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Abstract 

Habitat management involving manipulation of farmland vegetation can exert direct 

suppressive effects on pests and promote natural enemies. Advances in theory and 

practical techniques have allowed habitat management to become an important sub-

discipline of pest management. Improved understanding of biodiversity-ecosystem 

function relationships means that researchers now have a firmer theoretical 

foundation on which to design habitat management strategies for pest suppression in 

agricultural systems, including landscape scale effects. Supporting natural enemies 

with shelter, nectar, alternative prey and hosts, and pollen (‘SNAP’) has emerged as 

a major research topic and applied tactic with field tests and adoption often preceded 

by rigorous laboratory experimentation. As a result, the promise of habitat 

management is increasingly being realized in the form of practical implementation 

globally. Uptake is facilitated by farmer participation in research and is made more 

likely by the simultaneous delivery of ecosystem services other than pest 

suppression. 
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INTRODUCTION  48 

Since the publication of ‘Habitat management to conserve natural enemies of arthropod 49 

pests in agriculture’ in 2000 (65), the field has expanded dramatically. Reflections of 50 

this include the fact that this article has been cited over 1,000 times and web searches 51 

reveal a high level of research activity and on-farm implementation. A great deal has 52 

changed in the seventeen years since that review was written including the publication 53 

of several excellent reviews of related fields (18; 107; 146). None of these, however, 54 

directly covers the field of habitat management for pest population suppression. 55 

Accordingly, this new review aims to synthesize the literature with an emphasis on 56 

articles that have appeared since 2000 to provide an appraisal of progress and prospects. 57 

We expand on our earlier review (65) to include the effects on pests that operate 58 

independently of natural enemy activity, thereby providing a more complete synthesis 59 

of the ways in which habitat management may be used for pest suppression. 60 

TERMINOLOGY AND OVERVIEW OF THE DISCIPLINE  61 

Habitat management, sometimes referred to as habitat manipulation, aims to suppress 62 

pest densities, often by enhancing the impact of the natural enemy community, though 63 

altering vegetation patterns can also act directly on herbivores. Indeed, of the eight 64 

hypotheses explaining the effects of vegetation diversity on pests, summarized by 65 

Poveda et al (91), seven act independently of natural enemies. Essentially these direct 66 

mechanisms involve disrupting herbivore capacity to locate a suitable host plant by: 67 

visual or chemical stimuli (102) that may act by repelling pests from the crop (128), 68 

trapping herbivores on a plant other than the crop (47), blocking movement of 69 

herbivores with tall vegetation (84), or altering the volatile profile of crop plants (27). 70 

Reflecting this diversity of mechanisms, a wide range of strategies for vegetation 71 
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diversification both within and adjacent to crops has been experimentally explored. 72 

Some of these strategies involve the incorporation of secondary and tertiary crop 73 

species (i.e. intercropping), whilst others employ non-crop plants selected for particular 74 

functions (e.g. to provide nectar for natural enemy nutrition). Some systems seek to 75 

exploit multiple mechanisms, most notably ‘push-pull’ strategies that use one plant 76 

species within the crop to repel pests a second plant species adjacent to the crop to 77 

attract pests (18). In a particularly successful form of push-pull, the plant that repels 78 

pests also attracts natural enemies (61; 62). Work this century has greatly expanded our 79 

understanding of the importance of larger scale effects extending to the landscape and 80 

region (57; 82; 120) with the level of research activity in this area requiring a recent 81 

review to consider evidence for multiple hypotheses (126). 82 

The direct and natural enemy-mediated effects of vegetation on pests are viewed by 83 

ecologists in terms of bottom-up or top-down trophic effects, respectively (Figure 1). 84 

Bottom-up effects refer to the action on herbivore pests (second trophic level) of 85 

vegetation (first trophic level). This effect was referred to as the resource concentration 86 

hypothesis by Root (102). In contrast, top-down effects refer to the action of natural 87 

enemies (third trophic level) on herbivores and is known also as the enemies hypothesis 88 

(102). This operates by habitat management providing plants that support predators and 89 

parasitoids with foods such as nectar and pollen, alternative prey or host species, or by 90 

abiotic mechanisms such as providing a moderated microclimate, or serving as source 91 

habitat from which crops are colonized (65). Reflecting these top down mechanisms, 92 

habitat management is an important component of conservation biological control 93 

(Figure 1). The second major component of conservation biological control – 94 

independent of habitat management - is reducing mortality of biological control agents 95 

from pesticide use (37), an important issue given the estimated use of 3.5 billion 96 
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kilograms per annum (94). This can be accomplished by the adoption of integrated pest 97 

management (94) or switching from broad spectrum insecticides to others such as insect 98 

growth regulators (39). Importantly, habitat management often has effects other than 99 

on pest management; on pollinators, detritivores and weeds for example. As explored 100 

below, the associated ecosystem services (or sometimes dis-services) can lead to 101 

broader effects on agricultural systems including contributing to sustainable 102 

intensification. 103 

<Fig 1 here> 104 

 105 

ECOLOGICAL THEORY 106 

Ecological theory is increasingly useful in informing habitat management approaches 107 

