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Abstract

A novel manifold method of reconstructing dynamically evolving spatial fields is presented for
assimilating data from sensor networks in integrated land surface — subsurface, oceanic / lake
models. The method was developed based on the assumption that data can be mapped onto an
underlying differential manifold. In this study, the proposed method was used to reconstruct
meteorological forcing over Lake Michigan, the bathymetry of an inland lake (Gull Lake), and
precipitation over the Grand River watershed in Michigan. In the first case study, hourly
interpolated meteorological forcing data were used to run a three-dimensional hydrodynamic
model of Lake Michigan to quantify the improvement that results from the use of the new
interpolation method. In the second example, the bathymetry of Gull Lake was reconstructed
from measured scatter point data using the manifold technique. A hydrodynamic model of Gull
Lake was developed and further improved using improved bathymetry. In the last case study,
daily participation data over a six-year period were interpolated over the Grand River watershed
and used as input to an integrated, distributed hydrologic model. All three examples illustrate the
superior performance of the manifold method over standard methods in terms of accuracy and
computational efficiency. Our results also indicate that evaluating the relative performance of
interpolation methods using the cross-validation method can lead to misleading conclusions
about the relative performance of the methods.
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1 Introduction

Water continuously circulates between the Earth’s surface and the atmosphere and moves
through watersheds to become stored underground as groundwater or in surface reservoirs such
as lakes. This circulation is a key aspect of Earth system models or components thereof and
meteorological forcing plays an important role in modeling coupled physical - biogeochemical
processes. Process-based modeling approaches describe land-lake-atmosphere interactions by
explicitly considering the spatiotemporal variability of meteorological forcing fields (Xue et al.,
2015). There are a variety of numerical ocean models, such as POM (Blumberg, and Mellor,
1987), ROMS (Haidvogel and Beckmann, 1999), and FVCOM (Chen et al., 2006), and their
performance is highly dependent on how realistic the distributions of surface forcing fields (wind
stress, heat flux, precipitation, evaporation) are. These forcing fields can be obtained from
observational data, the output of a weather forecast model, or a combination thereof (Xue et al.,
2015). In all cases it is crucial to use a suitable interpolation method in order to assimilate
observations into the models, and estimate variables at unsampled locations and/or times. For
instance, currents in large lakes such as the Laurentian Great Lakes are mostly controlled by
wind. Therefore, by improving the representation of wind fields in models of lake circulation, we
expect to describe coupled biophysical processes in lakes more accurately. For example, Safaie
et al. (2016) demonstrated that improved representation of meteorological fields based on natural
neighbor interpolation of weather station data produced superior results for currents and bacterial
concentrations relative to similar results based on a nearest neighbor interpolation of the same

data.
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In situ observations generally have sparse and inhomogeneous distribution in space and time,
and it is often infeasible to accurately reconstruct the true field from the data. However, more
information about the structure of the field and its evolution, allows for better approximations
(Barth et al., 2008). Various deterministic [e.g., nearest neighbor, natural neighbor, inverse
distance weighting (IDW), spline, polynomial] and geostatistical (e.g. kriging) interpolation
methods have been developed to generate spatial fields. There have been numerous efforts to
compare different spatial interpolation methods in order to identify the best method for a given
model application. Many researches have used cross-validation for assessing the performance of
the interpolation methods. In this method, a subset of the original dataset is withheld to be used
later for validating the interpolated field constructed from the rest of the observational data.
Mean error (ME), root mean square error (RMSE) and the coefficient of determination (R?) are
commonly used to evaluate the performance of each interpolation method (Suparta and Rahman,
2016). However, every problem has a unique method of interpolation that works best for a given
distribution of observations and the intended use of the interpolated data. Density of a sensor
network, spatial variability of the variable of interest and its distribution, and observational
errors, all influence the accuracy of the interpolated field (MacEachren and Davidson, 1987). For
example, Luo et al. (2008) compared seven spatial interpolation techniques to identify which
method produced the best estimation of the wind speed data recorded across England and Wales.
Their study showed that kriging is the best method, and that the thin plate spline method had
higher ME and RMSE values. However, in (Suparta and Rahman, 2016) the performance of the
thin plate spline interpolation based on the RMSE and R? values was found to be better than
kriging for less dense data points over the selected interpolation surface. Therefore, comparing

interpolation methods using the cross-validation method without considering the data structure
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and the purpose of interpolation is not guaranteed to produce the best representation of the

underlying data.

Precipitation is another important component of the water cycle. Spatial distribution of
precipitation influences the hydrologic response of a watershed (Daly et al., 2002). Basin
responses of rainfall-runoff processes are closely related to the spatial variability of precipitation
(Anquetin et al., 2010; Bell and Moore, 2000; Beven and Hornberger, 1982; Obled et al., 1994;
Schuurmans and Bierkens, 2007; Syed et al., 2003; Tetzlaff and Uhlenbrook, 2005).
Hydrologists usually use rain gauge data to obtain rainfall patterns over a watershed. Bell and
Moore (2000) found that the responses of a distributed hydrologic model are sensitive to the
locations of the rain gauges within the catchment and hence to the spatial variability of rainfall.
Nicétina et al. (2008) performed numerical experiments to study the effects of different spatial
resolutions of rainfall on various catchments. They found that the catchment response is sensitive
to the spatial distribution of rainfall only when water residence time in the channels is
comparable to the hillslope travel time; thus rainfall spatial heterogeneity likely plays a more
important role in affecting the runoff response of large watersheds (typically larger than 103

km?) than smaller watersheds.

Various efforts have been devoted to improving the representation of spatially-distributed
rainfall fields in hydrologic modeling. For example, Ly et al. (2011) compared seven
interpolation methods for daily rainfall and found that geostatistical methods such as kriging and
IDW algorithms significantly outperformed the Thiessen polygon method, which is also known
as the nearest neighbor method. Sun et al. (2000) tested different rainfall estimation methods on
a 1060 km? catchment in Australia to evaluate the flood modeling capabilities of a hydrologic

model and found that blending radar and rain gauge data in a co-kriging framework provided
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better performance compared with an approach based on kriging of the rain gauges data alone.
Masih et al. (2011) used a semi-distributed model, Soil Water Assessment Tool (SWAT), to
simulate the Karkheh River basin in Iran with two different precipitation interpolation methods.
Their results, based on a comparison of simulated and observed discharges using the metrics of
coefficient of determination and the Nash-Sutcliffe efficiency (NASH), showed that precipitation
interpolation with inverse distance and elevation weighting technique produced better

performance relative to the SWAT default method of nearest neighbor method.

