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a  b  s  t  r  a  c  t

Microbial  denitrification  occurs  in anaerobic  soil  microsites  and  aquatic  environments  leading  to  produc-
tion  of  N2O  and  N2 gases,  which  eventually  escape  to the atmosphere.  Atmospheric  concentrations  of  N2O
have  been  on  the  rise  since  the beginning  of the  industrial  revolution  due  to large-scale  manipulations  of
the  N  cycle in  managed  ecosystems,  especially  the  use  of synthetic  nitrogenous  fertilizer.  Here  we  docu-
ment  and  test  a microbial  denitrification  model  identified  as  IMWJ  and  implemented  as  a  submodel  in  the
EPIC  terrestrial  ecosystem  model.  The  IMWJ  model  is resolved  on  an  hourly  time  step  using  the  concept
that  C  oxidation  releases  electrons  that  drive  a  demand  for  electron  acceptors  such  as  O2 and  oxides  of
N  (NO3

−,  NO2
−, and  N2O).  A  spherical  diffusion  approach  is  used  to  describe  O2 transport  to  microbial

surfaces  while  a cylindrical  diffusion  method  is  employed  to depict  O2 transport  to  root  surfaces.  Oxygen
uptake  by microbes  and  roots  is  described  with  Michaelis-Menten  kinetic  equations.  If  insufficient  O2

is  present  to accept  all electrons  generated,  the  deficit  for  electron  acceptors  may  be  met  by  oxides  of
nitrogen,  if available.  The  movement  of  O2, CO2 and  N2O through  the soil  profile  is modeled  using  the gas
transport  equation  solved  on hourly  or sub-hourly  time  steps.  Bubbling  equations  also  move  N2O  and  N2

through  the  liquid  phase  to  the  soil surface  under  highly  anaerobic  conditions.  We  used  results  from  a
2-yr  field  experiment  conducted  in  2007  and  2008  at a field  site  in  southwest  Michigan  to  test  the  ability
of  EPIC,  with  the  IMWJ  option,  to capture  the  non-linear  response  of  N2O  fluxes  as a  function  of increas-
ing  rates  of  N application  to  maize  [Zea  mays  L.].  Nitrous  oxide  flux,  soil inorganic  N, and  ancillary  data
from  2007  were  used  for EPIC  calibration  while  2008  data  were  used  for  independent  model  validation.
Overall,  EPIC  reproduced  well  the  timing  and  magnitude  of  N2O fluxes  and NO3

− mass  in  surficial  soil

layers  after N fertilization.  Although  similar  in magnitude,  daily  and  cumulative  simulated  N2O  fluxes
followed  a linear  trend  instead  of the observed  exponential  trend.  Further  model  testing  of EPIC +  IMWJ,
alone  or  in  ensembles  with  other  models,  using  data  from  comprehensive  experiments  will  be essential
to  discover  areas  of model  improvement  and  increase  the accuracy  of  N2O predictions  under  a  wide  range

by Els

of  environmental  conditions.
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a respiratory process in which NO3
− (or NO2

−) replaces
 terminal electron acceptor in facultative anaerobes. Such
s are capable of extracting energy for their metabolism by
oxidation of reduced C or reduced S to reduction of oxides

 NO3
−, NO2

−) yielding variable proportions of N2O and N2
1996; Saggar et al., 2013). Nitrous oxide is a potent green-
s (Rodhe, 1990) that also depletes the protective layer of
eric O3 (Crutzen, 1970). Atmospheric concentrations of

 been rising since the beginning of the industrial revo-
e to large-scale manipulations of the N cycle in managed

s, especially due to use of synthetic nitrogenous fertilizer
n, 2009; Khalil et al., 2002).

t atmospheric N2O concentrations of 330 ppb are ∼20%
an those present in the pre-industrial era and dur-
ast decades have been increasing at an annual rate of
3 ppb yr−1 (Ciais et al., 2014). Soils produce ∼70% of the
to the atmosphere mainly through microbial denitrifica-
r anaerobic conditions and, to a lesser extent, through

 oxidation and nitrifier denitrification that occur during
on under partially anaerobic conditions (Conrad, 1996;
., 2011; Robertson and Tiedje, 1987; Zhu et al., 2013). Many
al factors control the production of N2O in soils including

ectly affected by management such as levels of NO3
−, O2

ty, soil water content, and soil temperature (Mosier et al.,

 is a need—and significant potential—to reduce N2O emis-
 managed ecosystems (Khalil et al., 2002; Mosier et al.,

bertson et al., 2000; Smith et al., 2008). Reduced N2O
s can be achieved through improved N management by
g organic and inorganic sources, optimizing rate, time,

ement of fertilizer application, and—in some cases—by
rification inhibitors (Smith et al., 2008). In order to
N2O emissions reductions from managed soils, the Inter-
ental Panel on Climate Change (IPCC) has developed a
proach that includes both direct and indirect emissions
e Klein et al., 2006). Following this approach, direct N2O

s primarily arise from application of synthetic N fertiliz-
ic N amendments, and management of organic soils. In

 soils, indirect N2O emissions arise from N lost to down-
 downstream ecosystems as NH3 and NOx, redeposited as

 NO3
−, and as N lost via leaching and runoff (Robertson

3).
ree tiers range in complexity (De Klein et al., 2006). In Tier
izer-based emission factor is used to estimate direct N2O
s from managed soils. In Tier 2, more detailed—country
emission factors are used to estimate N2O emissions.
he Tier 3 method is based on modeling or measure-
roaches. Process-based field-scale N2O simulation models
ed useful in the Tier 3 approach because they can help
he soil and environmental variables responsible for N2O
s and allow for the projection of these N2O emissions
al and country scales (Chen et al., 2008). Simulation of
sions, however, carry uncertainties associated with model
, model parameterization, accuracy of input data, and res-
f spatial and temporal scales. For example, Nol et al. (2010)
nte Carlo uncertainty propagation analysis to quantify
ties of modeled N2O emissions caused by model input
ty at point and landscape scales. Nitrous oxide emission at

e scale averaged 20.5 ± 10.7 kg N2O-N ha−1 yr−1, produc-
tive uncertainty of 52%. At point scale, the relative error

 78%, suggesting that upscaling decreases uncertainty. The
nfirmed the influence of spatial scale on the uncertainty
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tion to the C cycle and connection between the biological
ical components of the system being modeled (Chen et al.,
ree examples of such models include DNDC (Li et al., 1992,
osys (Grant et al., 1993a, 1993b; Grant and Pattey, 1999),
ent (Del Grosso et al., 2000, 2006; Parton et al., 1996).
ons of N2O dynamics (Frolking et al., 1998; Li et al., 2005)
lation approaches (Chen et al., 2008) employed by N2O
mphasize the importance of accurate simulation of soil
ntent and its appropriate linking with denitrification and

ling soil water dynamics is a strength of the Environmen-
 Integrated Climate (EPIC) terrestrial ecosystem model

s et al., 1984). Developed originally to model the relation-
een erosion and soil productivity, the EPIC model has

nto a comprehensive and widely used terrestrial ecosys-
el (Williams et al., 2008). Our objectives here are to:
ent a process-based microbial denitrification submodel

nted in EPIC thus adding to two other empirically-based
cific) options to simulate denitrification (Williams, 1990);
est the new microbial denitrification model for its ability
uce experimental data (Hoben et al., 2011) exhibiting a
r response of N2O fluxes to incremental rates of N appli-

ocess-based microbial denitrification model documented
d here —IMWJ— quantifies microbial denitrification in
er O2-limiting conditions. Daily C oxidation quantified

odel of EPIC (Izaurralde et al., 2006) releases electrons,
 accepted by O2 under aerobic conditions. Oxygen uptake

bes and roots is described with Michaelis-Menten kinetic
s. If O2 is insufficient, then the deficit for electron acceptors
et  by oxides of N (NO3

