

1
2
3
4 1 For: Biomass and Bioenergy
5 2 Special Issue on: Using the Ecosystem Services Approach to Assess Biofuel Sustainability
6 3
7 4
8 5
9 6 **Biomass and biofuel crop effects on biodiversity and ecosystem services in the North**
10 7 **Central US**
11 8
12 9 Douglas A. Landis^{ab}, Claudio Gratton^{cd}, Randall D. Jackson^{de}, Katherine L. Gross^{bf}, David S.
13 10 Duncan^{de}, Chao Liang^{dgh}, Timothy D. Meehan^{edi}, Bruce A. Robertson^{abj}, Thomas M. Schmidt^{blk},
14 11 Karen A. Stahlheber^{de}, James M. Tiedje^{bm}, Benjamin P. Werling^{abn}
15 12
16 13 ^aDepartment of Entomology, Michigan State University, East Lansing, MI, USA
17 14 ^bDOE Great Lakes Bioenergy Research Center, Michigan State University
18 15 ^cDepartment of Entomology, University of Wisconsin-Madison, Madison, WI, USA
19 16 ^dDOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison
20 17 ^eDepartment of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
21 18 ^fW.K. Kellogg Biological Station & Plant Biology Department, Michigan State University,
22 19 Hickory Corners, MI, USA
23 20 ^gDepartment of Soil Science, University of Wisconsin-Madison, WI, USA
24 21 ^hPresent address, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
25 22 110016, China
26 23 ⁱPresent address, National Ecological Observatory Network, Boulder, CO, USA
27 24 ^jPresent address, Division of Science, Mathematics & Computing, Bard College, Annandale-on-
28 25 Hudson, NY, USA
29 26 ^kDepartment of Microbiology & Molecular Genetics, Michigan State University, East Lansing,
30 27 MI, USA
31 28 ^lPresent address, Department of Ecology & Evolutionary Biology, University of Michigan, Ann
32 29 Arbor, MI, USA
33 30 ^mCenter for Microbial Ecology, Michigan State University, East Lansing, MI, USA
34 31 ⁿPresent address, MSU Extension, Hart, MI, USA

1
2
3
4 32
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 33 **1. Introduction**
5
6 34

8 35 The adoption of biomass cropping systems to supply feedstocks to bioenergy and bioproducts
9 36 industries has the potential to alter the mix of ecosystem services realized from agricultural
10 37 landscapes [1]. In the North Central US, current biomass cropping systems are primarily
11 38 monocultures of the annual crops corn and soybean. However, the diversity of systems used for
12 39 biomass crops in the region is likely to be augmented in the future by dedicated crops based on
13 40 perennial plants [2]. Assessing what biomass crops to grow, where to grow them, and how they
14 41 should be managed represents a complex combination of socio-political, economic, and
15 42 ecological decisions that will determine the mix of ecosystem services we derive from
16 43 agricultural lands.

24 44
25
26 45 An ecosystem services framework has been useful in evaluating the relative merits of different
27 46 bioenergy production systems. Gasparatos et al. [1] reviewed the impact of first-generation
28 47 biofuel production systems on biodiversity, and resulting provisioning, regulating and cultural
29 48 services. They found that while some provisioning (fuel) and regulating services (climate
30 49 regulation) may be enhanced, this often comes at the expense of biodiversity, and other
31 50 provisioning (food, water) and regulating (air quality, erosion control) services. Joly et al. [3]
32 51 also used an ecosystem services framework to examine the impacts of biofuel production
33 52 systems on biodiversity and ecosystem services. They conclude that the land transformations that
34 53 have taken place globally to produce biofuels have resulted in serious biodiversity declines.
35 54 However, they also conclude that the effects of biofuel production on ecosystem services is
36 55 highly context and location-specific, with some systems having the potential to enhance
37 56 ecosystem services. Indeed, a recent synthesis examining the impacts of second-generation
38 57 bioenergy cropping systems in Europe suggest that transitioning from first-generation feedstocks
39 58 to dedicated lignocellulosic feedstocks may frequently improve ecosystem services [4].
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 64 to derive transportation fuels from cellulosic biomass, fostered a resurgence of research into
5 65 biomass cropping systems. During this time, there was also a growing consensus that a focused
6 66 national effort was needed to enable the emergence of a cellulosic biofuel industry. In 2006, the
7 67 US DOE Office of Science and the Office of Energy Efficiency and Renewable Energy released
8 68 a report that outlined a 15-year strategy of research, technology development, and systems
9 69 integration aimed at supporting a cellulosic biofuels sector [6]. This report was seen as the
10 70 original research roadmap supporting the formation of three national Bioenergy Research
11 71 Centers charged with providing the fundamental science to underpin an environmentally
12 72 sustainable and economically competitive advanced cellulosic biofuels industry. In 2007, the
13 73 Great Lakes Bioenergy Research Center (GLBRC) was one of three national research centers
14 74 funded by the US DOE to pursue this mission [7, 8].
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

75
76 Corn and soybean have long dominated the agricultural landscape of the North Central US. In
77 recent years, 35 to 40% of the US corn crop has been used to produce ethanol that is blended into
78 Nitrogen and phosphorous typically are added to these cropping systems to maintain productivity
79 and manage livestock manure. These inputs, particularly when combined with tillage can result
80 in excessive leaching of nitrogen to ground- and surface-waters and to overland movement of
81 phosphorous attached to soil particles to surface waters [9] resulting in local to continental
82 eutrophication of water bodies [10]. Also, significant amounts of the nitrogen added as inorganic
83 fertilizer can be lost via volatilization or microbe-mediated nitrification and dentirification [11,
84 12], contributing to ecosystem disservices that include excessive deposition locally and
85 accumulation of greenhouse gases globally. Largely because of high inputs, the net energy gain
86 of developing biofuels from annual crops appears to converge near zero [13]. Increasing
87 production of annual crops through intensification on existing crop land or conversion of
88 marginal lands [14] threatens other ecosystem services important to the sustainability of
89 agricultural landscapes e.g. natural pest suppression [15].
90

91 Concerns about the sustainability of current biofuel cropping systems prompted research to
92 derive fuels and other bioproducts from cellulosic biomass sourced from dedicated energy crops
93 and/or food crop residues [16, 17]. However, harvesting residues of annual crops does not
94 address the environmental concerns stated above, and could exacerbate these problems by

1
2
3
4 95 driving the planting of even more land to annual crops. Alternatively, the addition of dedicated
5 96 cellulosic crops significantly broadens the options for potential feedstock producing cropping
6 97 systems, providing opportunities for coupling ecosystem service improvements and ecologically
7 98 sustainable production [18]. Perennial plants such as native prairies grasses, tropical grasses, and
8 99 short rotation trees show promise as sustainable biomass crops because they minimize erosion by
9 100 covering the soil year-round and minimize energy costs of agronomic management stemming
10 101 from fossil fuel use for planting equipment and production and application of pesticides and
11 102 fertilizers [19, 20]. However, the benefits of incorporating perennials into current agricultural
12 103 landscapes as part of a sustainable biomass cropping system has received less research attention
13 104 (but see [21, 22]). Understanding how perennial biomass cropping systems – specifically those
14 105 planted with native species – could be integrated into North Central US cropping systems to
15 106 enhance multiple ecosystem services has been a focus of the GLBRC Biodiversity Team.
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

108 Here, we review more than 35 studies conducted by the GLBRC Biodiversity Team, where we
109 compared the potential effects of alternative biomass cropping systems on the organisms and
110 processes that provide important supporting, provisioning, regulating and cultural services in
111 agricultural landscapes. The following central questions directed our research: 1) How does the
112 choice of biomass crop(s) influence biodiversity and the potential to provide ecosystem services
113 that can be delivered at the level of a crop field and to the overall landscape? 2) How do different
114 management practices affect the ecosystem services provided by alternative systems?, and 3)
115 How does the configuration of biomass and other crops in an agricultural landscape influence
116 ecosystem services provided to other crops? Our hypothesis was that perennial biomass cropping
117 systems, particularly those with higher plant species diversity, would provide more ecosystem
118 services and reduce associated disservices compared to annual cropping systems. We addressed
119 this hypothesis by estimating how crop yields and other ecosystem services provided by a variety
120 of cellulosic biomass crops differed and how these relationships varied when measured at plot-,
121 field-, and landscape-levels of spatial organization

123 **2. Materials and methods**

1
2
3
4 125 Below we provide an overview of methods used in the studies we review. Details about the
5 specific sites and methods used can be found in the individual publications cited (**Table 1**).
6
7
8 127
9
10 128 **2.1 Sites**

11 129 Research sites were located in southern Wisconsin and Michigan and consisted of a combination
12 of intensively-managed plot-level experiments, replicated scale-up fields, and a network of
13 commercial-sized fields embedded within representative agricultural landscapes (**Fig 1**). In 2008,
14 the Biofuel Cropping Systems Experiments (BCSEs) were established in each state to compare
15 and contrast 10 different cropping systems with each system planted in 30 x 40-m plots in 5
16 replicate blocks. In Michigan, the BSCE was established at the W.K. Kellogg Biological Station
17 (KBS, 42°23'47" N, 85°22'26" W, 288 m a.s.l.) and in Wisconsin at the Arlington Agricultural
18 Research Station (ARL, 43°17'45" N, 89°22'48" W, 315 m a.s.l.).
19
20
21
22
23
24
25
26 137
27
28 138 Treatments were designed to provide a gradient of increasing plant species diversity and
29 included both annual and perennial cropping systems: continuous corn, corn-soybean-canola
30 139 rotation, switchgrass, miscanthus, hybrid poplar, mixed-species native grasses, successional
31 140 vegetation, and restored prairie (**Table 2**). Split-plot treatments included; stover removal in
32 141 continuous corn, nitrogen addition in restored prairie, and no nitrogen addition in perennial crops
33 142 (see [20] for details of cropping systems management). In 2009, “Scale-up” fields (9 to 17 ha)
34 143 were established at two sites in Michigan to measure biomass production and other ecosystem
35 144 services at scales typical of production fields with differing land use histories (see table 1 in [23])
36 145 and landscape positions. At each site, one field was planted to restored prairie, switchgrass, or
37 146 continuous corn and managed as in the BSCE.
38
39 147
40
41
42
43
44
45
46 148
47
48 149 We also worked with local landowners and extension specialists to identify a set of commercial-
49 sized corn/soybean, switchgrass, and reconstructed prairie fields (3 to 30 ha) across varying
50 150 landscapes in southern Michigan and Wisconsin. These “Extensive sites” were selected so that
51 151 all three cropping systems were in close proximity to each other, and embedded within a range of
52 152 agricultural landscape compositions typical of southern Michigan and Wisconsin. The
53 153 landscapes surrounding these sites ranged from highly simplified landscapes (i.e., fields
54 154 surrounded by high proportions of annual cropland within 1.5 km) to moderately complex (i.e.,
55 155 surrounded by high proportions of annual cropland within 1.5 km) to moderately complex (i.e.,
56
57
58
59
60
61
62
63
64
65

