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Summary

1. Perennial bioenergy systems, such as switchgrass and restored prairies, are alternatives

to commonly used annual monocultures such as maize. Perennial systems require lower
chemical input, provide greater ecosystem services such as carbon storage, greenhouse
gas mitigation, and support greater biodiversity of beneficial insects. However, biomass
harvest will be necessary in managing these perennial systems for bioenergy

production, and it is unclear how repeated harvesting might affect ecosystem services.

2. In this study, we examined how repeated production-scale harvesting of diverse

perennial grasslands influences vegetation structure, natural enemy communities
(arthropod predators and parasitoids), and natural biocontrol services in two states

(Wisconsin and Michigan, USA) over multiple years.

3. We found that repeated biomass harvest reduced litter biomass and increased bare

ground cover. Some natural enemy groups, such as ground-dwelling arthropods,
decreased in abundance with harvest whereas others, such as foliar-dwelling arthropods
increased in abundance. The disparity in responses are likely due to how different

taxonomic groups utilize vegetation and differences in dispersal abilities.

4. At the community level, biomass harvest altered community composition, increased

total arthropod abundance, and decreased evenness but did not influence species
richness, diversity, or biocontrol services. Harvest effects varied with time, diminishing
in strength both within the season (for total abundance and evenness), across seasons
(for evenness), or were consistent throughout the duration of the study (for community
composition). Greater functional redundancy and compensatory responses of the

different taxonomic groups may have buffered against the potentially negative effects
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of harvest on biocontrol services.

. Synthesis and applications: Our results show that in the short-term, repeated harvesting

of perennial grasslands (when insect activity is low) has mixed effects on natural enemy
communities and no discernable effects on biocontrol services. However, the long-term
effects of repeated harvesting on natural enemies and other arthropod-derived

ecosystem services such as pollination and decomposition remain largely unknown.

. Keywords: Bioenergy, prairies, beneficial insect biodiversity, ecosystem services,

perennial systems, landscape composition, ecosystem function.
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Introduction

Agricultural simplification has been linked to reduced soil carbon storage (Robertson,
Paul & Harwood 2000; Fargione et al. 2008), habitat degradation for animals (Gardiner
et al. 2010; Robertson et al. 2011), and reduced water quality (Donner & Kucharik 2008).
In recent years, the use of perennial systems for bioenergy production as alternatives to
annual monocultures, such as soybean and corn, has received much attention as these
systems provide numerous environmental benefits (Ceotto 2008; Webster ef al. 2010;
Werling et al. 2014). For example, perennial systems, such as switchgrass and restored
prairies, require lower chemical input and reduced management efforts compared to
conventional bioenergy crops resulting in increased carbon storage (Tilman, Hill &
Lehman 2006), improved water quality (Costello ez al. 2009), and reduced greenhouse
gas emissions (Gelfand et al. 2013). Perennial systems also generally support a higher
abundance and diversity of many taxa including plants, beneficial insects, and
methanotrophic bacteria, leading to greater provisioning of ecosystem services such as
pollination, natural biological control, and methane consumption (Werling et al. 2014).
Furthermore, perennial systems can be grown on marginal lands (Dauber et al. 2012)
reducing competition with food production (Tilman et al. 2009). As such, there is a great
potential for perennial systems to be sustainable long-term alternatives to conventional

bioenergy crops.

While the use of low-input, high-diversity perennial systems is promising for sustainable

bioenergy production (Tilman, Hill & Lehman 2006), repeated harvesting will be

necessary for management, which could have negative consequences for biodiversity and
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ecosystem services (BES). For example, biomass harvest in perennial systems could
negatively affect plants and insects as large machinery needed to remove biomass could
result in soil compaction, thus affecting plant establishment and growth (Carrow 1980;
Schrama et al. 2012), and ground nesting insect activity (Sardifias & Kremen 2014).
Furthermore, the removal of aboveground biomass could eliminate important nesting and
food resources for insects, potentially serving as ecological sinks if eggs and larvae are
also removed with biomass and there is no immigration from outside sources (Kruess &
Tscharntke 2002; Steffan-Dewenter & Leschke 2003). In contrast, harvesting could
enhance BES by mimicking the beneficial effects of fire (Swengel 2001). For example,
removing large amounts of aboveground biomass can reduce competition for space and
light, fostering increase plant diversity (Williams, Jackson & Smith 2007; Jungers et al.
2015). Similarly, harvesting could alter microclimate factors, such as soil temperature
and moisture, which could increase ground dwelling insect activity and potentially alter
plant and insect phenologies (Ewing & Engle 1988; D’ Aniello et al. 2011). These
harvest-mediated changes in the microhabitat and plant community could strengthen

bottom-up effects resulting in greater abundance and diversity of beneficial insects.

The effects of biomass harvest might vary with the foraging and dispersal ranges of
arthropods and spatial context (Dempster 1991; Swengel 2001). For example, biomass
harvest might have little effect on the abundance and diversity of highly mobile insects
such as lady beetles and pollinators because they can easily move to adjacent,
undisturbed habitats during harvest and recolonize afterwards. Thus, harvest effects

might be transient if recolonization is quick and if the area of harvest is small relative to
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the dispersal ranges of the organisms (Humbert ef al. 2012). Alternatively, for less mobile
arthropods and life-stages such as eggs, larvae, and flightless adults, biomass harvest
might have detrimental effects. In these cases, the surrounding landscape context might
thus mediate these negative harvest effects. For example, perennial systems surrounded
by natural habitat might minimize the detrimental effects of harvest because these natural
habitats are sources for beneficial insects that can rescue declining local populations

(Tscharntke et al. 2012; Gamez-Virués et al. 2015).

