Ecosystems (2017) 20: 917-927
DOI: 10.1007/s10021-016-0077-9

© 2016 The Author(s). This article is published with open access at Springerlink.com

ECOSYSTEMS

=
@ CrossMark

Reduced Snow Cover Increases
Wintertime Nitrous Oxide (N,O)
Emissions from an Agricultural Soil
in the Upper U.S. Midwest

Leilei Ruan"? and G. Philip Robertson"**

"W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan 49060, USA; °Great Lakes Bioenergy Research
Center and Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA

ABSTRACT

Throughout most of the northern hemisphere,
snow cover decreased in almost every winter
month from 1967 to 2012. Because snow is an
effective insulator, snow cover loss has likely en-
hanced soil freezing and the frequency of soil
freeze—thaw cycles, which can disrupt soil nitrogen
dynamics including the production of nitrous oxide
(N,O). We used replicated automated gas flux
chambers deployed in an annual cropping system
in the upper Midwest US for three winters (De-
cember—March, 2011-2013) to examine the effects
of snow removal and additions on N,O fluxes.
Diminished snow cover resulted in increased N,O
emissions each year; over the entire experiment,
cumulative emissions in plots with snow removed

were 69% higher than in ambient snow control
plots and 95% higher than in plots that received
additional snow (P < 0.001). Higher emissions
coincided with a greater number of freeze-thaw
cycles that broke up soil macroaggregates (250—
8000 pum) and significantly increased soil inorganic
nitrogen pools. We conclude that winters with less
snow cover can be expected to accelerate N,O
fluxes from agricultural soils subject to wintertime
freezing.

Key words: nitrous oxide (N,O); snow cover;
freeze—thaw cycles; soil nitrogen; soil aggregates;
automated chambers; greenhouse gases; climate
change.

INTRODUCTION

With increasing global surface temperatures, snow
cover has decreased globally; in the northern
hemisphere, snow cover has decreased in every
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winter month except November and December from
1967 to 2012 and will likely continue to decrease
(IPCC 2013). Snow is an effective insulator, such
that reduced snow cover can be expected to enhance
soil freezing, increase the depth of frost, and perhaps
increase the frequency of soil freeze-thaw cycles.
Additionally, more extreme weather events may
cause more frequent midwinter thaws in areas of
agricultural importance such as the US Midwest
(Isard and Schaetzl 1998; Pryor and others 2014).
Freeze—-thaw cycles can strongly affect soil carbon
(C) and nitrogen (N) dynamics, including emissions
of nitrous oxide (N,O), a greenhouse gas with
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about 300 times the global warming potential of
carbon dioxide (CO,) that also depletes strato-
spheric ozone. Agricultural soils account for
approximately 60% of anthropogenic N,O emis-
sions worldwide (IPCC 2007). In cold winter re-
gions, high fluxes have been reported during spring
thaws (for example, Goodroad and Keeney 1984;
Christensen and Tiedje 1990; Wagner-Riddle and
Thurtell 1998; Teepe and others 2001; Wolf and
others 2010) and as well higher wintertime fluxes
have been associated with soils more exposed to
freeze-thaw events due to less snow cover (for
example, Dorsch and others 2004; Groffman and
others 2006; Maljanen and others 2007, 2009,
2010; Duran and others 2013).

Higher pulses of N,O following thaw have been
attributed to (1) release of physically trapped N,O
(Burton and Beauchamp 1994; Teepe and others
2001); (2) enhanced microbial activity upon release
of dissolved organic C and N from aggregate dis-
ruption (Christensen and Christensen 1991; Shar-
ma and others 2006) or upon disruption of
microbial cells (DeLuca and others 1992; de Bruijn
and others 2009) and fine roots (Groffman and
others 2001; Tierney and others 2001); and espe-
cially (3) anaerobic conditions induced by thawing
and consequent soil water saturation, conducive to
denitrification (Furon and others 2008; de Bruijn
and others 2009; Kim and others 2012; Risk and
others 2014). In a recent review, Risk and others
(2013) concluded that most N,O emitted on spring
thaws is produced de novo rather than released
from ice-trapped gas, underscoring the potential for
midwinter freeze-thaw events to accelerate N,O
production and release.

