*Manuscript
Click here to view linked References

For: Biomass and Bioenergy

Special Issue on: Using the Ecosystem Services Approach to Assess Biofuel Sustainability

O J o U bW

=
= o

I
w

Biomass and biofuel crop effects on biodiversity and ecosystem services in the North

Central US

e e =
w J oy U1 N
Y] (o] ~ (o)} (O} ~ w N =

[y
e

Douglas A. Landis®, Claudio Gratton®, Randall D. Jackson®, Katherine L. Gross®’, David S.

22 10  Duncan®, Chao Liang®®", Timothy D. Meehan®, Bruce A. Robertson™, Thomas M. Schmidt™,
;g 11 Karen A. Stahlheber®, James M. Tiedje"™, Benjamin P. Werling™™”

o

;s 13 “Department of Entomology, Michigan State University, East Lansing, MI, USA

28 14  °DOE Great Lakes Bioenergy Research Center, Michigan State University

gg 15  ‘Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA

2; 16 ‘DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison

gz 17 “Department of Agronomy. University of Wisconsin-Madison, Madison, WI, USA

;2 18 'W.K. Kellogg Biological Station & Plant Biology Department, Michigan State University,

g; 19  Hickory Corners, MI, USA

39 20 ®Department of Soil Science, University of Wisconsin-Madison, W1, USA

22 21 "Present address, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang

42 22 110016, China

ié 23 'Present address, National Ecological Observatory Network, Boulder, CO, USA

is 24 JIPresent address, Division of Science, Mathematics & Computing, Bard College, Annandale-on-
22 25  Hudson, NY, USA

50 26 “Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing,
; 27 MI, USA

22 28 'Present address, Department of Ecology & Evolutionary Biology, University of Michigan, Ann
22 29  Arbor, MI, USA

g; 30  ™Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA

59 31  "Present address, MSU Extension, Hart, MI, USA

o

62

63

64

()
ol


http://ees.elsevier.com/jbb/viewRCResults.aspx?pdf=1&docID=14923&rev=2&fileID=468968&msid={DF886EA1-E2D4-472A-8D6C-ACA88D54E7EA}

O J o U bW

AT UTUTUTUTUTUTUTOTE BB DB DD DSDNWWWWWWWWWWNNNONNNMNNNNNNRE R PR ERRRRP R R
O WNRPOWVWOUJdANT D WNRPRPOW®O-TAURWNROWOWO®-JdANUD™WNRFROW®OW-JIOUD™WNR OW®W-IO U B WN R O W

32



O J o U bW

AT UTUTUTUTUTUTUTOTE BB DB DD DSDNWWWWWWWWWWNNNONNNMNNNNNNRE R PR ERRRRP R R
O WNRPOWVWOUJdANT D WNRPRPOW®O-TAURWNROWOWO®-JdANUD™WNRFROW®OW-JIOUD™WNR OW®W-IO U B WN R O W

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

1. Introduction

The adoption of biomass cropping systems to supply feedstocks to bioenergy and bioproducts
industries has the potential to alter the mix of ecosystem services realized from agricultural
landscapes [1]. In the North Central US, current biomass cropping systems are primarily
monocultures of the annual crops corn and soybean. However, the diversity of systems used for
biomass crops in the region is likely to be augmented in the future by dedicated crops based on
perennial plants [2]. Assessing what biomass crops to grow, where to grow them, and how they
should be managed represents a complex combination of socio-political, economic, and
ecological decisions that will determine the mix of ecosystem services we derive from

agricultural lands.

An ecosystem services framework has been useful in evaluating the relative merits of different
bioenergy production systems. Gasparatos et al. [1] reviewed the impact of first-generation
biofuel production systems on biodiversity, and resulting provisioning, regulating and cultural
services. They found that while some provisioning (fuel) and regulating services (climate
regulation) may be enhanced, this often comes at the expense of biodiversity, and other
provisioning (food, water) and regulating (air quality, erosion control) services. Joly et al. [3]
also used an ecosystem services framework to examine the impacts of biofuel production
systems on biodiversity and ecosystem services. They conclude that the land transformations that
have taken place globally to produce biofuels have resulted in serious biodiversity declines.
However, they also conclude that the effects of biofuel production on ecosystem services is
highly context and location-specific, with some systems having the potential to enhance
ecosystem services. Indeed, a recent synthesis examining the impacts of second-generation
bioenergy cropping systems in Europe suggest that transitioning from first-generation feedstocks

to dedicated lignocellulosic feedstocks may frequently improve ecosystem services [4].

The development of biomass crops has been underway in the US since the 1970s, with
significant crop improvement efforts conducted under the auspices of the US Department of
Energy (US DOE) [5]. In the mid-2000s, the desire to reduce dependence on foreign sources of

oil and the environmental load of fossil fuel combustion, coupled with advances in the potential
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to derive transportation fuels from cellulosic biomass, fostered a resurgence of research into
biomass cropping systems. During this time, there was also a growing consensus that a focused
national effort was needed to enable the emergence of a cellulosic biofuel industry. In 2006, the
US DOE Office of Science and the Office of Energy Efficiency and Renewable Energy released
a report that outlined a 15-year strategy of research, technology development, and systems
integration aimed at supporting a cellulosic biofuels sector [6]. This report was seen as the
original research roadmap supporting the formation of three national Bioenergy Research
Centers charged with providing the fundamental science to underpin an environmentally
sustainable and economically competitive advanced cellulosic biofuels industry. In 2007, the
Great Lakes Bioenergy Research Center (GLBRC) was one of three national research centers

funded by the US DOE to pursue this mission [7, §].

