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ABSTRACT

The development of environmentally and economically sound long term agricultural
practices under changing climate conditions at the field scale requires implementation of
predictive models that assess short and long term responses of agricultural systems to changing
environmental conditions. Soil properties for such models are commonly taken from local or
National Soil Surveys (SSURGO, STATSGO). This causes a mismatch between the modeling
and data source scales. Different techniques can be implemented to upscale soil properties
measured at plot scale for field-scale crop modeling, however little is known about the effect of
scaling on the accuracy of crop models in predicting crop yields. The objective of this work was
to examine: (i) the spatial variability of soybean yields across an agricultural field with different
soils and inputs; (ii) how spatial variability in soil properties translates into the variability of
measured and predicted yields; (iii) how scaling soil properties affects model accuracy in
predicting soybean yields for different weather conditions. The study was conducted at LTER
KBS in Michigan, USA. Soybean yield was measured at 2.2 ha and 4.9 ha fields at 2x5 m
resolution in 2010. Soil properties were measured at the plot scale in 19 locations, selected to
represent two soil types and two management practices on 3 topographical elements (i.e. summit,
slope and depression). The DSSAT-CSM was calibrated and validated on soybean yield data
measured at the plot scale in 2010 and 2013. The validated model was used to generate yields for
22 years with varying weather conditions in all selected locations. Then the model parameters
were scaled up using different techniques, such as averaging plot-scale measured soil properties,
averaging the model parameters estimated for each plot using measured soil properties, and using
typical soil profile descriptions and the SSURGO soil database. The results of this study showed

high variability in soybean yield for two soils and two management practices, which was



associated with variability in soil texture and organic carbon content in the top 20-cm soil layer,
but not with surface topography. Despite considerable differences in parameters, all upscaling
techniques performed reasonably well for different weather conditions However, model
performance appeared to be site specific in this study.

Keywords: DSSAT-CSM model, soybean yield, spatial variability, field scale, upscaling.

INTRODUCTION'

The development of environmentally and economically sound long term practices under
changing climate conditions at the field scale is unlikely without implementation of predictive
models that are capable of assessing the response of agricultural systems to changing
environmental conditions. Field experiments are labor intensive and time consuming, yet provide
limited (in the spatial as well as temporal sense) information about changes in soil processes
including soil water, carbon, and nutrient cycles. As an alternative to and support for field
studies, process-based models are commonly used to predict short and long term changes in in
these processes, as well as their impact on crop yield. Among others there are APSIM (Keating
et al., 2003, Chaucan et al., 2013), CERES (Jones and Kiniry, 1986), EPIC (Williams et al.,
1989), STICS (Brisson et al., 2003), SUCROS (Spitters et al., 1990), SALUS (Basso et al.,
2011), CropSyst (Stockle et al., 2003), and DSSAT (Jones et al., 2003).

DSSAT-CSM has been used for predicting crop yield at multiple scales ranging from

agricultural fields (Liu et al., 2011; Yang et al., 2013; Salmeron et al., 2014; Negm et al., 2014)

! Abbreviations: DSSAT-CSM, Decision Support System for Agrotechnology Transfer with
Crop Simulation Model; LTER KBS, the Long Term Ecological Research Kellogg Biological
Station; SSURGO, Soil Survey Geographic database; ET, potential evapotranspiration; P,
precipitation; TOC, total organic carbon content; RMSE, root mean squared error; RAE, relative
absolute error; CN, runoff curve number.



to landscapes and regions (Zhan et al., 2012; Huffman et al., 2014). The input data, specifically
soil properties, for the DSSAT-CSM model are commonly taken from soil descriptions, soil
surveys or soil maps (e.g. SSURGO, STATSGO). The field scale is of particular interest for
growers when making decisions on implementing new management practices in the context of a
changing climate (Kaiser et al., 1993; Southworth et al., 2000). However, detailed soil properties
data at this scale are typically not available, hence the reliance on these soil maps and surveys to
obtain soil data for modeling. The information compiled in the SSURGO database was collected
at scales ranging from 1:12,000 to 1:63,360 by the National Cooperative Soil Survey over the
course of a century and represents “typical” properties of the soil units. These typical properties
generally ignore field-scale spatial variability of the soil, which can be large even within
relatively small areas (Pachepsky et al., 2001; Kreznor et al., 1989; Ovalles and Collins, 1986)
and may have a significant effect on crop yield (Afyuni et al., 1993; Timlin et al., 1998;
Kravchenko and Bullock, 2000; Chaves et al., 2013). Using soil data at a county scale
(SSURGO) for field-scale modeling causes a mismatch between the modeling and data source
scales. Little is known about how this mismatch affects the accuracy of crop models in predicting
field-averaged crop yields.

Since most crop models are one-dimensional, they simulate processes in a single soil
profile assuming that the soil is laterally homogeneous. Therefore, simulation results are relevant
to the plot scale. For the plot scale, the model parameters are typically measured (Sadler et al.,
1999; Sau et al., 2004; Naab et al., 2004), estimated from other measured soil properties (Ritchie
et al., 1999; Liu et al., 2011), or estimated by solving an inverse task and fitting the parameters to
measured data (Negm et al., 2014; He et al., 2014). Most soils are not homogeneous at a scale

large than the plot (e.g. field, landscape, and watershed). For this reason, prediction of average



crop yield at a larger scale even for a single management practice, set of weather conditions, and
crop type across a field involves upscaling due to spatial variability of soil properties. The
upscaling techniques are well developed for a regional scale. A comprehensive review of the
scaling techniques and issues associated with crop modeling for a regional scale can be found in
Faivre et al. (2004). A good example of upscaling for spring wheat on the Canadian prairies was
published by Huffman et al. (2014). The authors demonstrated that aggregation of yield
predictions made for multiple soil units based on percentage of soil occupied area produced a
reasonable estimate for the yield at a regional scale.