The importance of midwinter thaw events in situ
is an important gap in our knowledge of N,O fluxes
especially in agricultural soils (Venterea and others
2012), primarily because they are difficult to eval-
uate without high frequency measurements: thaw-
induced emissions are typically highly pulsed,
occurring within hours of a thaw, and in many cli-
mates and with increasing frequency, freeze-thaw
events occur rapidly. In relatively few ecosystems do
we have continuous sub-daily N,O flux measure-
ments during winter; these include northern forests
(for example, Loftfield and others 1992), cropland
(for example, Wagner-Riddle and others 1996,
2007), and Mongolian steppe (Holst and others
2008; Wolf and others 2010), and in most of these
studies, large pulses of N,O occur mainly at spring
thaw. Snow cover presumably helps to moderate
midwinter fluxes in such systems; it both protects
microbes from sub-freezing temperatures that might
otherwise halt N,O production (Sommerfeld and

others 1993; Schiirmann and others 2002) and as
well protects soils from periodic thaws that would
otherwise accelerate microbial activity (Christensen
and Christensen 1991).

This moderating influence may be especially
important in croplands. Unlike forest and grassland
soils where wintertime N,O snow cover responses
are tempered by vegetative cover (Groffman and
others 2006, Maljanen and others 2007, 2009,
2010; Durén and others 2013), most annual crop-
land soils exposed to snow, unless fall-planted or
cover-cropped, have little winter cover and thus
N,O fluxes may be especially susceptible to snow
cover changes. Very few studies have experimen-
tally assessed the N,O response to reduced snow
cover in annual crops (Dietzel and others 2011)
and none at the sub-daily measurement frequency
needed to overcome the uncertainty associated
with weekly or longer sampling frequencies.

Here we report on a snow manipulation experi-
ment designed to evaluate how future changes in
snow cover may affect soil N,O fluxes in annual
cropland soils, using an automated sampling sys-
tem that captures fluxes four times per day. We
hypothesize that (i) snow reduction will increase
soil freeze—thaw cycles, which will (ii) increase N,O
emissions throughout the winter possibly due to
(iii) the breakup of soil aggregates and accelerated
N mineralization. We hypothesize that snow addi-
tion will have opposite effects.

MATERIALS AND METHODS
Site Description

During three winters (December—-March 2010-
2011, 2011-2012, 2012-2013, hereafter referred to
as winters 2011, 2012, and 2013) we measured
N,O emissions in an agricultural field in southwest
Michigan, USA. The field was located at the Kellogg
Biological Station (KBS) Long-Term Ecological
Research (LTER) site (42°24'N, 85°24’W, elevation
288 m). Soils are Typic Hapludalfs, co-mingled
Kalamazoo (fine-loamy, mixed, mesic) and Oshte-
mo (coarse-loamy, mixed, mesic) series loams
developed on glacial outwash. Average Ap layer
texture is 43% sand, 38% silt, and 19% clay, with
12.9g C kg~ ' and 1.31 g N kg™! and a soil pH of
5.5. Annual precipitation (30-year mean) is
1027 mm with a snowfall of about 1.4 m and an
average snow depth of 148 mm for days when
snow is present. Mean annual temperature is 9.9°C
ranging from a monthly mean of —4.2°C in Jan-
uary to 22.8°C in July (Robertson and Hamilton
2015). Figure S1 shows average snowfall, increas-
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ing winter temperatures and decreasing number of
snow cover days over the past 63 years at KBS (see
Supplementary material).

Experimental Design and Treatments

The experiment was a completely randomized de-
sign with three snow treatments: ambient snow
cover, no-snow cover, and double-snow cover. In
the no-snow treatment, after each snow event
more than 95% of snow was carefully removed
with a hand trowel without disturbing snow den-
sity; in the double-snow treatment, snow was
carefully added to twice ambient levels so as to
maintain existing snow density as closely as possi-
ble. Each treatment was replicated four times
within a larger field for a total of twelve randomly
located 4 x 4 m plots in which N,O fluxes were
measured and soils sampled (described below).
New plots were established each year within the
field to avoid any residual effects of the prior year’s
snow cover treatments.

The field containing treatment plots was man-
aged as a no-till corn (Zea mays L.)—soybean (Glycine
max L.)-winter wheat (Triticum aestivum L.) rotation
according to regional norms (Robertson and
Hamilton 2015). In 2011, the plots were in winter
wheat (planted in November, 2010), in 2012, in
corn (planted in May, 2012), and in 2013, in soy-
bean (planted in May, 2013). All crops received
conventional chemical inputs including pre- and
post-emergence herbicide and fertilizers according
to regional best management practices and inte-
grated pest management protocols. Nitrogen fertil-
izer as urea ammonium nitrate was injected into
the soil at ~10 cm depth at standard rates: wheat
received 84 kg N ha™' in early spring, corn re-
ceived 168 kg N ha™' split between planting in
May and side-dressing in June, and soybeans re-
ceived 7 kg N ha~! at planting as starter N. Crop
residues were left on the soil surface. There were
no cover crops although fall-planted winter wheat
had germinated and was present on all plots during
winter 2011.

