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Abstract  

A novel manifold method of reconstructing dynamically evolving spatial fields is presented for  
assimilating data from sensor networks in integrated land surface – subsurface, oceanic / lake  
models. The method was developed based on the assumption that data can be mapped onto an  
underlying differential manifold. In this study, the proposed method was used to reconstruct  
meteorological forcing over Lake Michigan, the bathymetry of an inland lake (Gull Lake), and  
precipitation over the Grand River watershed in Michigan. In the first case study, hourly  
interpolated meteorological forcing data were used to run a three-dimensional hydrodynamic  
model of Lake Michigan to quantify the improvement that results from the use of the new  
interpolation method. In the second example, the bathymetry of Gull Lake was reconstructed  
from measured scatter point data using the manifold technique. A hydrodynamic model of Gull  
Lake was developed and further improved using improved bathymetry. In the last case study,  
daily participation data over a six-year period were interpolated over the Grand River watershed  
and used as input to an integrated, distributed hydrologic model. All three examples illustrate the  
superior performance of the manifold method over standard methods in terms of accuracy and  
computational efficiency. Our results also indicate that evaluating the relative performance of  
interpolation methods using the cross-validation method can lead to misleading conclusions  
about the relative performance of the methods.  
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1 Introduction 31 

Water continuously circulates between the Earth’s surface and the atmosphere and moves 32 

through watersheds to become stored underground as groundwater or in surface reservoirs such 33 

as lakes. This circulation is a key aspect of Earth system models or components thereof and 34 

meteorological forcing plays an important role in modeling coupled physical - biogeochemical 35 

processes. Process-based modeling approaches describe land-lake-atmosphere interactions by 36 

explicitly considering the spatiotemporal variability of meteorological forcing fields (Xue et al., 37 

2015). There are a variety of numerical ocean models, such as POM (Blumberg, and Mellor, 38 

1987), ROMS (Haidvogel and Beckmann, 1999), and FVCOM (Chen et al., 2006), and their 39 

performance is highly dependent on how realistic the distributions of surface forcing fields (wind 40 

stress, heat flux, precipitation, evaporation) are. These forcing fields can be obtained from 41 

observational data, the output of a weather forecast model, or a combination thereof (Xue et al., 42 

2015). In all cases it is crucial to use a suitable interpolation method in order to assimilate 43 

observations into the models, and estimate variables at unsampled locations and/or times.   For 44 

instance, currents in large lakes such as the Laurentian Great Lakes are mostly controlled by 45 

wind. Therefore, by improving the representation of wind fields in models of lake circulation, we 46 

expect to describe coupled biophysical processes in lakes more accurately.  For example, Safaie 47 

et al. (2016) demonstrated that improved representation of meteorological fields based on natural 48 

neighbor interpolation of weather station data produced superior results for currents and bacterial 49 

concentrations relative to similar results based on a nearest neighbor interpolation of the same 50 

data. 51 



3 

 

In situ observations generally have sparse and inhomogeneous distribution in space and time, 52 

and it is often infeasible to accurately reconstruct the true field from the data. However, more 53 

information about the structure of the field and its evolution, allows for better approximations 54 

(Barth et al., 2008). Various deterministic [e.g., nearest neighbor, natural neighbor, inverse 55 

distance weighting (IDW), spline, polynomial] and geostatistical (e.g. kriging) interpolation 56 

methods have been developed to generate spatial fields. There have been numerous efforts to 57 

compare different spatial interpolation methods in order to identify the best method for a given 58 

model application. Many researches have used cross-validation for assessing the performance of 59 

the interpolation methods. In this method, a subset of the original dataset is withheld to be used 60 

later for validating the interpolated field constructed from the rest of the observational data.  61 

Mean error (ME), root mean square error (RMSE) and the coefficient of determination (R2) are 62 

commonly used to evaluate the performance of each interpolation method (Suparta and Rahman, 63 

2016). However, every problem has a unique method of interpolation that works best for a given 64 

distribution of observations and the intended use of the interpolated data. Density of a sensor 65 

network, spatial variability of the variable of interest and its distribution, and observational 66 

errors, all influence the accuracy of the interpolated field (MacEachren and Davidson, 1987). For 67 

example, Luo et al. (2008) compared seven spatial interpolation techniques to identify which 68 

method produced the best estimation of the wind speed data recorded across England and Wales. 69 