The objective of this study was to examine the effects of biomass harvest on vegetation
structure, biodiversity of beneficial predatory and parasitic arthropods (hereafter “natural
enemies”), and natural biocontrol services in mixed prairie-grasslands. Specifically, we
asked the following questions: (1) Does repeated, annual fall harvesting affect grassland
vegetation structure the following year?; (2) Does repeated biomass harvest affect the
abundance and diversity of natural enemies and biocontrol services?; (3) How do harvest
effects vary with time (both within and across years)?; and (4) Does landscape context
mediate harvest effects on natural enemies and biocontrol? We hypothesized that
repeated harvesting in the fall would have negative effects for arthropods the following
growing season by removing important nesting habitats, killing eggs, or other non-mobile
forms thus serving as ecological sinks. We also hypothesized that sites surrounded by a
greater proportion of natural habitat could mitigate the negative effects of biomass

harvest.
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Material and methods

Experimental Design

We sampled arthropods in mixed prairie-grasslands in Wisconsin (W) and Michigan
(MI) from 2013 to 2015. We identified a list of 90 potential candidate sites that could be
used for this study. Minimum site sizes and years since establishment were 0.30 km? and
5 years, respectively. Sites were mapped using GIS and we used the US Department of
Agriculture (USDA) National Agriculture Statistics Service Cropland Data Layer (USDA
2013) to extract land cover information surrounding each site within a 1.5 km radius from
site centers. The proportion of natural and semi-natural habitat in the landscape was
calculated as the proportion of the total area covered by grasslands (perennial pasture,
hay, and unmanaged/natural grasslands) and forest (deciduous, evergreen, mixed, shrub
land, and woody wetland). These habitats (hereafter “natural habitats” for simplicity) are
predominately perennial with very little management and disturbance. From the full list, a
subset of 34 sites were selected such that they spanned a gradient of low to high
proportion of natural habitats -- previously shown to influence biocontrol services
(Werling et al. 2011). Next we randomly the harvest treatment (hereafter “harvest”) to
half of the sites while the others were unmanipulated “control”, ensuring that the harvest
and control treatments had similar landscape gradients. The final sites used for the study
were largely public lands managed by US Fish and Wildlife Services (N = 19) and
Department of Natural Resources (N = 8) but also included some private lands (N = 7).
Sites spanned a gradient of natural habitat from 5.12 to 72.71% and ranged from 0.31-
1.20 km? in size. While we do not have detailed management history information for all

sites, we know that prior to the start of the experiment, sites were maintained as
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grasslands via burning, chemical, or mechanical removal of woody material for a number
of years. However, the sites were not managed 3-7 years prior to the start of the

experiment.

Biomass harvest was conducted at the end of the growing season with standard
commercial equipment at the entire site level leaving approximately 30 cm of standing
plant residue with all harvestable biomass removed from the field. All harvest events
occurred in the fall of each year of the study (September to October), except for three
sites in one year which were harvested in early spring (2014) rather than the previous fall
(2013) because of unforeseen circumstances (e.g., wet weather, federal government shut-
down). Harvesting at these sites was conducted soon after snow melt when no new
growth would have been impacted by the spring harvest thus making these three sites
comparable to the fall harvested sites. The duration of the experiments varied between the
two states (3 years in WI; 2 years in MI). In WI, the first of three annual harvest
treatments was applied in fall 2012 and post-harvest sampling occurred in 2013 (number
of sites, N = 18), 2014 (N = 20), and 2015 (N = 18). In M1, the first of two harvest
treatments was fall 2013 and post-harvest sampling occurred in 2014 (N = 12) and 2015

(N=6).

Vegetation structure
We confined our vegetation and arthropod sampling to a 50 m x 100 m field area
(0.005 km?) at each site. To minimize edge effects, the sampling area was placed at least

50 m away from the site edge. To determine whether harvest influenced vegetation
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structure, plant cover was assessed monthly at each site in June, July, and August
(hereafter “sampling round”) at three permanent sampling stations (separated by 50 m).
Plant cover was measured visually by estimating % bare ground (to the nearest 5%), %
dead (litter) cover, % live forb cover, and % live grasses in quadrats (30 cm x 30 cm)
placed randomly on the ground near the sampling station (~5 m apart, N = 3 quadrats per
sampling station). Quadrats were placed in new locations around each sampling station
for each sampling round. We also recorded the mean height of the litter, forb and grass
layers by placing a meter stick at the center of the quadrat (N = 9 quadrats per sampling
round per site).

To estimate plant biomass (g dry mass m™) at a site, we first multiplied the cover
and mean height measurements of each of the vegetation categories to get an index of
plant “volume” in a quadrat. Non-destructive biomass estimates were necessary to
preserve the integrity of the fields from repeated sampling within- and across the growing
seasons. We determined the relationships between each of the estimated plant volume
index and plant biomass collected off-site (R°= 0.40 to 0.73, see Appendix S1 in

Supporting Information).

Natural enemy diversity and biocontrol

Arthropod natural enemies were sampled at the same time vegetation was
surveyed (June, July, and August). At each of the three permanent sampling stations per
site, we placed one double-sided sticky trap (to capture flying insects), one pitfall trap (to
capture ground-dwelling arthropods), one sweep transect (to capture foliar-dwelling

arthropods). Each type of trap was separated by 5 m and each sampling station was
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separated by 50 m (N = 9 traps per site). To measure biocontrol potential, we placed one
sentinel prey stand at each sampling station (N = 3 stands per site).

Yellow, sticky traps (15 cm x 30 cm, unbaited, Trecé Pherocon ®, Adair,
Oklahoma, USA) were placed just above the vegetation and left out for two weeks
continuously during each sampling round. Pitfall traps consisted of 1 L deli containers
(10 cm diameter opening, Dart Conex®, Mason, Michigan, USA) filled % full with 50:50
propylene glycol:water solution, placed flush with the ground, and covered with a 6 mm
wire mesh to prevent small mammals and herpetofauna from falling into the traps. Plastic
covers (30 cm diameter) were staked 10 cm above the traps to prevent rainfall from
entering the cups. Pitfalls were also placed out for two weeks continuously during each
sampling round. Sweep net sampling occurred along 1 m x 50 m belt transects (50 back
and forth sweeps per transect) using a 38 cm diameter sweep net on sunny days with little
wind (< 5 km per hour). All arthropods classified as natural enemies (predators or
parasitoids known to attack arthropod herbivores) were counted and identified to the
family level, superfamily levels for parasitic Hymenoptera, and order level for Arachnida
(see Table S1, Borror, Triplehorn & Johnson 1992).