Corn and soybean have long dominated the agricultural landscape of the North Central US. In
recent years, 35 to 40% of the US corn crop has been used to produce ethanol that is blended into
Nitrogen and phosphorous typically are added to these cropping systems to maintain productivity
and manage livestock manure. These inputs, particularly when combined with tillage can result
in excessive leaching of nitrogen to ground- and surface-waters and to overland movement of
phosphorous attached to soil particles to surface waters [9] resulting in local to continental
eutrophication of water bodies [10]. Also, significant amounts of the nitrogen added as inorganic
fertilizer can be lost via volatilization or microbe-mediated nitrification and dentirification [11,
12], contributing to ecosystem disservices that include excessive deposition locally and
accumulation of greenhouse gases globally. Largely because of high inputs, the net energy gain
of developing biofuels from annual crops appears to converge near zero [13]. Increasing
production of annual crops through intensification on existing crop land or conversion of
marginal lands [14] threatens other ecosystem services important to the sustainability of

agricultural landscapes e.g. natural pest suppression [15].

Concerns about the sustainability of current biofuel cropping systems prompted research to
derive fuels and other bioproducts from cellulosic biomass sourced from dedicated energy crops
and/or food crop residues [16, 17]. However, harvesting residues of annual crops does not

address the environmental concerns stated above, and could exacerbate these problems by
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driving the planting of even more land to annual crops. Alternatively, the addition of dedicated
cellulosic crops significantly broadens the options for potential feedstock producing cropping
systems, providing opportunities for coupling ecosystem service improvements and ecologically
sustainable production [18]. Perennial plants such as native prairies grasses, tropical grasses, and
short rotation trees show promise as sustainable biomass crops because they minimize erosion by
covering the soil year-round and minimize energy costs of agronomic management stemming
from fossil fuel use for planting equipment and production and application of pesticides and
fertilizers [19, 20]. However, the benefits of incorporating perennials into current agricultural
landscapes as part of a sustainable biomass cropping system has received less research attention
(but see [21, 22]). Understanding how perennial biomass cropping systems — specifically those
planted with native species — could be integrated into North Central US cropping systems to

enhance multiple ecosystem services has been a focus of the GLBRC Biodiversity Team.

Here, we review more than 35 studies conducted by the GLBRC Biodiversity Team, where we
compared the potential effects of alternative biomass cropping systems on the organisms and
processes that provide important supporting, provisioning, regulating and cultural services in
agricultural landscapes. The following central questions directed our research: 1) How does the
choice of biomass crop(s) influence biodiversity and the potential to provide ecosystem services
that can be delivered at the level of a crop field and to the overall landscape? 2) How do different
management practices affect the ecosystem services provided by alternative systems?, and 3)
How does the configuration of biomass and other crops in an agricultural landscape influence
ecosystem services provided to other crops? Our hypothesis was that perennial biomass cropping
systems, particularly those with higher plant species diversity, would provide more ecosystem
services and reduce associated disservices compared to annual cropping systems. We addressed
this hypothesis by estimating how crop yields and other ecosystem services provided by a variety
of cellulosic biomass crops differed and how these relationships varied when measured at plot-,

field-, and landscape-levels of spatial organization

2. Materials and methods
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Below we provide an overview of methods used in the studies we review. Details about the

specific sites and methods used can be found in the individual publications cited (Table 1).

2.1 Sites

Research sites were located in southern Wisconsin and Michigan and consisted of a combination
of intensively-managed plot-level experiments, replicated scale-up fields, and a network of
commercial-sized fields embedded within representative agricultural landscapes (Fig 1). In 2008,
the Biofuel Cropping Systems Experiments (BCSEs) were established in each state to compare
and contrast 10 different cropping systems with each system planted in 30 x 40-m plots in 5
replicate blocks. In Michigan, the BSCE was established at the W.K. Kellogg Biological Station
(KBS, 42°23'47" N, 85°2226" W, 288 m a.s.l.) and in Wisconsin at the Arlington Agricultural
Research Station (ARL, 43°17'45" N, 89°22'48"” W, 315 m a.s.l.).

Treatments were designed to provide a gradient of increasing plant species diversity and
included both annual and perennial cropping systems: continuous corn, corn-soybean-canola
rotation, switchgrass, miscanthus, hybrid poplar, mixed-species native grasses, successional
vegetation, and restored prairie (Table 2). Split-plot treatments included; stover removal in
continuous corn, nitrogen addition in restored prairie, and no nitrogen addition in perennial crops
(see [20] for details of cropping systems management). In 2009, “Scale-up” fields (9 to 17 ha)
were established at two sites in Michigan to measure biomass production and other ecosystem
services at scales typical of production fields with differing land use histories (see table 1 in [23])
and landscape positions. At each site, one field was planted to restored prairie, switchgrass, or

continuous corn and managed as in the BSCE.

We also worked with local landowners and extension specialists to identify a set of commercial-
sized corn/soybean, switchgrass, and reconstructed prairie fields (3 to 30 ha) across varying
landscapes in southern Michigan and Wisconsin. These “Extensive sites” were selected so that
all three cropping systems were in close proximity to each other, and embedded within a range of
agricultural landscape compositions typical of southern Michigan and Wisconsin. The

landscapes surrounding these sites ranged from highly simplified landscapes (i.e., fields

surrounded by high proportions of annual cropland within 1.5 km) to moderately complex (i.e.,
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fields surrounded by a combination of croplands, grasslands, forest, or wetlands). The wide
spatial distribution of the Extensive sites allowed us to capture gradients in soil type, climate,
and overall cropping practices. Because of the current lack of a market for biomass in our states,
these sites did not have a history of annual harvests as would be the case in a biomass cropping

system, although haying and burning to promote plant diversity often occurred.

2.2 Plants

We evaluated the relationship between plant species diversity (number of species) and above
ground biomass production by sampling fields planted to bioenergy crops at two spatial scales —
the BCSE experimental plots and larger Extensive and Scale-up fields. These larger fields
differed in fertility, time of establishment, land use history, surrounding landscape, and a variety
of other factors; however our capacity to evaluate how these differences moderate the effect of

biodiversity on yield was limited by small sample size [23, 24].