1
2
3
4 156 fields surrounded by a combination of croplands, grasslands, forest, or wetlands). The wide
5 spatial distribution of the Extensive sites allowed us to capture gradients in soil type, climate,
6 and overall cropping practices. Because of the current lack of a market for biomass in our states,
7 these sites did not have a history of annual harvests as would be the case in a biomass cropping
8 system, although haying and burning to promote plant diversity often occurred.
9
10 160
11
12 161
13
14 162 **2.2 Plants**
15
16 163 We evaluated the relationship between plant species diversity (number of species) and above
17 ground biomass production by sampling fields planted to bioenergy crops at two spatial scales –
18 the BCSE experimental plots and larger Extensive and Scale-up fields. These larger fields
19 differed in fertility, time of establishment, land use history, surrounding landscape, and a variety
20 of other factors; however our capacity to evaluate how these differences moderate the effect of
21 biodiversity on yield was limited by small sample size [23, 24].
22
23 168
24
25 169
26
27 170 An initial analysis of how ecosystem services, including above-ground production, varied with
28 cropping system was done by comparing species composition and a variety of services from
29 prairie (n=10) and switchgrass (n=10) Extensive sites in Michigan. Aboveground production and
30 species composition was determined from hand harvests done at peak biomass (August-
31 September) in 2008 and 2009 [23, 24]. We also estimated productivity in the KBS and ARL
32 BCSE from hand harvests (July, corresponding to peak biomass) and by machine at the end of
33 the growing season (September-October) corresponding to the more typical time and methods for
34 biofuel harvest. Because stability in production may be an important ecosystem service, we
35 calculated how variation in aboveground biomass production (i.e. stability, calculated as mean
36 divided by the standard deviation) of the four herbaceous perennial cropping systems of the
37 BCSE representing a gradient of species richness varied (see **Table 1**). Finally, we explored if
38 harvest frequency (1 versus 2) affected biomass production in restored prairie treatments at the
39 Michigan Scale-up sites for three years [23, 24].
40
41 183
42
43 184 **2.3 Insects**
44
45 185 The adoption of biomass cropping systems is anticipated to affect insect communities and
46 resulting ecosystem functions in complex and cascading ways [25]. To evaluate the effects of
47
48 186
49
50 187
51
52 188
53
54 189
55
56 190
57
58 191
59
60 192
61
62 193
63
64 194
65

1
2
3
4 187 different biomass cropping systems, as well as the influence of management and landscape
5 context on insect biodiversity responses, we sampled potential insect pollinators using water-pan
6 traps, netting at flowers, and sentinel flower observations in a subset of the Extensive sites [26-
7 189 28]. Water pan traps were also used to collect aphids colonizing different fields [28, 29]. To
8 190 measure the relative abundance of other insect taxa over the course of a growing season we also
9 191 used sweepnet sampling [30, 31], or placement of yellow sticky card traps [28, 30, 32]. We then
10 192 used data from these sampling efforts to measure the relative abundance of different taxonomic
11 193 groups, as well as family (or species-level, for pollinators and some predators), richness and
12 194 diversity.
13 195
14 196

15 197 The choice and management of biomass crops can affect arthropods that contribute to both
16 198 pollination and insect pest suppression, two processes that support provisioning and regulating
17 199 ecosystem services. Pollination potential within the biomass crops was assayed by examining
18 200 seed mass of potted sentinel sunflowers (*Helianthus annuus*) placed within different biomass
19 201 crops [26]. Pest suppression potential was measured by the placement of sentinel prey corn
20 202 earworm eggs (*Helicoverpa zea*), or soybean aphids (*Aphis glycines*) in the field [30, 32]. Some
21 203 prey were exposed to ambient populations of naturally occurring arthropod predators while
22 204 others were shielded from the activity of predators using cages. The difference in the number of
23 205 prey remaining alive after a given period of time (24 to 72 h, depending on the experiment) was
24 206 used as an index of biological control potential.
25 207
26 208

2.4 Birds

27 209 Production of biomass crops is anticipated to alter bird communities at field and landscape scales
28 210 [33, 34]. To assess the likely impacts of different biomass crop types on bird diversity and
29 211 abundance, we first conducted a meta-analysis of the existing literature [35]. This meta-analysis
30 212 focused on four major biomass crops that were currently cultivated or being considered for
31 213 production in the US including corn, switchgrass, pine, and poplar. The analysis contrasted
32 214 vertebrate animal abundance or density, and diversity in potential biomass crops versus reference
33 215 habitats that these crops may replace. A second analysis contrasted the abundance of vertebrates
34 216 in annual crops versus perennial grasslands that were part of the Conservation Reserve Program
35 217 (CRP) [35]. Subsequent field studies in southern Michigan utilized the Extensive site network
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 218 and additional sites to examine the diversity and abundance of migratory and breeding birds in
5 relation to biomass crop habitat and landscape variables [31, 36-38]. Finally, the opportunity to
6 sight rare birds was considered as a cultural service as part of an assessment of multifunctionality
7 (section 2.6) [29].
8
9
10
11
12
13 223 **2.5 Microbes**
14
15 224 The central role microbes play in mediating soil biogeochemical processes [39] motivated our
16 soil biodiversity research. We primarily relied on linked measurements of the microbial
17 community and biogeochemical process rates to explore these relationships [40], although we
18 also conducted laboratory measurements of soil microbial growth efficiencies from diverse
19 habitats to gain insight into how land management influences microbial communities and their
20 processes [41]. At the onset of our studies, it was unclear whether the effects of establishing
21 biomass crops on soil microbial community composition would be detectable, given the
22 variability caused by heterogeneity of soil properties and legacy effects from prior land uses
23 [42]. In most of our studies, we characterized microbial communities via extraction of
24 biomarkers such as cell membrane lipids, wall amino sugars, and DNA from soil samples. We
25 analyzed community DNA via both targeted and shotgun metagenomic sequencing. The former
26 approach was used to characterize composition of functional groups such as methane consumers
27 or nitrogen fixers in addition to the entire community. Our analyses of these data focused more
28 on community composition and dissimilarity than on diversity per se, because methods like lipid
29 profiling cannot be properly analyzed or interpreted for diversity metrics [43].
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 248 **2.6 Multifunctionality**
60
61
62
63
64
65

1
2
3
4 249 The development of a biomass-based agricultural bioeconomy has been viewed as an opportunity
5 to increase the functionality of US agriculture [50]. We assessed the multifunctionality of
6 potential biomass cropping systems for our region in a variety of ways. Initially, we used GIS-
7 enabled spatially explicit modeling to predict the effects of potential bioenergy driven land use
8 and land cover changes on bird communities [33], biological control potential [51], and
9 pollinator abundance and diversity [27]. We tested our hypotheses that more diverse, perennial
10 systems would provide a greater range of ecosystem services with an analysis exploring
11 relationships of biomass crop choice (corn, switchgrass and restored prairie) to the biodiversity
12 of multiple taxa (plants, insects, bird, and microbes) and to a subset of services those taxa supply
13 (biomass yield, pollination and pest suppression, opportunity to observe rare birds, and methane
14 consumption) [29]. Data from the establishment-phase (i.e., years 1 through 6) of the BCSE
15 provided yield comparisons to improve our understanding of the productivity potentials from a
16 wider range of biomass cropping systems [20]. Finally, using GIS layers of existing land cover,
17 coupled to models of potential biomass crop services and disservices, we developed a spatially-
18 explicit decision-support system to allow stakeholders to evaluate the multifunctionality of user-
19 defined placement of biomass crops on their farms [52, 53].
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 266 **3. Results and discussion**
36
37
38
39 268 ***3.1 Diverse and monoculture plantings of perennials were similarly productive.***
40
41 In field surveys of existing plant communities in the Extensive sites, we did not find significant
42 differences in biomass production between switchgrass and prairie plantings. Although there was
43 considerable variation among sites in biomass production, this was not related to planted or
44 observed plant species richness and may reflect differences in initial management (including
45 seed mixture), site fertility, or past land use [24]. We found similar results for the BCSE fields
46 where yields were either similar across diversity gradients or higher in switchgrass monocultures
47 depending on the year and nitrogen fertilization treatment [54].
48
49
50
51
52
53
54
55 277 Evidence from surveys of switchgrass plantings in SW Michigan [29] and from experimental
56 plots and extensive sites of the GLBRC [24] show that other species establish in switchgrass
57 monocultures (reflecting seed bank or colonization from surrounding landscape). Because these
58
59
60
61
62
63
64
65

1
2
3
4 280 plantings are not managed to maintain a monoculture (plots not weeded or sprayed), other
5 species invade and so low diversity plots have more species than originally planted. Dickson and
6 Gross [24] show that this can occur rapidly (within 2 years). Also, experimental studies that were
7 designed to explore the relationship between species richness and productivity have shown that
8 these relationships rapidly deteriorate when intensive weeding is stopped [55]. Without a
9 'monoculture' treatment that is maintained as such, the relationship between actual (or planted)
10 species richness and productivity is not likely to be detected or maintained. This complicates
11 efforts to relate planted species richness with productivity; but there may still be positive effects
12 on other ecosystem services [29].
13
14 289
15 290 Past land use can also have a significant and persistent effect on the establishment of diverse
16 perennial communities. Grman et al. [56] found that management, especially the seed mix
17 composition, was a major determinant of plant species composition across 27 restored prairies in
18 southwestern Michigan, while past land use also had some effect on composition. In particular,
19 sites restored from pasture had a higher proportion of non-native, C₃ grasses, which may have
20 inhibited establishment of sown native species [56]. Munson and Lauenroth [57] found that
21 species composition and prior land use were important determinants of productivity in CRP
22 lands, and that previously established non-native species reduced the establishment of native
23 species. Although their study did not explicitly analyze connections between species diversity
24 and productivity, they did find that a diverse community had higher productivity in a wet year,
25 but not dry years. Our results from the restored prairies in the Michigan Scale-up sites provide
26 further evidence that past land use may be an important determinant of the potential for restored
27 prairies to deliver provisioning ecosystem services. While restored prairies at both sites were
28 established at the same time, with identical seed mixes and management, the eventual species
29 composition and aboveground productivity of the two sites differed. At the site previously
30 enrolled in the Conservation Reserve Program we observed a higher species diversity, more
31 abundant forbs and lower productivity than the site more recently in row-crop agriculture, where
32 C₄ grasses dominated [23]. Because the relationships between species diversity or richness and
33 productivity can depend on species composition [58-60], some of the variation between study
34 sites and experimental settings in our results likely are the result of different plant communities,
35 despite the use of the same or similar seed mixtures.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 311
5
6 312 We also explored the effects of dual versus single harvesting on biomass production and species
7
8 313 diversity in a plot-level experiment within the restored prairies of the two Michigan Scale-up
9 sites. Our results showed that at the site where a low-diversity prairie dominated by C₄ grasses
10 314 was established, single harvests produce more biomass than the sum of dual harvests; however,
11
12 315 at the more diverse site, single and double harvests had similar biomass yields [23]. Double
13
14 316 harvests increase light and potentially provide an opportunity for low-stature forbs, including
15
16 317 annuals, to flower and so provide opportunities for supporting pollinator-based services (K.
17
18 318 Gross, unpublished data).