To measure biocontol potential, we used the approach of Werling et al. (2011),
where we measured the removal rates of sentinel corn earworm (Helicoverpa zea) eggs.
Eggs were obtained from a commercial rearing facility (Benzon Research Inc., Carlisle,
Pennsylvania, USA) and were frozen prior to use to prevent hatching. Cluster of eggs (30
to 50 eggs) were placed on 2.5 cm x 2.5 cm index cards (hereafter “egg cards”). At each
sampling station, there was a single egg card stand (1 m PVC pipe with a 30 cm x 30 cm

white corrugated plastic platform affixed on top) with two egg cards placed underneath
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the platform. One egg card was exposed to natural enemies (“open” treatment) and the
other “caged” treatment was protected from natural enemies using a 10 cm petri-dish
cage to account for egg loss not due to predation (e.g., handling, desiccation). Eggs were
placed in the field for 48 h (N = 3 paired egg card per site per sampling round). The
percent egg removal rate, R was calculated separately for eggs in the open and caged
treatments as R (open or closed) = 100 — [(initial — final number of eggs) / initial number
of eggs]. To account for egg loss due to factors other than predation (e.g., desiccation,
wind, and handling), R was then adjusted by using egg loss from the caged treatments for
each pair. Therefore, the final removal rate, Rs.« Was calculated as R (open cages) — R
(closed cages). Rates of egg loss in closed cages were generally low (6.8% + 0.81; mean

+ SE).

Statistical analyses

We were interested in how vegetation structure and natural enemy communities at
the field scale responded to the harvest treatment therefore each site was treated as an
independent replicate. All vegetation and arthropod measurements were therefore
averaged across the sampling stations within a site for a given sampling round. We
combined the WI and MI datasets in order determine how biomass harvest affected
biodiversity and ecosystem services within grasslands across a broad geographic region.
Analyses were performed using R v3.03 (R Development Core Team 2014) unless

otherwise stated.

To determine how vegetation structure was influenced by harvest, we used linear mixed-
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effects models (LMM) with harvest treatment (harvest, control) as a fixed effect and site
as a random (intercept) effect. We included sampling round, year, and state, as fixed
covariates in the model. The response variables were percent bare ground (arc-sine
square-root transformed) and vegetation biomass (litter, forb, and grass analyzed
separately, all In-transformed). We evaluated all possible three- and two-way interactions
with the harvest treatment. None of the three-way interactions were significant (P < 0.05),
therefore they were dropped and we re-ran LMMs with only two-way interactions with
harvest. We tested whether data met LMM assumptions (e.g., residuals normally
distributed, homogeneity of variance) and assumed Gaussian distributions. We used the
nlme package (Pinheiro et al. 2016) for LMM, and models were fit using maximum
likelihood methods. Significance levels were assessed using Wald y? tests with the car
package (Fox & Weisberg 2011). We used (and report) Type 3 SS to test for significant
interaction terms; if none were significant, we used (and report) Type 2 SS to test for
significance of the main effects. Post-hoc comparisons of significant interactions terms

were analyzed using the Ismeans package in R (Lenth 2016).

To determine how the natural enemy community was influenced by harvest, we used
LMMs with the same predictors listed above and the response variables were total
predator abundance (In-transformed), family-level richness, predator diversity
(Simpson’s, 1-D), evenness (Pielou's), and predation rates, Rsna (arc-sine square-root
transformed). We also included the proportion of natural habitat (within 1.5 km radius
from site centers) as a fixed covariate because some natural enemy groups have large

foraging and dispersal ranges. We used a permutational MANOVA (PERMANOVA,
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Bray-Curtis dissimilarity) to examine how harvest treatment and covariates influenced
natural enemy community composition. Models were fit and significance levels were
assessed using the same procedures as above. We also used a similarity percentage
analysis (SIMPER) to examine which taxonomic groups contributed to differences in
community composition between the harvest and control natural enemy communities
(Clarke 1993). Community composition was visualized using non-metric
multidimensional scaling (NMDS, Bray-Curtis dissimilarity), specifying a two-axis
solution. We determined the contributions of different taxonomic groups within the
harvest and control treatments using the envfit function in the vegan package (Oksanen et
al. 2015). We used the RVAideMemoire package in R (Hervé 2015) for the

PERMANOVAs and PRIMER v7 (Clarke & Gorley 2015) for SIMPER.

Finally, we were interested in how different arthropod taxonomic groups responded to the
harvest treatment. We used LMMs to examine how harvest treatment, sampling round,
proportion of natural habitat, year, and state (all fixed effects) influenced the abundances
of each of the following taxonomic groups separately; predatory foliar-dwelling beetles,
parasitoids, flies, lace wings, true bugs, ground-dwelling beetles, ants, earwigs, and
arachnids. Site was a random effect in the model. We In-transformed all abundance data
and assumed Gaussian distributions. All two- and three-way interactions with harvest
treatment were evaluated (three-way interactions were eventually dropped), and we used

the same procedures as above for model fitting and assessing levels of significance.

Results
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Harvest effects on vegetation structure

Harvesting increased bare ground cover almost three fold from 3.2 % + 1.2 (mean + 1
SE) in control sites to 11.6% =+ 1.6 in harvest sites. Harvest effects were stronger in 2015
compared to earlier years (Harvest x Year interaction: y*> = 6.05, df=1, P=0.01, Fig. 1,
see Table S1). Harvest also reduced litter biomass by half from 650 g dry wt m (+ 59.9)
in control sites to 259 g dry wt m (+ 30.9) in harvest sites (*> = 10.66, df=1, P <0.01).
Harvesting did not influence forb (y> = 0.81, df= 1, P = 0.37) or grass biomass (> <
0.01, df=1, P=0.99). Instead, forb and grass biomass were affected by sampling round
(forb: > =27.19,df=1, P <0.01; grass: y*> = 59.29, df=1, P < 0.01) and year (forb: y*=

3.92,df=1, P=0.05).