Accurate representation of geophysical features such as topography and bathymetry is also
important in earth system models and their components, and model performance depends on the
interpolation method used to assign the topographic information over a numerical mesh in
processed-based models. Yan et al. (2014) compared different interpolation methods, including
IDW, global polynomial interpolation, local polynomial interpolation, radial basis functions,
ordinary kriging (OK), simple kriging (SK), universal kriging (UK), and co-kriging (CK) to
determine the water/land boundary point elevation based on in situ water level data from 14
control stations in Dongting Lake. They used a cross-validation method to select the optimal
method, which was found to be the OK method. Merwade (2009) studied the effect of spatial
trend on interpolation of river bathymetry, and compared the performance of different
interpolation methods. The number of measurements and their spatial arrangement, as well as
channel morphology and geology were found to influence the accuracy of the interpolation
results (Merwade, 2009). Due to the effects of these and other factors on the performance of
various methods, comparisons of different spatial interpolation methods could not point out the

best universal interpolation method (Li and Heap, 2008; Siljeg et al., 2015).
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In this paper, we propose a novel manifold method to assimilate different types of
spatiotemporal data in integrated earth system models based on the hypothesis that an
environmental dataset (including independent variables such as longitude, latitude, and time, and
the measured variables of interest) can be mapped onto an underlying differential manifold. A

manifold (M ) is an n-dimensional topological space such that each point of M and its

neighborhood can be approximated by a small flat piece in the Euclidean space, R". We can
think of a manifold as a set of low-dimensional curves and surfaces within higher dimension
Euclidean spaces (Victor and Pollack, 2010). Some typical examples of manifolds are smooth
surfaces, such as a torus (Fig. 1a) or a sphere (Fig. 1b), where each point and its neighborhood
can be approximated by a small flat linear-subspace within the three-dimensional Euclidean
space. Another example of a manifold in a high dimensional space is a Calabi-Yau manifold
which has found important applications in theoretical physics (e.g. superstring theory). Fig. 1c
shows a two-dimensional cross-section of a six-dimensional Calabi-Yau manifold. Surfaces of
all these three manifolds are not a Euclidean space. The laws of the Euclidean geometry,

however, are valid locally.

Working directly in the high dimensional space generally involves dealing with complex
algorithms. Modeling the high dimensional data using manifolds with fewer degrees of freedom
has captured a great deal of attention recently (Zhang et al., 2016). The use of low-dimensional
manifolds not only reduces computational load for further processing, but also helps visualize the
entire dataset, which is an important initial step to make sense of the data before proceeding with

more goal-directed modeling and analyses (Ma et al., 2011).

The classic method of principal component analysis (PCA), including the more recent Robust

PCA (Candes et al., 2011), is arguably the most popular framework for approximating a set of
6
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high-dimensional data points by a low dimensional linear space. PCA does not work well when
the underlying data structure is non-linear. Under such scenario, PCA methods require
approximating the input data points using higher dimensional linear spaces to reduce the
approximation error. Instead of assuming that the input data follow a linear structure, an
alternative solution is learning the true underlying low-dimensional structure of the data. The
problem of non-linear dimensionality reduction for a set of high dimensional data points is
known as manifold learning. Examples of early works for non-linear dimensionality reduction
include Isomap (Tenenbaum et al., 2000), local linear embedding (LLE) (Roweis, 2000), and
Eigenmaps (Belkin and Niyogi, 2003), which have been used to learn the manifold structure of
data. Since then, the manifold model has been exploited extensively in numerous applications
such as face recognition, action classification, segmentation, image denoising, image/video
super-resolution, and multi-scale image analysis (Carin et al., 2011; Dang et al., 2013, 2014;

Dang and Radha, 2015).

Most of the above manifold learning methods have been inspired by linear techniques, mainly
based on the assumption that non-linear manifolds can be approximated by locally linear parts
(Mordohai and Medioni, 2010). Two pioneering works in this area are the Isomap approach
(Tenenbaum et al., 2000) and the LLE algorithm (Roweis, 2000). The Isomap algorithm aims to
preserve the geodesic distance among points from the input dataset. On the other hand, the LLE
algorithm targets the local linear geometry of neighbors in a manifold. Numerous works on
manifold learning have been further developed. A comprehensive review of prior works can be

found in (van der Maaten et al., 2009).

Data assimilation methods seek to estimate both model parameters and model states and

significant progress has been made in the development of joint state-parameter estimation

7



166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

methods such as the ensemble Kalman filter (EnKF) and its variants (Moradkhani et al., 2005;
Evensen, 2006; Pathiraja et al., 2016). The parameters estimated using these approaches are
usually time-dependent although most dynamical models used in earth sciences use time-
invariant parameters. Yang et al. (2007) describe an alternative optimization-assimilation
approach for soil moisture in which they first estimate parameters within a long optimization
window and then estimate model states within a short assimilation window. Due to the
computational nature of the three-dimensional process-based models considered in the present
study, we do not focus on the use of methods similar to the EnKF method. Instead we estimate
optimal (relative to the observations) model parameters and states over the simulation period.
Future papers will focus on the use assimilation methods such as the EnKF with the framework

of manifold methods.