For field-scale simulations, representative soils or soil properties are commonly used in
crop modeling (Sadler et al., 2000). To take into account the soil variability, homogeneous zones
with different representative soils must be identified within the field (Faivre et al., 2004). Next
steps include measuring the soil properties, estimating the model parameters, running the model
for each of these zones, and finally aggregating yields predicted for all zones into the field-scale
yield. In reality this approach is difficult to implement particularly for small farm fields due to
the high cost of soil measurements and difficulties to define soil homogeneous zones within the
field. These zones are associated with the spatial and temporal variability of soil properties and
crop yield. Limited grower resources in most cases preclude conducting soil surveys, and soil
moisture or yield monitoring which could be used for model calibrations and parameter
estimation. However, the accuracy of crop predictions relies heavily on high-quality measured
soil properties and the correctness of model assumptions.

In this study, we aimed at testing different techniques for upscaling soil properties
measured at a plot scale or estimated from publically available data to predict crop yield

averaged across the field. We assumed that only soil properties were known a priori and this was



the only information available to parameterize DSSAT-CSM. The objective of this work was to
examine: (i) the spatial variability of soybean yields across an agricultural field with different
soils and inputs; (ii) how spatial variability in soil properties translates into the variability of
measured and predicted yields; (iii) how scaling soil properties affects model accuracy in

predicting soybean yields for different weather conditions.

MATERIALS AND METHODS
1.1 Field experiment

Field data for this study were collected at two experimental fields at Michigan State
University’s LTER Scale-up experiment at the Kellogg Biological Station (KBS) located at 42°
24°N, 85° 24’W in Southwest Michigan. Two soil series (i.e. Oshtemo and Kalamazoo), formed
as a glacial outwash and marine complex during the last Wisconsin glaciation, were represented
in these experimental fields. Glacial Michigan and Saginaw Bay lobes caused great disturbance
of the surface topography and upon retreat left a complex landscape of highly heterogeneous
deposits (Crum and Collins, 1995). Both soil series belong to the soil taxonomic class of mixed,
active, mesic Typic Hapludalfs, with the Oshtemo series being coarse-loamy textured and the
Kalamazoo series being fine-loamy. Oshtemo soil prevailed in the North field, while both
Oshtemo and Kalamazoo soils were present in the South field (Fig. 1).

The experimental fields used in this study represented two different management
practices. The South field was under reduced chemical input (4.9 ha) and will be further referred
to as reduced input, and the North field (2.2 ha) was under zero chemical input (organic). The
reduced input field received only one starter application of nitrogen at planting and one banded

application of herbicide. This was a 50% reduction in relation to the conventional input



management practice of the Scale-up experiment. Both management scenarios used for this study
included chisel plow tillage and row cultivation. In the organic treatment a rotary hoe was used
for weed control. A detailed description of the LTER Scale-up agronomic protocols are available
from the KBS LTER website (Simmons, 2012).

Soybeans (Blue River soy seed and Pioneer 92Y30) were planted in June 7 and June 13,
and harvested in October 6 and October 15 in 2010 and 2013, respectively, using a combine
equipped with precision agriculture software to allow yield measurements with coincident GPS
latitude and longitude data (Robertson et al., 2012). Grain flow rate was measured across each
field at a 2 m x 5 m resolution. Yield data were processed by removing errors using Yield Editor
Software (Sudduth and Drummond, 2007). Nineteen locations were selected at three
topographical elements across two fields (i.e. summit, slope and depression) to measure soil
properties (Fig.1). We assumed that spatial yield variability observed in these fields was
associated with surface soil topography in a manner that yield in some of these locations
persistently deviated from the average yield across each field. The measured properties were soil
texture, bulk density, and total organic carbon (TOC) content at depths of 20, 35, 50, 70 and 100
cm. Soil texture was measured using the pipette method (Gee and Bauder, 1986). TOC in soil
samples was determined via the dry combustion method using a Costech ECS 4010 CHNSO
analyzer (Costech Analytical Technologies, Inc. Valencia, CA, United States). Approximately
200 g of soil were taken at the 19 selected locations from each depth for soil texture and TOC
measurements. Soil for bulk density measurements was sampled using a soil core sampler, 2-1/4
in. diameter (Soilmoisture Equipment Corp., Santa Barbara, CA). The sample volume was 153
cm’. To characterize the plot-scale variability of yield we extracted yield monitor data points to a

10m radius buffer created around each sampling location using ArcMap 10.2 (ESRI, Redlands,



CA, United States). In order to run different weather scenarios, we used historical weather data
recorded by the Gull Lake Biological Station COOP weather observatory from 1993 to 2014.
This weather station is located on the Kellogg Biological Station grounds approximately 1,100 m

from the fields (Bohm and Robertson, 2015).