An initial analysis of how ecosystem services, including above-ground production, varied with
cropping system was done by comparing species composition and a variety of services from
prairie (n=10) and switchgrass (n=10) Extensive sites in Michigan. Aboveground production and
species composition was determined from hand harvests done at peak biomass (August-
September) in 2008 and 2009 [23, 24]. We also estimated productivity in the KBS and ARL
BCSE from hand harvests (July, corresponding to peak biomass) and by machine at the end of
the growing season (September-October) corresponding to the more typical time and methods for
biofuel harvest. Because stability in production may be an important ecosystem service, we
calculated how variation in aboveground biomass production (i.e. stability, calculated as mean
divided by the standard deviation) of the four herbaceous perennial cropping systems of the
BCSE representing a gradient of species richness varied (see Table 1). Finally, we explored if
harvest frequency (1 versus 2) affected biomass production in restored prairie treatments at the

Michigan Scale-up sites for three years [23, 24].

2.3 Insects
The adoption of biomass cropping systems is anticipated to affect insect communities and

resulting ecosystem functions in complex and cascading ways [25]. To evaluate the effects of
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different biomass cropping systems, as well as the influence of management and landscape
context on insect biodiversity responses, we sampled potential insect pollinators using water-pan
traps, netting at flowers, and sentinel flower observations in a subset of the Extensive sites [26-
28]. Water pan traps were also used to collect aphids colonizing different fields [28, 29]. To
measure the relative abundance of other insect taxa over the course of a growing season we also
used sweepnet sampling [30, 31], or placement of yellow sticky card traps [28, 30, 32]. We then
used data from these sampling efforts to measure the relative abundance of different taxonomic
groups, as well as family (or species-level, for pollinators and some predators), richness and

diversity.

The choice and management of biomass crops can affect arthropods that contribute to both
pollination and insect pest suppression, two processes that support provisioning and regulating
ecosystem services. Pollination potential within the biomass crops was assayed by examining
seed mass of potted sentinel sunflowers (Helianthus annuus) placed within different biomass
crops [26]. Pest suppression potential was measured by the placement of sentinel prey corn
earworm eggs (Helicoverpa zea), or soybean aphids (Aphis glycines) in the field [30, 32]. Some
prey were exposed to ambient populations of naturally occurring arthropod predators while
others where shielded from the activity of predators using cages. The difference in the number of
prey remaining alive after a given period of time (24 to 72 h, depending on the experiment) was

used as an index of biological control potential.

2.4 Birds

Production of biomass crops is anticipated to alter bird communities at field and landscape scales
[33, 34]. To assess the likely impacts of different biomass crop types on bird diversity and
abundance, we first conducted a meta-analysis of the existing literature [35]. This meta-analysis
focused on four major biomass crops that were currently cultivated or being considered for
production in the US including corn, switchgrass, pine, and poplar. The analysis contrasted
vertebrate animal abundance or density, and diversity in potential biomass crops versus reference
habitats that these crops may replace. A second analysis contrasted the abundance of vertebrates
in annual crops versus perennial grasslands that were part of the Conservation Reserve Program

(CRP) [35]. Subsequent field studies in southern Michigan utilized the Extensive site network
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and additional sites to examine the diversity and abundance of migratory and breeding birds in
relation to biomass crop habitat and landscape variables [31, 36-38]. Finally, the opportunity to
sight rare birds was considered as a cultural service as part of an assessment of multifunctionality

(section 2.6) [29].

2.5 Microbes

The central role microbes play in mediating soil biogeochemical processes [39] motivated our
soil biodiversity research. We primarily relied on linked measurements of the microbial
community and biogeochemical process rates to explore these relationships [40], although we
also conducted laboratory measurements of soil microbial growth efficiencies from diverse
habitats to gain insight into how land management influences microbial communities and their
processes [41]. At the onset of our studies, it was unclear whether the effects of establishing
biomass crops on soil microbial community composition would be detectable, given the
variability caused by heterogeneity of soil properties and legacy effects from prior land uses
[42]. In most of our studies, we characterized microbial communities via extraction of
biomarkers such as cell membrane lipids, wall amino sugars, and DNA from soil samples. We
analyzed community DNA via both targeted and shotgun metagenomic sequencing. The former
approach was used to characterize composition of functional groups such as methane consumers
or nitrogen fixers in addition to the entire community. Our analyses of these data focused more
on community composition and dissimilarity than on diversity per se, because methods like lipid

profiling cannot be properly analyzed or interpreted for diversity metrics [43].

We used the network of Extensive sites to compare how cropping systems and soil properties
shaped microbial community composition and microbial residues [44, 45]. We also tracked soil
microbial community changes during cropping system establishment at the Wisconsin BCSE
[46] and then again after establishment to evaluate the effects of nitrogen fertilization [47].
Finally, using Michigan and Wisconsin Extensive and BCSE sites, we compared soil microbial
communities from soil bulk samples across multiple cropping systems [48] and in switchgrass

between rhizosphere and bulk soil samples [49].

2.6 Multifunctionality
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The development of a biomass-based agricultural bioeconomy has been viewed as an opportunity
to increase the functionality of US agriculture [50]. We assessed the multifunctionality of
potential biomass cropping systems for our region in a variety of ways. Initially, we used GIS-
enabled spatially explicit modeling to predict the effects of potential bioenergy driven land use
and land cover changes on bird communities [33], biological control potential [51], and
pollinator abundance and diversity [27]. We tested our hypotheses that more diverse, perennial
systems would provide a greater range of ecosystem services with an analysis exploring
relationships of biomass crop choice (corn, switchgrass and restored prairie) to the biodiversity
of multiple taxa (plants, insects, bird, and microbes) and to a subset of services those taxa supply
(biomass yield, pollination and pest suppression, opportunity to observe rare birds, and methane
consumption) [29]. Data from the establishment-phase (i.e., years 1 through 6) of the BCSE
provided yield comparisons to improve our understanding of the productivity potentials from a
wider range of biomass cropping systems [20]. Finally, using GIS layers of existing land cover,
coupled to models of potential biomass crop services and disservices, we developed a spatially-
explicit decision-support system to allow stakeholders to evaluate the multifunctionality of user-

defined placement of biomass crops on their farms [52, 53].