Harvest effects on natural enemy community metrics and biocontrol responses

Natural enemy communities were dominated by ants, parasitoids, crickets, and spiders
making up 83.4% of all captured individuals (see Table S2). Although there were
significant differences in natural enemy community structure within and across years and
between states, there was nevertheless significant effects of harvest on the arthropod
community metrics (Table 1). For example, harvest increased the total abundance of
natural enemies but the effects were stronger at the start of the season in June compared
to later in the season in August (33% increase in abundance in June in harvest sites versus
no effect in August, Harvest x Sampling round: y* = 3.69, df = 1, P = 0.05, Table 1).
Harvest also interacted with time to negatively influence evenness with the strongest
negative effects occurring in June (Harvest x Sampling Round: y*> =4.19,df=1, P =

0.04) and in 2013 (Harvest x Year: y*> =4.77, df= 1, P = 0.03). Harvest also altered
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community composition (£7,272=15.71, P <0.01). Community composition in both
harvest and control sites were correlated with variation in ants and parasitoids (Fig. 2),
however, control sites were also correlated with variation in spiders whereas harvest sites
were correlated with variation in flies, true bugs, and ground beetles. Harvest and control
sites were ~24% dissimilar in community composition; spiders, true bugs, ground beetles,
and flies contributing to >53% of the variation between the two community types.
Harvest did not affect family-level richness (y* = 0.15, df= 1, P = 0.69, Table 1),
diversity (4> = 1.57, df= 1, P = 0.21), or predation rates (y*> = 0.10, df= 1, P = 0.75) nor
did it interact with the proportion of natural habitat in the landscape to influence any of

the community metrics.

Taxon-specific responses to harvesting

Biomass harvest affected each taxonomic group differently (Fig. 3, Tables S3 & S4). For
foliar-dwelling insects, harvest generally increased their average abundances with the
strongest effects in 2015 (Harvest x Year interaction: y> =4.03, df=1, P = 0.05, see
Table S3). Alternatively, harvest had generally negative main effects on average
abundance of ground-dwelling insects, with the strongest effects in 2013 (Harvest x Year
interaction: > = 4.65, df=1, P = 0.03, see Table S4). Biomass harvest had consistent
effects across years for some taxonomic groups. For example, there were positive main
effect of harvest for true bugs (> =4.55, df= 1, P = 0.03) and negative harvest effects for
spiders (y* =31.41, df =1, P <0.01) across all treatment years. In contrast, harvest
effects interacted with year for other groups. For example, harvesting affected some taxa

in later years (e.g., 2.5 fold increase in fly abundance in harvested sites in 2015 only),
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while for other taxon (e.g., ants) harvest effects were only seen in the first year (75%
increase in ant abundance in 2013 only). Biomass harvest interacted with the proportion
of natural habitat to affect the abundances of spiders (y* = 3.90, df= 1, P = 0.05) and
foliar-dwelling insects (> = 3.85, df= 1, P = 0.05, Fig. 4). In particular, the proportion of
natural habitats positively influenced average foliar insect abundance and negatively
influenced spider abundances in harvest sites only; there were no relationships with
landscape composition in control sites. Biomass harvest did not interact with the
proportion of natural habitat in the landscape to influence most taxonomic groups or any

of the community metrics (Tables S3 & S4).

Discussion

The use of perennial grasslands for bioenergy production may provide a sustainable
alternative to annual biomass crops such as corn and soybean; however, it is unclear how
management of such grasslands, in particular repeated harvesting, affects the biodiversity
of natural enemies and biocontrol. In our study, conducted across two states and over
multiple years, we found that harvesting grasslands affected vegetation structure resulting
in generally negative effects on some ground-dwelling arthropods and positive effects on
foliar dwelling arthropods. At the community level, biomass harvest increased total
arthropod abundance, decreased evenness, and altered community composition but did
not affect family-level richness, diversity, or predation rates. All together, these results
suggest that harvesting grasslands for bioenergy production appears to have mixed and
temporally-variable effects on natural enemy communities and no discernable impact on

biocontrol services.
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Harvest effects varied with taxonomic groups

Harvesting grasslands altered vegetation structure by removing litter biomass and
increasing bare ground cover which subsequently can alter soil conditions such as pH,
moisture, and temperature. These changes to the abiotic environment influenced natural
enemies, but the magnitude and direction of harvest effects varied with taxonomic group.
These varying responses may be due to the different ways in which natural enemies
utilize the habitat and how harvesting impacts those habitat features (Warren, Scifres &
Teel 1987; Debinski et al. 2011). For example, ground-dwelling predators were generally
negatively affected by harvest; similar results were found in other haying studies (Cizek
et al. 2011; Mazalova et al. 2015). Reduced abundances may be due to reduced litter
biomass which provides cover, associated prey resources, pupation and nesting habitat
for these ground-dwelling arthropods. Furthermore, ground-dwelling predators have
relatively limited dispersal abilities compared to more mobile insects that could have
escaped harvesting by utilizing adjacent undisturbed habitats and recolonizing after the
harvest event (Morris & Rispin 1988; Baines ef al. 1998). Ants, on the other hand,
responded positively to harvest. Unlike the other litter-dwelling arthropods which were
negatively affected by biomass removal, most of the ant species observed in this study
nest underground (e.g., Formica, Lasius, Aphaeogaster, and Myrmica species) and were
therefore unaffected by aboveground biomass removal per se. Instead, disturbance-
mediated changes in soil temperature and moisture (Boulton, Davies & Ward 2005;
Moranz et al. 2013) may have increased ant foraging activity compared to control sites

resulting in greater ant abundances over the season.
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In contrast, foliar-dwelling arthropod predators with greater dispersal capabilities and
resource requirements were positively affected by harvest but only in later years. Foliar
arthropods could have escaped the negative impacts of harvest by escaping to
neighboring undisturbed areas and recolonized after the disturbance had passed (Swengel
2001). Harvest-mediated differences in plant community composition and productivity
could also explain the positive arthropod responses. While we did not observe differences
in forb and grass biomass between the control and harvest sites (though positive trends
were observed), in a separate study conducted in the same experimental fields at the same
time (Spiesman et al. 2016), harvest sites had greater plant diversity and different plant
species composition compared to control sites. Greater plant diversity and productivity
may have been due to increased availability of resources such as light and bare ground
following harvest to allow subordinate plant species to colonize and/or persist (Antonsen
& Olsson 2005; Foster et al. 2009; Questad et al. 2011). These harvest-mediated changes
in plant community composition may have influenced natural enemies directly by
providing additional food (e.g. nectar, pollen) and nesting resources, or indirectly by

increasing insect herbivore abundances.