(40). Advances in the fundamental understanding of biodiversity-ecosystem function 108 

relationships (43) mean that researchers now have a firmer theoretical foundation on 109 

which to design strategies for enhancing pest mortality in agroecosystems. Similarly, 110 

advancing knowledge of the role of landscape structure on natural enemy communities 111 

and their impacts on prey populations is increasingly forming the basis for more 112 

predictive habitat management at appropriate scales (126).  Finally, an explosion of 113 

literature on the chemically-mediated exchange of information between plants, 114 

herbivores, and natural enemies is also beginning to inform habitat management 115 

practices (117). Reflecting these effects, habitat management has been referred to as 116 

‘ecological engineering’ by some recent authors, e.g. (149).  117 

118 
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Biodiversity and Ecosystem Function 119 

Ecologists have been intensely interested in the relationship between biodiversity and 120 

ecosystem function (70; 112). Altieri (2) was among the first to outline the role of 121 

biodiversity in the function of pest suppression in agroecosystems. Several decades of 122 

subsequent empirical and theoretical studies have refined our understanding. Snyder 123 

and Tylianakis (116) reviewed the relationship between biodiversity and biocontrol of 124 

pests and showed that pest suppression may either increase, decline, or be unchanged 125 

by increased natural enemy diversity. Enhanced pest suppression can occur as a result 126 

of complementarity between natural enemies or by facilitation (71). Alternatively, 127 

increased predator diversity can decrease pest suppression via intraguild predation (28). 128 

The evenness of predator communities, i.e. the relative abundance of different species, 129 

has also been shown to be important, with more even communities exerting increased 130 

pest suppression (19).  131 

Recent studies suggest that the relationship between biodiversity and ecosystem 132 

function can change over time. Schmitz and Barton (109) developed a theoretical 133 

framework for predicting how habitat management outcomes may shift with climate 134 

change. Increasing biodiversity increases ecosystem function in plant communities, but 135 

does so more incrementally in mature versus immature ones (99). This suggests that as 136 

the community matures, greater complementarity can occur. If similar processes occur 137 

in insect communities, habitat management practices in perennial crops or those using 138 

perennial plants to provide resources will need to be studied over long-terms (5-10 139 

years) to accurately assess the shifting interactions of habitat structure, community 140 

composition, on the function of pest suppression. This is reflected in recent British work 141 

in which field margins were diversified with various plants including perennial species 142 
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(96). Crop yields in the diversified fields increased compared with control fields to an 143 

extent that tended to be greater in each of the successive five years after the 144 

experimental interventions.   145 

Landscape Structure and Biological Control 146 

Ecological theory has also informed the role of landscape structure in supporting 147 

biodiversity and pest suppression in agricultural landscapes (125; 126). Specifically, 148 

understanding factors that control the exchange of species between habitats is critical 149 

to predictions of effective conservation biological control (107; 124). A specific 150 

predication is that local habitat management (e.g. creation of diverse floral resource 151 

habitats) will increase the within-habitat species richness (α-diversity) and contribute 152 

to overall species diversity at the landscape level (γ-diversity). However, such practices 153 

are likely to be relatively ineffective in landscapes where simplification of the 154 

vegetation has left few areas of source habitat and in very complex landscapes where 155 

the added diversity is trivial compared to that already present (125). Several recent tests 156 

have provided support of this “intermediate landscape complexity” hypothesis (57; 157 

131). Theory also suggests that distinctness among communities (β-diversity) should 158 

be particularly important in supporting the function of pest suppression and its 159 

resistance to disturbance (124). A recent analysis of plant biodiversity-ecosystem 160 

function studies showed that the number of ecological functions in modeled landscapes 161 

increased with both α and γ-diversity, while β-diversity was related to increasing 162 

functionality only in landscapes lacking high overall diversity (83). Because 163 

agricultural landscapes often lack high γ-diversity, the use of habitat management to 164 

increase β-diversity will likely be important to maintain or enhance multiple functions 165 

in addition to pest suppression (e.g. pollination, decomposition, and crop productivity). 166 
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This could include adding perennial plant strips into largely annual crop landscapes 167 

while resources in perennial crops (e.g. orchards) may be best enhanced by annual 168 

plants. 169 

Several recent meta-analyses have examined the role of landscape structure on natural 170 

enemies and pest suppression and support an emerging consensus. Increasing landscape 171 

complexity, typically via inclusion of non-crop habitat, almost always increases natural 172 

enemy abundance and diversity (9). While pest diversity also frequently increases, pest 173 

abundance typically declines or remains unchanged. The ecosystem functions of 174 

predation and parasitism typically increase, while pest population growth rates typically 175 

decline (13; 103; 113; 133). More recent work has shown that the extent of disturbance 176 

in an agricultural landscape can also have a strong effect (55). Finally, while based on 177 

far fewer studies, herbivory and plant damage typically declines or remains unchanged 178 