−, NO2
−, and N2O). When denitrifi-

curs, there is an adjustment of C decomposition based on
of actual vs. potential electrons accepted by O2 and oxides

 movement of O2, CO2, and N2O through the soil profile is
 using the gas transport equation solved with an adaptive
ime step.

iption of the denitrification submodel in EPIC

eptual framework and model overview

ersion of EPIC containing the denitrification submodel
 and tested herein is identified as EPIC1704. The denitrifi-

odel presented here is identified as the IMWJ  (Izaurralde,
illiams, and Jones) denitrification option in EPIC. The
n between main IMWJ  subroutines and relevant EPIC sub-

is shown in Appendix 6.1. Microbial decomposition of soil
atter and respiration by plant roots results in oxidation

 1). Such oxidation produces electrons, typically carried
e cell as NADH + H+, for which there must be an acceptor
decomposition or respiration to produce CO2. Normally
acceptor but in cases of O2 deficiency electrons are trans-
N in NO3

− to yield NO2
− and thence N2O and N2 through

ation as shown in the following equations:

 5 HOH → 5 CO2 + 20 H+ + 20 e−

 8 H+ + 8 e− → 4 NO2
− + 4 HOH

 12 H+ + 8 e− → 2 N2O + 6 HOH

+ −
4 H + 4 e → 2 N2 + 2 HOH

ll: 5 CH2O + 4 NO3
− + 4 H+ → 5 CO2 + 2 N2 + 7 HOH + energy

otential supply of electrons is calculated based on mois-
ent and temperature coupled with the nature and supply
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Fig. 1. Diagram of denitrifica

le substrates (Izaurralde et al., 2006). Electrons are first
 O2, based on O2 concentration at the surface of both soil
anisms and plant roots to form CO2. Michaelis-Menten
netic equations are used to evaluate electron transfer to

potential supply of electrons exceeds those accepted by
if oxides of N (NO3

−, NO2
− or N2O) are present then

 are passed to oxides of N (to emulate denitrification).
 electrons by organisms reducing oxides of N is quantified
elis-Menten kinetics (Grant and Pattey, 1999). Complete

 of 1 mole of NO3
− consumes 5 moles of electrons, com-

3 moles of electrons for 1 moles of NO2
− and 1 mole of

 per mole of N2O. Accordingly, the concentrations of each
des of N are weighted to account for the variation in num-
oles of electrons that each species accepts. The energy

 reducing NO3
− exceeds that from reducing NO2

−, which
that from reducing N2O. Consequently, the Michaelis-
xpression contains terms for competitive inhibition such
− inhibits reduction of NO2

−, and both inhibit reduction

back mechanism based on electron acceptors controls
sition. If potential supply of electrons is matched by the
pted by O2 plus oxides of N, then, decomposition equals

 decomposition, variables are updated and calculations
n for the next day. If, however, potential supply of elec-
eeds those accepted by O2 plus oxides of N, then actual
sition is reduced sufficiently such that total electron sup-
s total electrons accepted by O2 plus oxides of N.
multaneous diffusion of four gases (O2, CO2 N2O, and N2)
d using the gas transport equation (Šimünek and Suarez,
ithin each day, each gas is transferred within the gas
he soil profile and between the soil surface and the atmo-
ove. The profile is divided into computational layers of

Nico
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exch
units

In
root
mol 

mol 

ESM

Dim
ckness. Properties of the soil profile layers are interpo-
ong the computational layers. Gas diffusion within the
hase of the soil profile is calculated using the Crank-

4  mol e
mol C
 EPIC.

procedure (Crank and Nicolson, 1996) as default although
cit and explicit procedures are included as options. Like the
nd explicit methods, the Crank-Nicolson procedure is a
erence method for solving numerically the heat and other
fferential equations. Gas diffusivity in soil is modified from
ivity to account for tortuosity and water-filled pore space

 the Millington-Quirk approach (Millington and Quirk,
e layer beneath the soil profile is considered a zero-flux
, while the atmospheric gas concentrations above the soil
e fixed at atmospheric levels. Each gas is redistributed

etween gas and liquid phases using Henry’s Law. Flux
as across the soil-atmosphere plane is calculated from
ce boundary term of the diffusion equation at each dif-
e step and is accumulated into daily fluxes. Gaseous flow
ubbling allows movement of dissolved gases through the
ase to the soil surface when aggregate partial pressures
tmospheric pressure, which typically only occurs under
aerobic conditions.

rating denitrification with soil C dynamics and gas
 (See Appendix 6.2. for definition of names, values, and
lected variables and parameters used in this section)

C-IMWJ, electron supply is generated via microbial and
iration. Oxidation of C by microbial respiration (RSPC,
−2 h−1) liberates electrons (e−), and the flux of e− (ESM;
−2 h−1) drives the demand for e− acceptors.

PC
0.1
72

(1)

ions:RSPC
kg  C · 103 g C · 10−4 ha

2
· 1 d · 1 mol  C ·
ha d kg C m 24 h 12 g C

−
=  RSPC

0.1
72

mol e− m−2 h−1
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icrobial respiration, root respiration oxidizes C for growth
tenance, thereby generating e− (ESR; mol  e− m−2 h−1).

espiration (RRG) is calculated as a function (RRF; dimen-
of the increase in root mass (�RWT)  per day based on the
located to the root each day (CA).

F × CA (2)

ions := kg DM

ha d
· 0.42kg C

kg DM
· 10 3g C

kg C
· 10 −4 ha

m2
· 1  d

24 h
·

l C

 C
· 4 mol  e−

mol  C
=  RRFxCAx

0.168
288

mol e−m−2 h−1.

trast, maintenance respiration (RRM; mol  e− m−2 h−1) is
s a function (RMF; d−1) of root mass (RWT; kg ha−1).

F  × RWT  × 0.168
288

mol e−m−2h−1. (3)

oot respiration (ESR; mol  e− m−2 h−1) is the sum of main-
nd growth respiration.

68
88

(RRF × CA + RRM × RWT) (4)

ion  transports O2 for respiration (Campbell, 1985; Scott,
the case of microbial respiration, we considered diffusion
re and calculated the conductance (K) as:

O2
r1r2

r1 − r2
(5)

e case of roots, the diffusion occurs in cylindrical coordi-
 K is:

sO2

2⁄r1
) (6)

sO2 = Diffusion coefficient of O2 in soil water (at
 × 10−6 m2 h−1); r1 = radius of microbe or root (m); and

s of water film plus microbe or root (m).
its of K vary with the coordinate system used. For spher-

ms (soil aggregates or colonies of microorganisms), the
 are m3 s−1 and the flux (j) is per sphere. For a cylindrical
he units of K are m2 s−1 and j is per meter of (root) length.
ansport to microbial surfaces is modeled with the follow-
ion (Grant and Pattey, 1999):

4 · � · n · MBC  · 10−4 · DsO2 · (dm  · dw)
(dw − dm)

([O2s] − [O2m])
4

32
(7)

ions  : EAO2m = 1
kg C

· kg C

ha
· ha

m2
· m2

h
· m.m

m
· g O2

m3
·

2 · mol e−

mol  O2
= mole−

h m2

 EAO2m = Electrons accepted by O2 during microbial res-
mol e− m−2 h−1); MBC  = Microbial biomass C (kg C ha−1)
ive (see Additional Modification section below); DsO2 = as
in (6); dm = radius of microbe (r1 in (5); 10−6 m);
us of water film plus microbe (r2 in (5); as calculated

 (11), m);  [O2s] = concentration of O2 in the soil water

T
on s
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lculated in EPIC using gas transport and convective flow
soil water); n = number of microbes per kg biomass C;

] = concentration of O2 at surface of microbe (g O2 m−3 soil
 calculated below in (17).