Nitrous Oxide (N,O) Emissions

Wintertime N,O fluxes (December—March) were
measured in each plot with a fully automated flux
chamber system based on that described in Breuer
and others (2000) and Scheer and others (2013).
Each of the twelve 16 m” treatment plots contained
a 50 cm x 50 cm x 38 cm high chamber mounted
on a 15-cm-high base embedded 5 cm into the soil
and left in place for the duration of each winter.
When the treatment snow depth was higher than

chamber height, 50-cm extensions were installed
in all treatments and then removed following
sublimation or snowmelt to maintain measurement
sensitivity.

Each chamber was sampled four times per day at
6 h intervals. During sampling, the chamber lid
was closed and headspace samples were pumped to
a gas chromatograph located in a nearby trailer.
N,O concentrations were measured four times
from each chamber at intervals of approximately
30 min. N,O flux was calculated using linear
regression of the N,O concentration (ppbv) against
time for each of the four samples following tem-
perature and pressure corrections. Three standards
were injected at the beginning and end of each
sampling period. The system also collected an air
sample from each chamber prior to chamber clo-
sure. Gas samples were directly analyzed by gas
chromatography (SRI 8610C with custom sample
acquisition, Torrance, CA, USA). Gases were sepa-
rated on a Restek packed HS-Q (3.7 m, 60/80
mesh) column in an oven at 60°C, and then N,O
was analyzed with a *Ni electron capture detector
at 350°C with N, 5.0 UHP (Linde, USA) as the
carrier gas.

Soil temperature at 0-5 cm depth was measured
every 30 min using HOBO pendant temperature
data loggers (Onset Computer Corporation, Pocas-
set, MA, USA) installed in pairs in each plot. Log-
gers were calibrated against thermocouples (Omega
Engineering, Inc., Stamford, CT, USA) in the lab,
and differences were statistically indistinguishable
over a range of —0.8 to 11°C (mean R? = 0.995,
SD = 0.005, n = 8). Freezing-degree hours were to
define the duration when soil temperature was
below 0°C. One freeze-thaw cycle was defined as
when soil temperature increase from below 0°C to
above 0°C. Air temperature was recorded at a
weather station within 100 m of the study site
(http://1ter.kbs.msu.edu/datatables/7). In addition,
to approximate changes in the importance of win-
tertime vs. annual N,O emissions, we obtained
growing season N,O emissions data from biweekly
measurements of non-automated static chambers
at four nearby plots with the same soil properties
and identical agricultural management (http://lIter.
kbs.msu.edu/datatables/28).

Soil Inorganic Nitrogen

Total available N including ammonium (NHj) and
nitrate (NO3) availability was estimated using
in situ ion exchange resin strips to minimize sam-
pling disturbance (Ruan and Robertson 2013).
Three pairs of anion and cation resin strips
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(2.5 cm x 10 cm x 0.62 mm thick; GE Power &
Water, Trevose, PA, USA) were buried directly to a
soil depth of 12 ¢cm in each treatment plot one day
before the experiment commenced each winter
and left in place for the season. After collection at
the end of the season, 35 ml of 2.0 M KClI per resin
strip were added to a polyethylene cup that was
then shaken for 1 h at 40 rpm on an orbital shaker
(IKA KS 501, Wilmington, NC, USA). A 5 ml ex-
tract was then analyzed for NH; and NO;3 on a
continuous flow analyzer (Flow Solution IV, OI
Analytical, College Station, TX, USA) using colori-
metric techniques.