19 319
20
21 320
22 321 ***3.2 Plant diversity did not have a consistent effect on yield stability.***

23
24 322 Although diverse prairie plantings and switchgrass were found to produce similar amounts of
25
26 323 biomass, diverse plantings may differ in their resilience to environmental fluctuations and so
27
28 324 provide more consistent production from year to year. This may arise because of differences in
29
30 325 traits among species in a more diverse planting that buffer against drought or other perturbations
31
32 326 that can limit productivity [61, 62]. Over the first five years in the BCSE plots, species richness
33
34 327 had only a small positive effect on the stability (μ/σ) of biomass production. This relationship
35
36 328 was weaker at ARL (Wisconsin) compared to KBS (Michigan) (K. Stahlheber, unpublished
37
38 329 data). At KBS, the two cropping systems with the highest species richness (restored prairie and
39
40 330 unplanted successional field) had the highest stability in biomass production, indicating
41
42 331 significantly less variation from year to year. At ARL, by contrast, the five-species native grass
43
44 332 cropping system had the most consistent biomass production. This suggests that other attributes
45
46 333 of the community beside species richness such as the identity and productivity of the dominant
47
48 334 species may be more predictive of the stability in biomass production (K. Stahlheber,
49
50 335 unpublished data).

51
52 337 ***3.3 Biomass crop and landscape structure influenced pollinators and pollination.***

53
54 338 Patterns of arthropod abundance and diversity were generally consistent across our different
55
56 339 studies, with relatively greater abundance and diversity of arthropods in grasslands (switchgrass
57
58 340 and restored prairies) than in annual cropping systems such as corn or soybean. At the local
59
60 341 level, pollinators such as wild bees were two to three times more abundant in grasslands

1
2
3
4 342 compared to corn [28]. At the landscape level, increasing the amount of grasslands around focal
5 fields (generally evaluated at the 1.5-km scale), increased bee species richness and abundance
6 [26]. Moreover, wild bee assemblages tended to be comprised of bees that were more specialized
7 when the landscape had more grassland, while in landscapes with more annual and wind-
8 pollinated crops, assemblages had more generalists, and honey bees (*Apis mellifera*) were
9 relatively more abundant. Variation in bee communities, which was influenced by the prevalence
10 of grassland in the landscape, was also associated with differences in pollination potential, i.e.
11 346 when wild bees were more abundant, sentinel flowers placed at our experimental sites had a
12 greater seed set [26]. We hypothesize that bee communities and their pollination potential will
13 347 vary if the prevalence of grasslands in the landscape were to change [27], as may occur if
14 growing perennial-plant biomass were to become more economically viable and thus more
15 348 widespread, or if corn-based bioenergy production were to continue to increase at the expense of
16 grasslands [14],
17 354
18 355
19 356
20 357
21 358
22 359
23 360
24 361
25 362
26 363
27 364
28 365
29 366
30 367
31 368
32 369
33 370
34 371
35 372

3.4 Biomass crop and landscape structure influenced natural enemies and pest suppression.

A similar pattern to that of pollinators was observed with other insects in biomass production landscapes. Working in the Scale-up and Extensive sites in Michigan, Robertson et al. [31] found that switchgrass and restored prairies had 230% and 320% higher arthropod family-level diversity, respectively, than in corn, with a corresponding 750% and 2700% increase in arthropod biomass, respectively. Gardiner et al. [28] found that predatory flies and lady beetles (Coccinellidae) generally were more abundant in prairie sites compared to corn. Using a broader array of sites and different sampling techniques, Werling et al. [30] similarly found that predator biomass and family-level richness was highest in perennial grassland-based biomass crops. Moreover, within a crop type, increasing the diversity of flowering plants increased predator biomass.

At the landscape level of spatial resolution, increasing the proportion of grasslands, forest cover, or landscape diversity all had positive effects on predatory insect abundance, biomass, or diversity [28, 30, 32]. Although the overall pattern is one of higher natural enemies in either grasslands sites, or in landscapes with a significant proportion of perennial cover, there were some exceptions. For example, Gardiner et al. [28] found the relative abundance of *Coleomegilla*

1
2
3
4 373 *maculata*, a pollen-feeding lady beetle was more abundant in corn and corn-dominated
5 landscapes. Similarly, Liere et al. [32] found that increasing the proportion of soybeans in the
6
7
8
9
10 376

11 377 The mechanisms by which biomass cropping systems positively affect arthropod biodiversity at
12 local and landscape levels of spatial resolution have not been thoroughly examined. The
13
14 379 perenniability of biomass crops entails a greater persistence of these habitats through time,
15 compared to annual cropping systems that are replanted each year. This feature alone could
16 increase diversity and abundance of arthropods [63]. Moreover, increased diversity in these
17
18 381 grasslands could be due to more flowering dicots [30] supporting a greater diversity and
19 temporal continuity of prey that are used by generalist predators. In fact, a greater arthropod
20
21 382 resource base in these grasslands was proposed as a key mechanism by which a greater diversity
22 of birds was supported in biomass grasslands [37]. The studies of Gardiner et al. [28] and Liere
23
24 384 et al. [32] which show the potential of positive effects of annual crops on beneficial insects,
25 suggest that these habitats may provide limiting resources such as prey items for these
26
27 386 consumers. Future studies examining the mechanisms by which perennial grasslands support
28
29 388 beneficial arthropods will be essential to understand how biomass crop management and
30
31 389 placement in the landscape will enhance or reduce their numbers at local and landscape scales.
32
33
34
35
36
37 391
38

39 392 Differences in predatory arthropods among biomass crops was also associated with variation in
40 biological control potential. Werling et al. [30] found that predation of sentinel eggs was greatest
41 in perennial grasslands compared to corn, and predation rates further increased as plant diversity
42
43 394 within a habitat increased. However, this effect saturated as plant diversity reached 5 to 10
44 species. In parallel with the effects on natural enemy abundance and diversity, an increasing
45
46 396 amount of grassland or forested habitat in the landscape was also associated with increased
47 predation rates [30]. The effects of the landscape on natural enemies, and the negative effects of
48
49 398 natural enemies on prey species, raises the possibility of indirect effects of landscape on prey
50 suppression. Liere et al. [32] experimentally demonstrated this causal pathway showing that as
51
52 399 landscape diversity increased, the abundance of predatory and parasitic arthropods in soybean
53 increased, which was then associated with more intense prey suppression, and increased soybean
54
55 401 yield. To our knowledge, this is one of the first studies to demonstrate this full causal pathway.
56
57
58
59
60
61
62
63
64
65

1
2
3
4 404 Furthermore, this finding suggests that increasing landscape diversity by the addition of
5 dedicated biomass crops could enhance pest suppression services in associated annual crops.
6
7 406 Indeed, we found that farms in more diverse agricultural landscapes in North Central US use less
8 insecticides than those in more simplified landscapes [64, 65]. Explicitly incorporating
9
10 407 biocontrol services into bioeconomic models suggests that farmers may be willing to supply
11 biocontrol services into bioeconomic models suggests that farmers may be willing to supply
12 some forms of biomass (crop residues) at lower prices [66].
13
14 410
15
16

17 411 **3.5 Perennial grasslands supported greater bird abundance and diversity.**

18
19 412 Fletcher et al. [35] showed that the diversity of vertebrates in general, and birds specifically,
20 would be negatively affected by the conversion of reference habitats to either pine, poplar, or
21
22 414 row crop production systems and that bird species of conservation concern should be most
23 negatively impacted [67]. In contrast, conversion of row crops to grasslands was predicted to
24 increase the diversity and abundance of birds at landscape scales [33] In field experiments, a
25 total of 35 bird species utilized switchgrass and restored prairies during spring migration,
26 including species of national conservation concern like Henslow's sparrow (*Ammodramus*
27
28 417 *henslowii*) [38]. During the breeding season, 29 species of birds were found in corn, 35 in
29 switchgrass, and 45 in prairie habitats [37] Field size was positively correlated with bird species
30 richness in switchgrass and restored prairies but not corn, and overall richness was lower in
31 landscapes with more forest cover. Perennial grasslands contained higher arthropod diversity and
32 biomass, potentially providing more food for grassland birds [31]. During fall migration, a total
33 of 30 species were found in switchgrass and 38 in perennial grasslands including nine species of
34 obligate grassland specialists of which four are of conservation concern [37]. Overall, these
35 studies suggested that perennial grass biomass cropping systems have considerable potential to
36 enhance bird abundance and diversity in the North Central US, particularly for grassland
37 specialist species of conservation concern [33, 67].
38
39 428
40
41 429
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

52 430 **3.6 Perennial grass cropping systems were enriched in plant-associated microbes.**

53
54 431 Cropping systems that promote soil fungi should rely less on nutrient inputs and result in greater
55 soil organic carbon accumulation than systems dominated by soil bacteria [68]. Biomass of
56 arbuscular mycorrhizal fungi (AMF) was greater in switchgrass and restored prairie systems than
57 in the corn system across the network of Extensive sites in Wisconsin [44]. A similar difference
58
59
60
61
62
63
64
65