In this paper, the effectiveness of the presented manifold algorithm is evaluated through
assimilation of geophysical and meteorological data in integrated land surface — subsurface and
lake models, although the methods described are general and can be used in many other areas of
computational geosciences. We first apply the proposed method to reconstruct wind fields (time-
varying vector fields) over Lake Michigan. Since currents in Lake Michigan are primarily driven
by wind, we expect to improve the simulation of hydrodynamic and biophysical variables of
interest by improving the wind fields. Instead of relying on the cross-validation of interpolated
wind data, however, we use a well-tested hydrodynamic model of Lake Michigan and compare
current measurements with simulated currents to test the interpolation methods. The manifold
methods are used to reconstruct meteorological data including wind fields, cloud cover, dew
point, pressure, shortwave and longwave solar radiation, relative humidity, and air temperatures

for improved simulation of circulation in Lake Michigan. Then the method is applied to
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assimilate bathymetry data as a scalar field for use in a hydrodynamic model of Gull Lake - a
relatively large (8 km? surface area) and deep (34 m maximum depth) clear water lake in the in
Kalamazoo County in southwestern Michigan. In the third example, time-dependent fields of
participation are interpolated over the Grand River watershed and used as input for an integrated,
land surface — subsurface processes model (PAWS+CLM; Shen and Phanikumar, 2010; Shen et
al., 2013). Grand River watershed is located in the middle of Michigan’s Lower Peninsula and is
the second largest watershed in Michigan. In this example, the manifold method is tested using
stream discharge outputs of the PAWS+CLM model which has been tested in several catchments

in the past (Niu et al., 2014; Niu and Phanikumar, 2015; Shen et al., 2014, 2013).

2 Materials and Methods

2.1 Manifold approach

Based on Einstein’s theory of relativity, physical events are located on the continuum
(manifold) of space-time. Therefore, station locations and times of observations form a space-
time manifold viewed as a four-dimensional vector space. One way to handle spatiotemporal
interpolation problems, inspired by this concept, is to integrate space and time simultaneously
(Li and Revesz, 2004). An underlying assumption behind this approach is that time and space
dimensions can be treated as equally important (Li et al., 2014). In order to add time as another
dimension of space, time values are needed to be scaled for a spatiotemporal dataset by a scaling

speed (Li et al., 2014; Schwab and Beletsky, 1998). For a point measurement, we can then define
a four-vector P" =(ct,X) where ¢ is a time scale, ¢ is the time coordinate and Z is a three-
dimensional vector space. We assume that the set of high-dimensional data points P (and the

estimated data points £, ) belongs to a differential manifold M , which may be curved and have
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a complicated topology, but the neighborhood of each point is approximately similar to a small
piece of Euclidean space (resembles R”). Since a traditional distance measure is built upon the
geometry of Euclidean space, we adapt the calculation to a neighborhood or a small region of the

assumed manifold.

An example of a one-dimensional curve in Fig. 2 illustrates the general idea of the manifold
estimation approach. The set of points P in Fig. 2 includes sample data points where we have

measured data as well as a point F, where data are missing. For example, in the context of the

wind field data, one full measurement (or data point) includes five components: time, longitude,
latitude, wind speed, and wind direction. The partially missing data point may contain known
components (time, longitude, latitude) and unknown or missing components (wind speed and

wind direction).

Consider a smooth n-dimensional manifold M embedded in a D-dimensional Euclidean space.
Suppose that it is desired to estimate the wind field for a data point £, € R" from a set of

training data points that belong to a manifold M . The space/time coordinates of the point (the
independent variables) are known, however, the data (the dependent variable) are missing. We

e
denote F, = OV € R"as the data point using the superscript 4 to denote the independent

0

variables and the superscript v to denote the dependent variable which is the missing component

of interest here. P €R™is the sub-vector of the known components, and £~ cR™

(n,+n,=n) is the corresponding sub-vector (e.g., wind velocity vector) for the missing

component where F," = V= (u,v) and u, v are the orthogonal components of the wind velocity

10
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(V). The training data points, for example P = {B,P,..,P} in Fig. 2, also include the two

Iz

components P = € R", but there is no missing component here since both dependent and

Z

N 9

independent variables are assumed to be known at the nearby stations. Given a point " € R™,
the algorithm locates a set of nearest points to F," based on the distances d(P",F,') between
pairs of points P and £ . In order to determine local neighbors of B, we can calculate the

distances between F,” and either all other points within a fixed radius &, or all of its & nearest

neighbors (Tenenbaum et al., 2000). Then, a tangent space (linear subspace) of the manifold M

. . . . T
at the point F, is created from the set of nearest points (Fig. 3a), denoted by 7, (M ) = {TV}

where T",T" denote the tangent spaces for the independent and dependent variables in the data

y7i

P
at Fand F) . Finally, the point P, = Lﬁ }e 1" will be located as the closest point that belongs

v
0

to that tangent space.

To represent the closest distance between a point and a tangent space, we use the Euclidean
distance of an orthogonal projection from that point to the tangent space. Since a tangent space is
a linear space (or affine space in a more general case), one point can orthogonally project into
that space. The question is how to define neighbors for each data point? The underlying idea is
how to define similarity distance among the training data points, and then the overall similarity
matrix. Several methods have been considered in the past, such as k-nearest neighbors (Press et
al., 2007), e-ball method (Allard et al., 2012) or the use of sparse representation theory (Dang et

al., 2014, 2013; Dang and Radha, 2015). To approximate the wind field, we do not focus on
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analyzing a predetermined set of tangent spaces as was done earlier (Dang et al., 2014, 2013),
but instead create a tangent space for each input data point as creating a tangent space for a given

input data leads to a better approximation of the manifold.

The estimation of F,"is performed using the following steps:

1. Given a set of neighboring points, estimate the tangent space 7" at the point of interest, P, :

Details of the method for creating a tangent space from a set of data points are described in
Appendix-A and in Dang et al. (2014). One simple method is to create a tangent space using
singular value decomposition (SVD, Press et al., 2007). By way of an example in Fig. 2, a

tangent space (the line b) is created for P from a set of its neighboring points ( " and B").
This tangent space at B € M is denoted by T".