Water-Stable Aggregate Distribution

Soil aggregate distributions were determined before
and after each winter season using the water-
stable aggregate method (Elliott 1986; Grandy and
Robertson 2006). On each sample date, five 12-cm-
diameter soil cores (0-10 cm depth) were taken
from each treatment plot, put through an 8-mm
sieve and air dried at 25°C. Three 50-g air-dried
subsamples from each plot were then wet-sieved in
water through a series of 2000-, 250-, and 53-pm
sieves to obtain four size fractions: 2000-8000 pm
(large macroaggregates), 250-2000 uym (small
macroaggregates), 53-250 pm (microaggregates),
and less-than-53 pm (silt + clay particles). Before
wet-sieving, soils were submerged in water on the
surface of the 2000-pm sieve for 5 min. Then soils
were sieved under water into a stainless steel pan
by moving up and down over 2 min with a stroke
length of 3 cm for 50 strokes. Soils remaining on
the sieve were oven-dried at 60°C for 48 h. Soils
passing the 2000 um sieve and remaining in the
pan were then wet-sieved through the 250-um
sieve (50 strokes) and then the 53-um sieve (30
strokes). Sand content was determined by placing
soil from each of the size classes larger than 53 pm
in sodium hexametaphosphate (0.5%) and shaking
for 48 h on a rotary shaker at 190 rpm and then
sieving through a 53-um sieve. The mean weight
diameter (MWD) of sand-free aggregates was then
calculated as the sum of products of the mean
diameter of each size fraction and the proportion of
the total dry sample weight (van Bavel 1949).

Data Analysis

We took one week before the first snow (usually
early December) as a starting point and one week
after the last snow (usually late March) as the
ending point for each winter’s experimental period.
Cumulative N,O fluxes over the period were cal-

culated by linear interpolation of hourly fluxes
between the every 6 h sample events. Statistical
analysis was conducted in SAS 9.2 (SAS Institute,
Cary, NC, USA). Treatment means (N,O fluxes,
inorganic N, aggregate size, temperature, freezing
hours and freeze-thaw cycles) were compared
using one-way ANOVA with LSD in Proc Mixed at
the o =0.05 level. Linear regression between
cumulative N,O fluxes and soil total available N
was conducted in PROC REG. Normality of the
residuals and homogeneity of variance assumptions
were checked using stem-and-leaf box and normal
probability plots of the residuals, and using Le-
vene’s test. All data reported here are openly
available on Dryad (Ruan and Robertson 2016).

REsuLTs
Snow Depth and Soil Temperature

Snow fall for the winters of 2011-2013 totaled 942,
767, and 959 mm, respectively. These rates are
lower than the average 1376-mm snowfall for the
past 60 years (Figure S1A). Likewise, the total
number of days with snow cover for the three
winters were 58, 33, and 43 days, lower than the
60-year average of 66 days per winter (Figure 1B).
Over the three winters, average air temperature
ranged from —0.20 to —3.57°C, part of a general
wintertime warming trend (Figure S1C).

Average soil temperatures (0-5 ¢cm depth) in the
no-snow treatment were 0.36 and 0.44°C colder
than in the ambient and double-snow treatments,
respectively, for all three winters (P < 0.05; Table 1
means). The no-snow treatment also experienced 29
and 47% more freezing-degree hours (P < 0.05)
than the ambient and double-snow treatments and 2
and 2.3 times more freeze—thaw cycles (P < 0.05;
Table 1 means). During periods with snow cover,
soil temperatures under the double-snow treatment
appeared to fluctuate less than in the other treat-
ments, while soil temperatures in the no-snow
treatment warmed more quickly in response to in-
creased air temperature (Figs. 1, S2).

Soil N,O Fluxes

Soil N,O fluxes ranged from undetectable to
132 + 21 pg N,O-Nm *h~! during the three
winters. N,O fluxes in the no-snow treatment
fluctuated more widely than did those in the
ambient and double-snow treatments (Figure 1,
S2). High fluxes occurred mostly with the onset of
warm periods when soil temperatures increased to
above 0°C. For instance, soil temperature stayed
below 0°C on December 30, 2010 and increased to
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Figure 1. Winter 2011
dynamics. A Ambient
snow depth, B mean soil
temperature at 0-5 cm
depth, and C daily soil
N,O fluxes for all snow
treatments. Error bars for
temperature and N,O flux
(n = 4) omitted for
clarity. Long-term data
appear in Figure S1, and
data for winters 2012 and
2013 appear in Figure S2.