(13). While this collection of empirical studies suggests the potential for generalization, 179 

it remains to be seen if this knowledge can further improve the predictability of habitat 180 

management approaches. Such efforts may be supported by modelling, which offers 181 

scope to minimize the logistical complexities of research at the landscape scale which 182 

should consider temporal as well as spatial effects (107). 183 

Chemical Ecology and Non-consumptive Effects  184 

A new frontier in habitat management is the potential to manipulate the exchange of 185 

information between organisms in the agricultural landscape to better enhance pest 186 

suppression. The field of chemical ecology has yielded tremendous insights into the 187 

myriad of ways that organisms communicate (98), and this information is being used 188 

to inform habitat management. When attacked by herbivores (or even oviposited upon), 189 

plants frequently produce chemical distress signals termed, herbivore-induced plant 190 
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volatiles (HIPVs) that can directly deter pest attack, inform other plants of impeding 191 

damage, and attract natural enemies to help defend the plant. Synthetic HIPVs have 192 

been used to increase natural enemy abundance and reduce pest damage, and can also 193 

work with floral resource patches to “attract and reward” natural enemies (115). HIPV’s 194 

have also been used in “push-pull” strategies to repel herbivores from crop plants while 195 

simultaneously attracting them to nearby trap plants (60).  196 

Herbivorous insects can monitor their environment to detect information on the 197 

occurrence of natural enemies and alter their behavior to avoid danger. For example, 198 

they can detect visual (53) and chemical (45; 80) cues identifying the actual or potential 199 

presence of predators. They adjust their behavior in response to these cues, altering 200 

patterns of reproduction, movement (67) and feeding (100). In the presence of 201 

predators, herbivores frequently drop from plants (79), consume less or lower quality 202 

food (110), and have elevated stress responses (52) that combine to limit reproduction 203 

(75; 104). Moreover, these fear-based effects can reduce herbivore population growth 204 

to an equal or greater extent than direct predation (93) so represent an exciting future 205 

opportunity for exploitation.  206 

MECHANISMS FOR NATURAL ENEMY ENHANCEMENT  207 

Notwithstanding the potential of vegetation attributes to act directly on pest populations 208 

by the mechanisms outlined above, an especially active area of habitat management this 209 

century has been on natural enemy-mediated effects. The ecological resources most 210 

often provided in habitat manipulation research and practice are readily captured in the 211 

SNAP mnemonic: shelter, nectar, alternative prey and hosts, and pollen.  212 

Shelter (S) 213 
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Most crop habitats, especially annual crops, are not favorable for natural enemies 214 

because of their instability and low heterogeneity with frequent disturbance (121). Non-215 

crop habitats, such as flowering strips, banker plants, and hedgerows, can provide 216 

shelter and serve as source habitat for natural enemies, thus maintaining their 217 

persistence in agroecosystems (60). With the increasing levels of agricultural 218 

intensification and simplification that may occur as a result of the need to increase 219 

global crop production, forms of habitat management that can be readily accommodated 220 

in conventional crop systems will be ever more important. Local scale management 221 

will also need to be complemented by a greater understanding of the contribution – and 222 

scope for manipulation – of the wider landscape since this is critical for ensuring 223 

availability of source habitat (63; 77). 224 

In temperate annual systems, many species of natural enemies inhabit non-crop habitats 225 

such as field boundaries and perennial grasslands during the winter because the crop 226 

fields are fallow or have only young crop plants and much bare ground with few prey 227 

(87). Overwintering habitats such as beetle banks can be artificially created to favour 228 

beneficial arthropods in farmlands (17). Hedgerows provide overwintering micro-sites 229 

which are suitable for spiders and beetles, with significantly higher richness and 230 

abundance than in field margins and bare ground (97). Hedgerow networks can also act 231 

as a protection against prevailing wind (101) and extreme temperatures in summer or 232 

winter (97; 105), and provide the additional benefits of higher soil water content and 233 

organic carbon level (105). Field margins, whether a hedge, shelterbelt of trees, wall, 234 

or water course potentially also offer refuge from pesticide spray events and other 235 

potential mortality factors such as tillage (73). These features are also sources and 236 

dispersal corridors for natural enemies, especially at the start of a cropping phase or 237 

after a disturbance event (73; 108) and so play important roles in increasing the 238 
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diversity of predators (12) such as beetles and spiders (108), and reducing mortality of 239 

the natural enemies during migration from or into the fields (73; 108). 240 

Nectar (N) 241 

Floral and extrafloral nectars are important food sources that can increase 242 

longevity (32; 78), fecundity (3; 95), searching and realised parasitism (22; 74), 243 

predation (149) as well as female ratio (8) of natural enemies, and are even linked to 244 

the developmental and predatory performance of their offspring (3; 148). The main 245 

component of nectars is sugars - glucose, fructose and sucrose - so nectar is important 246 

primarily as an energy source (123; 135). Nectars can also contain various amino acids 247 

that support the growth and development of insects (72; 85).  248 

Not all flowering plants, however, are equally suitable for providing nectar to natural 249 

enemies (88; 140), varying considerably in their attractiveness and the accessibility of 250 

nectar such that some flowers fail to attract or reward parasitoids and may even repel 251 

them (136). Accordingly the mere presence of flowering plants is no guarantee of 252 

benefit to biological control (an assumption of early habitat management efforts). 253 