2. Find the orthogonal projection of F,” onto the tangent space:

The closest point P’ € T" to the given point P" is located at the intersection of the line b and
the line perpendicular to it which passes through the point 2. P’ which is a projection of A"
onto the subspace T" can be represented as an approximation of point P . The orthogonal

projection of vector point £, in a high-dimensional space onto a low-dimensional vector

subspace is given by:
HTM (P0/1): A(ATA)flATR)/I — AA+B)/I (1)

where 4=T7" € R” is a full rank matrix with n < D containing the set of points on the

tangent space of P, and HT,, (R") denotes the projection of A onto the subspaceT". This

12
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projection is derived from the solution of the normal equation 4" 4Ax= A" B which is equivalent
to the associated least squares solution of Ax= P . Due to the difficulty associated with inverting

a general matrix that may be singular or non-square depending on the number of neighboring

points selected in the manifold method, the problem (1) can be posed as a minimization problem
in which the Moore-Penrose pseudoinverse 4° (Golub and Van Loan, 2013) of the original

matrix A is used. The pseudoinverse A" generalizes the concept of matrix inverse and arises in

the minimum norm (that is, approximate as opposed to exact) or best-fit (in a least squares sense)

solution to a system of linear equations. The problem: minimizeHAx—PO"H2 has the solution

x=A" P/ . The pseudoinverse can be computed using SVD as follows: if A=UZV"' | where
U,V denote unitary matrices and ¥ is a diagonal matrix containing the singular values of A,

then A" =VZ'U". We used the function pinv to compute the pseudoinverse in MATLAB.

3. Find a linear representation coefficient vector a of that projection onto the tangent space:

This coefficient is calculated by solving the following equation:
[1.®H=4a @)
4. Estimate the missing components of the point P, (F)’):

The last step is finding a point on the subspace 7" that is closest (in norm) to the point Py In
order to do that, 7" is projected using the projection coefficient a computed in step 3:

P ~T". « 3)

The result of this projection is the closest point to P,’ that belongs to its subspace. In this

algorithm, high-dimensional coordinates of selected neighborhoods on the manifold are

13
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projected to a low-dimensional subspace. An alternative to this approach is to use kernel

regression to assign a weight to each neighbor based on the distance from £ (Fig. 3b). A

weight for each selected neighborhood can be computed using the following Gaussian kernel

function:

()

W=e 2 ,a:\/var(d(B”,B,”)) 4)

1

Examples of manifolds representing geophysical (bathymetry) and meteorological (wind) data
are shown in Figures 4(a) and (b). These figures support the assumption that the manifold can be

considered as being linear locally, but with complicated topology overall.

2.2 Test case: Analytical function

Before applying the manifold method to reconstruct complex geophysical and meteorological
data, we first evaluate the effectiveness of the method in reproducing an analytical function,
since errors can be computed relative to the known function values; therefore, the F7 function

suggested by Lazzaro and Montefusco (2002) and Renka and Brown (1999) is used:

F7(x,y)=2cos(10x)-sin(10y) +sin(10x - y) ®))

where the domain of F7 is restricted to 0 <x <1 and 0< y <1 (Fig. 5a) . Three sets of sparse

random points from a normal distribution were generated in the domain with numbers of
sampling points of 30, 60, and 90. The F7 function was sampled randomly as shown in Fig. 5b
and the manifold method was tested by withholding one point at a time and estimating its

associated value from the remaining points using the manifold method, in addition to other
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methods such as the natural neighbor, nearest neighbor, and IDW interpolations. Since known
components of the scatter points are located in the two-dimensional X-Y plane, at least two
neighboring points are needed to form a tangent space for the manifold method. Therefore, for

simplicity, only two nearest neighbors are used in both manifold and IDW interpolation methods.

2.3 Assimilating Meteorological Data for Improved Lake Circulation Modeling:

Lake Michigan

The proposed method was first applied for the reconstruction of wind fields (time-varying
vector fields) over Lake Michigan. Hourly wind speed and direction data during April-
September 2008 were obtained from the National Data Buoy Center (NDBC) weather stations
surrounding the lake (Fig. 6). The wind measurements were adjusted to a 10 m anemometer
height using the profile methods described in Schwab (1987). Since the aerodynamic roughness
over the lake is much lower compared to its counterpart over the land, an empirical overland-
overlake adjustment was applied to the wind speeds recorded by overland stations (Schwab and
Beletsky, 1998). The datasets of wind speed and direction were converted to two coordinates in

the Cartesian coordinate system (x and y directions).

Instead of using the cross-validation method to evaluate the interpolated wind data, results from
the hydrodynamic model of the lake were compared with current measurements to test the
applied method. To this end, a well-tested three-dimensional hydrodynamic model of the lake
(Safaie et al., 2016) was used. The model was based on the unstructured grid Finite Volume
Community Ocean Model (FVCOM; Chen et al., 2006) which was successfully used in the past

in ocean (Li et al., 2014), lake (Nguyen et al., 2014) and river (Anderson and Phanikumar, 2011)
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modeling. Details of the unstructured mesh used in the hydrodynamic model are presented in

Table 1.

Wind fields from April to September 2008 were reconstructed at the locations of nodes in the
numerical mesh. Other hourly meteorological observations related to heat flux fields, including
air temperature, cloud cover, dew point, long-wave solar radiation, short-wave solar radiation,
and relative humidity, obtained from the National Climatic Data Center (NCDC) and NDBC
stations, were interpolated over the computational grid using a smoothed natural neighbor
method with a smoothing radius of 30 km. Air pressure was assumed to be constant (10° Pa)
through the course of the study and a constant startup water temperature with a value of 2.5 °C
was used in the model. The overlake dew points were estimated from overland observations
using an empirical formula described in (Schwab and Beletsky, 1998). Air temperature and cloud
cover were used to estimate long-wave solar radiation (Parkinson and Washington, 1979) and
short-wave solar radiation was modeled using the clear-sky value and cloud cover (Nguyen et al.,
2014). Six arc-second bathymetric data obtained from the NOAA National Geophysical Data
Center (NGDC) combined with two-meter resolution LIDAR data along the Indiana coast from
the National Oceanic and Atmospheric Administration (NOAA) were interpolated to the

numerical mesh using the natural neighbor method (Safaie et al., 2015).