1
2
3
4 435 was observed between the corn and restored prairie systems of the Wisconsin BCSE only two
5 years after cropping system establishment, although not in the year following establishment [46].
6
7 437 These changes were likely driven by increased rhizosphere size and activity because microbial
8 lipids from these groups increased in switchgrass rhizospheres relative to bulk soil at these sites
9 [49]. These microbes, AMF and Gram-negative bacteria, have previously been reported to
10 receive more carbon from plant exudates [69], making it likely these organisms associate directly
11 with grasses. We observed that nitrogen fertilization substantially reduced the amount by which
12 biomass from these groups increased in perennial systems [47], matching previous findings from
13 other groups [70]. These results are consistent with the classical perspective of symbiotic plant-
14 microbe associations as revolving around exchanges of nutrients and energy [71], although
15 inorganic nitrogen fertilization may be directly deleterious to AMF and other soil microbes [72].
16
17 446
18
19 447 In the Extensive sites, microbial community composition and abundance varied with plant
20 composition, with switchgrass microbial communities intermediate between corn and prairie
21 fields [44]. At the Wisconsin BCSE, switchgrass and restored prairie treatments had similar
22 microbial lipid composition under fertilization, but plant-associated microbial lipids were more
23 abundant in fertilized prairie [47]. We observed lower levels of labile nitrogen in the prairie than
24 in the switchgrass treatment [54], suggesting plant diversity may have influenced the soil
25 microbial community indirectly through regulation of soil chemistry rather than directly through
26 associations.
27
28 455
29
30 456 Soil microbial biomass, as estimated by membrane lipids, responded to perennial biomass
31 cropping system establishment with unexpected speed and intensity [48, 73]. We observed
32 minimal differences among cropping systems the year after BCSE establishment [48], which was
33 consistent with previous reports of minimal changes to microbial community composition
34 several years after land use change [74]. By the following year, however, microbial biomass
35 clearly differed among cropping systems [46]. DNA-based estimates of community diversity
36 responded less strongly to cropping system establishment [55, 80], possibly because DNA from
37 nonviable organisms can linger in the soil [75]. That said, we observed seasonal variability in the
38 composition of rhizosphere nitrogen-fixing bacteria (B. Zhang and J. Tiedje, unpublished data),
39 and it has been proposed that soil microbial communities can turn over on much shorter time
40
41 455
42
43 456 Soil microbial biomass, as estimated by membrane lipids, responded to perennial biomass
44 cropping system establishment with unexpected speed and intensity [48, 73]. We observed
45 minimal differences among cropping systems the year after BCSE establishment [48], which was
46 consistent with previous reports of minimal changes to microbial community composition
47 several years after land use change [74]. By the following year, however, microbial biomass
48 clearly differed among cropping systems [46]. DNA-based estimates of community diversity
49 responded less strongly to cropping system establishment [55, 80], possibly because DNA from
50 nonviable organisms can linger in the soil [75]. That said, we observed seasonal variability in the
51 composition of rhizosphere nitrogen-fixing bacteria (B. Zhang and J. Tiedje, unpublished data),
52 and it has been proposed that soil microbial communities can turn over on much shorter time
53
54 465 and it has been proposed that soil microbial communities can turn over on much shorter time
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 466 scales than previously thought [76]. It remains to be seen whether microbial community
5 function, and thus microbially-mediated ecosystem processes, respond to biomass cropping
6 system establishment with similar alacrity.
7
8 468
9
10 469
11
12 470 **3.7 Carbon cycle dynamics reflect interactions among biomass crops, microbes, and soils.**
13 471 We found a variety of factors that influenced carbon cycling processes, including cropping
14 systems, microbial communities, and soil properties. The richness of methane-oxidizing
15 microorganisms increased with the removal of conventional agricultural management and was
16 correlated to higher rates of methane consumption [77]. Richness of all bacterial taxa did not
17 respond systematically to this same gradient, however, and was uncorrelated to total soil
18 respiration [77]. Overall, microbial community composition appears to be less clearly correlated
19 to carbon cycle processes conducted by taxonomically and metabolically diverse groups [77];
20 such processes include the formation and turnover of microbial residues, which are critical
21 regulators of soil carbon accumulation [78]. Across the Extensive sites, microbial residue
22 turnover, as inferred from soil neutral sugar concentrations [79], reflected abiotic soil properties
23 rather than cropping systems or microbial community composition [49]. Despite the importance
24 of abiotic factors, cropping system rhizosphere properties could also influence this process, as
25 we found lower amino sugar concentrations in switchgrass fields than in adjacent soils [49].
26 Similarly, we observed substantial differences in microbial growth efficiency across a range of
27 land use types, although it is unclear whether these reflected changes in microbial community
28 composition [45]. Our work forms part of a broader conversation on integrating microbial
29 properties into soil carbon models [80] and has led us to develop a model that provides a
30 framework for incorporating microbial physiology. Despite this progress, linking cropping
31 system properties to microbial community composition and physiology remains a major
32 challenge to understanding and modeling soil carbon cycle processes [81, 82].
33
34 491
35
36 492 **3.8 Exploring trade-offs and synergies in biomass cropping system multifunctionality.**
37 493 Farmer decisions about whether to plant diverse or simple biomass cropping systems will depend
38 on their understanding of the relative synergies and trade-offs associated with each system. Many
39 of the potential synergies stemming from diverse or perennial biomass cropping systems can
40 only be realized by careful choice of the crop and its placement in the landscape. In a synthesis
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 497 of our data, we found that crop choice plays a critical role in determining biodiversity and
5 ecosystem service trade-offs [29]. Corn is very productive in our region, out-yielding current
6 cultivars of switchgrass and restored prairie by approximately 2-3-fold when both the grain and
7 stover components are considered. Comparisons of perennial grass yields to corn stover showed
8 that they are quite similar [20].
9
10 500
11 501
12
13 502
14
15 503 However, perennial grasslands enhanced several ecosystem services including methane
16 consumption in the soil, plant pollination, crop pest suppression, and grassland bird sightings,
17 and also decreased pest arrival into crop fields [29]. The spatial arrangement of biomass crops in
18 the landscape is critical to levels of biocontrol and abundance of grassland birds, which has
19 important ramifications for those choosing where in the landscape biomass crops should be
20 planted. For example, in the North Central US, it is estimated that production of biomass crops
21 on marginal lands – i.e., lands where the costs of crop production are not covered by the sale of
22 commodities – could provide approximately 25% of the federal renewable fuel targets while
23 mitigating greenhouse gas emissions [83]. However, using spatially explicit modeling we
24 showed that if corn were to be planted on marginal lands at the expense of existing grasslands it
25 would lead to a 7 to 65% decline in bird species richness across 20% of the region. Conversely,
26 if restored prairie plantings were to replace existing corn on marginal soils, bird species richness
27 would increase 12 to 207% [33], and similar results were found for bee abundance and diversity
28 [27]. In a related study, the expansion of corn on to marginal soil grasslands was projected to
29 result in a 10 to 64% decline in biocontrol, while expansion of grasslands on to marginal corn
30 sites could increase biocontrol 13 to 205% on over half of the annual cropland in the region [51].
31 These findings demonstrate that biomass cropping systems based on perennial grasslands have
32 the potential to enhance habitats for both grassland birds and beneficial insects.
33
34 519
35 520
36
37 521
38
39 522 We have used models to compare ecosystem service outputs from different biomass cropping
40 systems and to communicate the ecosystem service trade-offs and synergies to farmers and
41 policymakers. Meehan, Gratton [52] explored trade-offs associated with switching from annual
42 crops to perennial biomass crops in 67 small watersheds in southern Wisconsin. They found that
43 strategic replacement of annual crops by perennial grasslands in riparian zones could increase
44 energy production, carbon sequestration, pollinator abundance, and biological control, while
45
46 527
47
48
49
50 522
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 528 simultaneously decreasing phosphorus loadings, nitrous oxide emissions, and unfortunately,
5 529 farmer income. While the social benefits of making these changes are large relative to the lost
6 530 income, environmental markets and policies are not yet in place to offset these costs to farmers.
7
8 531

9
10 532 To help stakeholders and policymakers visualize the impact of bioenergy-driven land use and
11 533 land cover change, we developed the web-based Smartscape™ decision-support system [84] that
12 534 incorporates multiple models relating land use and land cover changes to subsequent supply of
13 535 many key ecosystem services [53]. The system allows users to create spatially explicit biomass
14 536 cropping system scenarios at local (e.g., farm fields) to regional (e.g., south central Wisconsin)
15 537 levels of spatial resolution and compare their performance against a variety of ecosystem service
16 538 metrics (**Fig 2**). Axes in the radar plot are oriented such that more desirable performance outputs
17 539 are more positive and individual scaled to the maximum of each axis.
18
19 540

20
21 541 By visualizing the direction and magnitude of tradeoffs and synergies between multiple
22 542 ecosystem services, the merits of different cropping systems and their placement in the landscape
23 543 can be more accurately understood and evaluated. Perhaps more importantly, multiple
24 544 stakeholders can engage in this modeling process, which can build trust and “buy-in” among
25 545 constituents with disparate philosophies, attitudes, and goals [85].
26
27 546

28 547 **4. Synthesis**
29
30 548

31 549 **4.1 Communicating our overall findings.**

32 550 The choice of biomass crop, and the methods by which they are established and maintained, are
33 551 key drivers of biodiversity across multiple taxa and the ecosystem services they support. As our
34 552 results show, the outcomes of these management decisions are complex and yet some
35 553 stakeholders desire simple guidance. For example, the questions we most often hear are: Are
36 554 biofuels good or bad? or Which cropping system is the “best” for biofuel production? Our
37 555 research supports only one answer to these simple questions: it depends. In our region, perennial
38 556 biomass crops, particularly those based on native perennial grasses, show significant promise to
39 557 enhance multiple ecosystem services. However, corn (grain + stover) is two to three times more
40 558 productive than the relatively unimproved and unfertilized cultivars of switchgrass and restored
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 559 prairie plantings we examined [29]. We also found benefits of mixed stands of grasses and forbs
5 in contrast to monocultures of grasses, in particular for reducing variability in yield, the
6 abundance of natural enemies, pollinators, and overall arthropod populations supporting bird
7 communities [29]. However, mixtures of grasses and forbs may also present limitations in
8 processing depending upon pretreatment, deconstruction, and conversion technologies.
9
10 563
11
12 564
13
14

15 565 Moreover, the importance of where biomass crops will be grown on the landscape has also
16 emerged as a major theme from our research. For example, the overall amount of grasslands in
17 the landscape was shown to be an important factor influencing both pollinator and natural enemy
18 communities [27, 51], as well as bird communities [33]. Land use history will also have strong
19 effects on the establishment and species composition of mixed-species cropping systems [23,
20 569 24]. In addition strategic placement of perennial grasslands could be utilized to reduce soil
21 erosion and nutrient loss, although many of these scenarios also showed trade-offs with farmer
22 income based on current prices and support programs [52]. The ability to visually portrait these
23 573 tradeoffs via the SmartscapeTM output has been helpful in our outreach work.
24
25 574
26
27 575 To communicate our findings in a way that captures the nuances of these key dimensions,
28 members of the GLBRC Sustainability leadership team developed a simple mnemonic device
29 576 called the “4-P’s”, which we characterize as *strategically Placed, Productive, Perennial,*
30 577 *Polycultures* [86]. Although this shorthand has some limitations, it has proved useful in
31 578 translating our complex results for diverse stakeholder audiences, including researchers from
32 579 disparate scientific disciplines within the GLBRC. With the 4-P’s we can highlight the need to
33 580 understand where and under what conditions we might expect particular plant production
34 581 (*Productive*), the value of perennial systems such as native grasslands in reducing disturbance
35 582 and maintaining soil processes and wildlife (*Perennial*), the role that species or genetic diversity
36 583 plays in our systems (*Polycultures*) and how benefits of biomass crops affect processes at the
37 584 landscape scale and how they in turn are influenced by their landscape surroundings (strategic
38 585 *Placement*). We expect that in the future we may also include additional dimensions including
39 586 considerations for how cropping systems are managed.
40
41 587
42
43 588
44
45 589