3. Results and discussion

3.1 Diverse and monoculture plantings of perennials were similarly productive.

In field surveys of existing plant communities in the Extensive sites, we did not find significant
differences in biomass production between switchgrass and prairie plantings. Although there was
considerable variation among sites in biomass production, this was not related to planted or
observed plant species richness and may reflect differences in initial management (including
seed mixture), site fertility, or past land use [24]. We found similar results for the BCSE fields
where yields were either similar across diversity gradients or higher in switchgrass monocultures

depending on the year and nitrogen fertilization treatment [54].

Evidence from surveys of switchgrass plantings in SW Michigan [29] and from experimental
plots and extensive sites of the GLBRC [24] show that other species establish in switchgrass

monocultures (reflecting seed bank or colonization from surrounding landscape). Because these

10
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plantings are not managed to maintain a monoculture (plots not weeded or sprayed), other
species invade and so low diversity plots have more species than originally planted. Dickson and
Gross [24] show that this can occur rapidly (within 2 years). Also, experimental studies that were
designed to explore the relationship between species richness and productivity have shown that
these relationships rapidly deteriorate when intensive weeding is stopped [55]. Without a
‘monoculture’ treatment that is maintained as such, the relationship between actual (or planted)
species richness and productivity is not likely to be detected or maintained. This complicates
efforts to related planted species richness with productivity; but there may still be positive effects

on other ecosystem services [29].

Past land use can also have a significant and persistent effect on the establishment of diverse
perennial communities. Grman et al. [56] found that management, especially the seed mix
composition, was a major determinant of plant species composition across 27 restored prairies in
southwestern Michigan, while past land use also had some effect on composition. In particular,
sites restored from pasture had a higher proportion of non-native, C; grasses, which may have
inhibited establishment of sown native species [56]. Munson and Lauenroth [57] found that
species composition and prior land use were important determinants of productivity in CRP
lands, and that previously established non-native species reduced the establishment of native
species. Although their study did not explicitly analyze connections between species diversity
and productivity, they did find that a diverse community had higher productivity in a wet year,
but not dry years. Our results from the restored prairies in the Michigan Scale-up sites provide
further evidence that past land use may be an important determinant of the potential for restored
prairies to deliver provisioning ecosystem services. While restored prairies at both sites were
established at the same time, with identical seed mixes and management, the eventual species
composition and aboveground productivity of the two sites differed. At the site previously
enrolled in the Conservation Reserve Program we observed a higher species diversity, more
abundant forbs and lower productivity than the site more recently in row-crop agriculture, where
C4 grasses dominated [23]. Because the relationships between species diversity or richness and
productivity can depend on species composition [58-60], some of the variation between study
sites and experimental settings in our results likely are the result of different plant communities,

despite the use of the same or similar seed mixtures.

11
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We also explored the effects of dual versus single harvesting on biomass production and species
diversity in a plot-level experiment within the restored prairies of the two Michigan Scale-up
sites. Our results showed that at the site where a low-diversity prairie dominated by C4 grasses
was established, single harvests produce more biomass than the sum of dual harvests; however,
at the more diverse site, single and double harvests had similar biomass yields [23]. Double
harvests increase light and potentially provide an opportunity for low-stature forbs, including
annuals, to flower and so provide opportunities for supporting pollinator-based services (K.

Gross, unpublished data).

3.2 Plant diversity did not have a consistent effect on yield stability.

Although diverse prairie plantings and switchgrass were found to produce similar amounts of
biomass, diverse plantings may differ in their resilience to environmental fluctuations and so
provide more consistent production from year to year. This may arise because of differences in
traits among species in a more diverse planting that buffer against drought or other perturbations
that can limit productivity [61, 62]. Over the first five years in the BCSE plots, species richness
had only a small positive effect on the stability (/o) of biomass production. This relationship
was weaker at ARL (Wisconsin) compared to KBS (Michigan) (K. Stahlheber, unpublished
data). At KBS, the two cropping systems with the highest species richness (restored prairie and
unplanted successional field) had the highest stability in biomass production, indicating
significantly less variation from year to year. At ARL, by contrast, the five-species native grass
cropping system had the most consistent biomass production. This suggests that other attributes
of the community beside species richness such as the identity and productivity of the dominant
species may be more predictive of the stability in biomass production (K. Stahlheber,

unpublished data).

3.3 Biomass crop and landscape structure influenced pollinators and pollination.

Patterns of arthropod abundance and diversity were generally consistent across our different
studies, with relatively greater abundance and diversity of arthropods in grasslands (switchgrass
and restored prairies) than in annual cropping systems such as corn or soybean. At the local

level, pollinators such as wild bees were two to three times more abundant in grasslands

12
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compared to corn [28]. At the landscape level, increasing the amount of grasslands around focal
fields (generally evaluated at the 1.5-km scale), increased bee species richness and abundance
[26]. Moreover, wild bee assemblages tended to be comprised of bees that were more specialized
when the landscape had more grassland, while in landscapes with more annual and wind-
pollinated crops, assemblages had more generalists, and honey bees (Apis mellifera) were
relatively more abundant. Variation in bee communities, which was influenced by the prevalence
of grassland in the landscape, was also associated with differences in pollination potential, i.e.
when wild bees were more abundant, sentinel flowers placed at our experimental sites had a
greater seed set [26]. We hypothesize that bee communities and their pollination potential will
vary if the prevalence of grasslands in the landscape were to change [27], as may occur if
growing perennial-plant biomass were to become more economically viable and thus more
widespread, or if corn-based bioenergy production were to continue to increase at the expense of

grasslands [14],

3.4 Biomass crop and landscape structure influenced natural enemies and pest suppression.

A similar pattern to that of pollinators was observed with other insects in biomass production
landscapes. Working in the Scale-up and Extensive sites in Michigan, Robertson et al. [31] found
that switchgrass and restored prairies had 230% and 320% higher arthropod family-level
diversity, respectively, than in corn, with a corresponding 750% and 2700% increase in
arthropod biomass, respectively. Gardiner et al. [28] found that predatory flies and lady beetles
(Coccinellidae) generally were more abundant in prairie sites compared to corn. Using a broader
array of sites and different sampling techniques, Werling et al. [30] similarly found that predator
biomass and family-level richness was highest in perennial grassland-based biomass crops.
Moreover, within a crop type, increasing the diversity of flowering plants increased predator

biomass.