Three bottom-mounted, upward-looking Acoustic Doppler Current Profilers (ADCPs) were
deployed at stations M, BB and S (Fig. 6) in southern Lake Michigan from early June to late
August 2008 to measure nearshore currents for model testing (Thupaki et al., 2013; Safaie et al.,
2016). The hydrodynamic model was run from April to August 2008 to have a two-month spin-
up period. Evaluation of the manifold method was carried out by comparing the simulated

currents with data collected by the ADCPs. Comparisons between simulated and observed
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currents can be improved by identifying an optimal set of parameters in the manifold method.
These parameters include: an optimum number of the nearest neighbors to create a tangent space,
the time scale ¢, and parameters of the Gaussian kernel function. In addition, the method used for
creating a tangent space from a set of data points (Appendix-A) can be changed to improve the
agreement between simulated and observed currents. The manifold method for the reconstruction
of wind fields was directly applied to reconstruct the other six scalar observations to calculate the

heat flux fields. This time, however, P? is a scalar, rather than a vector.

2.4 Assimilating Geophysical Data for Improved Lake Circulation Modeling: Gull

Lake

In the second example, the bathymetry of Gull Lake was reconstructed using a manifold
method. The lake bathymetry data were collected using a SonTek RiverSurveyor M9 system.
The M9 system has an Acoustic Doppler Profiler (ADP) with two sets of four profiling beams
and one vertical acoustic beam (0.5-MHz echo-sounder) for river discharge measurements and
bathymetric surveys. The system was equipped with differential GPS with sub-meter precision
and mounted on a SonTeck hydroboard to avoid high pitch and roll angles. The vertical acoustic
beam has a range of 0.2 m to 80 m with an accuracy of 1% and a resolution of 0.001 m. The
bathymetry survey was performed in four days (June 9 — June 12, 2015) by collecting data along
longitudinal and transverse transects of the lake with an approximate interval of 200 m between
each transect pair and sampling interval of 0.2 m- 2 m along the transects depending on the boat

speed (Fig. 7).

In order to assimilate the bathymetry of the lake, a three-dimensional hydrodynamic model

based on FVCOM has been developed for the lake during the period of thermal stratification
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(June-August of 2014). The hydrodynamic equations were solved by the numerical model on an

unstructured grid and details are given in Table 1.

The meteorological observations for calculation of wind and heat flux fields were obtained
from NCDC, Weather Underground (https://www.wunderground.com), and the Kellogg
Biological Station Long-Term Ecological Research (KBS LTER, http:/Iter.kbs.msu.edu)
stations, a total of 22 locations surrounding Gull Lake from May to August (Fig. 8). Instead of a
constant air pressure, hourly air pressure data recorded by the KBS LTER stations were used to
improve the performance of the model. This also helped in the calculation of water density in
FVCOM based on a polynomial expression (Jackett and Mcdougall, 1995) that takes pressure
into account. After applying overland-overlake adjustments, all observations were interpolated
over the numerical mesh using a smoothed natural neighbor method with a smoothing radius of
15 km. This radius provided the best simulated results between the ranges of 0 to 30 km. Air

temperatures were adjusted using the empirical formula of 7, =0.47,, +0.67,, (Schwab and

Beletsky, 1998), where T, is the adjusted air temperature over water, 7y, is the air temperature
reported by overland stations, and 7), is the surface water temperature. The surface water
temperature was collected using an Onset HOBO Pro v2 sensor with an accuracy of 0.2°C. A
linearly varying startup water temperature was used with a value of 12°C at the water surface and
4°C at the depth of 10 m. The hydrodynamic model was tested using observed current data
measured using a Teledyne - RDI Sentinel-V ADCP (1000 kHz frequency with a bin size of 0.3
m) deployed in the nearshore waters of the lake in approximately 10 m of water (Fig. 7b).
Finally, the bathymetry of the lake interpolated to grid nodes using the manifold method was

assimilated into the model.
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2.5 Assimilating Precipitation Data for an Integrated, Distributed Hydrologic

model

In the third example, we simulate the hydrology of a watershed in the Great Lakes region using
the spatial distribution of six-year (2000-2005) daily participation data over the Grand River
(GR) watershed in Michigan  using an integrated, process-based hydrologic model,
PAWS+CLM (Shen and Phanikumar, 2010; Shen et al., 2013; Niu et al., 2014). The model is
able to simulate different hydrologic components and states including channel discharge, surface
runoff, evapotranspiration, groundwater, soil moisture, soil temperature, and vegetation growth.
PAWS+CLM uses a structured finite-volume grid to solve the governing partial differential
equations for different hydrologic components. Governing equations and numerical details of

PAWS have been described in (Shen and Phanikumar, 2010) and in Table 2 of (Niu et al., 2014).

The Grand River (GR) watershed (Fig. 9) was selected as our study domain. GR watershed is
located in the middle of Michigan’s Lower Peninsula and it is the second largest watershed in
Michigan. The watershed has a drainage area of 14, 431 km” and drains portions of 15 counties
in Michigan. The GR stretches 420 kilometers to the outlet at Grand Haven on Lake Michigan
and it is the longest river in Michigan. Shen et al. (2014) described the details of data input and
integration algorithms of PAWS+CLM; thus we simply introduce the basic data input and
processing information for our model in this section. We used a grid resolution of 1 km x 1 km
for horizontal discretization which produced a 170%195 mesh for the GR watershed and 20
vertical layers to simulate the vadose zone dynamics by solving the Richards equation and 2

layers for the groundwater domain (unconfined and confined aquifers) (Table 1).
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For topographic calculations (e.g. surface slope and overland flow), the 30 m resolution
National Elevation Dataset (NED, http:/ned.usgs.gov) from U.S. Geological Survey (USGS) was
used as the Digital Elevation Model (DEM). For river network simulation, National
Hydrography Dataset (NHD) from USGS was assimilated and reorganized as ‘river segments’
with a length of one kilometer. We used the 30 m resolution raster data provided by the
Michigan Department of Natural Resources, i.e. the Integrated Forest Monitoring Assessment
and Prescription (IFMAP) dataset as the land use and land cover (LULC) layout (MDNR, 2010).
Soil information was obtained from Soil Survey Geographic (SSURGO) (Soil Survey Staff)
database from U.S. Department of Agriculture. This information was processed by the
pedotransfer functions provided in ROSETTA (Schaap et al., 2001) to provide soil properties of
water retention and unsaturated conductivities. Climate driven data (e.g. precipitation, daily
maximum temperature and minimum temperature, wind speed) are acquired as point input (Fig.
9) from National Climatic Data Center (NCDC, 2010) of the National Oceanic and Atmospheric

Administration (NOAA).