4.2 Implications for implementation.

1
2
3
4 590 From the outset, our work was informed by a research plan designed to compare alternative
5 biomass cropping systems and determine their biodiversity responses, while others in GLBRC
6 studied the biogeochemistry and economics of these systems. Our long-term goal is to provide
7 science-based information to decision makers to aid in the development of bioenergy policies
8 that facilitate the design of optimal biomass production systems supporting a range of ecosystem
9 services that society values. Whether biomass crops will become an integral part of our
10 agricultural landscapes remains to be seen. Despite attempts at creating a national energy policy
11 that supports renewable sources of energy, demand for cellulosic biomass has been low. There
12 are various reasons for this situation, not the least of which is that current fossil fuel prices are
13 very low because of novel sources of natural gas production. In addition, we continue to be
14 dependent on annual crops for fuel production because these crops have alternative markets, are
15 familiar to farmers, and are usually profitable under current economic policies [19, 87-89].
16 Moreover, development of infrastructure for using cellulosic feedstocks for ethanol production
17 has only recently begun in our region [90]. Another way to improve adoption perennial biomass
18 feedstocks is to tie biomass production to alternative uses beyond biofuels. For example,
19 cellulosic biomass pre-treatments can be used as sources of high protein feed for ruminant
20 animals [91]. In this way, even in the initial absence of a market for biofuels, demand for high
21 value intermediate products or co-products, such as sugars or protein, can jump start an
22 integrated food-energy system that also supports desirable environmental goals [92].
23
24 609
25
26 610 Recognizing the ecosystem service needs and demands of a diverse stakeholder community may
27 be one way to enhance the use of perennial biomass crops in agricultural landscapes. For
28 example, the advantages of perennial grasslands have long been recognized by land managers
29 working to reduce soil erosion and eutrophication of waterbodies in agricultural landscapes [21,
30 93]. Planting of perennial grasses, strategically placed in the landscape, has the potential to
31 improve downstream water quality [21], which could offset economic losses from reduced
32 production of corn, soybeans, or other annual crops planted close to riparian areas. While
33 grassland-based biomass cropping systems alone may not be economically competitive with
34 corn, the ability to take advantage of other ecosystem services they provide makes them a
35 superior choice compared to annual crops. Finding other similar synergies between the benefits
36 of perennial grasslands (e.g., carbon sequestration, greenhouse gas reduction, year-to-year
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 621 stability and wildlife habitat improvement), and stakeholder groups working toward their own
5
6 622 goals (e.g., flood reduction, climate stabilization, hunting opportunities), can make these
7
8 623 cropping systems more compelling.
9
10 624
11
12 625 In addition to obvious technical, logistical and economic challenges with implementing and
13
14 626 integrating biofuel cropping systems into our existing agricultural landscapes, there are
15
16 627 remaining gaps in our ecological knowledge that also need to be addressed [4]. For example, it
17
18 628 is unclear what the environmental consequences of increasing intensification of biomass crop
19
20 629 production as demand higher productivity becomes paramount (e.g., fertilizer use, annual
21
22 630 harvests) [94]. Also, until now dedicated biomass crops have largely been restricted to small
23
24 631 areas, in localized parts of the US. Widespread adoption could transform areas that had
25
26 632 previously had small amounts of perennial land to a larger fraction, with consequences for
27
28 633 biodiversity-related responses that are area dependent (e.g. [33, 95]). How these effects actually
29
30 634 scale-up will be valuable tests of landscape models at realistic scales [27, 51, 52]. As biofuel
31
32 635 crops are adopted and managed for production at widespread scales, the long-term consequences
33
34 636 of dedicated biofuel production systems will become clearer. Until then, we must extrapolate
35
36 637 from relatively small-scale work, modeling and general principles to build an understanding of
37
38 638 the ecosystem service tradeoffs of different biofuel cropping systems.
39
40 639
41
42 640 **5. Conclusions**
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Funding by the US DOE has allowed the GLBRC Biodiversity Team to examine the implications of planting cellulosic biomass crops on biodiversity and ecosystem services in the North Central US. By combining results from research conducted at different spatial scales and studying multiple taxa, we have developed an understanding of how selection of biomass crops and their management can affect ecosystem services in future agricultural landscapes. Our work shows that there is potential for selected biomass crops – especially those that mimic the species diversity and composition of native grasslands – to provide multiple ecosystem services. While there are synergies among some services and biomass production, there are also trade-offs that need to be communicated to stakeholders and policymakers [53]. Our work has also shown that management practices, particularly establishment techniques, fertilization and harvesting regimes

1
2
3
4 652 can alter biodiversity the biodiversity in a biomass crop and consequently the ecosystem services
5
6 653 that can be provided. Management practices that limit soil disturbance and fertilization and
7
8 654 promote plant diversity are likely to result in more and sustained ecosystem services.
9
10 655 Additionally, the landscape surrounding individual fields is an important determinant of the
11
12 656 types of ecosystem services that are provided from biomass crops. Marginal lands, where soil
13
14 657 fertility or other factors limit crop production may offer opportunities to support renewable fuel
15
16 658 goals, without reducing food production [83]. Our research suggests that for the North Central
17
18 659 US, bioenergy cropping systems based on – strategically-Placed, Productive, Perennial,
19
20 660 Polycultures – are the most likely to ensure delivery of a balanced set of ecosystem services and
21
22 661 should be incentivized.
23
24 662
25
26 663
27
28 664 **Acknowledgements**
29
30 665 The authors acknowledge the assistance of many students and technicians who have contributed
31
32 666 to the work reviewed here and to Julia Perrone for assistance in preparing this manuscript. DAL,
33
34 667 CG, RDJ and KLG were equally involved in the conceptualization and writing of the manuscript.
35
36 668 Remaining authors (in alphabetical order) contributed to writing and editing the manuscript.
37
38 669 Support for this research was provided by the US DOE Office of Science (DE-FC02-
39
40 670 07ER64494) and Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830)
41
42 671 to the DOE Great Lakes Bioenergy Research Center, the NSF Long-term Ecological Research
43
44 672 Program (DEB 1027253) at the Kellogg Biological Station, and by Michigan State University
45
46 673 AgBioResearch.
47
48 674
49
50
51 675 **References**
52
53 676 [1] Gasparatos A, Stromberg P, Takeuchi K. Biofuels, ecosystem services and human wellbeing:
54
55 677 putting biofuels in the ecosystem services narrative. Agric Ecosyst Environ. 2011;142(3–
56
57 678 4):111–28.
58 679 [2] Turhollow A, Perlack R, Eaton L, Langholtz M, Brandt C, Downing M, et al. The updated
59
60 680 billion-ton resource assessment. Biomass Bioenerg. 2014;70:149–64.
61 681 [3] Joly CA, Huntley B, Dale V, Mace G, Muok B, Ravindranath N. Biofuel impacts on
62
63 682 biodiversity and ecosystem services. Scientific Committee on problems of the
64
65

1
2
3
4 683 environment (SCOPE) rapid assessment process on bioenergy and sustainability.
5 684 2015:555-80.
6
7 685 [4] Holland RA, Eigenbrod F, Muggeridge A, Brown G, Clarke D, Taylor G. A synthesis of the
8 686 ecosystem services impact of second generation bioenergy crop production. *Renewable*
9 687 and *Sustainable Energy Reviews*. 2015;46:30-40.
10 688 [5] Wright L, Turhollow A. Switchgrass selection as a “model” bioenergy crop: a history of the
11 689 process. *Biomass Bioenerg*. 2010;34(6):851-68.
12
13 690 [6] DOE US. Breaking the biological barriers to cellulosic ethanol: a joint research agenda,
14 691 DOE/SC-0095. US Department of Energy Office of Science and Office of Energy
15 692 Efficiency and Renewable Energy. 2006.
16
17 693 [7] DOE US. U.S. Department of Energy Bioenergy Research Centers, DOE/SC-0162. Office of
18 694 Biological and Environmental Research within the DOE Office of Science. 2014.
19
20 695 [8] Slater SC, Simmons BA, Rogers TS, Phillips MF, Nordahl K, Davison BH. The DOE
21 696 bioenergy research centers: history, operations, and scientific output. *Bioenerg Res*.
22 697 2015;8(3):881-96.
23
24 698 [9] Helmers MJ, Eisenhauer DE, Franti TG, Dosskey MG. Modeling sediment trapping in a
25 699 vegetative filter accounting for converging overland flow. *T ASAE*. 2005;48(2):541-55.
26
27 700 [10] Rabalais NN, Turner RE, Wiseman WJ. Gulf of Mexico hypoxia, aka "The dead zone".
28 701 *Annu Rev Ecol Syst*. 2002;33:235-63.
29
30 702 [11] Culman SW, DuPont ST, Glover JD, Buckley DH, Fick GW, Ferris H, et al. Long-term
31 703 impacts of high-input annual cropping and unfertilized perennial grass production on soil
32 704 properties and belowground food webs in Kansas, USA. *Agric Ecosyst Environ*.
33 705 2010;137(1-2):13-24.
34
35 706 [12] Oates L, Duncan DS, Gelfand I, Millar N, Robertson GP, Jackson RD. Nitrous oxide
36 707 emissions during establishment of eight alternative cellulosic bioenergy cropping systems
37 708 in the North Central United States. *Glob Change Biol Bioenerg*. 2015;8:539-49.
38
39 709 [13] Hill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic
40 710 costs and benefits of biodiesel and ethanol biofuels. *Proc Natl Acad Sci*.
41 711 2006;103(30):11206-10.
42
43 712 [14] Lark TJ, Salmon JM, Gibbs HK. Cropland expansion outpaces agricultural and biofuel
44 713 policies in the United States. *Environ Res Lett*. 2015;10(4):044003.
45
46 714 [15] Landis DA, Gardiner MM, van der Werf W, Swinton SM. Increasing corn for biofuel
47 715 production reduces biocontrol services in agricultural landscapes. *Proc Natl Acad Sci*.
48 716 2008;105(51):20552-7.
49
50 717 [16] Wyman CE. What is (and is not) vital to advancing cellulosic ethanol. *Trends Biotechnol*.
51 718 2007;25(4):153-7.
52
53 719 [17] Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, et al. How biotech can
54 720 transform biofuels. *Nat Biotechnol*. 2008;26(2):169-72.
55
56 721 [18] Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, et al.
57 722 Agriculture - sustainable biofuels redux. *Science*. 2008;322(5898):49-50.
58
59 723 [19] Landers GW, Thompson AL, Kitchen NR, Massey RE. Comparative breakeven analysis of
60 724 annual grain and perennial switchgrass cropping systems on claypan soil landscapes.
61 725 *Agron J*. 2012;104(3):639-48.
62
63 726 [20] Sanford G, Oates L, Hamilton S, Jasrotia P, Thelen K, GP R, et al. Comparative
64 727 productivity of alternative cellulosic bioenergy cropping systems in the North Central
65 728 USA. *Agric Ecosyst Environ*. 2016;216:344-55.