Rather, plant species choice is now widely viewed as a critical consideration. Many 254 

factors influence flower species suitability: morphology of parasitoids (132), floral 255 

architecture (26; 132; 136), flower color (6), floral area (26), flowering time (46), and 256 

nectar chemistry and availability (136). Indeed, some nectars can be toxic (1). Further, 257 

floral area (7; 10; 26), spatial availability (114), and competition with other other 258 

species (11; 46) may limit the value of floral resources to natural enemies (34; 46; 106) 259 

in the field. The capacity of predators and parasitoids to move between floral resources 260 

and the focal crop is particularly important for optimal design of vegetation in habitat 261 

managenent (66; 106; 127). 262 
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Extrafloral nectar which is often found on vegetative plant parts extends 263 

availability compared to floral nectar, which is available only during blooming (31). It 264 

can act as an important food source (32; 51) and an indirect defense allowing the plants 265 

to recruit predators and parasitoids (31).  266 

Alternative hosts and prey (A) 267 

The most widely exploited way to provide alternative prey is banker plant systems 268 

which involve adding to a crop some plants pre-infested with a herbivore together with 269 

its natural enemies (30; 49). This approach began in the 1970s (118), and has been 270 

adopted in Europe, Japan, USA and Canada (49; 89; 129). For example, Carica papaya 271 

is used as a banker plant for the parasitoid, Encarsia sophia against Bemisia tabaci in 272 

greenhouse tomato production (144), and Zea mays was evaluated as for supporting the 273 

predatory midge, Feltiella acarisuga, against Tetranychus urticae in greenhouse 274 

vegetable production (145). As these examples illustrate, banker plants have been used 275 

chiefly in greenhouse systems but some studies have explored potential for field use 276 

(49; 92). A constraint on the wider use of this form of habitat management is that there 277 

is little consensus on optimal systems even for the most frequently targeted pests so a 278 

research priority is to generate an empirical and theoretical body of understanding of 279 

how banker plants, crop species, and alternative hosts interact to affect natural enemy 280 

preference, dispersal, and abundance (30).  281 

 282 

283 
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Pollen (P) 284 

Pollen is mainly a source of proteins and amino acids and can supplement available 285 

prey to increase the longevity, fecundity and impact of predators (21; 86; 130). There 286 

is little evidence that parasitoid wasps actively feed on pollen (33), though it may be 287 

consumed incidentally in nectar. Compared to a prey-only diet, Capsicum annuum 288 

pollen can reduce the developmental time, and increase the longevity, survival and adult 289 

size of Orius insidiosus (142). As for nectar, however, care is required in species 290 

selection because pollen from some plants is toxic to natural enemies. Lilium martagon 291 

and Hippeastrum sp., for example, cause 100% preimaginal mortality of the predatory 292 

mite Amblyseius swirskii (36). 293 

Honeydew 294 

Aside from the “SNAP” resources covered above, honeydew can be a major alternative 295 

non-prey food source for parasitoids and predators, particularly when nectar is not 296 

readily available (24; 137). Generally, however, honeydew is a less suitable food source, 297 

with lower nutrional value compared with other sugar sources and can be toxic in some 298 

cases (68; 134; 137). Importantly, selection pressure on honeydew producers such as 299 

aphids favors traits that minimize any advantage to their natural enemies. Accordingly, 300 

honeydew tends to have low detectability (119), high viscosity (24) and compounds 301 

that limit its nutritional value to species that may attack the honeydew producer (68). 302 

This is the opposite scenario to extrafloral nectar where the producer of the resource is 303 

advantaged by attracting and providing nutrition to predators and parasitoids. 304 

Reflecting this, although female wasps tend to have greater longevity and fecundity 305 

when feeding on honeydew compared to the control females provided with water only 306 

(24; 143), performance is still greater when fed other sugar sources (24; 143).  307 
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 308 