At the landscape level of spatial resolution, increasing the proportion of grasslands, forest cover,
or landscape diversity all had positive effects on predatory insect abundance, biomass, or
diversity [28, 30, 32]. Although the overall pattern is one of higher natural enemies in either
grasslands sites, or in landscapes with a significant proportion of perennial cover, there were

some exceptions. For example, Gardiner et al. [28] found the relative abundance of Coleomegilla
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maculata, a pollen-feeding lady beetle was more abundant in corn and corn-dominated
landscapes. Similarly, Liere et al. [32] found that increasing the proportion of soybeans in the

landscape in their study was also associated with a greater abundance of natural enemies.

The mechanisms by which biomass cropping systems positively affect arthropod biodiversity at
local and landscape levels of spatial resolution have not been thoroughly examined. The
perenniality of biomass crops entails a greater persistence of these habitats through time,
compared to annual cropping systems that are replanted each year. This feature alone could
increase diversity and abundance of arthropods [63]. Moreover, increased diversity in these
grasslands could be due to more flowering dicots [30] supporting a greater diversity and
temporal continuity of prey that are used by generalist predators. In fact, a greater arthropod
resource base in these grasslands was proposed as a key mechanism by which a greater diversity
of birds was supported in biomass grasslands [37]. The studies of Gardiner et al. [28] and Liere
et al. [32] which show the potential of positive effects of annual crops on beneficial insects,
suggest that these habitats may provide limiting resources such as prey items for these
consumers. Future studies examining the mechanisms by which perennial grasslands support
beneficial arthropods will be essential to understand how biomass crop management and

placement in the landscape will enhance or reduce their numbers at local and landscape scales.

Differences in predatory arthropods among biomass crops was also associated with variation in
biological control potential. Werling et al. [30] found that predation of sentinel eggs was greatest
in perennial grasslands compared to corn, and predation rates further increased as plant diversity
within a habitat increased. However, this effect saturated as plant diversity reached 5 to 10
species. In parallel with the effects on natural enemy abundance and diversity, an increasing
amount of grassland or forested habitat in the landscape was also associated with increased
predation rates [30]. The effects of the landscape on natural enemies, and the negative effects of
natural enemies on prey species, raises the possibility of indirect effects of landscape on prey
suppression. Liere et al. [32] experimentally demonstrated this causal pathway showing that as
landscape diversity increased, the abundance of predatory and parasitic arthropods in soybean
increased, which was then associated with more intense prey suppression, and increased soybean

yield. To our knowledge, this is one of the first studies to demonstrate this full causal pathway.
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Furthermore, this finding suggests that increasing landscape diversity by the addition of
dedicated biomass crops could enhance pest suppression services in associated annual crops.
Indeed, we found that farms in more diverse agricultural landscapes in North Central US use less
insecticides than those in more simplified landscapes [64, 65]. Explicitly incorporating
biocontrol services into bioeconomic models suggests that farmers may be willing to supply

some forms of biomass (crop residues) at lower prices [66].

3.5 Perennial grasslands supported greater bird abundance and diversity.

Fletcher et al. [35] showed that the diversity of vertebrates in general, and birds specifically,
would be negatively affected by the conversion of reference habitats to either pine, poplar, or
row crop production systems and that bird species of conservation concern should be most
negatively impacted [67]. In contrast, conversion of row crops to grasslands was predicted to
increase the diversity and abundance of birds at landscape scales [33] In field experiments, a
total of 35 bird species utilized switchgrass and restored prairies during spring migration,
including species of national conservation concern like Henslow’s sparrow (4dmmodramus
henslowii) [38]. During the breeding season, 29 species of birds were found in corn, 35 in
switchgrass, and 45 in prairie habitats [37] Field size was positively correlated with bird species
richness in switchgrass and restored prairies but not corn, and overall richness was lower in
landscapes with more forest cover. Perennial grasslands contained higher arthropod diversity and
biomass, potentially providing more food for grassland birds [31]. During fall migration, a total
of 30 species were found in switchgrass and 38 in perennial grasslands including nine species of
obligate grassland specialists of which four are of conservation concern [37]. Overall, these
studies suggested that perennial grass biomass cropping systems have considerable potential to
enhance bird abundance and diversity in the North Central US, particularly for grassland

specialist species of conservation concern [33, 67].

3.6 Perennial grass cropping systems were enriched in plant-associated microbes.

Cropping systems that promote soil fungi should rely less on nutrient inputs and result in greater
soil organic carbon accumulation than systems dominated by soil bacteria [68]. Biomass of
arbuscular mycorrhizal fungi (AMF) was greater in switchgrass and restored prairie systems than

in the corn system across the network of Extensive sites in Wisconsin [44]. A similar difference
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was observed between the corn and restored prairie systems of the Wisconsin BCSE only two
years after cropping system establishment, although not in the year following establishment [46].
These changes were likely driven by increased rhizosphere size and activity because microbial
lipids from these groups increased in switchgrass rhizospheres relative to bulk soil at these sites
[49]. These microbes, AMF and Gram-negative bacteria, have previously been reported to
receive more carbon from plant exudates [69], making it likely these organisms associate directly
with grasses. We observed that nitrogen fertilization substantially reduced the amount by which
biomass from these groups increased in perennial systems [47], matching previous findings from
other groups [70]. These results are consistent with the classical perspective of symbiotic plant-
microbe associations as revolving around exchanges of nutrients and energy [71], although

inorganic nitrogen fertilization may be directly deleterious to AMF and other soil microbes [72].