Harvest effects on community structure and biocontrol function

While biomass harvest influenced individual taxonomic groups differently, harvesting
had mixed effects on the overall natural enemy community and no effect on predation
rates despite repeated harvesting at large-production scales. These relatively weak harvest

effects at the community level could be due to several reasons. First, insects within these

Confidential Review copy



Page 19 of 46

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

423

Journal of Applied Ecology

grasslands have evolved a range of functional and numerical responses to disturbance
with some taxonomic groups increasing or decreasing in abundances (Vogl 1974; Arenz
& Joern 1996). Compensatory responses of the different taxonomic groups to harvest was
observed in our study system which averaged out and resulted in weak overall effects at
the community level (i.e., short-term effects on abundance and evenness and no effect on
richness, diversity, and predation rates). We did, however, observe consistent differences
in the composition of the natural enemy community with harvest suggesting that biomass
harvest influenced species turnover and identity. While quantifying the extent to which
harvest influences the degree of turnover or similarity (i.e., beta diversity) is beyond the
scope of this paper, such analyses could reveal whether harvest increases or decreases
diversity at larger spatial scales. This information could be useful to land managers and
conservation biologists interested in understanding the role of disturbance in preserving
biodiversity at regional scales (Vellend et al. 2007; Matthews & Spyreas 2010; Burkle,

Myers & Belote 2016).

Second, harvest effects on some community metrics were short-lived or varied with time.
For example, there were significant harvest effects on overall abundance (positive) and
evenness (negative) in early summer (June) but those effects dissipated as the growing
season progressed. There were also negative effects of harvest on evenness in the first
year of the study (2013) but not in later years. High diversity of arthropods and greater
functional redundancy in these perennial grasslands may have buffered against the
potentially negative effects of harvest (the insurance hypothesis, Yachi & Loreau 1999)

and/or may have allowed this system to recover faster to pre-disturbance (or control)
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levels. Compensation and redundancy in plant and arthropod responses have been
observed in other diverse systems following disturbance such as fire, grazing, and haying
(Daubenmire 1968; Walker, Kinzig & Langridge 1999; Swengel 2001; Debinski et al.
2011) leading to greater ecosystem stability. To determine whether resilience is unique to
diverse systems such as prairies (the focal habitat of this study), a similar study in low
diversity grasslands such as switchgrass or Miscanthus would help elucidate whether our
findings were generalizable to all perennial grasslands or limited to diverse prairie

systems.

Lastly, annual fall harvest may not represent a strong disturbance event in these
grasslands, compared to fire which completely remove above-ground biomass and
potentially harms below ground propagules (Bulan & Barrett 1971; Swengel 1996, 2001).
While biomass harvest in this study was conducted at a large spatial scale (production-
scale) and repeated annually, harvest occurred once per year during a period of low insect
activity (late fall). Both ground-dwelling and foliar-feeding insects may have escaped the
impacts of harvest by seeking refuge or overwintering in areas protected from the
disturbance event (e.g. underground, underneath rocks, habitat edges, Swengel 2001). A
higher frequency of harvest or during a period when insect activity is at its peak may
elicit stronger community-level responses (Swengel 2001). Next, this study was
conducted over a relatively brief period (3 years), therefore the long-term consequences
of harvest for insect communities are not yet known. Lag times in insect responses to
harvest may exist where repeated removal of above-ground biomass (along with eggs and

larvae) over the long term might eventually suppress insect populations directly (Swengel
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2001) or indirectly through their effects on plant communities (Foster et al. 2010). Lastly,
this study was conducted in grasslands that were managed for a number of years prior to
the start of the experiment. The arthropod community may have already been composed
of disturbance-resistance species (i.e., species with ability to escape or tolerate
disturbance) at the start of the study and therefore resistant to subsequent disturbance
events. Arthropod communities in unmanaged or natural grasslands may be more
sensitive to environmental change and therefore more susceptible to annual harvesting,
especially if they are largely composed of low-dispersing species. Detailed management
history data or conducting this study in previously unmanaged grasslands would help
elucidate the extent to which management history plays a role in arthropod community

recovery following disturbance.

Landscape effects on natural enemy communities

Previous work has demonstrated that local natural enemy communities are generally
positively affected by the amount of natural habitat in the surrounding landscape
(reviewed by Chaplin-Kramer ef al. 2011); however, many of these studies were
conducted in low-diversity habitats such as monoculture corn and soybean. We predicted
that natural habitats surrounding our harvest sites could mitigate the potentially negative
effects of harvest by increasing the likelihood of rescue effects therefore we predicted
stronger landscape effects in harvest sites. In this study, we observed significant positive
effects of the proportion of natural habitat on mean foliar insect abundances and negative
effects on spider abundances in the harvest sites only. These relationships could be due to

rescue effects from the surrounding source habitats (natural habitats for foliar insects and
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cropland for the spiders). We did not see any relationships between the proportion of
natural habitat and arthropod abundances in the control sites, for any community metric,
and for most taxonomic groups. For a diverse grassland community such as prairies, the
amount of natural habitat surrounding a local area might not be as important at the
community level compared to landscape configuration features such as connectivity,
spatial arrangement, and fragment size (Wiens 1976; Stoner & Joern 2004; Tscharntke et
al. 2012; Rosch et al. 2013). For example, grasslands isolated from other grasslands
might show a stronger negative response to harvesting as recolonization from the
surrounding area following disturbance might be slow, particularly for weak dispersers
(Rosch et al. 2013). Therefore, understanding how harvest interacts with landscape
configuration (rather than amount of natural habitat per se) might provide a more

complete picture of harvest impacts in bioenergy landscapes.