In this study, 14 rain gauges in the GR were selected to obtain the spatial distribution of rainfall
over the watershed and for assimilation into the model. Previous applications of the
PAWS+CLM model used the nearest neighbor method as the default for processing precipitation
data. In our work, the manifold method was tested by evaluating the stream discharge outputs of
PAWS+CLM against USGS data. The parameters of PAWS+CLM are listed in Table 1 of (Shen
et al., 2013), most of which are spatially distributed and have taken into account the spatial
heterogeneity of parameters such as the soil parameters and groundwater hydraulic

conductivities.
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3 Results and Discussion

3.1 Analytical function

True values of the analytical function at each of the randomly selected sampling locations were
compared with the estimated values obtained by the manifold method as well as other standard
interpolation methods. The performance statistics for this example are provided in Table 2. For
all methods, the approximation of the F7 function improved by increasing the number of
sampling points. In this particular example, the results show that the manifold method produced
better overall performance compared to the other three methods considered. However, the best
method in this example might perform differently on another test function or for a different
sampling point distribution; therefore, we examine the performance of the method for other

datasets in the following sections.

3.2 Lake Michigan

Due to the sparse distribution of weather stations around Lake Michigan, it was not clear a
priori how many neighboring stations would provide an adequate representation of the data.
Since choosing a relatively few (e.g., three) neighboring stations in this situation would involve
using information from stations that are far apart as neighbors, we used kernel regression to
assign weights to each station depending on the distance from the point of interest. For each
node of the numerical grid of Lake Michigan, £ number of nearest neighbors were selected and
their assigned weights were projected to a low-dimensional subspace. The free parameters in the
method are ¢ (time scale), o (the parameter used in kernel regression), and k. The standard
deviation of weather station distances from the point of interest was used for the parameter ¢ in

kernel regression. Performance of the manifold method as measured by a comparison of

21



464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

simulated and observed currents in Lake Michigan is summarized in Table 3 relative to the other
standard methods considered. We note that the manifold method based on kernel weighting
considering all stations produced the best overall performance as measured by the root mean
squared error (RMSE) between the observed and simulated currents. The performance of the
method without kernel regression and with only three neighboring stations was comparable to
the other methods but slightly inferior to the natural and nearest neighbor methods. Fig. 10
shows the RMSE and R? values for different numbers of nearest neighbors at different ADCP
locations. Having all stations to create the tangent space for the manifold method resulted in a
better representation of wind fields, and improved the results of the hydrodynamic model (Fig.
11 shows the comparison at station M). We can see that the manifold method performs better
than the IDW method at two of the offshore stations (M and BB) but not at the nearshore
location S. We believe that the reason for this has to do with the fact that in the nearshore region
there are a number of additional processes (waves, wave-current interactions etc) which are not
simulated in our model. Therefore model performance in that region cannot be directly attributed
to the wind field. At the other two offshore stations M and BB, where the flow is predominantly

wind-driven, an improvement in the simulated hydrodynamic fields can be seen.

Finally, cross-validation was used to compare the performance of the manifold method with
other standard methods for the same Lake Michigan datasets. The performance metrics are
summarized in Table 4. In this cross-validation method, one weather station was withheld to be
used later for validating the manifold method, and all other stations surrounding the lake were
used for the manifold training set. This process was repeated so that each weather station was
given a chance to be part of this validation process. Based on these results the proposed manifold

method with three nearest neighbors gave better results compared to other standard methods.
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However, the performance of the hydrodynamic model based on these methods was relatively
inferior compared to the performance of the model when the manifold method used all
neighboring points. All different versions of the manifold methods had reasonable computational
efficiency. The computational time for the O-kriging was high due to the time needed for finding

the best variogram at each time step.

3.3 Gull Lake

Wind and heat flux fields of the Gull Lake were interpolated over the numerical mesh of the
lake using the natural neighbor method. Then, the bathymetry of the lake was interpolated over
the mesh using the same natural neighbor method to develop the initial version of the lake
hydrodynamic model. The raw bathymetry data, which has some regions of steep bathymetry
change, created artificial currents in the model due to an error in the pressure gradient force
introduced by the sigma-coordinate system of FVCOM (Mellor et al., 1998). Therefore, the
interpolated bathymetry was smoothed with a radius of 100 m in order to reduce the errors. The
results of the developed model using natural neighbor method and IDW with three nearest

neighbors are presented in Fig. 12.

The model was used to assimilate the bathymetry of the lake based on the manifold method.
The bathymetry data were reconstructed from the tangent space of the manifold with three
nearest neighbors and smoothed with the same method described above. The hydrodynamic
model was run with the reconstructed bathymetry. The final comparisons of the vertically-
averaged velocity profiles at the ADCP location are presented in Fig. 12. The best value of o
used in kernel regression was equal to the standard deviation of distances of observational points

where water depth values are available within a search radius of 50 m from the point of interest.
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When the number of samples within this radius was smaller than 100, ¢ value was calculated
based on locations of 100 nearest samples. This method is more accurate when enough samples
are available around an estimated point, unless selecting 100 samples itself does a reasonable
job. RMSE values (m/s) of eastward and northward velocities in Gull Lake for comparison of the
manifold method with other standard methods used in limnology and oceanography are
presented in Table 5. The statistics of cross-validation for all (=71) measured longitudinal and
transverse transects are shown in Table 6. The cross-validation was performed by omitting one
transect at each step and calculating the bathymetry for that transect from the rest of the

observation data and repeating the process for all other transects.