Their study showed that kriging is the best method, and that the thin plate spline method had 70 

higher ME and RMSE values. However, in (Suparta and Rahman, 2016) the performance of the 71 

thin plate spline interpolation based on the RMSE and R2 values was found to be better than 72 

kriging for less dense data points over the selected interpolation surface. Therefore, comparing 73 

interpolation methods using the cross-validation method without considering the data structure 74 



4 

 

and the purpose of interpolation is not guaranteed to produce the best representation of the 75 

underlying data. 76 

Precipitation is another important component of the water cycle. Spatial distribution of 77 

precipitation influences the hydrologic response of a watershed (Daly et al., 2002).  Basin 78 

responses of rainfall-runoff processes are closely related to the spatial variability of precipitation 79 

(Anquetin et al., 2010; Bell and Moore, 2000; Beven and Hornberger, 1982; Obled et al., 1994; 80 

Schuurmans and Bierkens, 2007; Syed et al., 2003; Tetzlaff and Uhlenbrook, 2005). 81 

Hydrologists usually use rain gauge data to obtain rainfall patterns over a watershed. Bell and 82 

Moore (2000) found that the responses of a distributed hydrologic model are sensitive to the 83 

locations of the rain gauges within the catchment and hence to the spatial variability of rainfall.  84 

Nicótina et al. (2008) performed numerical experiments to study the effects of different spatial 85 

resolutions of rainfall on various catchments. They found that the catchment response is sensitive 86 

to the spatial distribution of rainfall only when water residence time in the channels is 87 

comparable to the hillslope travel time; thus rainfall spatial heterogeneity likely plays a more 88 

important role in affecting the runoff response of large watersheds (typically larger than 103 89 

km2) than smaller watersheds.   90 

Various efforts have been devoted to improving the representation of spatially-distributed   91 

rainfall fields in hydrologic modeling. For example, Ly et al. (2011) compared seven 92 

interpolation methods for daily rainfall and found that geostatistical methods such as kriging and 93 

IDW algorithms significantly outperformed the Thiessen polygon method, which is also known 94 

as the nearest neighbor method. Sun et al. (2000) tested different rainfall estimation methods on 95 

a 1060 km2 catchment in Australia to evaluate the flood modeling capabilities of a hydrologic 96 

model and found that blending radar and rain gauge data in a co-kriging framework provided 97 
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better performance compared with an approach based on kriging of the rain gauges data alone. 98 

Masih et al. (2011) used a semi-distributed model, Soil Water Assessment Tool (SWAT), to 99 

simulate the Karkheh River basin in Iran with two different precipitation interpolation methods.  100 

Their results, based on a comparison of simulated and observed discharges using the metrics of 101 

coefficient of determination and the Nash-Sutcliffe efficiency (NASH), showed that precipitation 102 

interpolation with inverse distance and elevation weighting technique produced better 103 

performance relative to the SWAT default method of nearest neighbor method. 104 

Accurate representation of geophysical features such as topography and bathymetry is also 105 

important in earth system models and their components, and model performance depends on the 106 

interpolation method used to assign the topographic information over a numerical mesh in 107 

processed-based models. Yan et al. (2014) compared different interpolation methods, including 108 

IDW, global polynomial interpolation, local polynomial interpolation, radial basis functions, 109 

ordinary kriging (OK), simple kriging (SK), universal kriging (UK), and co-kriging (CK) to 110 

determine the water/land boundary point elevation based on in situ water level data from 14 111 

control stations in Dongting Lake. They used a cross-validation method to select the optimal 112 

method, which was found to be the OK method. Merwade (2009) studied the effect of spatial 113 

trend on interpolation of river bathymetry, and compared the performance of different 114 

interpolation methods. The number of measurements and their spatial arrangement, as well as 115 

channel morphology and geology were found to influence the accuracy of the interpolation 116 

results (Merwade, 2009). Due to the effects of these and other factors on the performance of 117 