1
2
3
4 729 [21] Asbjornsen H, Hernandez-Santana V, Liebman M, Bayala J, Chen J, Helmers M, et al.
5 730 Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem
6 731 services. *Renew Agr Food Syst.* 2014;29(02):101-25.
7 732 [22] Brandes E, McNunn GS, Schulte LA, Bonner IJ, Muth DJ, Babcock BA, et al. Subfield
8 733 profitability analysis reveals an economic case for cropland diversification. *Environ Res
9 734 Lett.* 2016;11(1):014009.
10 735 [23] Stahlheber KA, Watson B, Dickson TL, Disney R, Gross KL. Balancing biofuel production
11 736 and biodiversity: Harvesting frequency effects on production and community
12 737 composition in planted tallgrass prairie. *Biomass and Bioenergy.* 2016;92:98-105.
13 738 [24] Dickson TL, Gross KL. Can the results of biodiversity-ecosystem productivity studies be
14 739 translated to bioenergy production? *PLoS ONE.* 2015;10(9):e0135253.
15 740 [25] Landis DA, Werling BP. Arthropods and biofuel production systems in North America.
16 741 *Insect Sci.* 2010;17(3):220-36.
17 742 [26] Bennett AB, Isaacs R. Landscape composition influences pollinators and pollination
18 743 services in perennial biofuel plantings. *Agric Ecosyst Environ.* 2014;193:1-8.
19 744 [27] Bennett AB, Meehan TD, Gratton C, Isaacs R. Modeling pollinator community response to
20 745 contrasting bioenergy scenarios. *PLoS ONE.* 2014;9(11):e110676.
21 746 [28] Gardiner MA, Tuell JK, Isaacs R, Gibbs J, Ascher JS, Landis DA. Implications of three
22 747 biofuel crops for beneficial arthropods in agricultural landscapes. *Bioenerg Res.*
23 748 2010;3(1):6-19.
24 749 [29] Werling BP, Dickson TL, Isaacs R, Gaines H, Gratton C, Gross KL, et al. Perennial
25 750 grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes.
26 751 *Proc Natl Acad Sci.* 2014;111(4):1652-7.
27 752 [30] Werling BP, Meehan TD, Robertson BA, Gratton C, Landis DA. Biocontrol potential varies
28 753 with changes in biofuel-crop plant communities and landscape perenniability. *Glob
29 754 Change Biol Bioenerg.* 2011;3(5):347-59.
30 755 [31] Robertson BA, Porter C, Landis DA, Schemske DW. Agroenergy crops influence the
31 756 diversity, biomass, and guild structure of terrestrial arthropod communities. *Bioenerg
32 757 Res.* 2012;5(1):179-88.
33 758 [32] Liere H, Kim TN, Werling BP, Meehan TD, Landis DA, Gratton C. Trophic cascades in
34 759 agricultural landscapes: indirect effects of landscape composition on crop yield. *Ecol
35 760 Appl.* 2015;25(3):652-61.
36 761 [33] Meehan TD, Hurlbert AH, Gratton C. Bird communities in future bioenergy landscapes of
37 762 the Upper Midwest. *Proc Natl Acad Sci.* 2010;107(43):18533-8.
38 763 [34] Fargione JE, Cooper TR, Flaspohler DJ, Hill J, Lehman C, Tilman D, et al. Bioenergy and
39 764 wildlife: threats and opportunities for grassland conservation. *BioScience.*
40 765 2009;59(9):767-77.
41 766 [35] Fletcher RJ, Robertson BA, Evans J, Doran PJ, Alavalapati JRR, Schemske DW.
42 767 Biodiversity conservation in the era of biofuels: risks and opportunities. *Front Ecol
43 768 Environ.* 2011;9(3):161-8.
44 769 [36] Robertson BA, Doran PJ, Loomis ER, Robertson JR, Schemske DW. Avian use of perennial
45 770 biomass feedstocks as post-breeding and migratory stopover habitat. *PLoS ONE.*
46 771 2011;6(3):e16941.
47 772 [37] Robertson BA, Doran PJ, Loomis LR, Robertson JR, Schemske DW. Perennial biomass
48 773 feedstocks enhance avian diversity. *Glob Change Biol Bioenerg.* 2011;3(3):235-46.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 774 [38] Robertson BA, Landis DA, Sillett TS, Loomis ER, Rice RA. Perennial agroenergy
5 775 feedstocks as en route habitat for spring migratory birds. *Bioenerg Res.* 2013;6(1):311-
6 776 20.
7 777 [39] Van Der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: soil
8 778 microbes as drivers of plant diversity and productivity in terrestrial ecosystems. *Ecol
9 779 Lett.* 2008;11(3):296-310.
10 780 [40] Levine UY, Teal TK, Robertson GP, Schmidt TM. Agriculture's impact on microbial
11 781 diversity and associated fluxes of carbon dioxide and methane. *ISME J.* 2011;5(10):1683-
12 782 91.
13 783 [41] Lee ZM, Schmidt TM. Bacterial growth efficiency varies in soils under different land
14 784 management practices. *Soil Biol Biochem.* 2014;69:282-90.
15 785 [42] Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB.
16 786 Land-use history has a stronger impact on soil microbial community composition than
17 787 aboveground vegetation and soil properties. *Soil Biol Biochem.* 2011;43(10):2184-93.
18 788 [43] Frostegard A, Tunlid A, Baath E. Use and misuse of PLFA measurements in soils. *Soil Biol
19 789 Biochem.* 2011;43(8):1621-5.
20 790 [44] Liang C, Jesus EdC, Duncan DS, Jackson RD, Tiedje JM, Balser TC. Soil microbial
21 791 communities under model biofuel cropping systems in southern Wisconsin, USA: impact
22 792 of crop species and soil properties. *Appl Soil Ecol.* 2012;54:24-31.
23 793 [45] Liang C, Duncan DS, Balser TC, Tiedje JM, Jackson RD. Soil microbial residue storage
24 794 linked to soil legacy under biofuel cropping systems in southern Wisconsin, USA. *Soil
25 795 Biol Biochem.* 2013;57:939-42.
26 796 [46] Herzberger AJ, Duncan DS, Jackson RD. Bouncing back: plant-associated soil microbes
27 797 respond rapidly to prairie establishment. *PLoS ONE.* 2015;9(12):e115775.
28 798 [47] Oates L, Duncan D, Sanford G, Liang C, Jackson R. Microbial composition responds to
29 799 biomass cropping system establishment and management. *Agric Ecosyst Environ.* In
30 800 review.
31 801 [48] Jesus EdC, Liang C, Quensen JF, Susilawati E, Jackson RD, Balser TC, et al. Influence of
32 802 corn, switchgrass, and prairie cropping systems on soil microbial communities in the
33 803 upper Midwest of the United States. *Glob Change Biol Bioenerg.* 2016;8(2):481-94.
34 804 [49] Liang C, Jesus EdC, Duncan DS, Quensen JF, Jackson RD, Balser TC, et al. Switchgrass
35 805 rhizospheres stimulate microbial biomass but deplete microbial necromass in agricultural
36 806 soils of the upper Midwest, USA. *Soil Biol Biochem.* 2016;94:173-80.
37 807 [50] Jordan N, Boody G, Broussard W, Glover JD, Keeney D, McCown BH, et al. Sustainable
38 808 development of the agricultural bio-economy. *Science.* 2007;316(5831):1570-1.
39 809 [51] Meehan TD, Werling BP, Landis DA, Gratton C. Pest-suppression potential of Midwestern
40 810 landscapes under contrasting bioenergy scenarios. *PLoS ONE.* 2012;7(7):e41728.
41 811 [52] Meehan TD, Gratton C, Diehl E, Hunt ND, Mooney DF, Ventura SJ, et al. Ecosystem-
42 812 service tradeoffs associated with switching from annual to perennial energy crops in
43 813 riparian zones of the US Midwest. *PLoS ONE.* 2013;8(11):e80093.
44 814 [53] Tayyebi A, Meehan TD, Dischler J, Radloff G, Ferris M, Gratton C. SmartScapeTM: A web-
45 815 based decision support system for assessing the tradeoffs among multiple ecosystem
46 816 services under crop-change scenarios. *Comput Electron Agr.* 2016;121:108-21.
47 817 [54] Duran BE, Duncan DS, Oates LG, Kucharik CJ, Jackson RD. Nitrogen fertilization effects
48 818 on productivity and nitrogen loss in three grass-based perennial bioenergy cropping
49 819 systems. *PLoS ONE.* 2016;11(3):e0151919.