3.4 Grand River watershed

The daily distributions of precipitation over the GR watershed for the period 2000 to 2005 were
reconstructed from selected rain gauges using the manifold method. The precipitation fields over
a period of six years were tested by comparing the simulated and observed stream discharges at
selected USGS gaging stations within the watershed. In this example, kernel regression with a
standard deviation of all rain gauge distances from the estimated points was used in the manifold
method. The tangent space at each grid point of the numerical model was obtained from three-
nearest neighbors around that point. The PAWS+CLM model was run with precipitation
distributions built using the manifold, natural neighbor, nearest neighbor, and inverse distance
methods. . The final comparisons of simulated and observed stream flows for USGS gauges are
presented in Figs. 13 and 14. Model performance metrics (NASH, Absolute Percent Bias (APB), and

RMSE) were computed to evaluate the performance of the manifold method with other standard methods

(Table 7). The manifold method provided superior results as can be seen from the improved

representation of baseflow over the simulation period. This can be seen clearly from semi-log
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plots of the stream hydrograph comparison. The cross-validation results for precipitation are
presented in Table 8. In this method, data from one rain gauge was withheld and data from the
rest of the gauges were used for manifold training. This process was repeated for all 14 rain
gauges. Since rain gauges have a sparse distribution, the cross-validation method could not
identify the best method for this case. The results of the integrated, distributed hydrologic model,
however, clearly demonstrate the efficacy of the manifold method in the reconstruction of
precipitation fields. In particular, the better simulated baseflow shows the strength of using
precipitation data based on the manifold method to improve the simulation of heterogeneous

partitioning of surface runoff and infiltration processes.

4 Conclusions

We presented a novel manifold method of reconstructing spatio-temporal data for assimilating
geophysical and meteorological data in integrated land surface subsurface, and oceanic/lake
models. All three case studies illustrate the superior performance of the presented manifold
algorithm over standard methods in terms of accuracy and computational efficiency. The
hydrodynamic model of Lake Michigan based on the manifold method of reconstructing wind
fields produced better performance relative to the other methods. The best results were obtained
using kernel regression applied to all weather stations (neighbors). However, the cross-validation

results show that the results of the three nearest neighbors were better than the other methods.

The Gull Lake model results indicated that the proposed method has the ability to reconstruct
geophysical data at unsampled locations. The use of spatiotemporal precipitation fields
constructed using the manifold method produced better stream discharge simulations compared

to similar results from the nearest neighbor, natural neighbor and IDW interpolation methods in a
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large watershed (> 10000 km?). Finally, all three examples show that evaluating the performance
of interpolation methods using the cross-validation method without considering the data structure
and the purpose of interpolation can lead to misleading conclusions about the relative
performance of the methods considered. The comparisons presented here indicate that manifold
methods show promise for modeling Earth system processes based on data from sensor
networks. Our future work will combine manifold methods with approaches such as the EnKF
method to further improve process-based modeling of land surface, subsurface and lake/ocean

models.

Based on the results presented, we note that: (1) Details of the manifold method such as the
tangent space estimation, the distance metric that defines spatiotemporal proximity and other
details can be further improved to improve the performance of the manifold method; however,
these topics are beyond the scope of the present paper. (2) We do not claim that the manifold
method provides superior performance on all datasets and for all performance metrics but from
the examples considered here it appears that the manifold method may offer an attractive method
that is comparable or superior to other standard methods. More research is needed to understand
the relative strengths and weaknesses of different manifold-based approaches compared to

standard methods.
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Appendix-A. Tangent Space Estimation

To understand the local geometry of the surface f(x) near a pointx €[l ", we consider the first-

order Taylor series expansion of the surface:

a 2 — — 2
f()_c):f(x)+ fagcx)()_c—x)+0(||)?—x|| ):f(x)+Jf (x—x)+0(||x—x|| ) (A1)

where J,(x)el]”*" is the Jacobian matrix of / at the point x. If the components of f(x) can

be written as: f(x)= [fl(x),fz(x),f3(x)---fD(x)]T and x =[x, x,, X, x, ]T, then the Jacobian

can be written as:

I
ox, ox,
Jo(x)=| + i (A2)
Io .. Do
| Ox, ox, |

To understand the local shape of the surface in equation (Al), we seek to determine the space

()_c —x), such that as we move away from x, the value of the function doesn’t change to within

first order. This is equivalent to finding the space 7 such that:

T={(x-x)|J, (x)(x-x)=0] (A3)
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This space is the tangent space to the surface at point x and is the right null space of the Jacobian

matrix J ,(x). The space orthogonal to the tangent space is the row space of the Jacobian and

orthogonal representations of these spaces can be obtained from SVD. The right null space of

J, 1is the columns of V' corresponding to zero singular values. Therefore, the tangent space of

J

the manifold M at y = f(x) is:
T(M)= span(Jf (x)) (A4)

From a practical computation point of view, given a set of sample points y ={y,, ¥, ¥3,*=* ¥, }, a

simple method of constructing the tangent space is to approximate it as the line/surface obtained

by joining the local neighboring points. The tangent space can also be directly estimated using

SVD. If C" denotes the local covariance matrix:
cr =13y —usy? (AS)
m i

where U =[u,u,,u;,---u,| and X =diag[4,4,,4,---4,] denote the eigenvector and eigenvalue

matrices respectively, then the optimal (in a least-squares sense) n-dimensional linear subspace is

the span of the n-largest eigenvectors in U:

T(M) = span {u,,u,,u;,--u, } (A6)
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Fig. 1. Some examples of manifolds (a) torus, (b) sphere, and (¢) a two-dimensional cross-section of a
six-dimensional Calabi-Yau manifold.

Fig. 2. lllustration of the proposed manifold approach for estimation of missing data at point P,.

Fig. 3. A tangent space created from the set of nearest points using (a) coordinates of selected
neighborhoods or (b) Kernel regression.

Fig. 4. Manifolds representing (a) bathymetry of Gull Lake and (b) wind components over Lake
Michigan in three dimensional space.

Fig. 5. (a) Analytical function used to test the manifold method for interpolation of scattered data.

Random sampling was used to generate scatter points as shown in figures (b, 30 points), (¢, 60 points) and
(d, 90 points) to reconstruct the function.
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Fig. 6. Locations of the ADCPs deployed during summer 2008 and weather stations surrounding Lake
Michigan.

Fig. 7(a). Bathymetry of Gull Lake. (b) Boat tracks generated during the sampling survey in Gull Lake.
Fig. 8. Selected weather stations surrounding Gull Lake.