Conclusions

In this study, late-season harvest affected vegetation structure and natural enemy
communities. Populations of specific taxa were affected differently likely in part due to
variation in natural history and ways in which they utilize the habitat. We did not see any
harvest effects on biocontrol services which we hypothesize is due to compensatory
responses of the different taxonomic groups and functional redundancy within natural
enemy communities. Landscape complexity, measured as the amount of natural habitat
surrounding the crop field, did not affect local arthropod community structure. Other
landscape features such as isolation, amount of edges, and fragment size which were not

evaluated in this study, might interact with harvest to affect local arthropod communities.
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While this study spanned multiple years and across a large geographic area, an additional
caveat is long-term effects of harvest on vegetation structure, arthropod communities, and
biocontrol services remains unknown. Nevertheless, grassland communities may be
resilient to annual disturbances such as harvesting and their use for bioenergy production

may have relatively small negative consequences for BES.

Although BES appear not to be significantly affected by harvesting over the short-term,
other responses are worth considering. For example, the removal of aboveground
biomass could negatively affect stem-nesting pollinators and associated pollination
services (Buri, Humbert & Arlettaz 2014). Furthermore, increased bare ground cover
associated with biomass removal could increase soil erosion and surface runoff thus
affecting water quality (Kort, Collins & Ditsch 1998), increase invasion of weeds and
non-native plants (Zedler 2009), or alter soil microbe communities thus affecting
decomposition and nutrient availabilities (Xue ef al. 2016). Therefore, measuring
biodiversity responses of other taxonomic groups and ecosystems services will allow us
to broaden our understanding of how biomass harvest might impact grassland
ecosystems. Expanding our understanding of the various community and ecosystem
responses in grasslands to various biomass cropping system management options, such as
harvesting, will allow us to determine whether perennial grassland systems used for
bioenergy production are a significant improvement over traditional annual monoculture

systems that are widely used today.
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Table 1. Biomass harvest effects on (a) natural enemy abundance (In-transformed), (b) family-level richness, (¢) Simpson’s diversity,
(d) Pielou’s evenness, (€) community composition, and (f) predation rates (arcsine square-root transformed) in perennial grasslands in
WI and MI. Parameter estimates and 1 SE (in parentheses) estimated from linear mixed effects models. Significance was determined

using a Wald Chi-square statistic for all tests except community composition where a F-statistic was used in the PERMANOVA. Bold

font represents significant effects (P < 0.05).

Journal of Applied Ecology

A. Abundance B. Richness C. Diversity
Variables Estimate (SE) d}g | TypéD3 SS Estimate (SE) d}g | Typelt)Z SS Estimate (SE) d}g | Typ£)2 SS
Harvest 176.66 (196.98) 0.89 0.34 403.85 (438.56)  0.15 0.69 -86.40 (50.87) 1.57 0.21
Sampling Round -0.05 (0.06) 9.17 <0.01 0.20 (0.13) 0.74 0.38 0.029 (0.02) 17.33 <0.01
Year 0.25 (0.06) 18.92 <0.01 0.52 (0.15) 15.68 <0.01 0.022 (0.02) 11.99 <0.01
State 0.23 (0.18) 2.81 0.09 0.02 (0.42) 0.08 0.76 -0.05 (0.06) 1.83 0.17
Proportion Natural Habitat 0.01 (0.01) 0.65 0.42 <0.01 (0.02) 0.07 0.78 <-0.01(<0.01) <o0.01 0.97
Harvest : Sampling Round -0.16 (0.08) 3.69 0.05 -0.24 (0.19) 1.61 0.20 0.03 (0.02) 2.40 0.12
Harvest : Year -0.08 (0.09) 1.07 0.30 -0.20(0.21) 0.95 0.32 0.04 (0.03) 3.14 0.07
Harvest : State 0.20 (0.37) 0.53 0.46 -0.14 (0.85) 1.08 0.29 -0.07 (0.12) 0.40 0.52
Harvest : Prop. Natural Habitat -0.01 (0.01) 0.99 0.31 <0.01 (0.04) 1.29 0.25 <0.01 (<0.01) 0.18 0.66
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747  Table 1 (continued)

748
D. Evenness E. Community composition F. Predation rate

Variables Estimate (SE) d}g | Typ£)3 SS SS d f:iﬂ ) Typejt)Z SS Estimate (SE) d}g | Typ£)2 SS
Harvest -112.24 (52.51)  4.78 0.04 0.13 5.71 <0.01 -44.87(138.41) 0.10 0.75
Sampling Round 0.02 (0.02) 2.09 0.15 0.13 5.65 <0.01 0.19 (0.04) 58.65 <0.01
Year <0.01 (0.01) 0.09 0.76 0.49 20.59 <0.01 0.07 (0.04) 5.95 0.02
State -0.05 (0.06) 0.52 0.48 0.18 7.69 0.74 -0.39 (0.12) 10.25 <0.01
Proportion Natural Habitat <-0.01 (<0.01)  0.28 0.60 0.05 2.07 0.48 <0.01 (<0.01) 0.63 0.43
Harvest : Sampling Round 0.05 (0.02) 4.19 0.04 0.02 0.85 0.40 0.06 (0.06) 1.07 0.30
Harvest : Year 0.06 (0.02) 4.77 0.03 0.03 1.51 0.12 0.02 (0.06) 0.11 0.74
Harvest : State -0.06 (0.12) 0.24 0.63 0.03 1.18 0.08 0.19 (0.25) 0.56 0.45
Harvest : Prop. Natural Habitat <0.01 (<0.01) 0.09 0.76 0.04 1.78 0.23 -0.01 (0.01) 1.29 0.26

749
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Figure 1. Biomass harvest effects on bare ground cover, litter biomass, forb biomass, and grass
biomass in perennial grasslands in Michigan and Wisconsin. Cover and biomasses were
averaged across the growing season and states for any given year. Harvest effects (x-axis)
determined as the log-transformed difference between the mean harvest and mean control
responses (log (harvest — control)). Asterisks indicate significant harvest treatment effects on
each of the response variables in a particular year from the linear mixed effects models and post-
hoc comparisons (P < 0.05, see Table S1). Error bars represent + 1 SE from all pairwise

differences between all the harvest and control sites.
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Figure 2. Ordination of natural enemy community composition using non-metric
multidimensional scaling (NMDS, Bray-Curtis dissimilarity) of natural enemy abundance data
(2013-2015) at (a) control and (b) harvest sites. Vectors represent taxa that significantly correlate
to variation in community composition (P < 0.05). Points represent natural enemy communities
at each site per sampling round per year. Grey points are sites in Michigan; black points are sites