1
2
3
4 820 [55] Roscher C, Fergus AJ, Petermann JS, Buchmann N, Schmid B, Schulze E-D. What happens
5 821 to the sown species if a biodiversity experiment is not weeded? *Basic Appl Ecol.*
6 822 2013;14(3):187-98.
7
8 823 [56] Grman E, Bassett T, Brudvig LA. Confronting contingency in restoration: management and
9 824 site history determine outcomes of assembling prairies, but site characteristics and
10 825 landscape context have little effect. *J Appl Ecol.* 2013;50(5):1234-43.
11
12 826 [57] Munson SM, Lauenroth WK. Controls of vegetation structure and net primary production in
13 827 restored grasslands. *J Appl Ecol.* 2014;51(4):988-96.
14
15 828 [58] Weigelt A, Weisser W, Buchmann N, Scherer-Lorenzen M. Biodiversity for multifunctional
16 829 grasslands: equal productivity in high-diversity low-input and low-diversity high-input
17 830 systems. *Biogeosciences.* 2009;6(8):1695-706.
18
19 831 [59] Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, et al. Biodiversity
20 832 increases the resistance of ecosystem productivity to climate extremes. *Nature.*
21 833 2015;526(7574):574-7.
22
23 834 [60] Hector A, Bell T, Hautier Y, Isbell F, Kéry M, Reich PB, et al. BUGS in the analysis of
24 835 biodiversity experiments: species richness and composition are of similar importance for
25 836 grassland productivity. *PLoS ONE.* 2011;6(3):e17434.
26
27 837 [61] Allan E, Weisser W, Weigelt A, Roscher C, Fischer M, Hillebrand H. More diverse plant
28 838 communities have higher functioning over time due to turnover in complementary
29 839 dominant species. *Proc Natl Acad Sci.* 2011;108(41):17034-9.
30
31 840 [62] Mazancourt C, Isbell F, Larocque A, Berendse F, Luca E, Grace JB, et al. Predicting
32 841 ecosystem stability from community composition and biodiversity. *Ecol Lett.*
33 842 2013;16(5):617-25.
34
35 843 [63] Webster CR, Flaspohler DJ, Jackson RD, Meehan TD, Gratton C. Diversity, productivity
36 844 and landscape-level effects in North American grasslands managed for biomass
37 845 production. *Biofuels.* 2010;1(3):451-61.
38
39 846 [64] Meehan TD, Gratton C. A consistent positive association between landscape simplification
40 847 and insecticide use across the Midwestern US from 1997 through 2012. *Environ Res Lett.*
41 848 2015;10(11):114001.
42
43 849 [65] Meehan TD, Werling BP, Landis DA, Gratton C. Agricultural landscape simplification and
44 850 insecticide use in the Midwestern United States. *Proc Natl Acad Sci.*
45 851 2011;108(28):11500-5.
46
47 852 [66] Skevas T, Swinton S, Meehan T, Kim T, Gratton C, Egbendewe-Mondzozo A. Integrating
48 853 agricultural pest biocontrol into forecasts of energy biomass production. *Ecol Econ.*
49 854 2014;106:195-203.
50
51 855 [67] Robertson BA, Rice RA, Sillett TS, Ribic CA, Babcock BA, Landis DA, et al. Are agrofuels
52 856 a conservation threat or opportunity for grassland birds in the United States? *Condor.*
53 857 2012;114:679-88.
54
55 858 [68] de Vries FT, Bardgett RD. Plant-microbial linkages and ecosystem nitrogen retention:
56 859 lessons for sustainable agriculture. *Front Ecol Environ.* 2012;10(8):425-32.
57
58 860 [69] Butler JL, Williams MA, Bottomley PJ, Myrold DD. Microbial community dynamics
59 861 associated with rhizosphere carbon flow. *Appl Environ Microb.* 2003;69(11):6793-800.
60
61 862 [70] Denef K, Roobroeck D, Manimel Wadu MCW, Lootens P, Boeckx P. Microbial community
62 863 composition and rhizodeposit-carbon assimilation in differently managed temperate
63 864 grassland soils. *Soil Biol Biochem.* 2009;41(1):144-53.
64
65

1
2
3
4 865 [71] Correa A, Cruz C, Ferrol N. Nitrogen and carbon/nitrogen dynamics in arbuscular
5 866 mycorrhiza: the great unknown. *Mycorrhiza*. 2015;25(7):499-515.
6
7 867 [72] Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses
8 868 of soil microbial communities to elevated nutrient inputs in grasslands across the globe.
9 869 *Proc Natl Acad Sci*. 2015;112(35):10967-72.
10 870 [73] Duncan DS, Jewell KA, Suen G, Jackson RD. Detection of short-term cropping system-
11 871 induced changes to soil bacterial communities differs among four molecular
12 872 characterization methods. *Soil Biol Biochem*. 2016;96:160-8.
13
14 873 [74] Buckley DH, Schmidt TM. Diversity and dynamics of microbial communities in soils from
15 874 agro-ecosystems. *Environ Microbiol*. 2003;5(6):441-52.
16
17 875 [75] Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is
18 876 abundant in soil and obscures estimates of soil microbial diversity. *bioRxiv*. 2016.
19
20 877 [76] Schmidt SK, Costello EK, Nemergut DR, Cleveland CC, Reed SC, Weintraub MN, et al.
21 878 Biogeochemical consequences of rapid microbial turnover and seasonal succession in
22 879 soil. *Ecology*. 2007;88(6):1379-85.
23
24 880 [77] Levine UY, Teal TK, Robertson GP, Schmidt TM. Agriculture's impact on microbial
25 881 diversity and associated fluxes of carbon dioxide and methane. *ISME J*. 2011;5(10):1683-
26 882 91.
27
28 883 [78] Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF. Microbial physiology and necromass
29 884 regulate agricultural soil carbon accumulation. *Soil Biology and Biochemistry*.
885 2015;91:279-90.
30
31 886 [79] Martins MR, Angers DA, Corá JE. Co-accumulation of microbial residues and particulate
32 887 organic matter in the surface layer of a no-till Oxisol under different crops. *Soil Biology
33 888 and Biochemistry*. 2012;50:208-13.
34
35 889 [80] Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, et al.
36 890 Integrating microbial ecology into ecosystem models: challenges and priorities.
37 891 *Biogeochemistry*. 2012;109(1-3):7-18.
38
39 892 [81] Wieder W, Grandy A, Kallenbach C, Bonan G. Integrating microbial physiology and
40 893 physio-chemical principles in soils with the Microbial-MIneral Carbon Stabilization
894 (MIMICS) model. *Biogeosciences*. 2014;11(14):3899-917.
41
42 895 [82] Fan Z, Liang C. Significance of microbial asynchronous anabolism to soil carbon dynamics
43 896 driven by litter inputs. *Scientific reports*. 2015;5:9575.
44
45 897 [83] Gelfand I, Sahajpal R, Zhang X, Izaurrealde RC, Gross KL, Robertson GP. Sustainable
46 898 bioenergy production from marginal lands in the US Midwest. *Nature*.
899 2013;493(7433):514-7.
47
48 900 [84] WEI Smartscape™ Decision Support System. 2015 [cited 2016 Aug 23] Available from:
901 <https://dss.wei.wisc.edu>
49
50 902 [85] Slotterback C, Runck B, Pitt D, Kne L, Jordan N, Mulla D, et al. Collaborative geodesign to
51 903 advance multifunctional landscapes. *Landscape and Urban Planning*.
52 904 2016;doi:10.1016/j.landurbplan.2016.05.011.
53
54 905 [86] Landis DA, Schemske DW, Dale BE, Gratton C, Hamilton SK, Izaurrealde RC, et al.
55 906 Sustainability Guidelines for Future Biofuel Crops. GLBRC A4 White Paper. 2016 [cited
56 907 2016 Aug 23] Available from:<https://lter.kbs.msu.edu/pub/3574>
57
58 908 [87] Barham BL, Mooney D, Swinton S. Inconvenient truths' of land supply for bioenergy crops:
909 marginal lands are scarce, croplands are in play. *Proc Natl Acad Sci*. In review.
59
60
61
62
63
64
65

1
2
3
4 910 [88] Kells BJ, Swinton SM. Profitability of cellulosic biomass production in the Northern Great
5 Lakes region. *Agron J.* 2014;106(2):397-406.
6 911 [89] James LK, Swinton SM, Thelen KD. Profitability analysis of cellulosic energy crops
7 912 compared with corn. *Agron J.* 2010;102(2):675-87.
8 913 [90] Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC. Biomass as
9 feedstocks for bioenergy and bioproducts industry: The technical feasibility of a billion-
10 ton supply.: U.S. Department of Energy; 2005. p. 60.
11 914 [91] Dale BE, Allen MS, Laser M, Lynd LR. Protein feeds coproduction in biomass conversion
12 to fuels and chemicals. *Biofuels, bioproducts and biorefining.* 2009;3(2):219-30.
13 915 [92] Chen H-G, Zhang Y-HP. New biorefineries and sustainable agriculture: Increased food,
14 916 biofuels, and ecosystem security. *Renewable and Sustainable Energy Reviews.*
15 917 2015;47:117-32.
16 918 [93] Schulte LA, Liebman M, Asbjornsen H, Crow TR. Agroecosystem restoration through
17 919 strategic integration of perennials. *J Soil Water Conserv.* 2006;61(6):6-164.
18 920 [94] Gratton C, Casler M, Groves R, Kim TN. Insecticide Applications have Minor Effects on
19 921 Switchgrass Biomass Yield. *Agronomy Journal.* 2015;107(6):2031-7.
20 922 [95] Blank PJ, Sample DW, Williams CL, Turner MG. Bird communities and biomass yields in
21 923 potential bioenergy grasslands. *PloS one.* 2014;9(10):e109989.
22 924 [96] Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, et al.
23 925 Integrating microbial ecology into ecosystem models: challenges and priorities.
24 926 *Biogeochemistry.* 2011;109(1):7-18.
25 927 [97] Dale BE, Anderson JE, Brown RC, Csonka S, Dale VH, Herwick G, et al. Take a closer
26 928 look: biofuels can support environmental, economic and social goals. *Environ Sci
27 929 Technol.* 2014;48(13):7200-3.
28 930
29 931
30 932
31 933
32 934
33 935
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 936 **Figure captions**
5
6 937
7
8 938 **Figure 1.** Locations of GLBRC Biofuel Cropping System Experiments (BCSE's), Scale-up
9 fields, and a subset of the Extensive site network.
10
11 940
12
13
14 941 **Figure 2.** Examples of SmartscapeTM (dss.wei.wisc.edu) output.
15
16 942
17
18 943
19
20
21 944
22
23 945
24
25 946
26
27 947
28
29 948
30
31 949
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1. GLBRC studies covered in this review categorized by taxonomic focus, ecosystem function/process measured or modeled, and the related ecosystem service.

Ecosystem service	Taxonomic focus	Ecosystem function/process	Reference(s)
Nutrient cycling (supporting)	Microbes	Nitrogen fixation	[48, 49]
Biomass (provisioning)	Plants	Above ground productivity	[20, 23, 24, 54]
	Plants	Herbivory/Disease	[25, 32, 66, 94]
	Plants	Regional productivity	[83]
Pest suppression (regulating)	Arthropods	Predation	[15, 25, 28, 30, 32, 51, 52, 64, 65]
Pollination (regulating)	Arthropods	Pollination	[25-28]
Climate stabilization (regulating)	Microbes	Methane consumption	[40]
	Microbes	CO ₂ production and consumption	[40, 41, 96]
	Plants/ Microbes	Nitrous oxide emission	[47, 54, 73]
	Plants/ Microbes	Soil organic matter accumulation	[45, 49]
Biodiversity appreciation (cultural)	Birds	Habitat occupancy, community composition	[31, 33, 35-38, 67]
Multiple services	Multiple	Multiple	[18, 29, 52, 53, 63, 87-89, 97]

Table 2. Cropping systems established at the Great Lakes Bioenergy Research Center's Bioenergy Cropping System Experiment (BCSE) at Arlington, Wisconsin and Hickory Corners, Michigan¹.