1.2 Crop growth model

DSSAT-CSM (version 4.6, Hoogenboom et al., 2015) was used to compute soybean yield
for different weather scenarios with field-measured and up-scaled model parameters. The model
implements a curve number technique (SCS, 1972; Williams et al., 1984) combined with a
tipping bucket approach (Ritchie, 1985) to compute infiltration and vertical distribution of
rainfall or irrigation water in soil profiles. Soil water flow parameters of the model include the
runoff curve number (CN), which controls partitioning of precipitation into surface runoff and
infiltration; the soil lower water limit &;;, below which plants are unable to extract water from
soil; the soil water content at the drained upper limit &y, above which the soil drains water at a
rate equal to the soil saturated hydraulic conductivity Kg,; saturated water content 6, the
maximum possible content of water in the soil; and Kgy.

For the plot scale, the model parameters were estimated from soil texture and bulk density
measured in the 19 selected locations. Specifically, K, values were estimated using ROSETTA
software (Schaap et al., 2001), &, was calculated from soil bulk density, while €, and py,

were estimated using pedotransfer functions as described in Ritchie et al. (1999):

Op =0.186p, (Sand%/Clay%)o.m
6,=0.132-25- 1076 001 5Sand%

QLL = QDUL - '9p (1)



where p, is the soil bulk density (g cm™); Sand% and Clay% are percent sand and clay; @ ,1s the

plant extractable water (cm® cm™).

The CN values were obtained in the DSSAT-CSM calibration to the soybean yield data
measured in the selected locations in 2010. The crop parameters were taken from the DSSAT-
CSM database and were not changed in the simulations. The simulations started at a date of
soybean planting (June IOth) and finished at soybean maturity, which typically occurred between
October 3™ and 17", We assumed that due to proper management practices plant nutrient
demands were satisfied throughout the growing season and any differences in soybean yield
could be solely attributed to soil water deficiency.

The DSSAT-CSM model was first calibrated on the soybean yield data measured in the
19 selected locations in 2010 and then validated on data of 2013. Only yield on reduced
management was available in 2013. To calibrate the model we varied the CN values separately
for each of 19 selected locations to achieve a minimum deviation of the simulated yield from the
measured yield. All other soil parameters were fixed in the calibration. In validation the fitted
CN values were used to compute yields in the selected locations for weather data of 2013. The
goodness of the model prediction was evaluated using the index of agreement d (Willmott,

1981):

2 @

where Y’ is the yield observed at location i (kg ha™'), Y° is the average observed yield (kg ha™),

Y."1is the yield predicted by the model at location 7 (kg ha™), and / is the number of locations.

The d-values close to 1.0 indicate better agreement between the model and observations.



The calibrated and validated DSSAT-CSM was then used to predict soybean yield at the
plot scale in the 19 selected locations for different weather scenarios. For these scenarios we
used observed weather data for 1993 to 2014 obtained from the Gull Lake Biological Station
COOP weather observatory. Predicted values of yield were considered as the equivalent of plot-
measured yields for different weather scenarios, and used further to evaluate the accuracy of

DSSAT-CSM predictions made using the upscaling techniques described in section 1.3.

1.3 Upscaling techniques

The parameters used in the DSSAT-CSM simulations represented plot and field scales.
The plot scale corresponded to the scale of the soil properties and yield measurements. This scale
was primarily used to calibrate and validate the model, and generate soybean yields in 19
selected locations for years with different weather conditions. As mentioned above, these yield
data were further considered as the equivalent of plot-scale measurements, since direct
measurements of the yield were available only for two years (2010 and 2013).

Field-scale properties and parameters of the model were derived from plot-measured soil
properties. We used two techniques for upscaling (Fig. 2). In the first technique soil texture and
bulk density data measured in the 19 selected locations were averaged across all locations by
each soil layer. Averaging was done separately for Kalamazoo and Oshtemo soils, and for
reduced and organic inputs, and produced three “representative” soil profiles with specific
properties for each soil and management practice. Then, these averaged soil properties were used
to estimate DSSAT-CSM parameters K, 0.1, Gpur and 6, values according to the procedure
described in section 1.2. This upscaling technique is referred further to as “Upscaling by

averaging plot-scale soil properties”. In the second technique Ky, 611, Gpur and 6, values were
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estimated separately for each of 19 locations and soil layers, and then these model parameters
were averaged for each soil layer of the two soils and inputs, producing total of 3 sets of model
parameters. Arithmetic averaging was used for 6, Gpy, and 6, while geometric averaging was
used for K, values. This technique was referred further to as “Upscaling by averaging plot-scale
DSSAT parameters”. The CN values for both techniques were set at 73 according to the
SSURGO database.