MULTIPLE ECOSYSTEM SERVICES AND AGRIENVIRONMENTAL 309 

PROGRAMS 310 

A common feature of habitat management strategies that have been well adopted is that 311 

they each deliver a range of ecosystem services in addition to pest suppression. The 312 

most successful case is the “push-pull” system referred to above that has been adopted 313 

by more than 45,000 farmers in East Africa (61). Driving this remarkably high level of 314 

adoption has been the fact that a basket of ecosystem services that are strongly valued 315 

by end users has been developed and adapted – via farmer-participatory trials – for use 316 

in different crops and geographical parts of Africa.  317 

Recent work in Britain provides a clear example of the potential for habitat 318 

management strategies to promote beneficial insects by agrienvironmental programs 319 

and deliver wider benefits including, ultimately, yield enhancement (96). Treatments 320 

involved the conversion of either 3 or 8% of the field area from low-yielding crop edges 321 

to grow vegetation to support wildlife. Yields in the interiors of these fields were 322 

increased to the extent that yields over the scale of whole fields were enhanced as a 323 

result of the enhancement of pollinators and natural enemies.  324 

It has been noted that the willingness of farmers to participate in landscape-scale 325 

programs, is questionable despite scope for benefits to both ecosystem services and 326 

biodiversity (76). Payments may be important in decisions to participate (23) so 327 

examples like those provided by Pywell et al (96) are important in illustrating that 328 

benefits extend more widely than environmental outcomes – the core business of yield 329 

can also be enhanced.  330 

Examples from other continents also illustrate the fact that habitat management can 331 

deliver multiple ecosystem services other than pest suppression. In the USA, the use of 332 
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conservation tillage together with cover crops in the important cotton growing state of 333 

Georgia, is encouraged by pest control being complemented by nitrogen fixation, 334 

improved soil structure, water infiltration and reduced erosion (122). Another multi-335 

function habitat management strategy used native ground cover plants in New Zealand 336 

where biodiversity enhancement and suppression of lepidopteran pests were 337 

complemented by erosion management, filtration of winery effluent and vineyards 338 

actively marketing the aesthetic appeal of groundcovers for ecotourism (64). 339 

Groundcovers can also potentially improve fungus disease control by speeding the 340 

decomposition of infected prunings (50) and enhance an endemic species of butterfly 341 

(35). The importance of considering multiple ecosystem services was also stressed in 342 

recent work on rice production landscapes (139). 343 

 344 

CONSTRAINTS AND OPPOURTUNITIES 345 

A recent review has considered how the advent of molecular methods such as DNA 346 

barcoding-based gut content analysis, and the very recent development of 347 

CRISPR/Cas9-based gene editing, is addressing constraints on conservation biological 348 

control (41). Accordingly, this section explores other constraints of an agronomic, 349 

ecosystem and practical nature in order to identify key opportunities for future progress. 350 

351 
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Agronomic Constraints 352 

Implementing habitat management can require investment in the form of labor, fuel, 353 

capital depreciation and seed and may present agronomic challenges such as an 354 

introduced plant being tall enough to impede air flow which can lead to frost damage 355 

to vines (81). Some practices, such as the creation of beetle banks, require part of the 356 

cropping area to be taken out of production so lowering yield (17). Other agronomic 357 

problems may arise if growers do not follow recommended habitat management 358 

protocols. For example, the added flowers may be drilled at an unsuitable time leading 359 

to species such as buckwheat (Fagopyrum esculentum) being killed by frosts (58) or to 360 

bloom too late to benefit the targeted natural enemy (16). Similarly, the location of 361 

flowering strips should be based on knowledge of the dispersal ability of the targeted 362 

natural enemy which can be obtained in studies labelling the plant’s nectar with markers 363 

such as rubidium chloride (66; 90).  364 

Ecosystem Disservices  365 

Habitat manipulation can have specific unintended negative impacts that promote 366 

ecosystem disservices (EDS). For example, the added vegetation may compete with the 367 

crop for water, minerals and light or be allelopathic to the crop (147). Further, some 368 

plants used in habitat management may compete with crops for pollinators (48). 369 

Perhaps the most important disservice associated with added floral resources is that 370 

pests may potentially also feed on them. Begum et al (5), demonstrated the fecundity 371 

of the moth pest Epiphyas postvittana was significantly enhanced by the availability of 372 

some nectar plants and stressed the need to identify selective species that allowed 373 

feeding only by parasitoids. The complexities of the wider food web also need to be 374 

considered. For example mealybugs on vines are tended by ants that harvest the 375 
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mealybug honeydew and prey on many of its natural enemies, including parasitoids, 376 

which otherwise have the potential to reduce pest numbers (20). Mealybugs themselves 377 

also feed on some non-crop plants (42), making the choice of habitat management 378 

strategy significant because the naïve addition of flowering plants to this food web 379 

could exacerbate pest problems (141). To reduce these potential EDS, habitat 380 

manipulation modelling can be implemented to enhance pest control by natural enemies 381 

(59). More recently modelling has been used to predict land use impact on biological 382 

control effectiveness and crop damage by pests (54). Similar sophisticated modelling 383 

could potentially be used to design robust conservation biological control programs that 384 

avoid EDS. However, it is important that during the research phase, the extent to which 385 

habitat management reduces pest damage as well as a full knowledge of potential EDS 386 

need to be established before deployment of the protocols. To facilitate this, a clear 387 

Ecosystem Service Provider (such as a strip of flowers of a given species) that supports 388 

a Service Providing Unit (such as parasitoid of a particular type) needs to be identified. 389 