Snow treatment

Mean soil temperature (°C)

Freezing hours (% of total hours)

Freeze-thaw cycles (n)

Winter 2011
No snow
Ambient
Double snow

Winter 2012
No snow
Ambient
Double snow

Winter 2013
No snow
Ambient
Double snow

—0.76 (£0.07)?
—0.13 (£0.05)°
—0.09 (£0.05)°

0.66 (£0.04)?
0.89 (+0.06)°
1.00 (+0.11)°

—0.51 (4+0.09)?
—0.29 (£0.03)°
—0.19 (£0.05)°

1878 (82.6%)?
1534 (69.8%)"
1416 (70.1%)°

485 (23.3%)?
146 (7.1%)°
74 (3.6%)°

1514 (65.1%)°
1318 (56.0%)°
1142 (49.0%)°

492
27[)
24"

372
12°
9b
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28>
26°

Data were collected from snow treatments (no snow, ambient, and double snow) between December of the prior year to March of the year noted. Freezing hours refer to the total
time the soil temperature was below 0°C (percent of total winter hours in parentheses). Mean soil temperatures (mean % S.E), freezing hours, and freeze—thaw cycles that are

significantly different from one another within years (P < 0.05) are noted with

different letters within columns.

above 4.8°C across all snow treatments on January
1, 2011. During these two days, N,O fluxes reached
their seasonal peaks across all treatments (Fig-
ure 1). High fluxes tended to persist for a few hours
to 1-2 days.

For all three winters, N,O emissions were sig-
nificantly higher in the no-snow treatment than in
the ambient and double-snow treatments, whereas
there were no significant differences in N,O emis-
sions between ambient and double-snow treat-
ments (Figure 2A). On average, over all three
winters, N,O emissions in the no-snow treatment
(9.19 £ 0.61 ug N,O-Nm > h™') were 69 and
95% higher than in the ambient (5.43 + 0.31 pg

N,O-N m 2 h™!') and double-snow (4.71 + 0.17 pg
N,O-N m~2 h™') treatments (P < 0.001).

Snow removal significantly increased (P < 0.05)
the apparent seasonal importance of wintertime
N,O emissions regardless of annual crop type
(Figure 2B). Assuming that the growing season
flux is adequately captured by static chamber
sampling, for the 2011 wheat year, wintertime
fluxes in the no-snow treatment were 17.6 £ 1.5%
of total annual fluxes, as compared to 12.1 + 1.4%
for the ambient and 9.0 & 0.9% for the double-
snow treatments. During the 2012 maize year,
wintertime fluxes were 8.2 £+ 1.4% in the no-snow
treatment as compared to 5.1 + 0.1% for the
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Figure 2. Soil N,O emissions. In different snow treatments for the winters 2011-2013, A average wintertime N,O fluxes
and B proportion of annual N,O emissions represented by wintertime fluxes. Error bars are standard errors (n = 4 replicate
plots). Treatments within a season marked with different letters are significantly different from one another (P < 0.05). C
Relationship between cumulative N,O fluxes and soil inorganic nitrogen availability measured with resin strips (0-10 cm
depth) for all snow treatments over the winters 2011-2013 (R* = 0.37, P < 0.001, #n = 36).

ambient and 4.3 £ 0.2% for the double-snow aggregate size fractions among snow treatments

treatments. For the 2013 soybean year, the win-
tertime proportions of total annual flux was
189 £1.7% for the no-snow treatment,
14.2 &+ 0.6% for the ambient treatment, and
13.2 + 1.4% for the double-snow treatment.
Overall, snow removal appeared to increase the
wintertime proportion of annual N,O fluxes by
46% compared to ambient and by 77% compared
to double snow. The difference between the
ambient and double-snow treatment was not sig-
nificant at the P < 0.05 level.

Soil Aggregation

Before each winter experiment commenced, there
were no significant differences in any of the four

No snow

0.56 g9’
(A =98%)*

03699’
(A =28%)

044949’
(A =-38%)*

[C] Microaggregates

Ambient

(Figure S3). At the onset of the experiment in all
three winters, the 2000-8000 pm macroaggregate
plus 250-2000 pm macroaggregate fractions were
on average about 0.7 g g~ ' soil and the 53-250 pm
microaggregate plus less-than-53 pm silt + clay
fractions were about 0.3 g g~ '. At winter’s end, soil
macroaggregates in the no-snow treatment had
declined significantly (P < 0.05) by 38% to
044 ¢g g*1 on average as compared to pre-winter
soils, whereas the microaggregate and silt + clay
fraction increased by 98% to 0.56 g g~ ' (Figure 3).
In contrast, soil aggregate size did not significantly
change in the ambient and double-snow treat-
ments, although the macroaggregates fraction de-
clined 11% and microaggregate and silt + clay
fraction increased 28% in the ambient treatment.