(mol  e− m
O2 conce

EAO2R = 
 (2017) 349–362

mber of microbes per kg biomass C (n) is calculated based
ical organisms as:

· �r3 · �w · Fdm · Cdm · kg

Mg
(8)

1
kg  C
cell

= 2.58368 × 1015 (9)

 = radius of microbes (10−6 m);  �w = wet density of
 (1.1 Mg  m−3); Fdm = Fraction of dry matter (0.2); and,
bon fraction in dry matter (0.42).
ffusion coefficient of O2 in soil water (DsO2) is adjusted for
ure.

bO2 ·
(

T + 273.15
20 + 273.15

)6
(10)

sbO2 = base diffusion coefficient (7.2 × 10−6 m2 h−1) at
 6–194), (Lide, 2001)).
ptions are available in EPIC to estimate water film thick-
). The first method, called water-potential method, is

 relationships among volumetric water content (VWC),
sity (TPOR) and water potential (WP). The second, called
sible-water method, is based on accessible pore volume

ssible water volume based on diameters of pores relative
es. Details of these two  methods are given in SI Appendix
lation of DW.

 the water potential method, which is simpler:

 + 8x10−6 · WP−0.945703126 (11)

 = radius of water film plus microbe (m); dm = radius of
as in (7); and, WP  = water potential (bars).

e/passive biomass

s paper, we use “active” instead of “total” microbial
in the calculation of O2 transport to microbial surfaces
7) above). To implement the modification, we follow the
proach of Wang et al. (2014) to represent dormant and

icrobial dynamics, which is based on microbial physio-
ates as well as parameters specifying maximum specific
nd maintenance rates of active microbes and the ratio of

 to active maintenance rates.

en transport and uptake

ort of O2 to roots through the soil solution on an hourly
 product of conductance and change in [O2]. Conductance
KR) within a soil layer can be calculated as:

�DsO2(
r2
r1

) m2

h
· 2x105m root

kg root
· kg root

ha
· 10−4ha

m2

6 · DsO2 · RWT

ln
(

r2
r1

) m

h
(12)

lue 2 × 105 m root/kg root is an average for winter wheat
ained from (Wild, 1988) (p. 125, Table 4.3). Other rep-
ve values are: 105 m kg−1 for maize and soybean and
m kg−1 for sorghum.
ons accepted by O2 during root respiration

−2 h−1) is the product of KR and the difference in

ntrations in the soil solution and at the root surface:

KR([O2s] − [O2r]) (13)
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 expands to:

25.66 · DSO2 · RWT

ln
(

r2⁄r1
) ([O2s] − [O2r])

4
32

(14)

AO2R = Electrons accepted by O2 during root respiration
−2 h−1); RWT  is as defined for (3); DSO2 is as defined for
2S is as defined for (7); O2r = O2 concentration at the sur-
ots (g O2 m−3 soil water); r1 = radius of plant roots (set
);  and, r2 = radius of soil water film thickness plus plant

.

ns:  EAO2R = m

h
· g O2

m3
· mol O2

g O2
· mol  e−

mol  O2
= mol e−

m2h

gous to dw, values for r2 are calculated as:

8x10−6 · WP−0.945703126 (15)

l uptake is modified from Grant and Pattey (1999)

ESM · [O2m]
([O2m] +  KO2)

(16)

O2m, [O2m], and [O2s] are as defined for (7); ESM as defined
d, KO2 = half-saturation value for O2 uptake (g O2 m−3 soil

ns:  EAO2m = mol e−

m2 h

g  m−3

g m−3
= mol e−

m2 h

e of O2 by microbes or roots requires O2 to travel from the
 through the liquid phase to the uptake surface. Transport
ly proportional and uptake directly proportional to [O2]

rface of microbe [O2m] or root [O2r]. The challenge is to
oncentration at the surface of microbes or roots, which is
n of potential rate of uptake and rate of transport to the

 surface.
Eqs. (16) and (7) for EAO2m are equivalent, they are
rearranged into a quadratic expression (see SI Appendix
ation of method to calculate concentration of O2 at the

f microbial cells) and solved for O2m.

B +
√

B2 − 4 · A · C

2A
(17)

ive solution is used because A is negative.

 A = −KT ; B = (KT · [O2s] −  KT · KO2 − ESM) ; C = KT · KO2 ·

nd , KT = 4 · � · n · MBC · 10−4 · DsO2
(dm · dw)

(dw − dm)
4

32

lue of O2m is then used to calculate the value of EAO2m.
h microbes, uptake of O2 by roots is calculated as:

SR · [O2R]
([O2R] +  KO2R)

(18)

3) and (18) are equivalent and are used to solve for [O2r]
 using:

; B = (KR · [O2s] −  KR · KO2R − ESR) ; C = KR · KO2R · [O2s] ;
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l and root respiration (EAO2SUM) is then the sum of equa-
) and (18). The electrons not accepted by O2, and hence

 for denitrification, (ESD), is the difference between supply
ESM) plus (4) (ESR))  and accepted electrons. It is calculated

 · (ESM + ESR − EAO2SUM) (20)

rm FD (coded as PRMT97, Table 1) accounts for the fact
obial growth rate under anaerobic conditions is slower
er aerobic conditions. Hence, ESD is the theoretical deficit.

petition for electrons among oxides of N

s of N compete for electrons and as modeled exhibit
ive inhibition behavior. Competition is simulated by calcu-
mpetitive inhibition-weighting factor for each oxide, and

 them for all oxides. The dimensionless weighting factors
 for NO3

− reduction; WN3  for NO2
− reduction and WN1

eduction:

 ·
[
NO−

3

]
XKN5 + [NO−

3 ]
(21)

 ·
[
NO−

2

]
XKN3 ·

(
1 +

[
NO−

3

]
XKN5

)
+ [NO−

2 ]

(22)

 · [N2O]

XKN1 ·
(

1 +
[

NO−
2

]
XKN3

)
+ [N2O]

(23)

s of values for XKN5, XKN3, and XKN1 are provided in
ll variables on the right side of the equations have units

 The rates of electron acceptance during denitrification
−2 h−1) are calculated as:

SD · WN5
(WN5 + WN3 + WN1)

,  EAN5 < WNO3 ·
(

0.1
7

)
/dt

(24)

NO3 ·
(

0.1
7

)
/dt (25)

SD · WN3
(WN5 + WN3 + WN1)

,  EAN3 < WNO2 ·
(

0.1
7

)
/dt

(26)

NO2 ·
(

0.1
7

)
/dt (27)

SD · WN1
(WN5 + WN3 + WN1)

,  EAN1 < WN2O ·
(

0.1
14

)
/dt

(28)

N2O ·
(

0.1
14

)
/dt (29)

sions:
, 3, 1) = mol  e− m−2 h−1; WNO3 = kg N ha−1; dt = 1 h.
3
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h
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m2

3 ·
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)
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Table 1
Pertinent model options and parameter values to run the IMWJ  denitrification option in EPIC1704.