In the Extensive sites, microbial community composition and abundance varied with plant
composition, with switchgrass microbial communities intermediate between corn and prairie
fields [44]. At the Wisconsin BCSE, switchgrass and restored prairie treatments had similar
microbial lipid composition under fertilization, but plant-associated microbial lipids were more
abundant in fertilized prairie [47]. We observed lower levels of labile nitrogen in the prairie than
in the switchgrass treatment [54], suggesting plant diversity may have influenced the soil
microbial community indirectly through regulation of soil chemistry rather than directly through

associations.

Soil microbial biomass, as estimated by membrane lipids, responded to perennial biomass
cropping system establishment with unexpected speed and intensity [48, 73]. We observed
minimal differences among cropping systems the year after BCSE establishment [48], which was
consistent with previous reports of minimal changes to microbial community composition
several years after land use change [74]. By the following year, however, microbial biomass
clearly differed among cropping systems [46]. DNA-based estimates of community diversity
responded less strongly to cropping system establishment [55, 80], possibly because DNA from
nonviable organisms can linger in the soil [75]. That said, we observed seasonal variability in the
composition of rhizosphere nitrogen-fixing bacteria (B. Zhang and J. Tiedje, unpublished data),

and it has been proposed that soil microbial communities can turn over on much shorter time
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scales than previously thought [76]. It remains to be seen whether microbial community
function, and thus microbially-mediated ecosystem processes, respond to biomass cropping

system establishment with similar alacrity.

3.7 Carbon cycle dynamics reflect interactions among biomass crops, microbes, and soils.
We found a variety of factors that influenced carbon cycling processes, including cropping
systems, microbial communities, and soil properties. The richness of methane-oxidizing
microorganisms increased with the removal of conventional agricultural management and was
correlated to higher rates of methane consumption [77]. Richness of all bacterial taxa did not
respond systematically to this same gradient, however, and was uncorrelated to total soil
respiration [77]. Overall, microbial community composition appears to be less clearly correlated
to carbon cycle processes conducted by taxonomically and metabolically diverse groups [77];
such processes include the formation and turnover of microbial residues, which are critical
regulators of soil carbon accumulation [78]. Across the Extensive sites, microbial residue
turnover, as inferred from soil neutral sugar concentrations [79], reflected abiotic soil properties
rather than cropping systems or microbial community composition [49]. Despite the importance
of abiotic factors, cropping system rhizosphere properties could also influence this process, as
we found lower amino sugar concentrations in switchgrass fields than in adjacent soils [49].
Similarly, we observed substantial differences in microbial growth efficiency across a range of
land use types, although it is unclear whether these reflected changes in microbial community
composition [45]. Our work forms part of a broader conversation on integrating microbial
properties into soil carbon models [80] and has led us to develop a model that provides a
framework for incorporating microbial physiology. Despite this progress, linking cropping
system properties to microbial community composition and physiology remains a major

challenge to understanding and modeling soil carbon cycle processes [81, 82].

3.8 Exploring trade-offs and synergies in biomass cropping system multifunctionality.

Farmer decisions about whether to plant diverse or simple biomass cropping systems will depend
on their understanding of the relative synergies and trade-offs associated with each system. Many
of the potential synergies stemming from diverse or perennial biomass cropping systems can

only be realized by careful choice of the crop and its placement in the landscape. In a synthesis
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of our data, we found that crop choice plays a critical role in determining biodiversity and
ecosystem service trade-offs [29]. Corn is very productive in our region, out-yielding current
cultivars of switchgrass and restored prairie by approximately 2-3-fold when both the grain and
stover components are considered. Comparisons of perennial grass yields to corn stover showed

that they are quite similar [20].

However, perennial grasslands enhanced several ecosystem services including methane
consumption in the soil, plant pollination, crop pest suppression, and grassland bird sightings,
and also decreased pest arrival into crop fields [29]. The spatial arrangement of biomass crops in
the landscape is critical to levels of biocontrol and abundance of grassland birds, which has
important ramifications for those choosing where in the landscape biomass crops should be
planted. For example, in the North Central US, it is estimated that production of biomass crops
on marginal lands — i.e., lands where the costs of crop production are not covered by the sale of
commodities — could provide approximately 25% of the federal renewable fuel targets while
mitigating greenhouse gas emissions [83]. However, using spatially explicit modeling we
showed that if corn were to be planted on marginal lands at the expense of existing grasslands it
would lead to a 7 to 65% decline in bird species richness across 20% of the region. Conversely,
if restored prairie plantings were to replace existing corn on marginal soils, bird species richness
would increase 12 to 207% [33], and similar results were found for bee abundance and diversity
[27]. In a related study, the expansion of corn on to marginal soil grasslands was projected to
result in a 10 to 64% decline in biocontrol, while expansion of grasslands on to marginal corn
sites could increase biocontrol 13 to 205% on over half of the annual cropland in the region [51].
These findings demonstrate that biomass cropping systems based on perennial grasslands have

the potential to enhance habitats for both grassland birds and beneficial insects.

We have used models to compare ecosystem service outputs from different biomass cropping
systems and to communicate the ecosystem service trade-offs and synergies to farmers and
policymakers. Meehan, Gratton [52] explored trade-offs associated with switching from annual
crops to perennial biomass crops in 67 small watersheds in southern Wisconsin. They found that
strategic replacement of annual crops by perennial grasslands in riparian zones could increase

energy production, carbon sequestration, pollinator abundance, and biological control, while
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simultaneously decreasing phosphorus loadings, nitrous oxide emissions, and unfortunately,
farmer income. While the social benefits of making these changes are large relative to the lost

income, environmental markets and policies are not yet in place to offset these costs to farmers.