Double snow

0.30g4g
(A=10%)

0649g’
(A=-11%)

0.70g4g"
(A =-3%)

B Macroaggregates

Figure 3. Soil aggregate dynamics. Proportional distribution of surface soil (0-10 cm depth) aggregates among size
fractions in all snow treatments over winters 2011-2013. Macroaggregates include the 2000-8000 pum and 250-2000 pm
size fractions; microaggregates include the 53-250 and <53 pum fractions. Values indicate average aggregate densities at
the end of each winter; values in parentheses indicate the change from pre-winter densities (Figure S3). Asterisks next to
parentheses indicate significant differences between pre- and post-winter densities (P < 0.05).
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In addition, the mean weight diameter (MWD) of
sand-free aggregates was significantly (P < 0.05)
lower in the no-snow treatment than in the
ambient and double-snow treatments for all three
winters (Figure S4).

Soil Inorganic Nitrogen

Snow removal significantly increased both soil NH;
and NOj availability over the winter (P < 0.05).
Specifically, resin strip NO3 concentrations in the
no-snow treatment (70.3 £ 3.7 ug cm %) were 22
and 45% higher than NO3 concentrations in the
ambient (57.8 & 2.8 ug cm ?) and double-snow
(48.5 £ 5.1 ng cm™?) treatments. Resin strip NH;
concentrations were very low (<7.8 ug cm ?)
compared to NO3~ concentrations, but even so
NH, concentrations in the no-snow treatment
were also significantly higher than NH; concen-
trations in the other treatments (P < 0.05).

Soil inorganic N concentrations explained 37 %
of mean cumulative N,O fluxes. N,O fluxes
showed a positive linear relationship with the sum
of NH; and NOj resin concentrations: N,O fluxes
(g Nha™') = (1.40 x available N (ug cm2) + 61.5)
(R* = 0.37, P < 0.001) (Figure 2C).

DiscussioN

Our results support the hypothesis that reduced
snow cover can increase N,O emissions as a result
of highly intermittent soil warming that increases
the frequency of soil freeze-thaw cycles. On aver-
age, across all three winters, snow removal signif-
icantly stimulated N,O emissions by 69% relative
to ambient conditions and by 95% relative to
double-snow conditions. Fluxes were highly epi-
sodic, lasting for a period of hours to days following
intermittent soil freeze-thaw cycles, which oc-
curred 1.7 to 4 times more frequently in the no-
snow treatments than in the ambient and double-
snow treatments.

Snow removal also appears to have enhanced the
importance of wintertime fluxes at our site. If static
chambers reasonably estimate growing season N,O
emissions (see below), then under ambient (non-
snow removal) conditions winter fluxes made up
about 9% of annual fluxes: about 12% of annual
fluxes for the wheat in 2011, around 5% for the
maize in 2012, and around 10% for the soybean in
2013. Snow removal increased these proportions
almost 50%, on average.

Our ambient proportions are lower and in
contrast to those estimated by Teepe and others
(2000) for winter canola (Brassica napa) in Ger-

many fall-fertilized at 200 kg N ha™' y™' and

Johnson and others (2010) in Minnesota USA for
alfalfa (Medicago sativa), where wintertime N,O
emissions appeared to account for up to 58 and
65% of total annual emissions, respectively. Our
lower estimate may be the result of a more fre-
quent sampling interval (four measurements per
day versus weekly for the canola and biweekly
for the alfalfa studies) that better captures both
low and high flux periods and avoids interpola-
tion bias (Barton and others 2015; see Chamber
Methodology below). Alternatively, N fixation
(alfalfa) and fertilizer (canola) in these other
studies may have stimulated more wintertime
N,O production via added soil nitrogen. Another
possibility is that our growing season fluxes are
overestimated by the static chamber technique, in
which case our wintertime proportions would be
higher, though it seems more likely that our
growing season fluxes may be underestimated
because they are not consistently event based
(Gelfand and others 2016).

Elevated N,O emissions in the no-snow treat-
ment can likely be attributed to three main factors.
First, increased freezing time enhances the mor-
tality rate for microbes and fine roots, resulting in
the release of labile organic carbon and N into the
soil (DeLuca and others 1992; Groffman and others
2001; Tierney and others 2001). Snow removal
decreased soil temperatures and increased freezing
time in all three winters: the no-snow treatment
had, on average, 283 more hours below 0°C than
did the ambient treatment (Table 1). Likewise, the
double-snow treatment had 132 fewer hours below
0°C. Loss of snow cover insulation resulted in
freezing period differences that likely caused sub-
strate availability differences among snow treat-
ments. Heterotrophic denitrification, a dominant
source of N,O in these soils (Ostrom and others
2010) is strongly affected by carbon availability
(Robertson and Groffman 2015), especially during
winter when thawed soils are saturated and largely
anaerobic.