EPIC file Variable name Option Definition Unit Value (range)

EPICCONT IDN 3 IMWJ  denitrification submodel (Pore-water thickness method 1) – –
IDN  4 IMWJ  denitrification submodel (Pore-water thickness method 2) – –
IPRK  1 Slug-flow approach – –
IPRK  2 Richard’s flow approach – –
DZ  Layer thickness for solution of gas transport equation m 0.1–0.2

SITEFILE  DTG Time interval for solution of gas transport equation h 0.5–1.0

SOILFILE  CGO2 Initial value of O2 concentration in gas phase g m−3 110–275
CGCO2  Initial value of CO2 concentration in gas phase g  m−3 0.2–1.2
CGN2O Initial value of N2O concentration in gas phase g m−3 0.004–0.01

PARM1704  PRMT82 Microbial N:C ratio at which N immobilization is maximum – 0.025–0.075
PRMT83 Microbial N:C ratio at which N immobilization ceases – 0.2–0.04
PRMT84 Specific base rate for ammonification d−1 0.2–0.4
PRMT85 Microbial N:C ratio at which ammonification ceases – 0.025–0.075
PRMT86 Microbial N:C ratio at which ammonification is maximum – 0.2–0.04
PRMT87 Maximum rate of nitrogen uptake during immobilization g N g C−1 d−1 0.2–0.5
PRMT88 Half saturation constant for ammonia immobilization mg N L−1 10.0–20.0
PRMT89 Half saturation constant for nitrite immobilization mg N L−1 5.0–15.0
PRMT90 Half saturation constant for nitrate immobilization mg N L−1 10–20
PRMT97 Microbial growth rate retardation under anaerobic conditions. FDdefault = 0.19 – 0.0–1.0
PRMT98 Nitrifier denitrification coefficient; NDdefault = 0.0006 – 0.0–0.02
XKN5  Michaelis-Menten NO3

− reduction constant g m−3 100–500
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the total number of electrons accepted by O2 and oxides
g an hour and for a given layer is calculated as:

 EAO2M + EAO2R + EAN5 + EAN3 + EAN1 (30)

daily EA is calculated for a soil layer, a ratio between
 and supplied electrons (EAR) is calculated and used to

 decomposition. By definition, EAR ranges between 0 and
, the model calculates the amount of O2 consumed, com-

 quantities of CO2, N2O and N2 generated, and updates the
aining as NO3, NO2, and N2O.

 hydrolysis, nitrification, and nitrifier denitrification

ydrolysis from fertilizer urea is modeled in the subrou-
AHYDROLYSIS following (Godwin and Jones, 1991). The
s rate is calculated according to soil organic C, pH, soil
ure, and soil water.
cation  is modeled simultaneously with ammonia
tion in the subroutine NITVOL by combining meth-
ddy et al. (1979), Godwin and Jones (1991), and Williams
itrification follows first-order kinetics and the nitrifica-
is affected by soil temperature, water content, and pH.

 the nitrification equations were modified to model (a)
s on nitrite accumulation and (b) nitrifier denitrification.
llow Li et al. (2000) to account for nitrifier denitrification
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t al., 2001). Nitrous oxide generated during nitrifier deni-

 is calculated as a fraction of nitrification rate (Table 1,
, as modified by temperature and water-filled porosity

 (Li et al., 2000).

Where, a
tration (g
coefficien
g m 15–40
g m−3 0.01–2.5

lindrical organisms. CBVTdefault = 0.5 – 0.2–0.8

solubility, phase distribution, and gas transport in soils

lubilities are calculated with formulas from Lide (Lide,
ges 8–86 to 89. For details see SI Appendix 6.5. Gas Trans-
e dimensionless form of Henry’s Law Constant (K’H; or

 partition coefficient) was  used to calculate the distribu-
ese gases between soil air and soil water. K’H was evaluated
ubility data at a partial pressure of the gas (Pg) of one
ere as in SI Appendix 6.5. Gas Transport.
C-IMWJ mineralization and immobilization of C and N are

 in a subprogram called NCNMI following the CENTURY
aurralde et al., 2006) with mineralization and immobiliza-

 varying with fluctuating C/N ratios of microbial biomass
 the PHOENIX approach (McGill et al., 1981). Ammoni-
nd N immobilization occur concurrently. All microbial

is considered in aggregate – bacterial and fungi are not
eparately. Upper N:C ratios of microbial biomass are set

 ammonification is a maximum and N immobilization
ower N:C ratios of microbial biomass are set at which
cation ceases and N immobilization is maximum. Ranges

olds for N immobilization are tabulated as PRMT 82 and
, and for ammonification as PRMT 85 and PRMT 86 in
At the end of each day, EPIC calculates an amount of C
(RSPC, kg ha−1 d−1) for each soil layer as controlled by
ntent and temperature but not [O2]. To connect CO2 pro-

ith O2 demand, a new subprogram was developed in
ed GASDF3, which uses the one-dimensional gas trans-
ation to calculate the distribution of [O2] (g m−3) at all
uring a 24 h period. Because diffusion in water is about
rs of magnitude slower than in air, diffusion in air is the
hanism modeled here.
s transport equation for any of the three gases modeled

 and N2O) was written as:

∂2(Ds
gCg)

∂z2
+ rg (31)
 = volumetric air content (m3 m−3); Cg = soil gas concen-
 m−3); rg = sink (source) term (g m−3); Dg

s = gas diffusion
t in soil (m2 h−1); t = time (h); and, z = depth (m).
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merical solutions for the gas transport equation are taken
s et al. (1993) with modifications to include the volumet-
. Three solutions are available in the sub model GASDF3
dix 6.5. Gas Transport). Users can select the version that
s their situation. However, the explicit scheme should not
ithout adding an explicit check to ensure that the stability

is satisfied (Press et al., 1993). We  use the Crank-Nicolson
The numerical solutions were implemented using the

 elimination procedure followed by back substitution of
gonal matrix (Press et al., 1993; p. 33).
gh the implicit and Crank-Nicolson integration schemes

 for time steps of any size, they are not guaranteed to be
or large time steps. For most of the calculation, an hourly

 time step gives acceptable results, but occasionally, par-
hen gas concentrations are changing rapidly (e.g., due to

iration rates), a one-hour time step is too large. To address
, we have introduced an adaptive variable time step into
ion solver.
ost obvious indicator of time steps that are too large is

fluxes that are a significant fraction of (or even larger than)
mass in a grid cell. Accordingly, our adaptive time step
e time step to limit the maximum fractional change in
ntration (εCn

j
) over all of the cells in the grid.

1 − Cn
j

)
< εCn

j

ny point during the integration this condition is violated
 in the grid, then the concentrations are rolled back to the

 of the hour, the time step size is halved, and the integra-
started. This process continues with the time step being

 each iteration until the end of an entire hour of integra-
out encountering a violation. These results are returned
SDF3 subroutine for use in the rest of the denitrification

ion of a gas in soil is slower than in air because of impedi-
d tortuosity caused by water-filled pores and soil particles.
n, diffusion of a dissolving gas is slowed by negligible dif-
e of the gas contained in the liquid phase. Consequently,
ion coefficient of O2 in soil (Ds) is calculated from the

ffusion coefficient of O2 in air (Da) and a tortuosity fac-
 corrected for dissolution in soil water using K’H (See SI

 6.5. Gas Transport).

ubbling

llow Grant and Pattey (1999) to model the bubbling of
 soil to the atmosphere under anaerobic conditions. Aque-
concentrations are limited per the ideal gas law such
lved gases are released if the aggregate partial pressures

tmospheric pressure. When ebullition occurs, gases are
from solution proportional to the relative concentrations
ferred to the soil surface. Under frozen conditions gases
erred to the most surficial unfrozen layer while under sat-
nditions gases are transported directly to the atmosphere.
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operties (depth, bulk density, field capacity, wilting point,
nic C concentration, total N concentration, initial NO3

−

ation), and (d) management schedules concerning tillage,
on, irrigation, and crop operations. Parameter files are

 specify crop, tillage, fertilizer, and pest characteristics. In
 other files are needed to specify model options, general
rs, and files to specify weather, site, crop, soil, fertilizer,

names to perform single or batch runs (Wang et al., 2012).
ion of model options, parameter values, and specific input
ded to run EPIC1704 with the IMWJ  denitrification sub-
e presented in Table 1. The only difference in IDN = 3 or

 the calculation of the water film thickness (DW; Eq. (11);
 SI Appendix 6.3. Calculation of DW). In addition to the
ater percolation method in EPIC, two new methods have

lemented recently in EPIC1704 to improve the daily soil
namics, particularly in surface soil layers. Setting layer