Fig. 9. Map of Grand River watershed showing the locations of the USGS gauges, rain gauges and
National Hydrography Dataset (NHD) streams.

Fig. 10. Performance of the manifold method evaluated using observed and simulated currents at different
stations in Lake Michigan. Different number of nearest neighbors were used to reconstruct the wind field

using the manifold method with kernel regression.

Fig. 11. Comparison of simulated (black lines) and observed (red lines) vertically averaged currents at the
location M in Lake Michigan. (a) Alongshore velocity (b) Cross-shore velocity

Fig. 12. Comparison of simulated (black lines) and observed (red lines) vertically averaged currents at the
ADCEP location in Gull Lake. (a) Eastward velocity and (b) Northward velocity

Fig. 13. Comparison of simulated and observed stream flows for USGS gauge #04116000 in (a) a linear
scale, and (b) logarithmic scale.

Fig. 14. Comparison of simulated and observed stream flows for USGS gauge #04119000 in (a) a linear
scale, and (b) logarithmic scale.

List of Tables

Table 1. Properties of the numerical grids used for the hydrodynamic and hydrologic

Model Grid Element Grid #Nodes # Elements #Vertical
Classification shape Resolution layers
FVCOM (Lake Michigan) Unstructured  Triangle 4m-5km 12,684 23,602 20
FVCOM (Gull Lake) Unstructured  Triangle 8-100m 5,132 9,361 20
PAWS (Grand River) Structured = Quadrilateral 1 km 33,150 32,786 22

Table 2. Cross-validation results for the analytical function based on different sampling points selected
randomly.
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825

S“;r;l;le Method R® RMSE Fn PBIAS NASH APB (%)
Manifold 0.667 0.778 0.710 14.420 0.416 0.652
30 Natural neighbor ~ 0.582 0.876 0.799 -8.866 0.259 0.713
Nearest neighbor  0.619 0.882 0.804  -14.689  0.250 0.669
IDW 0.577 0.870 0.793 35.847 0.270 0.727
Manifold 0.846 0.579 0.531 -33.924 0.703 0.472
60 Natural neighbor 0.816 0.615 0.564 16.912 0.664 0.466
Nearest neighbor  0.779 0.720 0.660  -34.524  0.540 0.512
IDW 0.832 0.603 0.553 -44.292 0.677 0.469
Manifold 0.891 0.502 0.432 -14.103 0.791 0.400
% Natural neighbor 0.874 0.539 0.464 -10.666 0.759 0.344
Nearest neighbor 0.867 0.571 0.491 -28.777 0.730 0.446
IDW 0.859 0.567 0.487 -5.974 0.735 0.416
826
827
828
829
830 Table 3. RMSE values (m/s) of alongshore and cross-shore velocities for comparison of the manifold
831 method with other standard methods used in limnology and oceanography
Loaction: M Location: BB Location: S
Method RMSEu RMSEv RMSEu RMSEv RMSEu RMSEv
O-kriging 0.0385 0.0290 0.0590 0.0349 0.0540 0.0152
Nearest Neighbor 0.0363 0.0286 0.0580 0.0348 0.0545 0.0152
Natural Neighbor 0.0366 0.0275 0.0553 0.0334 0.0515 0.0158
Manifold (3 NBR) 0.0383 0.0276 0.0594 0.0346 0.0568 0.0158
Manifold+Kernel (3 NBR) 0.0371 0.0268 0.0576 0.0341 0.0559 0.0158
Manifold+Kernel (all NBR)  0.0304  0.0265 0.0531 0.0312 0.0568  0.0154
IDW (all NBR) 0.0328  0.0267 0.0535 0.0316 0.0498  0.0155
832
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Table 4. Cross-validation results for wind field over Lake Michigan.

Method R’u R’ RMSEu RMSEv Computational time (s)
O-kriging 0.441 0572 3497 3.853 92463.8
Nearest Neighbor 0.666  0.743 2.792 3.044 18.6

Natural Neighbor 0.693  0.794  2.558 2.750 183.6
Manifold (3 NBR) 0.690  0.801 2433 2.595 28.1
Manifold+Kernel (3 NBR) 0.710 0.806  2.392 2.566 55.1
Manifold+Kernel (all NBR)  0.547  0.681 2.884 3.129 77.3

IDW (3 NBR) 0.724 0.822 2278 2.458 69.3

Table 5. RMSE values (m/s) of eastward and northward velocities in Gull Lake for comparison of the
manifold method with other standard methods used in limnology and oceanography

Method RMSE u RMSE v
Natural Neighbor 0.0090 0.0205
Manifold+Kernel (3 NBR) 0.0098 0.0200
IDW (3 NBR) 0.0095 0.0204

Table 6. Cross-validation results for Gull Lake bathymetry.

Method R’ RMSE (m) Fn NASH PBIAS
Manifold 0.890 2.011 0.222 0.678 -14.016
Natural Neighbor 0.925 1.288 0.170 0.468 -13.301
Nearest Neighbor 0.888 2.039 0.230 0.670 -17.132
IDW (3 NBR) 0.839 3.282 0.6065  0.540 -15.918
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846 Table 7. Comparison of the manifold method with other standard methods for precipitation over the

847 Grand River watershed.
USGS04116000 USGS04119000
Method NASH RMSE APB(%) NASH RMSE APB(%)
Nearest Neighbor 0.56 37.13 36.47 0.58 58.15 30.54
Natural Neighbor 0.33  44.52 54.71 036  71.88 48.72
Inverse Distance 0.38 44.22 54.18 0.37 70.29 48.01
Manifold 0.59 35.56 33.76 0.63 54.57 27.87
848
849
850 Table 8. Cross-validation results for precipitation over the Grand River watershed.
Method R’ RMSE (cms) Fn NASH APB (%)
Manifold 0.543 7.933 0.910 0.624 72.4
Natural Neighbor 0.543 7.920 0.901 0.574 73.6
Nearest Neighbor 0.471 8.802 0.930 0.604 81.8
IDW (3 NBR) 0.567 7.542 0.907 0.619 70.0
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