various methods, comparisons of different spatial interpolation methods could not point out the 118 

best universal interpolation method (Li and Heap, 2008; Šiljeg et al., 2015). 119 
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In this paper, we propose a novel manifold method to assimilate different types of 120 

spatiotemporal data in integrated earth system models based on the hypothesis that an 121 

environmental dataset (including independent variables such as longitude, latitude, and time, and 122 

the measured variables of interest) can be mapped onto an underlying differential manifold. A 123 

manifold ( M  ) is an n-dimensional topological space such that each point of M and its 124 

neighborhood can be approximated by a small flat piece in the Euclidean space, n . We can 125 

think of a manifold as a set of low-dimensional curves and surfaces within higher dimension 126 

Euclidean spaces (Victor and Pollack, 2010). Some typical examples of manifolds are smooth 127 

surfaces, such as a torus (Fig. 1a) or a sphere (Fig. 1b), where each point and its neighborhood 128 

can be approximated by a small flat linear-subspace within the three-dimensional Euclidean 129 

space. Another example of a manifold in a high dimensional space is a Calabi-Yau manifold 130 

which has found important applications in theoretical physics (e.g. superstring theory). Fig. 1c 131 

shows a two-dimensional cross-section of a six-dimensional Calabi-Yau manifold. Surfaces of 132 

all these three manifolds are not a Euclidean space. The laws of the Euclidean geometry, 133 

however, are valid locally. 134 

Working directly in the high dimensional space generally involves dealing with complex 135 

algorithms. Modeling the high dimensional data using manifolds with fewer degrees of freedom 136 

has captured a great deal of attention recently (Zhang et al., 2016). The use of low-dimensional 137 

manifolds not only reduces computational load for further processing, but also helps visualize the 138 

entire dataset, which is an important initial step to make sense of the data before proceeding with 139 

more goal-directed modeling and analyses (Ma et al., 2011). 140 

The classic method of principal component analysis (PCA), including the more recent Robust 141 

PCA (Candès et al., 2011), is arguably the most popular framework for approximating a set of 142 
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high-dimensional data points by a low dimensional linear space. PCA does not work well when 143 

the underlying data structure is non-linear. Under such scenario, PCA methods require 144 

approximating the input data points using higher dimensional linear spaces to reduce the 145 

approximation error. Instead of assuming that the input data follow a linear structure, an 146 

alternative solution is learning the true underlying low-dimensional structure of the data. The 147 

problem of non-linear dimensionality reduction for a set of high dimensional data points is 148 

known as manifold learning. Examples of early works for non-linear dimensionality reduction 149 

include Isomap (Tenenbaum et al., 2000), local linear embedding (LLE) (Roweis, 2000), and 150 

Eigenmaps (Belkin and Niyogi, 2003), which have been used to learn the manifold structure of 151 

data. Since then, the manifold model has been exploited extensively in numerous applications 152 

such as face recognition, action classification, segmentation, image denoising, image/video 153 

super-resolution, and multi-scale image analysis (Carin et al., 2011; Dang et al., 2013, 2014; 154 

Dang and Radha, 2015).  155 

Most of the above manifold learning methods have been inspired by linear techniques, mainly 156 

based on the assumption that non-linear manifolds can be approximated by locally linear parts 157 

(Mordohai and Medioni, 2010). Two pioneering works in this area are the Isomap approach 158 

(Tenenbaum et al., 2000) and the LLE algorithm (Roweis, 2000). The Isomap algorithm aims to 159 

preserve the geodesic distance among points from the input dataset. On the other hand, the LLE 160 

algorithm targets the local linear geometry of neighbors in a manifold. Numerous works on 161 

manifold learning have been further developed. A comprehensive review of prior works can be 162 

found in (van der Maaten et al., 2009). 163 

Data assimilation methods seek to estimate both model parameters and model states and 164 

significant progress has been made in the development of joint state-parameter estimation 165 
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methods such as the ensemble Kalman filter (EnKF) and its variants (Moradkhani et al., 2005; 166 