System #	Rotation	Crop	Common and Scientific Names
1	Continuous	corn	corn (<i>Zea mays</i> L.)
2	Annual	corn ²	corn
3	rotation	soybean	soybean (<i>Glycine max</i> [L.] Merr.)
4	of:	canola	canola (<i>Brassica napus</i> L.)
5	Continuous	switchgrass	switchgrass (<i>Panicum virgatum</i> L.)
6	Continuous	miscanthus	<i>Miscanthus x giganteus</i>
7	Continuous	native grass mix	big bluestem (<i>Andropogon gerardii</i> Vitman) Canada wild rye (<i>Elymus Canadensis</i> L.) indiangrass (<i>Sorghastrum nutans</i> [L.] Nash) little bluestem (<i>Schizachyrium scoparium</i> [Michx.] Nash) switchgrass, "Southlow"
8	Continuous	poplar	NM-6 hybrid poplar (<i>Populus nigra</i> x <i>Populus maximowiczii</i>)
9	Continuous	old field	plant community defined by pre-existing seed bank and novel recruitment
10	Continuous	restored prairie	grasses big bluestem Canada wild rye indiangrass junegrass (<i>Koeleria cristata</i> [Ledeb.] Schult.) little bluestem switchgrass, "Southlow"
			leguminous forbs roundhead bushclover (<i>Lespedeza capitata</i> Michx.) showy tick-trefoil (<i>Desmodium canadense</i> (L.) DC.) white wild indigo (<i>Baptisia leucantha</i> Torr. & Gray)
			non-leguminous forbs black-eyed susan (<i>Rudbeckia hirta</i> L.) butterfly weed (<i>Asclepias tuberosa</i> L.) cup plant (<i>Silphium perfoliatum</i> L.) meadow anemone (<i>Anemone canadensis</i> L.) New England aster (<i>Sympyotrichum novae-angliae</i> [L.] G.L. Nesom) pinnate prairie coneflower (<i>Ratibida pinnata</i> [Vent.] Barnhart) showy goldenrod (<i>Solidago speciosa</i> Nutt.) stiff goldenrod (<i>Solidago rigida</i> L.) wild bergamot (<i>Monarda fistulosa</i> L.)

¹For full details see [20] Table S1, and GLBRC BCSE agronomic protocol
<http://lter.kbs.msu.edu/protocols/122>

²System numbers refer to the entry point crop at the start of the rotation. In 2012, the corn-soybean-canola system was replaced by a continuous corn + cover crop system and a corn-soybean + cover crop system with two entry points.

Figure 1

[Click here to download high resolution image](#)

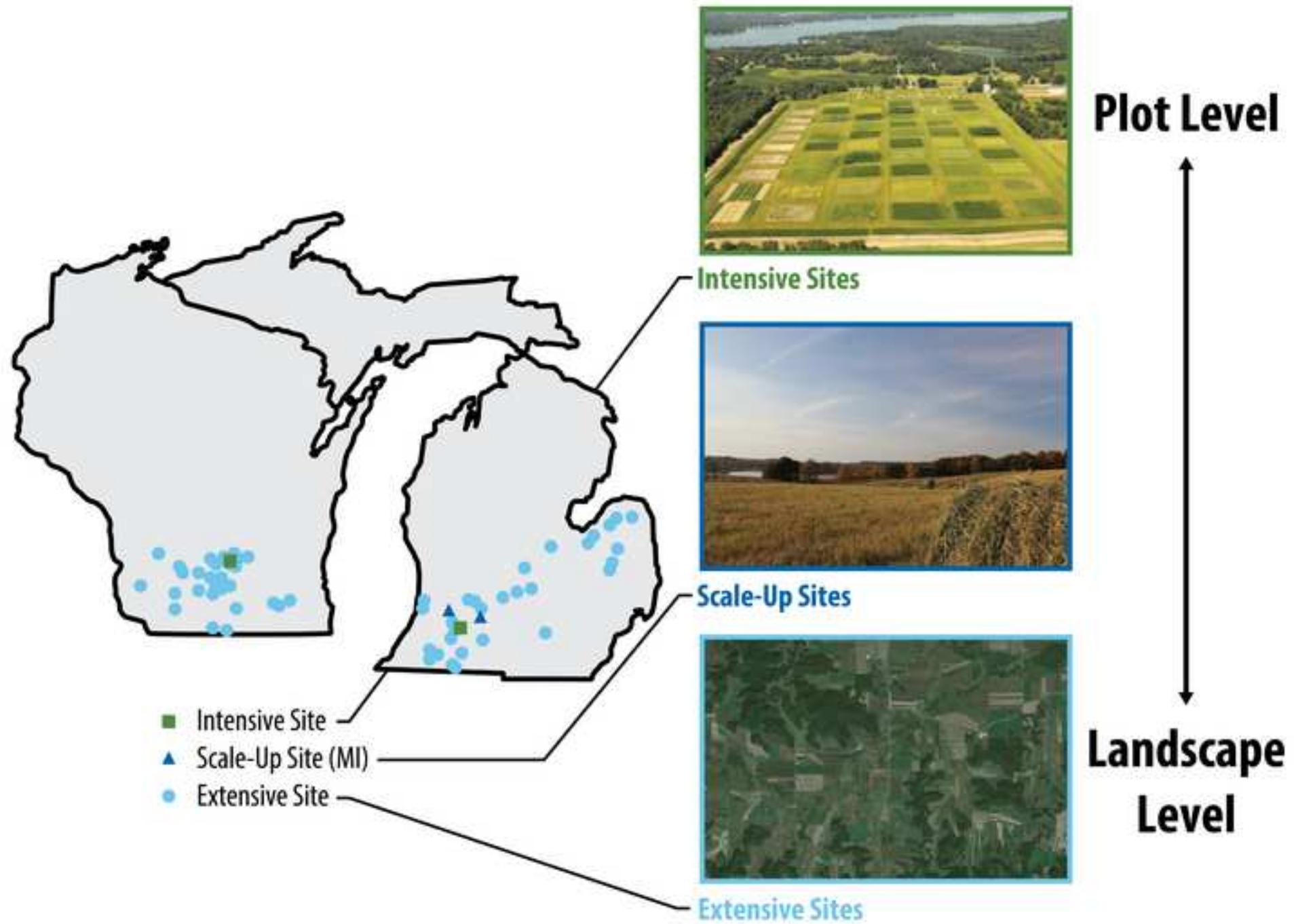
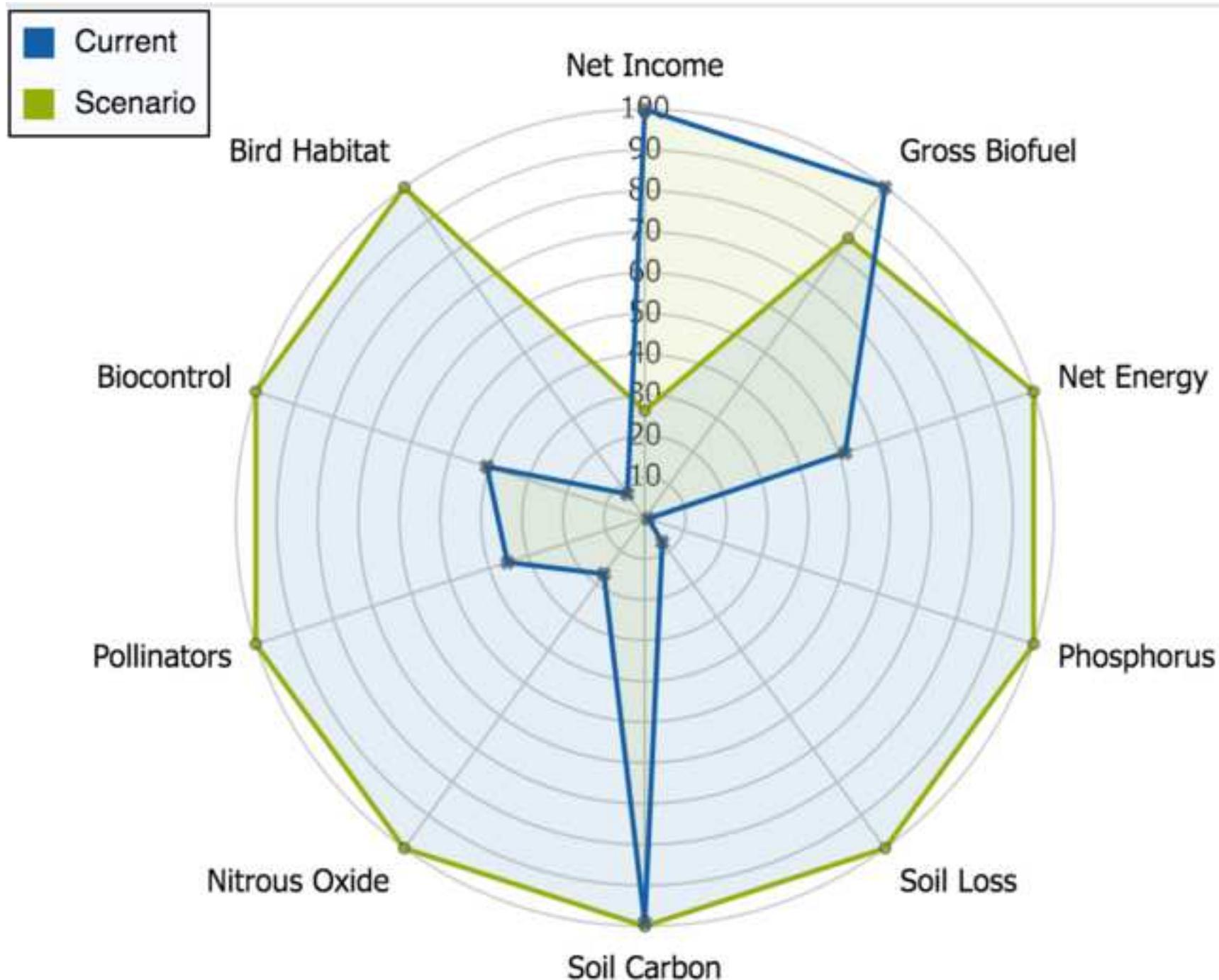



Figure 2

[Click here to download high resolution image](#)