Field-scale parameters of the model were also estimated from soil properties obtained
from the LTER KBS and SSURGO soil databases. Both databases provide a description of the
typical or “representative” soil profile for each soil series. The LTER KBS database provides soil
descriptions specifically for their facility (Crum and Collins, 1995), while the SSURGO
(Bockheim and Gennadiyev, 2015) database provides data at a county scale. Therefore, soil
properties differed between the two databases. Despite the differences in scale (i.e. experimental
station vs. county scale) both databases use the concept of the presence of morphological
horizons specific for different soil types. We used soil texture and bulk density from both
databases to estimate 7, Opyr and 6,,; as was described earlier. The K, values were estimated
using the ROSETTA software for the LTER KBS database, while taken from the database in
case of SSURGO. The SSURGO database also provides CN values for Kalamazoo and Oshtemo
soils, while the LTER KBS database lacks these data. For this reason we used CN = 73 (taken
from the SSURGO database) in simulations that used the LTER KBS soil data. The same CN
numbers were used for the plot-scale derived parameters, therefore the differences in yield

predictions between the different scaling techniques can be solely attributed to upscaling the 6y,

Opur, Giar and K, parameters.
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1.4 Statistics
The yield simulations were performed for weather conditions of 1993 through 2014 with the
field scale parameters obtained using the two upscaling techniques and from the two databases.
Each year was simulated separately with the same initial conditions that were used in the model
calibration. The results were compared with yield values predicted for the same years using the
calibrated model. The accuracy of the model predictions was evaluated using the index of

agreement d (Eq. 2), root mean squared error (RMSE) and relative absolute error (RAE):

1 & _
RMSE,, = |—> (Y, =Y,
\/M ; (3)

RAE, =[100% (1Y, / ¥)

where Y ¢ is the average yield predicted using the calibrated model parameters for m-weather

scenario (kg ha™); Y" is the yield predicted for the same weather scenarios using the up-scaled

model parameters (kg ha™); u is the up-scaling technique index; M is the number of weather
scenarios (M = 22). Values of RMSE and RAE, in conjunction, provided a summary of the
overall model performance with up-scaled parameters.

The effect of surface topography on the soybean yield was evaluated using PROC MIXED
procedure (SAS 9.4, SAS Institute Inc., Cary, NC). The studied factor, topography, with three
levels (summit, slope and depression) was treated as a fixed effect. Comparisons between the
topographical positions were conducted if the main effect of topography was statistically
significant at p<0.05.

RESULTS AND DISCUSSION
Measured soybean yield varied spatially and temporally in the studied years. The yield

was higher on Oshtemo than on Kalamazoo soil and on the reduced input compared with the
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organic input in Oshtemo soil (Fig.3). The differences in yield on the reduced input fields
between two soils were more pronounced for 2010 than for 2013. This can likely be attributed to
the growing conditions, which were more favorable for soybeans in 2010 than they were in 2013,
and yield in 2013 was more affected by insufficient precipitation than by the ability of the soil to
conduct and retain infiltrated precipitation. Surface topography did not have a statistically
significant influence on the soybean yield in 2010 (p<0.05). High yield variability was observed
on all topographical elements, and could be likely attributed to the natural spatial variation in
physical, chemical and biological properties (Long et al., 1963; Karlen et al., 1990). Despite the
differences in the absolute values of the yield, the locations selected at different topographical
elements for soil sampling represented the yields in a wide range of cumulative relative
frequencies reasonably well, thus providing adequate datasets for the DSSAT-CSM calibration
and validation (Fig. 3).

As expected, a high variability was present in soil texture measured at different locations
across the two fields. Soil texture measured at the same depths varied across seven textural
classes from sand to clay (Fig. 4a). High variability was observed at all depths, indicating that
the differences in soil texture could not be attributed solely to surface erosion of slopes and
sediment deposition in depressions, which typically alter soil properties in the top soil layer, but
could rather be attributed to the glacial formation of these soils. The variability in soil texture
was also high for data taken from the two soil databases. In spite of the small number of soil
layers the texture varied across 5 textural classes for both the LTER KBS and SSURGO
databases (Fig. 4b). Soil texture provided by the databases differed markedly from the

measurements taken at our 19 selected locations. For the same sand contents, clay contents were
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higher in the field measurements compared to those from the databases, and the difference in
clay content increased as sand content decreased (Fig. 4).

The variability in soil bulk density and organic carbon was also high in the selected
locations. Coefficients of variation ranged from 0.048 to 0.113 and from 0.48 to 1.31 at five
depths in these locations for soil bulk density and TOC, respectively. In general, bulk density
increased while TOC decreased with depth (Fig. 5). However, the spatial variability of BD
decreased with depth, as assessed by the coefficient of variation (CV), while the CV values for
TOC did not show any trend by depth. The measured soil properties differed from those
estimated from the two databases. Specifically, the LTER KBS database overestimated, while
SSURGO database underestimated field-measured values of soil bulk density (Fig. 5a). The
values of TOC content were somewhat higher in the top 30-cm soil layer for the database data in
comparison to those measured in the selected locations (Fig. 5b).

The spatial variability in soybean yield can be in part attributed to the variability in soil
properties in the top 20-cm soil layer. The yield measured at the 17 locations correlated with
TOC (r=0.66, P=0.005) in 2010 and with clay to sand content ratio (=-0.765, P=0.01) in 2013.
However, correlations between the yield and clay to sand content ratio in 2010, and between the
yield and TOC in 2013 were not statistically significant at P = 0.05. This is an indication that
TOC and clay to sand content ratio are not robust predictors of soybean yield in the studied soil.
Interestingly, the yield in 2010 did not correlate with TOC measured in two locations with the
highest TOC (4.2% and 7.3%) in the top soil layer. This concurs with the results of Kravchenko
and Bullock (2001), who studied corn and soybean variability in Haplaquolls and Argiudolls of
central Illinois and eastern Indiana. These authors found that that OM content was a more

important yield-affecting factor in soils with low (OM < 3%) than with high OM (OM > 3%)
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content. For comparison, in our study a good correlation between yield and OM was observed in
2010 for OM values ranging from 0.5% to 2.0%.