 (DZ) will depend on model stability (i.e. model instabil-
equire reduction in DZ; DZ = 0.1 has generally produced
lutions). Setting the default time interval for solving the
port equations (DTG) to 1.0 h generally produces stable

 of the gas transport equation. Initial gas concentrations
CGO2 = oxygen; CGCO2 = carbon dioxide; CGN2O = nitrous

 soil layer are entered to provide initial conditions for
ansport equation. For O2, the values should be entered in
g order by depth, while the opposite should be done for
race gases. Boundary gas concentrations (air and bottom
ofile) are hard coded.

 mineralization-immobilization submodel in EPIC1704
 follows the approach used in PHOENIX (McGill et al.,
per and lower N:C ratios of microbial biomass were noted
ble 1; PRMT 82, 83, 85, 86). Table 1 also includes ranges

 for half saturation constants for ammonium immobi-
PRMT88), nitrite immobilization (PRMT89), and nitrate
zation (PRMT90) together with the specific base rate of
cation (PRMT 84) and the maximum rate of N uptake
mobilization (PRMT87). Finally, the Michaelis-Menten

values XKN5, XKN3, and XKN1 can be either selected
 range provided in Table 1, from literature values (see SI

 6.6. Range and means of Michaelis constant (Km) values
in the literature), or determined via model optimization
w Section 3.3. Description of the simulation experiment).

ription of experimental data used to test the IMWJ
tion model in EPIC

ed results from a 2-year field experiment conducted in
 2008 at five locations (four on-farm, one at Michigan St.
K. Kellogg Biological Station [KBS]) in Michigan (Hoben
1) to test the non-linear response of N2O fluxes as a func-

nearly increasing N fertilizer rates. Of the five locations,
e had two  years of data, of which the KBS site (42◦41N,

 offered the best weather and soil data to parameterize
s and perform simulations due to extensive experimen-
d excellent records. Thus, we selected the KBS site to test
J  model in EPIC.
rate experiment with maize (Zea mays L.) was conducted
n a Kalamazoo loam (fine-loamy, mixed, mesic Typic Hap-
d repeated in 2008 on an adjacent field on the same soil
ch crop of maize followed a crop of soybean (Glycine max

 These fields had been under grain production following
ent practices common to the region before initiation of

riment. Winter wheat (Triticum aestivum L.) was  grown

r crop after soybean harvest and was terminated with
s prior to maize planting. The experimental design was
ized complete block design with six rates of N (0, 45, 90,

, and 225 kg N ha−1) and four replications. Fertilizer urea
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Table 2
Model evaluation statistics.

Year Variable R2 NSE RMSE Bias

2007 Grain yield 0.00604 −4.67 0.270 −7.8
2007  Cumulative N2O flux 0.878 −1.30 0.670 77.7
2007  Daily N2O flux 0.918 0.619 0.00458 28.5
2007  Soil inorganic N (0–10 cm)  0.991 −2.16 33.331531 61.4

2008  Grain yield 0.0333 −15.4 1.68 53.5
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dcast and incorporated to a depth of 10 cm two days before
nting in early May. Further experimental details can be

Hoben et al. (2011).
chambers were used to obtain gas samples for determina-
O concentration and subsequent calculation of N2O fluxes.
les for N2O flux determination were obtained once before

 every other day after fertilization for 15 days, then weekly
ys, and finally every 10–14 days after 45 days until crop
or details on gas sampling, concentration measurements,
alculations see Hoben et al. (2011)

ription of the simulation experiment

ation about file structure and content needed to per-
le to multiple EPIC runs with a Fortran-based executable

obtained from http://epicapex.tamu.edu/manuals-and-
ns/
pare the weather data for the simulations, daily records
itation, air temperature, solar radiation, wind direction
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Appendix 6.1. Connection between main IMWJ subroutines and relevant EPIC 
subroutines. 
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Appendix 6.2. Names, values, and units of selected variables and parameters used in the 
denitrification submodel implemented in EPIC. 
A, B and C  Coefficients used in van Genuchten (1980) equation (0.001<A<0.01, A=0.002; 

1.2<B<4.0, B=1.4; 0.0<C<1.0, C=0.5) 
dm  Radius of microbe (10-6 m) 
DsO2  Diffusion coefficient of O2 in soil water (at 20 °C = 7.2 x 10-6 m2 h-1) 
dw  Radius of water film plus microbe (m) 
EAO2m Electrons accepted by oxygen during microbial respiration (mol e- m-2 h-1) 
EAO2R Electrons accepted by oxygen during root respiration (mol e- m-2 h-1) 
ESM Electrons supplied by potential microbial respiration (mol e- m-2 h-1) 
ESR Electrons supplied by root growth plus maintenance respiration (mol e- m-2 h-1) 
KO2  Half-saturation value for O2 uptake (g O2 m-3 soil water) 
MBC  Microbial biomass C (as calculated in EPIC) (kg C ha-1) 
n Number of microbes per kg biomass C (2.58368x 1015 kg -1) 
[O2m] Concentration of O2 at surface of microbe (g m-3 soil water) 
[O2r] Concentration of O2 at the surface of roots (g O2 m-3 soil water) 
[O2s] Concentration of O2 at surface of soil water film as calculated using gas 

transport and convective flow in EPIC (g m-3 soil water) 
r1 Radius of plant roots (0.01 m) 
r2 Radius of soil water fil, thickness plus plant roots (m) 
RMF Root maintenance function (0.01785 d-1) 
RRF Root respiration function due to growth (0.547; dimensionless) 
RRG Root respiration due to growth (kg dry matter ha-1 d-1) 
RRM Root respiration due to maintenance (kg dry matter ha-1) 
RSPC Potential C oxidized by microbial respiration (kg C ha-1 d-1) 
RWT  Root mass (kg dry matter ha-1) 
ΔRWT Change in root mass RWT  (kg dry matter ha-1 d-1) 
TPOR  Total porosity (m3 m-3) 
VWC Volumetric water content (m3 m-3) 
VWCE  Effective volumetric water content above residual (m3 m-3), 
VWCR Residual volumetric water content (m3 m-3; VWCR =0.03 based on 3% water in 

air-dry soil) 
WP Water potential (bars) 
DCAO Gas diffusion coefficient O2 in air: 0.064 m2 h-1 
DCAC Gas diffusion coefficient CO2 in air: 0.050 m2 h-1 
DCAN Gas diffusion coefficient N2O in air: 0.051 m2 h-1 
GASC Molar gas constant: 8.3145 J mol-1 K-1 
CUPO [O2] upper-boundary condition: 279 g m-3 
CLOO [O2] lower-boundary condition: 0.2 g m-3 
CUPC [CO2] upper-boundary condition: 0.18 g m-3 

CLOC [CO2] lower-boundary condition: 10.0 g m-3 

CUPN [N2O] upper-boundary condition: 0.00018 g m-3 

CLON [N2O] lower-boundary condition: 1 g m-3 
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Appendix 6.3. Calculation of DW. 

Water potential method. The value of Effective Volumetric Water Content above 

residual water (VWCE; m3 m-3) is first calculated directly as: 

𝑉𝑊𝐶𝐸 =
𝑉𝑊𝐶−𝑉𝑊𝐶𝑅

𝑇𝑃𝑂𝑅−𝑉𝑊𝐶𝑅
 [1] 

Where: 

TPOR = total porosity (m3 m-3). 

VWC = volumetric water content (m3 m-3). 

VWCR = residual volumetric water content (m3 / m3; VWCR =0.03 based on 3% 

water in air-dry soil). 

From van Genuchten,(Vangenuchten, 1980) however, VWCE is also a function of 

Water Potential (WP; cm) 

𝑉𝑊𝐶𝐸 = (1 + (𝐴 ∙ 𝑊𝑃)𝐵)−𝑐 [2] 

Rearranging and solving for WP in bars: 

𝑊𝑃 =
0.001 (𝑉𝑊𝐶𝐸(

−1
𝑐⁄ )−1)

1
𝐵⁄

𝐴
 [3] 

Where: 

A, B and C = coefficients (0.001<A<0.01, A=0.002; 1.2<B<4.0, B=1.4; 

0.0<C<1.0, C=0.5). 