To effect grower adoption, however, the further step of developing a Service Providing 390 

Protocol (SPP) is necessary. This should include all the appropriate and necessary 391 

agronomic, floral, and seasonal characteristics so that such a ‘recipe’ can be readily 392 

implemented by growers. 393 

Quantitative Analyses of Success and Failure 394 

The now substantial body of literature on habitat management allows powerful analyses 395 

in which the outcomes of multiple studies are quantitatively assessed. Letourneau, et 396 

al. (69) considered 552 experiments from 45 articles published between 1998 and 2008. 397 

The same data were included in an earlier review (91) in which a ‘vote counting’ 398 

approach was used in which the outcomes of statistical tests are simply tallied showed 399 
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that vegetation diversification reduced densities of herbivores in around half of cases. 400 

However, a meta-analysis approach in which effect sizes are used is superior to vote 401 

counting because the latter is overly conservative and does not consider the relative size 402 

of effects (69). The main conclusion from that meta-analysis was that diversified crops 403 

had more natural enemies, fewer pests, and less crop damage than did comparable crops 404 

with no or fewer associated plant species (Figure 2). Whilst this finding lends strong 405 

support to the habitat management approach, an important cautionary finding was that 406 

there was a small but significant overall decrease in crop yield evident in papers in 407 

which yield had been assessed. The analysis did, however, point to how yield might be 408 

increased in vegetation diversification because experimental designs in which plants 409 

were included in a crop system in an additive (60), rather than substitutive (111), 410 

manner exhibited yield increases. That is, strategies such as reducing the area of land 411 

over which a crop is grown in order to accommodate a second plant species can lead to 412 

a reduction in yield of the focal crop. Letourneau et al (69) suggest that future efforts 413 

need to focus on plant species that can be added to a crop with minimal disruptive effect 414 

on crop growth whilst maximizing the extent of benefit from natural enemy 415 

enhancement and pest suppression.  416 

<Fig 2 here>  417 

 418 

The field of intercropping, which is most often pursued explicitly for greater 419 

productivity (e.g., (4)) potentially offers much to habitat management in terms of useful 420 

strategies to maximize the positive outcomes of crop interactions. One general 421 

limitation of the Letourneau’s meta-analysis (69) was that it considered only the yield 422 

of the focal crop and not the yield of the additional plant species, even when the latter 423 

was itself a crop of value. Thus habitat management strategies may be advantageous 424 
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even when the focal crop does produce a lower yield provided that the secondary crop 425 

produces a valuable commodity or other ecosystem services, or is the target of 426 

conservation efforts (25) so potentially attracting payments to the farmer from an 427 

agrienvironmental program (138). A more specific limitation of that meta-analysis was 428 

that, amongst the studies available for inclusion, crop damage was measured only in 429 

annual crops in tropical systems. Thus there is a clear need for future studies to include 430 

yield assessment and particularly so for perennial tropical crops and crop systems of all 431 

types in temperate systems. In an analysis in which all effects (pests, natural enemies, 432 

crop damage and yield) were pooled (69), the strongest benefits resulted from the use 433 

of “push-pull” or trap plants within the field.  434 

Recent farmer-participatory work in Asian rice has been unusually comprehensive in 435 

evaluating the effects of strips of flowering crops grown on otherwise unused ridges 436 

around rice crops to provide nectar to natural enemies (Figure 1). These crops - such as 437 

sesame and sunflower - increased rice pest parasitism leading to reduced planthopper 438 

densities to the extent that farmers applied 70% fewer sprays and increased rice yields 439 

by 5%. The costs of establishing and harvesting produce from the bordering crops were 440 

more than offset by the value of the increased rice yield and savings from fewer sprays, 441 

leading to an overall 7.5% economic advantage (38). Detritivore densities also were 442 

increased under the regime of reduced insecticide use.  443 

<Fig 3 here> 444 

 445 

446 
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FUTURE PRIORITIES & PROSPECTS 447 

Aside from an increasingly rigorous foundation of theoretical and empirical work, 448 

coupled with farmer participation to develop locally-appropriate forms of 449 

implementation and effective dissemination, the level of uptake of a habitat 450 

management strategy is largely driven by the extent to which a range of ecosystem 451 

services is provided. Researchers need to be reminded that farmers manage complex 452 

agricultural business systems rather than being focused on pests in isolation. 453 

Biodiversity can be enhanced in farming systems without a yield penalty (15) and 454 

appropriate management of vegetation can promote human wellbeing as well as 455 

ecosystem services and crop yield (14). In the Future Issues box we draw attention to 456 

the lines of research we consider most important as habitat management for pest 457 

population suppression is embraced by a new generation of scientists.  458 

  459 
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 482 

SUMMARY POINTS  
1. From the beginning of habitat management for pest suppression in the 1970s, 

ecologists have sought to explain and test aspects of ecological theory, 
particularly the relative importance of bottom-up and top-down effects on pest 
populations and this continues with increasing attention on theories related to 
biodiversity and ecosystem function as well as hypotheses for the effects of 
landscape on local habitat manipulation.  