Evensen, 2006; Pathiraja et al., 2016). The parameters estimated using these approaches are 167 

usually time-dependent although most dynamical models used in earth sciences use time-168 

invariant parameters. Yang et al. (2007) describe an alternative optimization-assimilation 169 

approach for soil moisture in which they first estimate parameters within a long optimization 170 

window and then estimate model states within a short assimilation window. Due to the 171 

computational nature of the three-dimensional process-based models considered in the present 172 

study, we do not focus on the use of methods similar to the EnKF method. Instead we estimate 173 

optimal (relative to the observations) model parameters and states over the simulation period. 174 

Future papers will focus on the use assimilation methods such as the EnKF with the framework 175 

of manifold methods. 176 

 In this paper, the effectiveness of the presented manifold algorithm is evaluated through 177 

assimilation of geophysical and meteorological data in integrated land surface – subsurface and 178 

lake models, although the methods described are general and can be used in many other areas of 179 

computational geosciences. We first apply the proposed method to reconstruct wind fields (time-180 

varying vector fields) over Lake Michigan. Since currents in Lake Michigan are primarily driven 181 

by wind, we expect to improve the simulation of hydrodynamic and biophysical variables of 182 

interest by improving the wind fields. Instead of relying on the cross-validation of interpolated 183 

wind data, however, we use a well-tested hydrodynamic model of Lake Michigan and compare 184 

current measurements with simulated currents to test the interpolation methods. The manifold 185 

methods are used to reconstruct meteorological data including wind fields, cloud cover, dew 186 

point, pressure, shortwave and longwave solar radiation, relative humidity, and air temperatures 187 

for improved simulation of circulation in Lake Michigan. Then the method is applied to 188 
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assimilate bathymetry data as a scalar field for use in a hydrodynamic model of Gull Lake -  a 189 

relatively large (8 km2 surface area) and deep (34 m maximum depth) clear water lake in the in 190 

Kalamazoo County in southwestern Michigan.  In the third example, time-dependent fields of 191 

participation are interpolated over the Grand River watershed and used as input for an integrated, 192 

land surface – subsurface processes model (PAWS+CLM; Shen and Phanikumar, 2010; Shen et 193 

al., 2013). Grand River watershed is located in the middle of Michigan’s Lower Peninsula and is 194 

the second largest watershed in Michigan. In this example, the manifold method is tested using 195 

stream discharge outputs of the PAWS+CLM model which has been tested in several catchments 196 

in the past (Niu et al., 2014; Niu and Phanikumar, 2015; Shen et al., 2014, 2013).  197 

2 Materials and Methods 198 

2.1 Manifold approach 199 

Based on Einstein’s theory of relativity, physical events are located on the continuum 200 

(manifold) of space-time. Therefore, station locations and times of observations form a space-201 

time manifold viewed as a four-dimensional vector space. One way to handle spatiotemporal 202 

interpolation problems, inspired by this concept, is to integrate space and time simultaneously 203 

(Li and Revesz, 2004). An underlying assumption behind this approach is that time and space 204 

dimensions can be treated as equally important (Li et al., 2014). In order to add time as another 205 

dimension of space, time values are needed to be scaled for a spatiotemporal dataset by a scaling 206 

speed (Li et al., 2014; Schwab and Beletsky, 1998). For a point measurement, we can then define 207 

a four-vector ( , )P ct x  where c   is a time scale, t is the time coordinate and x  is a three-208 

dimensional vector space. We assume that the set of high-dimensional data points P   (and the 209 

estimated data points 0P  ) belongs to a differential manifold M , which may be curved and have 210 
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a complicated topology, but the  neighborhood of each point is approximately similar to a small 211 

piece of Euclidean space (resembles D ). Since a traditional distance measure is built upon the 212 

geometry of Euclidean space, we adapt the calculation to a neighborhood or a small region of the 213 

assumed manifold. 214 

 An example of a one-dimensional curve in Fig. 2 illustrates the general idea of the manifold 215 

estimation approach. The set of points P  in Fig. 2 includes sample data points where we have 216 

measured data as well as a point 0P  where data are missing.  For example, in the context of the 217 

wind field data, one full measurement (or data point) includes five components: time, longitude, 218 

latitude, wind speed, and wind direction. The partially missing data point may contain known 219 

components (time, longitude, latitude) and unknown or missing components (wind speed and 220 

wind direction).  221 

Consider a smooth n-dimensional manifold M embedded in a D-dimensional Euclidean space. 222 