Water potential from [Error! Reference source not found.] and dm (1 x 10-6 m) 

are used to estimate water film thickness (dw) resulting in dw = 8.86 x 10-6 m at 

TPOR = 0.55, VWC = 0.3 and VWCR = 0.03 as follows: 

𝑑𝑤 = 𝑑𝑚 + 8𝑥10−6 ∙ 𝑊𝑃−0.945703126 [4] 

Accessible Water Method. Soil water suction (ψ) can be related to soil volumetric 

water content (θ) over a significant part of the soil water characteristic curve by a 

rectangular hyperbola(Gardner et al., 1970) 

𝜑 = 𝑎 ∙ 𝜃−𝑏 [5] 

Where  
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Ψ = soil water suction (or tension; m) 

 a and b = parameters of the equation. Hillel,(Hillel, 2004, p. 156) (p 156), reports a value 

for b of 4.3 for a fine sandy loam.   

Solving for θ: 

𝜃 = (
𝑎

𝜑
)

1

𝑏 [6] 

In the absence of a complete soil water characteristic curve values for a and b can be 

calculated using two data points for each soil; one for field capacity (tension = 1/3 bar, 3 

m etc.) and one for wilting point (15 bar, 1500 m etc.). Equations Error! Reference 

source not found. and Error! Reference source not found. are calculated by writing 

Error! Reference source not found. as two simultaneous equations (one for each of the 

two values θ and ψ), taking log of both sides and equating them such that:   

𝑏 =
𝐿𝑜𝑔(𝜑2)−𝐿𝑜𝑔(𝜑1)

𝐿𝑜𝑔(𝜃1)−𝐿𝑜𝑔(𝜃2)
 [7] 

and  

𝑎 = 10[𝑏∙𝐿𝑜𝑔(𝜃2)+𝐿𝑜𝑔(𝜑2)] [8] 
Where:  

ψ1 = soil matric potential at field capacity (-3 m water potential); 

ψ2 = soil matric potential at witling point (-1500 m water potential); 

θ1 = volumetric soil water content at field capacity (m3 m-3); m); and,  

θ2 = volumetric soil water content at wilting point (m3 m-3); m).  

Water-filled pore volume (θ) is related to pore diameter through the relationship of both 

to soil water tension (ψ) as follows.   

𝜑 =
2∙𝛾∙𝑐𝑜𝑠𝛼

𝜌∙𝑔∙𝐷
 [9] 

Where: 
 γ = surface tension between liquid and air (0.0728 N / m at 20ºC34; 

α = contact angle (0 Degrees; cos 0 = 1);  

ρ = density of the liquid (998 kg m-3);  

g = acceleration due to gravity (9.8 m sec-2); and, 

D = diameter (m) 

Substituting into Error! Reference source not found. and simplifying,  
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𝜃 = (
𝑎∙𝜌∙𝑔∙𝐷

2∙𝛾∙𝑐𝑜𝑠𝛼
)

1

𝑏 [10] 

Combine constants: 

𝐴 =
𝑎∙𝜌∙𝑔

2∙𝛾∙𝑐𝑜𝑠𝛼
 [11] 

𝐵 =
1

𝑏
 [12] 

For our purposes designate θ as PV to allow determination of the volume of pores filled 

with water and having a diameter D in a specified soil.   

Hence:  

𝑃𝑉 = (𝐴 ∙ 𝐷)𝐵 [13] 

Values for A and B can be obtained from the water characteristic curve or from two pairs 

of points on it (e.g. field capacity and wilting point) by first calculating a and b as in 

Error! Reference source not found. and Error! Reference source not found., and 

using them to calculate A and B as in Error! Reference source not found. and Error! 

Reference source not found..   

Pores with D < Dc are too small to accommodate more than a specified fraction of the 

soil BioVolume, and hence are deemed non-habitable. Water in such pores (PVc) is not a 

barrier to diffusion of gases to soil microorganisms, and is excluded from calculations of 

DW.  Hence, it is necessary to determine how much water (θdw) remains in the soil to 

form a film around microorganism and hence influence gas diffusion through the 

calculation of DW.  The diameter data from Jenkinson et al.(Jenkinson et al., 1976) for 

BioVolume of soil microorganisms classified by diameter was used to estimate parameter 

values for logistic expressions relating cumulative BioVolume to microorganism 

diameter:  

𝐶𝐵𝑉𝑇 =
𝐿𝑈−𝐿𝐿

1+𝑒(−𝑎(𝐷𝑖𝑎𝑚−𝑇))
+ 𝐿𝐿 [14] 

and  

𝐷𝑖𝑎𝑚 = 𝑇 −
1

𝑎
∙ 𝑙𝑛 [

𝐿𝑈−𝐿𝐿

𝐶𝐵𝑉−𝐿𝐿
− 1] [15] 

Where: 

CBV = Cumulative BioVolume associated with a specified diameter of organism 

(dimensionless fraction); 
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CBVc = Critical Cumulative BioVolume is substituted for CBV in Error! 

Reference source not found. when calculating critical pore diameter (Dc) 

associated with lower limit of habitable pore sizes (dimensionless fraction); 

CBVu = Upper Cumulative BioVolume of interest, is substituted for CBV in 

Error! Reference source not found. when calculating Diameter (Du) associated 

with the upper pore diameter required to provide access to the largest 

microorganisms (dimensionless fraction); 

CBVT = Cumulative proportion of the BioVolume of spherical and cylindrical 

organisms (based on original data reported as mm3 g-1 soil) (dimensionless 

fraction); 

Diam = diameter of organisms or pore of interest (m); 

LL = -0.15 = lower limit of logistic expression (dimensionless fraction);  

LU = 1 = upper limit of logistic expression (dimensionless fraction);  

a = 6.0226 x 105 = parameter of the logistic expression (m-1);  

T  = 3.0754 x 10-6 = parameter of the logistic expression (m);  

The cumulative pore volume (PVc,) that is filled with water at pore diameters up to 

the critical diameter (Dc) is estimated by substituting Dc for D in Error! Reference 

source not found..  Similarly, PVu, the pore volume up to the upper pore diameter (Du) is 

determined from Error! Reference source not found. by substituting Du for D.  The 

upper diameter of pores of concern may be the diameter at field capacity (9.9 x 10-6 m), 

or at the point of maximum curvature on D vs. CBV (Cumulative BioVolume) curve (7.1 

x 10-6 m; occurs at CBVT = 0.91) or some other appropriate value.   

The pertinent pore volumes (PV) and water contents (θ) become: 

PVdw = PVu – PVc [16] 

θdw = θ – PVc  [17] 

Where: 
PVc, = cumulative pore volume that is filled with water at pore diameters up to 

the critical diameter (m3 / m3) 
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PVdw = Vol of pores having diameters between Dc and Du (m3 / m3) and used in 

calculating DW.   

PVu = Pore volume at upper diameter size class (m3 / m3) 

θdw = the water in PVdw (m3 / m3) 

The pore diameters increase from the smaller pores at Dc to the larger pores at Du.  This 

is conceptualized as a frustum or a portion of a cone.  The surface area of interest is the 

lateral surface area calculated as follows: 

ℎ =
3∙𝑃𝑉𝐷𝑊

𝜋(𝑎2+𝑎𝑏+𝑏2)
[18] 

𝐿 = √(ℎ2 + (𝑏 − 𝑎)2) [19] 

𝑆𝐴 = 𝜋(𝑎 + 𝑏)𝐿 [20] 
Where  

 a = radius of pores with diameter Dc (m)  

 b = radius of pores with diameter Du (m) 

 h = Internal distance (m) 

L = Length of side based on the sides of a right angel triangle (m) 

SA = Lateral surface area of the volume PVdw (m2 / m3) 

The water film thickness (DW; m) is calculated from the water content of the 

habitable space Error! Reference source not found. and the surface area over which it 

is distributed Error! Reference source not found..    