2. Though many studies demonstrate that natural enemy enhancement by habitat 
management can lead to pest suppression, syntheses of the available evidence 
suggest that bottom-up effects that operate independently of predators and 
parasitoids may be at least as powerful in terms of pest suppression. 

3. Farmer participation in habitat management, particularly the development of 
locally-appropriate strategies (that are based on broad principles derived from 
more formal research) are likely to be increasingly important for developing 
locally-appropriate habitat management strategies that deliver a basket of 
ecosystem services, as well as in encourage wider uptake. 

4. The distillation of theoretical and empirical knowledge into Service Providing 
Protocols (SPPs) that constitute clear guidelines for growers will be important 
in promoting uptake.  

5. The pattern of land use in the landscape as far as several kilometers from a focal 
field can markedly influence pest and natural enemy numbers and moderate the 
impact of local habitat management efforts but much remains to be learned 
about the interplay across spatial scales and the underlying ecological 
mechanisms. 

6. Habitat management for pest suppression is being used in several continents and 
adoption appears strongest when a basket of ecosystem services is delivered. 

7. Habitat management can strongly promote ecosystem services so offers much to 
the grand challenge of sustainable intensification to meet the escalating needs of 
humanity whilst minimizing adverse impacts on biodiversity upon which we 
ultimately depend. 
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490 

FUTURE ISSUES  
1. The relative paucity of crop yield data in habitat manipulation studies needs to 

be remedied by future workers assessing effects on crop productivity; 
particularly so for perennial tropical crops and crop systems of all types in 
temperate systems. 

2. Though mechanisms to promote natural enemy function are commonly 
explored there is a need for more work on bottom-up effects of vegetation on 
pests so that the relative importance and scope for exploitation are better 
understood. 

3. The field of habitat management for pest population suppression is now well 
established and increasingly multidisciplinary. Further progress requires closer 
cooperation between fields such as diverse as agronomists, landscape 
geographers, molecular biologists, chemical ecologists and ecological 
economists. 

4. Future habitat management efforts need to better address real world complexity 
including spatial and temporal effects in agricultural landscapes as well as a 
wider range of natural enemies (including nematodes and microbes), and 
consider below- as well as above-ground interactions, and non-consumptive 
effects of natural enemies.  

5. There is a need for longer-term studies of habitat management because most 
studies have been short in duration so unable to reveal the effects of maturing 
vegetation and changes in the environment such as to pesticide and genetically 
modified crop use patterns, shifts in land use in the surrounding landscape, and 
global warming. 

6. The extent to which habitat management strategies can deliver a basket of 
ecosystem services appears to be a key driver for adoption but an urgent 
research need is for experimental studies of  the trade-offs and additive or even 
synergistic interactions among multiple ecosystem services. 

7. Agrienvironmental programs in which farmers are paid for stewardship 
activities offer opportunities for promoting habitat manipulation in which 
vegetation types of conservation value are used to promote pest suppression. 
But more research is a required on the effects of differing plant taxa, native to 
various regions, on pests and natural enemies.  
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 906 
1. Crowder et al (19): Evidence that ecosystem function in agriculture requires 907 

restoration of species evenness, not just richness. 908 
 909 

2. Finke and Denno (28): Evidence that additional consumer species can disrupt 910 
predation of herbivores. 911 

 912 
3. Gurr et al (38): Evidence that crop yield and farm profits can be boosted by 913 

crop-border flower strips. 914 

  915 
4. Gurr and You (41): Analysis of how molecular approaches can support habitat 916 

management. 917 
 918 

5. Jonsson et al (56): Experimental test of the intermediate landscape complexity 919 
hypothesis. 920 
 921 

6. Kean et al (59): Pioneering attempt to apply population modelling to inform 922 
habitat manipulation. 923 

 924 
7. Khan et al (62): Key paper on ‘push-pull’ the world’s most successful habitat 925 

management strategy. 926 

 927 
8. Letourneau et al (69): Important meta-analysis of the success of habitat 928 

management approaches. 929 
 930 

9. Simpson et al (115): Pioneering work on combining two formerly separate 931 

natural enemy enhancement methods. 932 

 933 
10. Tscharntke et al (126): Comprehensive analysis of evidence for mechanisms 934 

the suppress pests at the landscape scale. 935 

936 
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SIDEBAR <to be typeset near the ‘Nectar’ section of the article> 937 