Second, the physical disruption of soil aggregates
due to more freeze-thaw cycles where snow is ab-
sent may release previously protected organic matter
to microbial attack (Christensen and Christensen
1991; van Bochove and others 2000), resulting in
greater substrate availability where snow is absent.
Soils in our no-snow treatment experienced twice
the number of freeze-thaw cycles as ambient snow
treatments, and this substantially reduced the den-
sity of macroaggregates—by 38% in the no-snow
treatment, accompanied by a 98% increase in the
microaggregate and silt + clay fraction. The breakup



924 L. Ruan, G. P. Robertson

of large aggregates can also expose previously pro-
tected organic matter to oxygen concentrations
more favorable to decomposition (Six and others
1999).

Freeze-thaw destruction of macroaggregates
in situ has also been shown by others. In the Ah
horizons of French alpine soils, Cécillon and others
(2010) found that macroaggregates were dimin-
ished by 25% in plots with freeze-thaw events as
compared to warmer frost-free plots. Edwards
(2013) reported a 28% average decrease in larger
aggregates (4750-9500 um) together with a 33%
increase in smaller aggregates (<500 pm) in arable
soils of the Atlantic coast of Canada following
multiple freeze-thaw cycles in the lab. On the
other hand, Steinwig and others (2008) found no
effects on aggregate size distributions in a snow
removal treatment in forested soils at Hubbard
Brook, NH, USA. They hypothesize that high water
and organic matter contents together with slow
rates of freezing can minimize structural disruption
by freeze—thaw cycles in their forest soils.

A third factor contributing to elevated N,O
emissions with snow removal is a greater avail-
ability of soil inorganic N: both NH," and NO;~
availability were higher in the no-snow treatment
than in the ambient and double-snow treatments,
likely the result of greater mineralization and
nitrification rates due to increased freezing times
and macroaggregate breakup as noted above. Ni-
trate, as an end product of nitrification and an
electron acceptor for denitrification, is the best
single predictor of N,O fluxes in these soils (Gel-
fand and Robertson 2015), such that increased N,O
production might be expected with greater inor-
ganic N availability. Moreover, Clark and others
(2009) reported net N mineralization and nitrifi-
cation in agricultural soils at sub-zero temperatures
and inhibited N immobilization, which can also
lead to more available N in frozen soils.

Inorganic N availability was assessed here with
resin exchange strips, which measure both the
static soil N pool and the N ions that flux through
the mineral pool (Bowatte and others 2008). Resin
strips can thus more readily represent temporally
variable N availability than can conventional soil N
extractions, and this may explain the difference
between our N results and those of Groffman and
others (2006), who did not find a snow removal
effect on inorganic N availability.

Year-to-year differences in freeze-thaw cycles
likely also contribute to normal variability in
wintertime nitrate availability in these soils. The
number of cycles in the ambient treatment varied
from 12 to 28 during the three years of this

study, with fewer cycles in 2012, the only year
when the mean wintertime soil temperature was
above 0 (Table 1). Also contributing to year-to-
year nitrate variability will be management fac-
tors such as the prior crop with its specific fer-
tilizer and residue inputs, although these
differences cannot explain snow cover effects
since all snow cover treatments occurred in the
same cropping system each year.

Chamber Methodology

Our results provide a strong argument for using
automated chambers with relatively high sampling
frequency (multiple times per day vs. weekly to
monthly manual chamber sampling) to investigate
episodic N,O fluxes such as those that occur during
midwinter soil thaws. Automated chambers have
several advantages over manual chamber methods,
especially in winter. First, they reduce soil distur-
bance that can be introduced by frequent manual
sampling (Scheer and others 2013). Soil com-
paction can reduce porosity and increase water-
filled pore space (WFPS), which in turn limits
oxygen diffusion rates and results in an anaerobic
state favorable for denitrification (van Groenigen
and others 2005; Ball and others 2008).

Second, automated chambers can more precisely
estimate total N,O emissions with a sub-daily
sampling frequency that captures episodic events
(Barton and others 2015). For example, in this
study, a thaw-associated N,O peak of 118 £+ 34 ug
N,O-N m~2 h~! was observed on December 31,
2010, in the ambient snow treatment. Two weeks
later (on January 14, 2011), which is a commonly
reported interval for N,O sampling (for example,
Groffman and others 2006; Johnson and others
2010), the measured flux was 4.60 + 4.31 nug N,O-
N m 2 h™'. Linear interpolation between these
sampling dates provides a cumulative flux estimate
of 207 + 53 g N,O-N ha? for the period, com-
pared to 62.0 £ 7.9 g N>O-N ha 2 estimated by our
sub-daily measurements. Thus using the two-week
interval would have inappropriately increased the
wintertime N,O contribution to the annual budget
from 12.1 £ 1.4 to 22.4 + 2.2%.