Spatial variability in soil properties translated into different values of the DSSAT-CSM
parameters calculated using Eq.1 and estimated using ROSETTA software (Schaap et al., 2001).
These values are shown in Fig. 6 a-d. The spatial variability of the DSSAT-CSM parameters was
more pronounced for K, and less pronounced for &, values. Coefficients of variation ranged
from 0.20 to 0.28, from 0.12 to 0.24, from 0.055 to 0.087 and from 1.08 to 0.65 at five depths in
the selected locations for €z, Gpur, G and Ky, respectively.

The differences in the CV values for different DSSAT-CSM parameters were associated
with the differences in the CV values for the measured soil properties and the differences in
methods of parameter estimation. The 6,,, values were calculated as a linear function of soil BD,
0, and Gpy, were calculated as a product of BD and nonlinear function of Sand to Clay ratio,
while K, values were estimated from soil texture and BD using a strongly nonlinear neural
network. The low CV values for BD (0.048 to 0.113) translated into relatively low CV values for
6:a1, while high CV values for Sand to Clay ratio (1.32 to 3.35) translated into high CV values for
0,1 and Gpy; though nonlinear transformation of soil properties to 6, and €py;, considerably
reduced CV values for this parameters compared to CV values for Sand to Clay ratio. The CV
values for K, were much higher than those for the measured soil properties, which likely
resulted from high sensitivity of the ROSETTA software to changes in soil properties.

Model calibration with fixed values of 6, 6;1, Opur, Ksor and variable CN values
produced yield predictions very close to the measured yields in 18 out of 19 selected locations
(Fig. 7). The agreement index d equal to 0.99 in calibration and 0.84 in validation, which

indicated adequate model performance. The calibration produced CN values ranging from 60 to
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93 (CN=73+£10, CV=0.136) in those 18 locations. It occurred that the differences in CN values
were not associated with topographical locations, but rather with soil texture. A significant
positive correlation (P = 0.002) was found between CN values larger than 70 and clay to sand
ratio in the top 20-cm soil layer. The CN values increased from 72 to 93 with an increase in the
clay to sand ratio from 0.05 to 1.7. The greater CN indicates greater runoff rates in the top soil
with higher clay and lower sand contents. These results agree with the CN values recommended
for different soil texture and soil hydraulic groups (Cronshey et al., 1986). Indeed, according to
the soil texture measured in the top soil layer, our soil samples can be placed into three
hydrologic groups (i.e. A, B and D) with the CN values of 73 (A), 73 to 78 (B), and 82 to 93 (D).
For comparison, the CN estimates for straight row legumes are 66, 77 and 89 for groups A, B
and D, respectively.

When the DSSAT-CSM parameters were estimated from the measured soil properties
and from the CN values calibrated to the yield measured in the selected locations in 2010, their
spatial variability resulted in the spatially variable predictions of soybean yield. However, the
yield variability was only partly attributed to the variability in the model parameters, and was
mostly affected by the weather scenarios (Fig. 8). For 22 weather scenarios the CV values of the
yield varied from 0.025 to 0.429 in the simulations with the same values of the DSSAT-CSM
parameters. In these scenarios the total precipitation (P) and potential evapotranspiration (E7)
values during the growing season varied from 166 to 566 mm and from 258 to 566 mm,
respectively. The ET values exceeded precipitation in 16 out of 22 weather scenarios (Fig. 8),
therefore plant water stress was possible in most of the scenarios. Predicted yield values did not
correlate with P in our simulations. The reason for this was a non-uniformity of the precipitation

distribution during the growing seasons and the fact that soybeans respond differently to water
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stress depending on their developmental stage. Stress effects were reported by different authors
before. For example, Peji¢ et al. (2011) observed that soybeans are most sensitive to water stress
during the general yield formation stages, since this is when the plants’ water use is the highest
(50.7% of total available water used) in comparison to the vegetative and flowering stages
(28.2% and 21.1% of total available water used, respectively). Cox and Jolliff (1986) noted that
although soybeans in general are unable to withstand prolonged drought, tolerance is the lowest
during the seed enlargement or pod elongation stages. In a similar vein, Sionit and Kramer
(1977) found that the seed enlargement stages are the most critical; they obtained positive yield
responses in soybeans that were only irrigated during these critical stages. Therefore, the
existence of some water stress during the growing season does not automatically result in yield
reductions. Whether or not the yield reductions will occur depends on the growth stage at which
the water deficit takes place.

To account for the water stress experienced by the crop, the DSSAT-CSM model
implements a dual approach to the plant growth, i.e., a water deficit relationship (Ritchie, 1998).
Soilwater deficit affects crop canopy photosynthesis, which controls rates of dry matter
accumulation, and plant physiological processes (i.e. roots, leaf and stem development).
Moreover, soybean physiological maturity has been shown to accelerate with an increase in the
water deficit (Desclaux and Roumet, 1996; Ruiz-Nogueira et al., 2001). This is accounted for in
the DSSAT-CSM (Boote et al., 2008). Therefore, water deficit may produce a mixed effect on
the soybean growth and yield. Surprisingly, a significant correlation (P = 0.04) was observed
between the predicted yield and absolute values of differences |P-E7] (data not shown).