DW = θdw / SA [21] 

Appendix 6.4. Derivation of method to calculate concentration of O2 at the surface of 
microbial cells and solved for O2m. 

Microbial uptake is modified from reference: 

𝐸𝐴𝑂2𝑚 = 𝐸𝑆𝑀 ∙
[𝑂2𝑚]

([𝑂2𝑚]+𝐾𝑂2)
 [22] 

To solve: 

𝐿𝑒𝑡 𝐾𝑇 = 4 ∙ 𝜋 ∙ 𝑛 ∙ 𝑀𝐵𝐶 ∙ 10−4 ∙ 𝐷𝑠𝑂2
(𝑑𝑚∙𝑑𝑤)

(𝑑𝑤−𝑑𝑚)

4

32
 [23] 

 
ℎ =

 ∙    

 ( 2 +   +  2)
 

b 

Lh

a 
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Electrons accepted by O2 during microbial respiration (mol e- m-2 h-1) is the product of 

KT and the difference in O2 concentrations in the soil solution and at the microbial 

surface:  

𝐸𝐴𝑂2 = 𝐾𝑇 ∙ ([𝑂2𝑠] − [𝑂2𝑚]) [24] 

Equating [22] and Error! Reference source not found. and cross multiplying: 

𝐾𝑇 ∙ ([𝑂2𝑠] − [𝑂2𝑚]) ∙ ([𝑂2𝑚] + 𝐾𝑂2) =  𝐸𝑆𝑀 ∙ [𝑂2𝑚] [25] 

Subtracting ESM [O2m] from both sides and expanding: 

−𝐾𝑇 ∙ [𝑂2𝑚]
2 + [𝑂2𝑚] ∙ (𝐾𝑇 ∙ [𝑂2𝑠] − 𝐾𝑇 ∙ 𝐾𝑂2 − 𝐸𝑆𝑀) + 𝐾𝑇 ∙ 𝐾𝑂2 ∙ [𝑂2𝑠] = 0

 [26] 

This yields a quadratic equation (AX2 + BX + C = 0):  

𝐴 = −𝐾𝑇; 𝐵 = (𝐾𝑇 ∙ [𝑂2𝑠] − 𝐾𝑇 ∙ 𝐾𝑂2 − 𝐸𝑆𝑀);   𝐶 = 𝐾𝑇 ∙ 𝐾𝑂2 ∙ [𝑂2𝑠] [27] 

Solving for [O2m]: 

[𝑂2𝑚] =
−𝐵 + √𝐵2 − 4 ∙ 𝐴 ∙ 𝐶

2𝐴
 

Solve for EAO2m using Error! Reference source not found.and the value of O2m 

from above.   

Appendix 6.5. Gas Transport. 

Gas solubilities. These are calculated with formulas from Lide (p 8-86 to 89). ). For O2 

and N2O, the mole fraction solubility (Xg) is: 

*ln*/ln TCTBAXg   [28] 

Where the values of the coefficients A, B, and C for O2 and N2O are: AO2=-66.7354, 

BO2=87.4755, CO2=24.4526; AN2O=-60.7467, BN2O=88.828, CN2O=21.2531. All values 

refer to a partial pressure of the gas (Pg) of one atmosphere, or 101.325 kPa. T* = T/100K 

In the case of CO2, Xg is obtained as a function of (soil) temperature by fitting a cubic 

equation to data in Lide (p 8-90) with CO2 at Pg = 101.325 kPa: 

32639 10)09098.000077777.01023.21013308.2(   TTTXg  [29] 
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where T is (soil) temperature (ºK). This equation fits with an R2 = 0.998**. 

Dimensionless Henry’s Law Constant. Henry’s law states that the vapor pressure of 

the solute (Pg, the gas in this case) over a solution (soil water in which the gas is 

dissolved) is equal to a constant (KH; Henry’s Law constant) multiplied by the mole 

fraction of the solute in solution (Xg).  This can be expressed as per Castellan (p. 282): 

Pg = KHXg [30] 

The mole fraction Xg is defined as the number of moles of a component of a mixture 

divided by the total number of moles in the mixture: 

watergas

gas
g

nn
n

X




 [31] 

where ngas is number of moles of the sorbing gas (O2, CO2, and N2O) and nwater is number 

of moles of water. 

The moles of water L-1 is known and Xg is known, so solve for ngas in mol L-1.   

Invert [8] and re-arrange:  

gas

water

g n
n

X
11  

11




g

water
gas

X

nn

 [32] 

L
mol

mol
g

L
g

nwater 18
1000

18
1000



 [33] 

Substituting [10] into [9]: 














L
molC

X
n l

g

gas
'

11
18

1000

 [34] 

This yields the concentration of gas at a specified Pg and can be used to calculate KH.  

Substituting [11] into [2]:  
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1

11
18

1000 




Lmol

atm

X

PK

g

g
H

 [35] 

To get to the dimensionless form, use [4] and rearrange.   

][
][

11
18

1000]....[
1' 111 




Lmol

atm

X

P
KKmolatmLRT

K

g

g
H   dimensionless 

Using values for Xg at a partial pressure of the gas (Pg) of one atmosphere, simplifies to  

 11
1000

18' 
g

H XRT
K  dimensionless [36] 

Where R = molar gas constant (0.08205783 L atm mol-1 K-1) in this application; and, T = 

ºK (C + 273.15). 

Gas Concentrations. Oxygen, CO2, and N2O are moderately soluble in water.  The 

concentration in the gas phase, which drives diffusion, is a function of total gas present, 

volume of air, volume of soil water and solubility in soil water.   

The mass of the gas (S’T, mol m-3) in both phases can be expressed as: 
''' )( lgT CCS    mol m-3 [37] 

By definition K’H is: 

'

'

'
l

g
H C

C
K   [38] 

Where C’g = concentration of the substance in the gas phase (mol m-3); C’l = 

concentration of the substance in the liquid phase (mol m-3).  Solving for C’l by 

substituting C’g from Error! Reference source not found. into Error! Reference 

source not found. 

   


H

T
l K

SC
'

'
'  mol m-3 [39] 

Similarly,  
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






 



1'
1

'
'

H

T
g

K

SC


 mol m-3 [40] 

The variables C’l and C’g take their units from S’T.  Consequently, either mol m-3 (S’T, 

C’l and C’g) or g m-3 (ST, Cl and Cg) can be used with Error! Reference source not 

found. and Error! Reference source not found.. 

Gas Transport equations. The gas transport equation for any of the three gases 

modeled (O2, CO2, N2O) was written as: 

g
g

s
gg r

z
CD

t
aC










2

2 )()(
 [41] 

Where, a = volumetric air content (m3 m-3); Cg = soil gas concentration (g m-3); rg = sink 

(source) term (g m-3); Dg
s = gas diffusion coefficient in soil (m2 h-1); t = time (h); and, z = 

depth (m).   

The numerical solutions for the gas transport equation are taken from (Press et al., 

1993), modified to include the volumetric factor.  Three solutions are available the sub 

model GASDF3.   

First, the “explicit” solution allows for calculations of quantities at time step n + 1 in 

terms of only quantities known at time step n.  

The diffusion equation when D and a are constant: 

2

2

x
CD

t
Ca gg








  [42] 

can be differenced as: 

 
















 



2
11

1 2
x

CCC
a
D

t
CC n

jg
n
jg

n
jg

j

n
jg

n
jg

 [43] 

The stability criterion for the explicit solution is 
 

12
2 





x
tD  

A second approach is: 

 
















 









2

1
1

11
1

1 2
x

CCC
a
D

t
CC n

jg
n
jg

n
jg

j

n
jg

n
jg

 [44] 
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This is called the “implicit” solution because the spatial derivatives on the right-hand 

side are evaluated at time step n + 1. The fully implicit scheme is first-order accurate in 

time but second-order in space.  It is stable for time steps of any size. 