To help stakeholders and policymakers visualize the impact of bioenergy-driven land use and
land cover change, we developed the web-based Smartscape ™ decision-support system [84] that
incorporates multiple models relating land use and land cover changes to subsequent supply of
many key ecosystem services [53]. The system allows users to create spatially explicit biomass
cropping system scenarios at local (e.g., farm fields) to regional (e.g., south central Wisconsin)
levels of spatial resolution and compare their performance against a variety of ecosystem service
metrics (Fig 2). Axes in the radar plot are oriented such that more desirable performance outputs

are more positive and individual scaled to the maximum of each axis.

By visualizing the direction and magnitude of tradeoffs and synergies between multiple
ecosystem services, the merits of different cropping systems and their placement in the landscape
can be more accurately understood and evaluated. Perhaps more importantly, multiple
stakeholders can engage in this modeling process, which can build trust and “buy-in” among

constituents with disparate philosophies, attitudes, and goals [85].

4. Synthesis

4.1 Communicating our overall findings.

The choice of biomass crop, and the methods by which they are established and maintained, are
key drivers of biodiversity across multiple taxa and the ecosystem services they support. As our
results show, the outcomes of these management decisions are complex and yet some
stakeholders desire simple guidance. For example, the questions we most often hear are: Are
biofuels good or bad? or Which cropping system is the “best” for biofuel production? Our
research supports only one answer to these simple questions: it depends. In our region, perennial
biomass crops, particularly those based on native perennial grasses, show significant promise to
enhance multiple ecosystem services. However, corn (grain + stover) is two to three times more

productive than the relatively unimproved and unfertilized cultivars of switchgrass and restored
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prairie plantings we examined [29]. We also found benefits of mixed stands of grasses and forbs
in contrast to monocultures of grasses, in particular for reducing variability in yield, the
abundance of natural enemies, pollinators, and overall arthropod populations supporting bird
communities [29]. However, mixtures of grasses and forbs may also present limitations in

processing depending upon pretreatment, deconstruction, and conversion technologies.

Moreover, the importance of where biomass crops will be grown on the landscape has also
emerged as a major theme from our research. For example, the overall amount of grasslands in
the landscape was shown to be an important factor influencing both pollinator and natural enemy
communities [27, 51], as well as bird communities [33]. Land use history will also have strong
effects on the establishment and species composition of mixed-species cropping systems [23,
24]. In addition strategic placement of perennial grasslands could be utilized to reduce soil
erosion and nutrient loss, although many of these scenarios also showed trade-offs with farmer
income based on current prices and support programs [52]. The ability to visually portrait these

tradeoffs via the Smartscape™™ output has been helpful in our outreach work.

To communicate our findings in a way that captures the nuances of these key dimensions,
members of the GLBRC Sustainability leadership team developed a simple mnemonic device
called the “4-P’s”, which we characterize as strategically Placed, Productive, Perennial,
Polycultures [86]. Although this shorthand has some limitations, it has proved useful in
translating our complex results for diverse stakeholder audiences, including researchers from
disparate scientific disciplines within the GLBRC. With the 4-P’s we can highlight the need to
understand where and under what conditions we might expect particular plant production
(Productive), the value of perennial systems such as native grasslands in reducing disturbance
and maintaining soil processes and wildlife (Perennial), the role that species or genetic diversity
plays in our systems (Polycultures) and how benefits of biomass crops affect processes at the
landscape scale and how they in turn are influenced by their landscape surroundings (strategic
Placement). We expect that in the future we may also include additional dimensions including

considerations for how cropping systems are managed.

4.2 Implications for implementation.
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From the outset, our work was informed by a research plan designed to compare alternative
biomass cropping systems and determine their biodiversity responses, while others in GLBRC
studied the biogeochemistry and economics of these systems. Our long-term goal is to provide
science-based information to decision makers to aid in the development of bioenergy policies
that facilitate the design of optimal biomass production systems supporting a range of ecosystem
services that society values. Whether biomass crops will become an integral part of our
agricultural landscapes remains to be seen. Despite attempts at creating a national energy policy
that supports renewable sources of energy, demand for cellulosic biomass has been low. There
are various reasons for this situation, not the least of which is that current fossil fuel prices are
very low because of novel sources of natural gas production. In addition, we continue to be
dependent on annual crops for fuel production because these crops have alternative markets, are
familiar to farmers, and are usually profitable under current economic policies [19, 87-89].
Moreover, development of infrastructure for using cellulosic feedstocks for ethanol production
has only recently begun in our region [90]. Another way to improve adoption perennial biomass
feedstocks is to tie biomass production to alternative uses beyond biofuels. For example,
cellulosic biomass pre-treatments can be used as sources of high protein feed for ruminant
animals [91]. In this way, even in the initial absence of a market for biofuels, demand for high
value intermediate products or co-products, such as sugars or protein, can jump start an

integrated food-energy system that also supports desirable environmental goals [92].

Recognizing the ecosystem service needs and demands of a diverse stakeholder community may
be one way to enhance the use of perennial biomass crops in agricultural landscapes. For
example, the advantages of perennial grasslands have long been recognized by land managers
working to reduce soil erosion and eutrophication of waterbodies in agricultural landscapes [21,
93]. Planting of perennial grasses, strategically placed in the landscape, has the potential to
improve downstream water quality [21], which could offset economic losses from reduced
production of corn, soybeans, or other annual crops planted close to riparian areas. While
grassland-based biomass cropping systems alone may not be economically competitive with
corn, the ability to take advantage of other ecosystem services they provide makes them a
superior choice compared to annual crops. Finding other similar synergies between the benefits

of perennial grasslands (e.g., carbon sequestration, greenhouse gas reduction, year-to-year
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stability and wildlife habitat improvement), and stakeholder groups working toward their own
goals (e.g., flood reduction, climate stabilization, hunting opportunities), can make these

cropping systems more compelling.