The differences in soil properties measured in the field and derived from the soil

databases translated into different values of DSSAT-CSM parameters (Table 1 and Table 2). The
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6.1 and Gpyy values were consistently smaller in SSURGO-derived parameters for Oshtemo soil,
while they were consistently larger in LTER KBS-derived parameters for Kalamazoo soil as
compared to the field estimates in the same soil layers. These differences can be attributed to
relatively high clay% to sand% ratios in the LTER KBS database and low ratios in the SSURGO
database (Fig. 4b). The differences in &;; and Gy values did not cause noticeable differences in

plant extractable water, since ¢, values were estimated from sand, which was in the same range

in the database and plot-scale measurements. Differences in soil bulk densities for the two
databases resulted in overall low values of 6, for the LTER KBS database, and high 6, values
for the SSURGO database compared with the 6, values estimated from the plot measured bulk
densities. Among all estimates, the K, values were the smallest in the top 0-70 cm layer of
Kalamazoo soil for LTER KBS database and the largest in the bottom 96-152 cm layer of the
same soil for the SSURGO database (Table 2).

The differences in parameter values between the two field-scale upscaling techniques (i.e.
averaging plot-scale DSSAT-CSM parameters and averaging plot-scale soil properties) were less
pronounced compared to the differences in the database-derived parameters. The largest
differences for the field scale were observed for K, values that were in many instances higher
for the averaging plot-scale DSSAT-CSM parameters than for the averaged plot-scale soil
properties (Table 1). These differences were attributable to high variability in soil properties
measured at the same depth in different locations and strong nonlinearity between soil properties
and log;o(K,) in the ROSETTA software (Schaap et al., 2001). Indeed, the differences in K,
values between upscaling by averaging plot-scale soil properties and upscaling by averaging

plot-scale DSSAT-CSM parameters were less pronounced in the upper soil layers (0-20 cm and
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20-35 cm) compared to the soil layers below depth of 35 cm (Table 1). This occurred due to
relatively high variability of soil texture in the deep soil layers (Fig. 4).

Comparison of the results of the soybean yield simulations using the calibrated and up-
scaled model parameters is shown in Fig. 8. Despite high yield variability between the different
weather scenarios all upscaling techniques (with the exception of SSURGO on Kalamazoo soil)
generated reasonable yields. Despite an overall acceptable performance indicated by the index of
agreement d (Table 3), the values of the RMSE were different for different upscaling techniques.
The smallest RMSE values were obtained for the averaged DSSAT-CSM parameters, while the
largest RMSE occurred for the SSURGO-derived parameters in Kalamazoo soil and the LTER
KBS parameters in Oshtemo soil on both management practices (Table 3). These differences in
model performance for different soils and management practices were not associated with the
model parameters estimated from highly variable soil properties, but were caused by differences
in the yield values used for model calibration. The yield values in the calibrated dataset in
Kalamazoo soil and in Oshtemo soil on organic input were considerably smaller compared to the
yield on Oshtemo reduced input plots (Fig. 3). As a result, the calibrated model produced large
yields on Oshtemo reduced input plots in relation to the yields on the two other plots. It also can
be seen that in most DSSAT-CSM runs using upscaling the model tended to overestimate yields
that were predicted using the calibrated parameters (Fig. 8). Therefore, the model predictions
using upscaling were less accurate on plots with relatively low yield (Kalamazoo and Oshtemo
organic input plots) than on the plot with high yield (Oshtemo reduced input).

The accuracy of the model upscaling techniques, assessed as a relative error of yield
prediction, also varied between the different simulations. The RAE values were smallest for the

yield predictions with averaged plot-scale DSSAT-CSM parameters, the largest for the
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SSURGO-derived parameters and intermediate in simulations with averaged plot-scale soil
properties and LTER KBS-derived parameters Fig. 8a. Poor model performance with the
SSURGO-derived parameters was mostly associated with large errors in Kalamazoo soil. The
RAE values for Oshtemo soil did not differ significantly from those obtained using the other
upscaling techniques on both reduced and organic inputs.

Relatively small differences in yields predicted using different upscaling techniques for
the same weather scenarios could be attributed to a relatively high model sensitivity to the CN
values, which were the same in all upscaling techniques, and relatively low sensitivity to the soil
parameters within their ranges. The high sensitivity to CN parameter can be illustrated by
implementing another approach to estimating the CN values for the field-scale upscaling
techniques. In this approach, using soil texture measured in the top soil layer we first identified
soil hydrologic group for each soil and management practice, and then estimated the CN values
for obtained groups (Cronshey et al., 1986). The generated CN values appeared to be much
higher compared to those taken from SSURGO database and used in our simulations.
Specifically, new CN values were 88, 89 and 76 for Kalamazoo soil, Oshtemo soil on reduced
and Oshtemo soil on organic inputs, respectively. Higher CN values obtained on reduced
management practice generated higher runoff and lower infiltration fluxes that led to a
considerable decrease in predicted yields, particularly for high yield years (Fig. 8, dotted lines).
Relatively low sensitivity of DSSAT-CSM to the differences in K, values obtained in different
upscaling techniques can be explained by relatively high K, values in these soils that did not
restrict water flow through soil profile under current weather scenarios. In other words, the CN
parameter appeared to be a limiting factor for water influx into the soil profile that affected crop

growth and controlled the yield. This conclusion concurs with the results of Kendall et al. (2012)
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who conducted a global sensitivity analysis of DSSAT-CSM to estimate the effects of soil and
crop parameters on corn yield with and without irrigation. These authors concluded that the K,
parameter had no influence on corn yield within the range of K, values used in their sensitivity
analysis. This could be due to greater importance of the parameter range for the output variable
(i.e. yield) than the parameter variability within the range (Monod et al., 2006).