1n Wisconsin.
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Figure 3. Average and taxon specific abundance responses of natural enemies to biomass harvest
in Michigan and Wisconsin. Abundances were averaged across the growing season and state in a
given year. Harvest effects (x-axis) determined as the log-transformed difference between the
mean harvest and mean control responses (log (harvest — control)). Asterisks denote significant
difference between control and harvest treatments in a particular year from linear mixed effects
models and post-hoc comparisons (P < 0.05, Tables S3 & S4). Error bars represent = 1 SE from

all pairwise differences between the harvest and control sites.
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Figure 4. Relationships between the proportion of natural habitat and the abundances of (A)
spiders and (B) foliar-dwelling natural enemies in Michigan and Wisconsin. Each point
represents mean abundances per site per sampling year. All abundances were In-transformed and
partial residuals are shown on the y-axes. Grey points and lines are harvest sites; black points
and lines are control sites. Significance determined from linear mixed effects models and post-
hoc comparisons (Tables S3 & S4). Both plots show significant harvest treatment x proportion of

natural habitat interactions (P < 0.05).
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Supporting Information

Additional supporting information may be found in the online version of this article.
Appendix S1. Relationships between plant volume index and actual biomass.

Table S1. Biomass harvest effects on bare ground cover and plant biomass.

Table S2. Specimen list of captured individuals identified to the family or super family levels.
Table S3. Foliar dwelling arthropod responses to biomass harvest.

Table S4. Ground dwelling arthropod responses to biomass harvest.
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Kim et al. Harvesting biofuel grasslands has mixed effects on natural enemy communities and
no effects on biocontrol services

Appendix S1. Relationships between plant volume index (% cover x height) and actual biomass.

In 2015, we determined the relationships between biomass estimates and actual biomass in a
subset of sites in WI (N = 10 sites). At each site, we estimated biomass cover (%) and measured
the height of each vegetation category (litter, forb, and grass) in four quadrats (30 cm x 30 cm)
located off site (> 50 m from site edge) in June and August when plant biomass is relatively low
and high, respectively. We harvested biomass from these quadrats and placed them in a 60 °C
drying oven for at least 48 h. Biomass was separated into the three vegetation categories and
weighed. The relationships between estimated biomass (plant volume index, % cover x height)
and actual dry biomass (g dry wt.m™) of grasses (A), forb (B), and litter or dead biomass (C) are
shown below.
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Table S1. Biomass harvest effects on (A) bare ground cover (arcsine square-root transformed), (B) litter biomass (In-transformed), (C)
forb biomass (In-transformed), and (D) grass biomass (In-transformed) in perennial grasslands in Michigan and Wisconsin. Parameter
estimates and 1 SE (in parentheses) estimated from linear mixed effects models. Significance was determined using Wald Chi-square
statistics. Bold font represents interpretable significant effects (P < 0.05).

A. Bare Ground B. Litter biomass C. Forb biomass D. Grass biomass
Variable Estimate (SE) d}g | Typ£)3 SS Estimate (SE) d}g | Typfz ss Estimate (SE) d}g | Typfz ss Estimate (SE) d}g | Typr SS
Harvest -119.29 (49.42) 6.05 0.01  435.75(337.5) 10.66 <0.01 -163.83(393.02) 0.81 0.37 295.45(208.01) <0.01 0.99
Sampling Round <0.01 (0.01) 0.42 0.52 -0.01 (0.16) 1.21 0.27 0.50 (0.12) 27.19  <0.01 0.33 (0.06) 59.29 <0.01
Year <0.01(0.01) 023 063  -031(0.19) 1033 <0.01  -023(0.13)  3.92  0.05  0.02(0.07) 1.00  0.32
State -0.12 (0.07) 2.97 0.09 0.81 (0.55) 4.30 0.04 -0.27 (0.47) 0.51 0.48 -0.04 (0.24) 0.15 0.70
Harvest : Sampling Round  0.02 (0.02)  0.82 037  0.28(0.23) 148 0.2 0.13(0.17)  0.68  0.41 0.03(0.09)  0.14  0.71
Harvest : Year 0.06(0.02)  6.05  0.01  -022(026) 069 0.4l 0.08(0.19)  0.18 067  -0.15(0.10) 2.10  0.15
Harvest : State 0.12 (0.10) 1.62 0.20 0.01 (0.80) <0.01 0.99 0.07 (0.68) 0.01 0.91 0.23 (0.35) 0.45 0.50
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and no effects on biocontrol services

Table S2. Total abundances of natural enemies captured from pitfall, sticky, and sweep net traps
in Wisconsin (2013-2015) and Michigan (2014-2015). Most specimen were identified to the
family level. Parasitic wasps were identified to the family and superfamily level. Arachnids were

identified to the order level.

Beetles Total
Coccinellidae 684
Lampyridae 727
Cantharidae 1081
Carabidae 4660
Staphylinidae 3380
Flies Total
Syrphidae 3889
Dolichopodidae 8972
Parasitic wasps Total
Braconidae 1037
Ichneumonidae 999
Ceraphronoidea 292
Platygastroidea 2054
Cynipoidea 197
Prototrupoidea 88
Chalcidoidea 9967
Mymarommatoidea 7
True bugs Total
Anthocoridae 639
Nabidae 577
Lace wings Total
Chrysopidae 261
Hemerobiidae 52
Arachnids Total
Opiliones 6328
Araneae 26172
Others Total
Formicidae 74238
Gryllidae 43056
Forficulidae 241
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Table S3. Average and taxon-specific responses of foliar dwelling/feeding arthropods to the harvest treatment in Michigan and
Wisconsin. All abundances were In-transformed to meet GLM assumptions. Parameter estimates and 1 SE (in parentheses) estimated
from linear mixed effects models. Significance was determined using Wald Chi-square statistics (df = 1). Bold font represents
significant effects (P < 0.05).