A third approach is the “Crank-Nicholson” solution, which is a mixture of the explicit 

and implicit methods, p 840: 

 
















 











2
11

1
1

11
1

1 )2()2(
2 x

CCCCCC
a
D

t
CC n

jg
n
jg

n
jg

n
jg

n
jg

n
jg

j

n
jg

n
jg

  [45] 

The Crank-Nicholson differencing scheme is second-order accurate in time.  Like the 

fully-implicit scheme, it is stable for any size time step. 

Because the diffusion coefficient D is not constant (D = D(x)), in the explicit case, the 

numerical solution can be written as: 

2
12/112/1

1

)(
)()(1

x
CCDCCD

at
CC n

jg
n
jgj

n
jg

n
jgj

j

n
jg

n
jg








 



 [46] 

Where )( 2/12/1   jj xDD  and the stability criterion for the explicit scheme is 

  .
2

min
2/1

2











 


j
j D

xt  

Gas Diffusion. Diffusion of a gas in soil is slower than in air because of impediments 

and tortuosity caused by water-filled pores and soil particles.  In addition, diffusion of a 

dissolving gas is slowed by the gas contained in the liquid phase.  Consequently, the 

diffusion coefficient of O2 in soil (Ds) is calculated from the binary diffusion coefficient 

of O2 in air (Da) and a tortuosity factor ξg and corrected for dissolution in soil water using 

K’H.   

a
g

s
g

g D
D

  [47] 

ξg is calculated using the Millington-Quirk model: 

2

3/10)(






g  [48] 



11 

 
Where  = total porosity (m3 m-3);  = soil water content (m3 m-3); and,     = air-

filled porosity (m3 m-3). 

Diffusion rate of a dissolving gas is slowed because the gas trapped in the liquid phase 

diffuses at a negligible rate.  Diffusion occurs in the gaseous phase over space through 

time.  Some proportion of the total substance is not diffusing because it is in the aqueous 

phase; therefore, the actual time spent in diffusion is less than the total time.  

Consequently, a
gD  should be modified to accommodate the reduced time that moderately 

soluble gases spend in diffusion.   

Let R = the proportion in the gas phase and hence the proportion of the time that is 

spent diffusing.  Therefore 1-R = the proportion of time spent stationary or the proportion 

of the total gas that is in the aqueous phase.  From this definition: 

T

g

S
Q

R 

 [49] 

Where: 

Qg = Quantity of gas constituents in the gas phase g m-3; ST = mass of the gas (mol 
m-3) in both phases.  

Expanding: 

 

T

g

S
C

R
 

  

Inserting Cg from [20]: 

 






















11
'
H

T

T

KS

SR




 [50] 

 






















11
'
HK

R




 [51] 

D’ is used in EPIC to calculate diffusion rates in soils to account for sorption. D’ 

approaches D for sparingly soluble gases for which Log K’H increases to > 6, and 

approaches 0 as solubility increases and Log K’H decreases to < -5. 
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The final combined diffusion coefficient is: 

   






















1/1
'

'

2

3
10

H

a
g

K

DD







 [52] 

D’ approaches a
gD  for sparingly soluble gases for which Log K’H increases to > 6, and 

approaches 0 as solubility increases and Log K’H decreases to < -5. 
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Appendix 6.6. Range and means of Michaelis constant (Km) values reported in the literature. 
   Km 

Process or Enzyme Experimental Detail Source µM g m-3 

NO3
- Reduction Inferred; stirred suspension Betlach and Tiedje, (1981) 5 – 10 0.07 – 0.14 

 Mixed soil bacterial cultures Murray et al., (1989) 1.8 –13.7 0.0252 – 0.1918 
 Cores and slurries Cited by Laverman et al., 

(2006) 
2 – 640 0.028 – 8.96 

 Surface soil from streamside Ambus, (1993) 4.24 0.05936 
 Sediment; flow-through reactors Laverman et al., (2006) 200 – 800 2.8 – 11.2 
 Soil in flow-through reactors Laverman et al., (2010) 530 – 2,190 7.42 – 30.66 
 Soil in slurry reactors Laverman et al., (2010) 7,400 103.6 
 Liquid mixing tumbler @ 4 rpm Tugtas and Pavlostathis 

(2007) 
2,900 – 13,800 40.6 – 193.2 

 Nitrate reductases (EC 1.7.99.4) (Zumft, 1997) 300 – 3,800 4.2 - 53.2 

   Mean 28.522 
   Standard Error 13.03 
     

NO2
- Reduction Alcaligenes, Pseudomonas, 

Flavobacterium; stirred 
suspension 

Betlach and Tiedje (1981) 5.5 – 12.9 0.077 – 0.1806 

 Surface soil from streamside Ambus (1993) 6.33 0.08862 
 Seine River; nitrifier-

denitrification 
Cébron et al., (2005) 70 – 290 0.98 – 4.06 

 Copper-containing nitrite 
reductases (EC 1.7.2.1) 

(Zumft, 1997) 30 - 740 0.42 – 10.4 

 Cytochrome cd1 nitrite reductases 
(EC 1.9.3.2) 

(Zumft, 1997) 6 - 53 0.084 – 0.742 

   Mean 2.396 
   Standard Error 1.432 

N2O Reduction Flavobacterium; stirred 
suspension 

Betlach and Tiedje (1981) 0.44 0.01232 

 Soil slurries Holtan-Hartwig et al., (2002) 0.1 – 4.4 0.0028  0.1232 
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 N2O reductases (EC 1.7.99.6) (Zumft, 1997) 2 - 26 0.028 – 0.364 

   Mean 0.106 
   Standard Error 0.068 
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Appendix 6.7. Parameters and ranges 
considered for Morris Method sensitivity 
analysis. 
Parameter Minimum Maximum 
PRMT1 1.00 2.00 
PRMT2 1.15 1.50 
PRMT35 0.00 1.00 
PRMT57 0.00 0.20 
PRMT64 0.00 0.50 
PRMT82 0.025 0.075 
PRMT83 0.20 0.40 
PRMT84 0.20 0.40 
PRMT85 0.025 0.075 
PRMT86 0.20 0.40 
PRMT87 0.0001 0.5 
PRMT88 1.00 20.00 
PRMT89 1.00 15.00 
PRMT90 1.00 20.00 
PRMT97 0.05 0.95 
PRMT98 0.00 0.01 
XKN1 0.01 10.00 
XKN3 1.00 40.00 
XKN5 5.00 500.00 
CBVT 0.20 0.30 
FC1 0.22 0.38 
FC2 0.22 0.39 
FC3 0.23 0.42 
FC4 0.27 0.42 
FC5 0.08 0.15 
WP1 0.13 0.19 
WP2 0.11 0.20 
WP3 0.13 0.20 
WP4 0.17 0.25 
WP5 0.04 0.06 
BD1 1.43 1.59 
BD2 1.48 1.64 
BD3 1.61 1.77 
BD4 1.43 1.59 
BD5 1.47 1.63 
SATC1 25.0 47.0 
SATC2 25.0 47.0 
SATC3 25.0 47.0 
SATC4 54.0 99.0 
SATC5 139.0 257.0 
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Appendix 6.8. Relative importance metric of parameters per sensitivity of the NSE of the 
simulated versus measured daily N2O flux. Field capacity water content (FC), wilting 
point water content (WP) , bulk density (BD), and saturated hydraulic conductivity 
(SATC) are soil properties varied by layer and numbers 1-5 indicating the layer with 
increasing depth starting from the soil surface. Relative importance is calculated as µ* 
scaled to the most sensitive parameter.  
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