 938 
SELECTING OPTIMAL HABITAT MANAGEMENT APPROACHES 939 
When floral resources are used to enhance biological control, the choice of plant species is 940 
often based on laboratory work in which candidate plants are ranked for their effects on 941 
parasitoid or predator. However, which aspects of natural enemy biology contribute most to 942 
pest population reduction are often unclear. Modelling can help identify these key 943 
components, such as aggregation, dispersal, search and reproductive rates. A start to this 944 
modelling approach was made by Kean et al (59) but this approach is still underused. 945 
Empirical ranking of flowering plants is complicated by the fact that cultivars within a species 946 
can give divergent effects on parasitoids (6). Recent work used a combination of laboratory 947 
olfactometry with gas chromatography–electroantennography and identified short-chain 948 
carboxylic acids as most likely to be responsible for differences between buckwheat cultivars 949 
(29). Moving beyond case-by-case empiricism to a more predictive approach may be 950 
possible using a trait-based approach (11) to establish guiding principles for which types of 951 
vegetation trait and combinations of traits are generally superior for pest suppression.   952 
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 RELATED RESOURCES 953 

 954 

Bioprotection Research Centre (no date) Greening Waipara 955 

(http://bioprotection.org.nz/research/programme/greening-waipara).  956 

 957 

<An example of a regional-scale research program promoting the delivery of ecosystem 958 

services including pest suppression.> 959 

 960 

Vinh Long Television (2012) Công nghệ sinh thái (http://thvl.vn/?p=289142) 961 

 962 

<An example of mass media used to promote habitat management: one episode from a series 963 

run on national TV in Vietnam and that was awarded the Gold medal in Science Education in the 964 

32nd National Television Festival 19-22 December 2012 held in Vinh City, Nghe An, Vietnam. See 965 

Heong et al (44). 966 

  967 

http://bioprotection.org.nz/research/programme/greening-waipara
http://thvl.vn/?p=289142
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Acronyms and Definitions  968 

1. Sustainable intensification – intensification of agricultural production 969 

that emphasizes a lessening of effects on the environment. 970 

2. SNAP – Mnemonic for shelter, nectar, alternative prey/hosts and pollen; 971 

the major resources provided by plants to natural enemies. 972 

3. Ecosystem services (ES) – the benefits delivered to humanity by the 973 

condition and processes of biodiversity.  974 

4. Ecosystem disservice (EDS) – the negative effects on humanity from 975 

the condition and processes of biodiversity.  976 

5. Ecosystem service provider (ESP) – the organisms, interaction 977 

networks and habitats that provide ecosystems services (e.g. a hedgerow 978 

or woodland) 979 

6. Service-providing unit (SPU) – the individuals of one species 980 

responsible for providing an ecosystem service to a required level. 981 

7. Habitat management - an intervention in an agroecosystem with the 982 

intended consequence of suppressing pest densities. 983 

8. Ecological engineering - a refinement of habitat management whereby 984 

the intervention is explicitly supported by evidence to maximize impact. 985 

9. Classical biological control – inoculative release of self-dispersing and 986 

self-sustaining agents in a new location.  987 

10. Inundative biological control – mass release of reared agents into a 988 

system to provide (usually) short-term control.  989 

11. Conservation biological control - making better use of existing agents 990 

by habitat management and reducing mortality from pesticides.   991 
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12. Integrated biological control - use of habitat management techniques 992 

to increase the efficacy of classical or inundative biological control. 993 

13. Top-down effects (enemies hypothesis) - the action of natural enemies 994 

(third trophic level) on herbivore pests (second trophic level).  995 

14. Bottom-up effects (resource concertation effects) - the action on 996 

herbivore pests (second trophic level) of vegetation (first trophic level).   997 

15. Attract and Reward – combined use of semiochemicals to attract 998 

natural enemies and nectar plants to enhance their residency. 999 

16. Push-pull – combined use of a plant to repel pests with a second plant 1000 

to attract, and possibly trap, pests. 1001 

17. Complementarity - enemies that attack pests in different ways, times, 1002 

and/or places, such that overall control is increased.  1003 

18. Facilitation - where the action of one natural enemy increases the 1004 

success of another. 1005 

19. Agrienvironmental program (scheme) – policy initiative in which 1006 

payments to farmers aim to promote environmental outcomes such as 1007 

biodiversity conservation. 1008 

  1009 
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 1010 

 1011 

Figure 1 1012 

_____________________________________________________________________ 1013 

Diagram of habitat management and related research fields (ovals), mechanistic 1014 

effects (clouds) and potential outcomes (boxes). 1015 

 1016 

 1017 

  1018 
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 1019 

Figure 2 1020 

_____________________________________________________________________ 1021 

Results of a meta-analysis showing the effects of diverse cropping strategies 1022 

compared with less diverse systems. Points are mean effect size, bars show 1023 

bootstrap confidence intervals and values are the number of experiments for each 1024 

parameter. Herbivores decreased significantly whilst natural enemies were 1025 

significantly more abundant. Though crop damage was significantly reduced, 1026 

yields too declined significantly (but see text). From Letourneau, et al. (69), with 1027 

permission. 1028 

 1029 

  1030 
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 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

Figure 3 1037 

_____________________________________________________________________ 1038 

Nectar plant borders to rice fields promote biological control of pests leading to a 1039 

trophic cascade that increases grain yields and provides economic advantage (38). 1040 

(Photo credit: H V Chien.) 1041 
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