On the other hand, underestimation could as
easily have been the case had other days been
sampled, since most fluxes remained high for only
2-48 h. Parkin (2008), working in an chisel-
plowed maize/soybean field in Iowa, found that the
deviation of cumulative N,O flux increased as the
sampling interval increased, and that sampling the
data every 21 d yielded estimates ranging from +60
to —40% of the actual cumulative N,O flux.
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Overall Significance

Overall, our finding that reduced snow in cropland
soil accelerates N,O fluxes is in broad agreement
with snow removal findings from northern hard-
wood and boreal upland forests, where weekly to
monthly sampling has shown that snow removal
can increase N,O fluxes by approximately 100%
(Groffman and others 2006; Maljanen and others
2010). Similar trends occur in urban turfgrass
(Durdan and others 2013) and boreal hay fields
(Maljanen and others 2007, 2009). Our study
shows that north temperate annual croplands, with
soils of relatively low organic matter and greater
wintertime exposure to the effects of freeze—thaw
cycles, are also affected by reduced snow cover and
a consequently increased frequency of freeze-thaw
cycles.

The particular significance of our results may rest
with the emissions importance of agricultural soils
in the global N,O cycle. Fertilized agricultural soils
are the largest single source of anthropogenic N,O
flux globally (IPCC 2007); the remainder comes
from livestock waste management (from both
confined and pastured animals), industrial activi-
ties, and biomass burning (IPCC 2014; Robertson
2014). Thus, any increase in the winter flux of N,O
from northern agricultural soils can represent a
significantly enlarged N,O source that is addition-
ally subject to positive reinforcement as the climate
warms.

Are higher wintertime N,O fluxes already
occurring? Average snow cover at our site was 55 %
higher for the 60-year period preceding this study
than it was during this study’s duration, and the
total number of days with snow cover was 32%
higher (Figure S2). For this site, then, higher
wintertime N,O emissions are likely already
occurring.

The global significance of past and future chan-
ges will depend on whether any increases in win-
tertime N,O from northern regions might be offset
by reduced fluxes from more southerly regions,
which would be expected to experience fewer
freeze—thaw cycles. In large part, this will depend
on the extent to which N,O production remains
dependent on substrate made available by freeze—
thaw cycles in these regions or whether other cli-
mate-related factors such as stronger wet-dry cycles
or more active decomposers exert equivalent
influence. The answers to these questions await
further study.

Can increased wintertime fluxes from northern
agricultural soils be avoided? More conservative N
management that reduces the availability of sur-

plus reactive N in soil is an important general
strategy for combating accelerated N,O fluxes
(Millar and others 2010). Another, specific to
wintertime fluxes, is encouraging winter cover
crops (Wagner-Riddle and Thurtell 1998) and
maintaining crop residues that can trap and retain
snow (Qiu and others 2011) and thereby abate the
loss of snow cover that would otherwise occur.
Cover crops would have the additional benefits of
scavenging residual inorganic N (Syswerda and
others 2012) and favoring soil aggregate stability
(Liu and others 2005). That strategies to reduce
surplus soil N can reduce N,O emissions during
other parts of the year and, as well, reduce the loss
of reactive N via other pathways (Robertson and
Vitousek 2009) provides additional reasons to
encourage such solutions now.
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Figure S1. Wintertime weather at the Kellogg Biological Station for 1949-2013. A Snowfall
summed from early November to late April of the following year, B number of days with
snow cover, and C mean daily air temperature (December - March). Data source: Kellogg
Biological Station National Weather Service Station (http://Iter.kbs.msu.edu/datatables/31)
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Figure S2. For Winter 2012 and 2013, A ambient snow depth , B mean soil temperature at 0-
5 ¢cm depth, and C daily soil N,O fluxes for all snow treatments. Error bars for temperature
and N,O flux (n = 4) omitted for clarity. Winter 2011 data appear in Fig. 1.
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Figure S4. Mean weight diameter of sand-free surface soil aggregates (0-10 cm depth). Error
bars represent standard errors based on n=4 replicate plots. Treatments within a season
marked with different letters are significantly different from one another (P<0.05).
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