Acceptable performance of the model using the SSURGO-derived parameters in this
study was surprising, because the national soil survey was not designed as a site-specific or field-
scale agricultural tool (Mausbach et al., 1993), and soil properties taken from this database
differed considerably from the field-measured properties. There is no general agreement on the
correlation between the scale of yield averaging and of the soil survey map in the literature. For
example, Karlen et al., (1990) found that field-scale variation in corn, wheat and sorghum yields
was partly associated with different soil map units identified at a 15 m resolution in Ultisols soil,
though yield variability within each soil unit was very high. Steinwand et al. (1996) found that
the scale of soil mapping (1:3305 vs. 1:15840) had little effect on corn, soybean, oat, and hay
yield estimates for a Clarion-Nicollet-Webster soil association area in central lowa, despite the
fact that between 35 and 100% of the soil units on the 1:6333 map overlapped with the same
units on the 1:15840 soil survey map. The authors explained the small differences in the yield by
the high percentage of similar soils included in both soil maps and concluded that county soil
surveys and attribute data in central lowa were acceptable to evaluate soil landscapes for crop
yield interpretations. Sadler et al. (1998) found a significant though weak correlation between
corn, wheat, soybean and sorghum yields and soil map units at the 1:1200 scale, which provided

rather limited predictive yield values for precision farming. Contrary to the results of the latter
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study the SSURGO database (scale of 1:24000) provided reasonable estimates of soil properties
in Oshtemo soil for yield prediction at the field scale in our study.

The differences in RAE values obtained in our simulations were both attributed to the
upscaling techniques and the weather conditions. Specifically, for Oshtemo soil on organic input
averaged RAE values decreased in an order: LTER KBS database > averaging plot-scale soil
properties > SSURGO database > averaging plot-scale DSSAT parameters, indicating better
performance of the last upscaling technique (Fig. 9b). Analysis of the relationship between RAE
and |P-ET] showed a general increase in the relative yield error with deviation of precipitation
from potential evapotranspiration (though statistically significant for averaged soil properties and
LTER KBS database, P = 0.05). This indicates that the errors of model prediction with the up-
scaled parameters will likely increase in unusually wet and dry years. This finding is very
important in the context of a changing climate characterized by a more frequent occurrence of
extreme weather conditions. Interestingly, RAE values for averaging plot-scale DSSAT
parameters ranged from 0.02 to 10.2% and were not affected by |P-ET|, demonstrating robustness

of this upscaling technique for different weather conditions.

CONCLUSIONS

The high spatial variability of soil properties (i.e. soil texture, bulk density, organic
carbon) and soybean yield observed in two soils and two management practices which included
reduced and organic inputs were not associated with topographical elements in this study.
However, the locations selected at different topographical elements for soil sampling represented
yield variability for the 2010 and 2013 growing seasons in both soils and management practices
reasonably well, thus providing adequate datasets for the DSSAT-CSM calibration and

validation.

22



We did not find a relationship between measured yield and soil properties in this study.
The yield correlated with TOC in top 20-cm soil layer in 2010 and with clay to sand content in
2013, but these correlations were not persistent for different weather conditions.

The variability in soil properties translated into spatially variable parameters of the
DSSAT-CSM model. The key parameter that affected adequate prediction of the measured
soybean yield, the runoff curve number (CN), positively and significantly correlated with the
spatially variable ratio between clay and sand contents in the top 20-cm soil layer.

Spatial variability in the DSSAT-CSM parameters estimated from measured soil
properties translated in the variability in predicted yield, however the model predictions were
more affected by the weather scenarios than by spatially variable model parameters.

The four upscaling techniques provided different estimates of the DSSAT-CSM model

parameters, however the values of these parameters appeared to be less important for the yield

prediction compared to the CN values that were derived from SSURGO database and set to 73 in

all simulations. This result was attributed to low sensitivity of the model to the variability in soil

parameters within the parameter range obtained for these two soils.

Based on the index of agreement d, all upscaling techniques performed reasonably well

for different weather conditions. Among other upscaling techniques only averaging plot-scale

DSSAT-CSM parameters generated predicted errors that did not correlate with precipitation less

evapotranspiration, and therefore this technique may be recommended for modeling soybean

yield in changing climate conditions.
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CAPTIONS.

Figure 1. Soil SSURGO map with soybean yield data and soil sampling locations (stars).

Figure 2. Upscaling techniques for parameterization of the DSSAT-CSM model for the field
scale crop prediction.

Figure 3. Cumulative relative frequencies of the soybean yield obtained on Kalamazoo (Ka) and
Oshtemo (Os) soils under reduced (R) and organic (O) chemical inputs in 2010 and 2013.
Symbols show the yield obtained in the selected locations.

Figure 4. Soil texture measured in the field (a) and taken from databases (b). Symbols on the
right denote fine-loamy Kalamazoo (open) and coarse-loamy Oshtemo (filled) soil series, circles
denote LTER KBS database, while squares denote SSURGO soil database. Depth (cm) to the
bottom of the soil layers for LTER KBS database are shown in parenthesis (Kalamazoo,
Oshtemo).

