We did not find a relationship between measured yield and soil properties in this study. 

The yield correlated with TOC in top 20-cm soil layer in 2010 and with clay to sand content in 

2013, but these correlations were not persistent for different weather conditions.  

The variability in soil properties translated into spatially variable parameters of the 

DSSAT-CSM model. The key parameter that affected adequate prediction of the measured 

soybean yield, the runoff curve number (CN), positively and significantly correlated with the 

spatially variable ratio between clay and sand contents in the top 20-cm soil layer.  

Spatial variability in the DSSAT-CSM parameters estimated from measured soil 

properties translated in the variability in predicted yield, however the model predictions were 

more affected by the weather scenarios than by spatially variable model parameters.   

The four upscaling techniques provided different estimates of the DSSAT-CSM model 

parameters, however the values of these parameters appeared to be less important for the yield 

prediction compared to the CN values that were derived from SSURGO database and set to 73 in 

all simulations. This result was attributed to low sensitivity of the model to the variability in soil 

parameters within the parameter range obtained for these two soils.  

Based on the index of agreement d, all upscaling techniques performed reasonably well 

for different weather conditions. Among other upscaling techniques only averaging plot-scale 

DSSAT-CSM parameters generated predicted errors that did not correlate with precipitation less 

evapotranspiration, and therefore this technique may be recommended for modeling soybean 

yield in changing climate conditions. 
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CAPTIONS. 

Figure 1. Soil SSURGO map with soybean yield data and soil sampling locations (stars). 

Figure 2. Upscaling techniques for parameterization of the DSSAT-CSM model for the field 

scale crop prediction.  

Figure 3. Cumulative relative frequencies of the soybean yield obtained on Kalamazoo (Ka) and 

Oshtemo (Os) soils under reduced (R) and organic (O) chemical inputs in 2010 and 2013. 

Symbols show the yield obtained in the selected locations. 

Figure 4. Soil texture measured in the field (a) and taken from databases (b). Symbols on the 

right denote fine-loamy Kalamazoo (open) and coarse-loamy Oshtemo (filled) soil series, circles 

denote LTER KBS database, while squares denote SSURGO soil database.  Depth (cm) to the 

bottom of the soil layers for LTER KBS database are shown in parenthesis (Kalamazoo, 

Oshtemo). 

Figure 5. Soil bulk density (a) and organic carbon content (b) measured in the field (box-and-

whisker plots) and taken from LTER KBS (circles) and SSURGO (squares) soil databases. 

Figure 6. Parameters of DSSAT model estimated from measured soil properties. 

Figure 7. Measured and predicted yield of soybeans obtained in the DSSAT-CSM calibration (a) 

and validation (b). Box and whisker plots show the yield variability measured within the plots 

with outliers representing 5th/95th percentiles. 

Figure 8. Soybean yield predicted by the DSSAT-CSM model using different upscaling 

techniques for 22 weather scenarios. Solid lines denote simulations with CN=73, while dotted 

lines denote simulations with CN values estimated from soil texture. Symbols and bars in 

simulations using the calibrated model denote average and standard deviation values of yield 

computed in the selected locations. 
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Figure 9. Relative errors of soybean predictions with up-scaled parameters (a) and the 

relationship between the errors and precipitation less evapotranspiration for Oshtemo soil on the 

organic input (b).  



Table 1. Model parameters estimated from averaged plot-scale soil properties and by averaging plot-
scale DSSAT-CSM parameters. 

Soil layer LL DUL sat Ksat LL DUL sat Ksat 

cm cm3 cm-3 cm hour-1 cm3 cm-3 cm hour-1 

 Upscaling by averaging plot-scale 

soil properties 

Upscaling by averaging plot-scale 

DSSAT parameters 

Kalamazoo soil, reduced input 

0-20 0.091 0.223 0.492 1.68 0.090 0.222 0.477 1.76 

20-35 0.129 0.261 0.416 0.68 0.126 0.258 0.417 0.64 

35-50 0.133 0.265 0.406 0.63 0.103 0.231 0.410 1.31 

50-70 0.140 0.272 0.392 0.52 0.101 0.223 0.399 2.17 

70-100 0.152 0.283 0.374 0.38 0.104 0.207 0.385 3.47 

Oshtemo soil, reduced input 

0-20 0.091 0.222 0.479 1.67 0.090 0.221 0.466 1.79 

20-35 0.130 0.261 0.408 0.66 0.119 0.242 0.412 1.49 

35-50 0.137 0.268 0.385 0.55 0.121 0.237 0.393 2.14 

50-70 0.129 0.261 0.404 0.64 0.100 0.202 0.408 7.36 

70-100 0.141 0.272 0.362 0.45 0.118 0.232 0.376 2.59 

Oshtemo soil, organic input 

0-20 0.096 0.225 0.428 1.90 0.097 0.222 0.427 1.91 

20-35 0.116 0.244 0.385 1.11 0.106 0.228 0.393 1.83 

35-50 0.116 0.244 0.381 1.15 0.100 0.217 0.390 3.15 

50-70 0.110 0.236 0.384 1.55 0.087 0.195 0.393 6.50 

70-100 0.125 0.251 0.350 0.97 0.104 0.209 0.367 5.23 
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Table 2. DSSAT-CSM parameters estimated from soil properties obtained from LTER KBS and SSURGO 
databases. 

Soil layer LL DUL sat Ksat LL DUL sat Ksat 

cm cm3 cm-3 cm hour-1 cm3 cm-3 cm hour-1 

LTER KBS database Kalamazoo soil Oshtemo soil 

0-30 / 0-25 (Ap) 0.133 0.265 0.396 0.30 0.112 0.243 0.396 0.76 

30-41 / 25-41 (E) 0.156 0.288 0.358 0.18 0.125 0.255 0.358 0.60 

41-69 / 41-57 (Bt1) 0.180 0.312 0.349 0.11 0.153 0.282 0.321 0.29 

69-88 / 57-97 (Bt2) 0.148 0.270 0.321 0.70 0.141 0.258 0.321 1.32 

88-152 / 97-152 (E/Bt) 0.144 0.232 0.321 7.75 0.144 0.237 0.321 6.18 

SSURGO database Kalamazoo soil Oshtemo soil 

0-28 / 0-23 0.108 0.240 0.442 3.24 0.071 0.199 0.442 10.1 

28-96 / 23-74 0.148 0.280 0.423 3.24 0.087 0.216 0.453 10.1 

96-140 / 74-175 0.096 0.213 0.404 33.1 0.092 0.192 0.453 10.1 

140-152 0.109 0.194 0.404 33.1     

Depths of soil layers are shown in the first column as Kalamazoo / Oshtemo  

 

  



Table 3. Performance statistic of the model upscaling technique in predicting soybean yield  

 

Upscaling technique 

Kalamazoo soil,  
reduced input 

Oshtemo soil,  
reduced input 

Oshtemo soil,  
organic input 

Index of 
agreement d RMSE Index of 

agreement d RMSE Index of 
agreement d RMSE 

Upscaling by averaging 
plot-scale soil properties 

0.985 212 0.995 118 0.984 221 

Upscaling by averaging 
plot-scale DSSAT 
parameters 

0.991 165 0.997 99 0.997 92 

LTER KBS database 0.985 207 0.995 125 0.981 239 

SSURGO database 0.891 547 0.996 121 0.987 210 
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