Average Foliar beetles Flies
Variable Estimate (SE) d}g | TypéD3 SS Estimate (SE) d}g | Typ£)2 SS Estimate (SE) d}g | TypéD3 SS
Harvest -389.14 (198.36) 4.03 0.05 -192.48 (250.5) 1.48 0.22 -539.53 (283.89) 1.19 0.28
Sampling Round 0.141 (0.06) 5.59 0.02 0.11 (0.07) 1.18 0.28 0.11 (0.08) 0.60 0.44
Year 0.31 (0.07) 2050  <0.01 0.17 (0.08) 1372 <0.01 0.24 (0.10) 3019  <0.01
State -0.34 (0.22) 2.45 0.12 -0.45 (0.19) 7.61 0.01 -0.33 (0.35) 1.31 0.25
Proportion Natural Area <-0.01 (0.01) 0.75 0.39 0.01 (<0.01) 2.15 0.14 -0.01 (0.01) 0.03 0.85
Harvest : Sampling Round -0.03 (0.09) 0.15 0.70 -0.12 (0.11) 1.26 0.26 -0.13 (0.12) 1.10 0.29
Harvest : Year 0.19 (0.10) 4.03 0.05 0.09 (0.12) 0.62 0.43 0.28 (0.14) 3.77 0.05
Harvest : State -0.18 (0.37) 0.25 0.62 0.03 (0.40) 0.01 0.93 <0.01 (0.68) <0.01 0.99
Harvest : Prop. Natural 0.02 (0.01) 3.85 0.05 <0.01(0.02) 021 0.65 0.04 (0.03) 1.84 0.18
Parasitoids True bugs Lace wings

Variable Estimate (SE) d}f | TypeP 5 sS Estimate (SE) d}f | TypeP 5 sS Estimate (SE) d}g | TypeP3 SS
Harvest -206.65 (305.08)  3.407 0.07 327.5(81.95)  4.55 0.03 -331.88(166.19)  4.17 0.04
Sampling Round 0.22 (0.09) 13.88 <0.01 0.05 (0.05) 1.03 0.31 0.07 (0.05) 2.08 0.15
Year 0.45 (0.10) 46.85 <0.01 0.06 (0.02) 5.52 0.02 -0.06 (0.05) 1.25 0.26
State -0.3(0.29) 0.11 0.74 -0.14 (0.22) 0.09 0.76 0.28 (0.23) 1.56 0.21
Proportion Natural Area <0.01 (0.01) 0.43 0.51 0.01 (0.01) 0.61 0.43 <0.01 (0.01) 0.14 0.71
Harvest : Sampling Round 0.05 (0.13) 0.13 0.72 -0.03 (0.07) 0.18 0.67 -0.09 (0.07) 1.59 0.21
Harvest : Year 0.10 (0.15) 0.48 0.49 0.16 (0.09) 3.40 0.07 0.16 (0.08) 4.17 0.04
Harvest : State 0.87 (0.59) 2.26 0.13 0.34 (0.42) 0.67 0.42 -0.21 (0.44) 0.24 0.63
Harvest : Prop. Natural -0.04 (0.03) 2.43 0.12 -0.01 (0.02) 0.89 0.35 0.02 (0.02) 0.99 0.32
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Table S4. Average and taxon-specific responses of ground dwelling/feeding arthropods to the harvest treatment in Michigan and
Wisconsin. All abundances were In-transformed to meet GLM assumptions. Parameter estimates and 1 SE (in parentheses) estimated
from linear mixed effects models. Significance was determined using Wald Chi-square statistics. Bold font represents significant

effects (P <0.05).

Average Spiders Ground beetles
Variable Estimate (SE) d}g | TypéDS ss Estimate (SE) d}g | TypePS ss Estimate (SE) d}g | Typr SS
Harvest 451.57 (214.15) 4.66 0.03 131.00 (89.43) 31.41 <0.01 157.70 (252.59) 0.49 0.49
Sampling Round -0.10 (0.07) 2.18 0.14 -0.06 (0.05) 2.76 0.10 0.01 (0.07) 1.11 0.29
Year 0.21 (0.07) 8.59 <0.01 0.16 (0.06) 7.79 0.01 0.47 (0.08) 48.88 <0.01
State 0.70 (0.23) 9.39 <0.01 0.45 (0.15) 16.84 <0.01 0.07 (0.35) 0.20 0.65
Proportion Natural Area <0.01 (0.01)  <0.01 0.99 0.01 (<0.01) 0.49 0.49 0.02 (0.02) 221 0.14
Harvest : Sampling Round -0.20 (0.09) 4.73 0.03 <-0.01 (0.08) <0.01 0.97 -0.13 (0.10) 1.63 0.20
Harvest : Year -0.22 (0.11) 4.65 0.03 -0.06 (0.09) 0.50 0.48 -0.08 (0.12) 0.41 0.52
Harvest : State -0.25 (0.38) 0.45 0.50 0.27 (0.30) 0.86 0.35 -0.73 (0.67) 1.22 0.27
Harvest : Prop. Natural <0.01 (0.01) 0.12 0.74 -0.03 (0.01) 3.90 0.05 <0.01 (0.03) 0.01 0.94

Ants Earwigs

Variable Estimate (SE) d}g | Typ613)3 SS Estimate (SE) d}g | Typejt)Z SS
Harvest 587.29 (286.55) 4.40 0.04 -57.83 (116.95) 0.92 0.34
Sampling Round -0.18 (0.08) 4.84 0.03 <-0.01 (0.03) 0.07 0.79
Year 0.20 (0.10) 430 0.04 -0.08 (0.04) 6.82 0.01
State 0.96 (0.39) 6.23 0.01 0.21 (0.17) 1.29 0.26
Proportion Natural Area 0(0.01) <0.01 0.99 <-0.01 (<0.01) 0.26 0.61
Harvest : Sampling Round -0.16 (0.12) 1.91 0.17 -0.01 (0.05) 0.07 0.79
Harvest : Year -0.29 (0.14) 438 0.04 0.03 (0.05) 0.26 0.61
Harvest : State 1.33 (0.75) 3.28 0.07 -0.18 (0.32) 0.31 0.58
Harvest : Prop. Natural -0.06 (0.03) 3.33 0.07 <0.01 (0.01) 0.08 0.78
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