Figure 5. Soil bulk density (a) and organic carbon content (b) measured in the field (box-and-
whisker plots) and taken from LTER KBS (circles) and SSURGO (squares) soil databases.

Figure 6. Parameters of DSSAT model estimated from measured soil properties.

Figure 7. Measured and predicted yield of soybeans obtained in the DSSAT-CSM calibration (a)
and validation (b). Box and whisker plots show the yield variability measured within the plots
with outliers representing 5"/95™ percentiles.

Figure 8. Soybean yield predicted by the DSSAT-CSM model using different upscaling
techniques for 22 weather scenarios. Solid lines denote simulations with CN=73, while dotted
lines denote simulations with CN values estimated from soil texture. Symbols and bars in
simulations using the calibrated model denote average and standard deviation values of yield

computed in the selected locations.
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Figure 9. Relative errors of soybean predictions with up-scaled parameters (a) and the
relationship between the errors and precipitation less evapotranspiration for Oshtemo soil on the

organic input (b).
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Table

Table 1. Model parameters estimated from averaged plot-scale soil properties and by averaging plot-
scale DSSAT-CSM parameters.

Soillayer 6, 6pur O Ksar OrL Opur st Kiar
cm cm’ cm™ cm hour™ cm’ cm™ cm hour™
Upscaling by averaging plot-scale  Upscaling by averaging plot-scale
soil properties DSSAT parameters
Kalamazoo soil, reduced input
0-20 0.091 0.223 0.492 1.68 0.090 0.222 0.477 1.76
20-35 0.129 0.261 0.416 0.68 0.126  0.258 0.417 0.64
35-50 0.133 0.265 0.406 0.63 0.103  0.231 0.410 1.31
50-70 0.140 0.272 0.392 0.52 0.101  0.223 0.399 2.17
70-100  0.152 0.283 0.374 0.38 0.104  0.207 0.385 3.47
Oshtemo soil, reduced input
0-20 0.091 0.222 0.479 1.67 0.090 0.221 0.466 1.79
20-35 0.130 0.261 0.408 0.66 0.119 0.242 0.412 1.49
35-50 0.137 0.268 0.385 0.55 0.121  0.237 0.393 2.14
50-70 0.129 0.261 0.404 0.64 0.100  0.202 0.408 7.36
70-100 0.141 0.272 0.362 0.45 0.118 0.232 0.376 2.59
Oshtemo soil, organic input

0-20 0.096 0.225 0.428 1.90 0.097 0.222 0.427 1.91
20-35 0.116 0.244 0.385 1.11 0.106  0.228 0.393 1.83
35-50 0.116 0.244 0.381 1.15 0.100  0.217 0.390 3.15
50-70 0.110 0.236 0.384 1.55 0.087  0.195 0.393 6.50
70-100  0.125 0.251 0.350 0.97 0.104  0.209 0.367 5.23



http://ees.elsevier.com/geoder/download.aspx?id=506360&guid=90abe0a8-fbbb-437a-af79-7f8f32001db5&scheme=1

Table 2. DSSAT-CSM parameters estimated from soil properties obtained from LTER KBS and SSURGO
databases.

Soil layer oL Epur Gar Ksar 0L Obur Osar Kat
cm cm’ cm” cm hour™ cm’ cm” cm hour™
LTER KBS database™ Kalamazoo soil Oshtemo soil

0-30/0-25 (Ap) 0.133  0.265 0.396 0.30 0.112 0.243 0.396 0.76
30-41/25-41 (E) 0.156 0.288 0.358 0.18 0.125 0.255 0.358 0.60
41-69/41-57 (Btl)  0.180 0.312 0.349 0.11 0.153 0.282 0.321 0.29
69-88 /57-97 (Bt2)  0.148 0.270 0.321 0.70 0.141 0.258 0.321 1.32
88-152/97-152 (E/Bt) 0.144 0.232 0.321 7.75 0.144 0.237 0.321 6.18

SSURGO database”™ Kalamazoo soil Oshtemo soil
0-28/0-23 0.108 0.240 0.442 3.24 0.071 0.199 0.442 10.1
28-96 / 23-74 0.148 0.280 0.423 3.24 0.087 0.216 0.453 10.1
96-140 / 74-175 0.096 0.213 0.404 33.1 0.092 0.192 0.453 10.1
140-152 0.109 0.194 0.404 33.1

" Depths of soil layers are shown in the first column as Kalamazoo / Oshtemo



Table 3. Performance statistic of the model upscaling technique in predicting soybean yield

Kalamazoo soil, Oshtemo soil, Oshtemo soil,
. . reduced input reduced input organic input
Upscaling technique Index of Index of Tnd f
naex o RMSE naex o RMSE naex o RMSE
agreement d agreement d agreement d

Upscaling by averaging 0.985 212 0.995 118 0.984 221
plot-scale soil properties
Upscaling by averaging
plot-scale DSSAT 0.991 165 0.997 99 0.997 92
parameters
LTER KBS database 0.985 207 0.995 125 0.981 239
SSURGO database 0.891 547 0.996 121 0.987 210
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Figure-2
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Figure-4
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Figure-5
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Figure-6
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Figure-7
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Figure-8
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Figure-9
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