In addition to obvious technical, logistical and economic challenges with implementing and
integrating biofuel cropping systems into our existing agricultural landscapes, there are
remaining gaps in our ecological knowledge that also need to be addressed [4]. For example, it
is unclear what the environmental consequences of increasing intensification of biomass crop
production as demand higher productivity becomes paramount (e.g., fertilizer use, annual
harvests) [94]. Also, until now dedicated biomass crops have largely been restricted to small
areas, in localized parts of the US. Widespread adoption could transform areas that had
previously had small amounts of perennial land to a larger fraction, with consequences for
biodiversity-related responses that are area dependent (e.g. [33, 95]). How these effects actually
scale-up will be valuable tests of landscape models at realistic scales [27, 51, 52]. As biofuel
crops are adopted and managed for production at widespread scales, the long-term consequences
of dedicated biofuel production systems will become clearer. Until then, we must extrapolate
from relatively small-scale work, modeling and general principles to build an understanding of

the ecosystem service tradeoffs of different biofuel cropping systems.

5. Conclusions

Funding by the US DOE has allowed the GLBRC Biodiversity Team to examine the implications
of planting cellulosic biomass crops on biodiversity and ecosystem services in the North Central
US. By combining results from research conducted at different spatial scales and studying
multiple taxa, we have developed an understanding of how selection of biomass crops and their
management can affect ecosystem services in future agricultural landscapes. Our work shows
that there is potential for selected biomass crops — especially those that mimic the species
diversity and composition of native grasslands — to provide multiple ecosystem services. While
there are synergies among some services and biomass production, there are also trade-offs that
need to be communicated to stakeholders and policymakers [53]. Our work has also shown that

management practices, particularly establishment techniques, fertilization and harvesting regimes
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can alter biodiversity the biodiversity in a biomass crop and consequently the ecosystem services
that can be provided. Management practices that limit soil disturbance and fertilization and
promote plant diversity are likely to result in more and sustained ecosystem services.
Additionally, the landscape surrounding individual fields is an important determinant of the
types of ecosystem services that are provided from biomass crops. Marginal lands, where soil
fertility or other factors limit crop production may offer opportunities to support renewable fuel
goals, without reducing food production [83]. Our research suggests that for the North Central
US, bioenergy cropping systems based on — strategically-Placed, Productive, Perennial,
Polycultures — are the most likely to ensure delivery of a balanced set of ecosystem services and

should be incentivized.
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Figure captions

Figure 1. Locations of GLBRC Biofuel Cropping System Experiments (BCSE’s), Scale-up
fields, and a subset of the Extensive site network.

Figure 2. Examples of Smartscape ™ (dss.wei.wisc.edu) output.
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Table 1

Table 1. GLBRC studies covered in this review categorized by taxonomic focus, ecosystem

function/process measured or modeled, and the related ecosystem service.

Ecosystem service Taxonomic Ecosystem Reference(s)
focus function/process
Nutrient cycling (supporting) Microbes Nitrogen fixation [48, 49]
Biomass (provisioning) Plants Above ground productivity [20, 23, 24, 54]
Plants Herbivory/Disease [25, 32, 66, 94]
Plants Regional productivity [83]
Pest suppression (regulating)  Arthropods  Predation [15, 25,28, 30, 32,
51, 52, 64, 65]
Pollination (regulating) Arthropods  Pollination [25-28]
Climate stabilization Microbes Methane consumption [40]
(regulating)
Microbes CO; production and [40, 41, 96]
consumption
Plants/ Nitrous oxide emission [47, 54, 73]
Microbes
Plants/ Soil organic matter [45, 49]
Microbes accumulation
Biodiversity appreciation Birds Habitat occupancy, [31, 33, 35-38, 67]
(cultural) community composition
Multiple services Multiple Multiple [18, 29, 52, 53, 63,

87-89, 97]




Table 2

Table 2. Cropping systems established at the Great Lakes Bioenergy Research Center’s
Bioenergy Cropping System Experiment (BCSE) at Arlington, Wisconsin and Hickory Corners,

Michigan'.
System # Rotation Crop Common and Scientific Names
1 Continuous corn corn (Zea mays L.)
2 Annual corn’ corn
3 rotation soybean soybean (Glycine max [L.] Merr.)
4 of: canola canola (Brassica napus L.)
5 Continuous switchgrass switchgrass (Panicum virgatum L.)
6 Continuous miscanthus Miscanthus x giganteus
7 Continuous native big bluestem (Andropogon gerardii Vitman)
grass Canada wild rye (Elymus Canadensis L.)
mix indiangrass (Sorghastrum nutans [L.] Nash)
little bluestem (Schizachyrium scoparium [Michx.] Nash)
switchgrass, “Southlow”
8 Continuous poplar NM-6 hybrid poplar (Populus nigra x Populus maximowiczii)
9 Continuous old field plant community defined by pre-existing seed bank and novel
recruitment
10 Continuous restored prairie  grasses
big bluestem
Canada wild rye
indiangrass

junegrass (Koeleria cristata [Ledeb.] Schult.)
little bluestem
switchgrass, “Southlow”

leguminous forbs

roundhead bushclover (Lespedeza capitata Michx.)
showy tick-trefoil (Desmodium canadense (L.) DC.)
white wild indigo (Baptisia leucantha Torr. & Gray)

non-leguminous forbs

black-eyed susan (Rudbeckia hirta L.)

butterfly weed (4sclepias tuberosa L.)

cup plant (Silphium perfoliatum L.)

meadow anemone (Aneomone canadensis L.)

New England aster (Symphyotrichum novae-angliae [L.] G.L. Nesom)
pinnate prairie coneflower (Ratibida pinnata [Vent.] Barnhart)

showy goldenrod (Solidago speciosa Nutt.)

stiff goldenrod (Solidago rigida L.)

wild bergamot (Monarda fistulosa L.)

'For full details see [20] Table S1, and GLBRC BCSE agronomic protocol
http://Iter.kbs.msu.edu/protocols/122

*System numbers refer to the entry point crop at the start of the rotation. In 2012, the corn-soybean-canola
system was replaced by a continuous corn + cover crop system and a corn-soybean + cover crop system
with two entry points.


http://lter.kbs.msu.edu/protocols/122
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