Suppose that it is desired to estimate the wind field for a data point 0
nP  from a set of 223 

training data points that belong to a manifold M . The space/time coordinates of the point (the 224 

independent variables) are known, however, the data (the dependent variable) are missing. We 225 

denote 0
0

0

nP
P

P
as the data point using the superscript   to denote the independent 226 

variables and the superscript   to denote the dependent variable which is the missing component 227 

of interest here. 0
nP is the sub-vector of the known components, and 0

nP228 

( )n n n  is the corresponding sub-vector (e.g., wind velocity vector) for the missing 229 

component where 0 ( , )P V u v  and u , v  are the orthogonal components of the wind velocity 230 
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(V ). The training data points, for example 1 2 7{ , ,..., }P P P P  in Fig. 2, also include the two 231 

components ni
i

i

P
P

P
, but there is no missing component here since both dependent and 232 

independent variables are assumed to be known at the nearby stations. Given a point 0
nP , 233 

the algorithm locates a set of nearest points to 0P  based on the distances 0( , )id P P  between 234 

pairs of points iP  and 0P . In order to determine local neighbors of 0P , we can calculate the 235 

distances between 0P  and either all other points within a fixed radius ε, or all of its k nearest 236 

neighbors (Tenenbaum et al., 2000). Then, a tangent space (linear subspace) of the manifold M  237 

at the point 0P  is created from the set of nearest points (Fig. 3a), denoted by  
0P

T
T M

T





 
  
 

 238 

where ,T T  denote the tangent spaces for the independent and dependent variables in the data 239 

at 0P  and 0P . Finally, the point 0
0

0





 
  
 

nP
P

P
 will be located as the closest point that belongs 240 

to that tangent space.  241 

To represent the closest distance between a point and a tangent space, we use the Euclidean 242 

distance of an orthogonal projection from that point to the tangent space. Since a tangent space is 243 

a linear space (or affine space in a more general case), one point can orthogonally project into 244 

that space. The question is how to define neighbors for each data point? The underlying idea is 245 

how to define similarity distance among the training data points, and then the overall similarity 246 

matrix. Several methods have been considered in the past, such as k-nearest neighbors (Press et 247 

al., 2007), ϵ-ball method (Allard et al., 2012) or the use of sparse representation theory (Dang et 248 

al., 2014, 2013; Dang and Radha, 2015). To approximate the wind field, we do not focus on 249 
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analyzing a predetermined set of tangent spaces as was done earlier (Dang et al., 2014, 2013), 250 

but instead create a tangent space for each input data point as creating a tangent space for a given 251 

input data leads to a better approximation of the manifold.  252 

The estimation of 0P is performed using the following steps:  253 

1. Given a set of neighboring points, estimate the tangent space T  at the point of interest, 0P  : 254 

Details of the method for creating a tangent space from a set of data points are described in 255 

Appendix-A and in Dang et al. (2014). One simple method is to create a tangent space using 256 

singular value decomposition (SVD, Press et al., 2007). By way of an example in Fig. 2, a 257 

tangent space (the line b) is created for 0P from a set of its neighboring points ( 5P and 6P ). 258 

This tangent space at 0P M  is denoted byT . 259 

2. Find the orthogonal projection of 0P  onto the tangent space: 260 

The closest point TP  to the given point 0P  is located at the intersection of the line b and 261 

the line perpendicular to it which passes through the point 0P . P which is a projection of 0P262 

onto the subspace T  can be represented as an approximation of point 0P . The orthogonal 263 

projection of vector point 0P  in a high-dimensional space onto a low-dimensional vector 264 

subspace is given by: 265 

T
1

0 0 0( ) ( )T TP A A A A P AA P        (1) 266 

where D nA T     is a full rank matrix with n D  containing the set of points on the 267 

tangent space of 0P and 0T
( )P  denotes the projection of 0P  onto the subspaceT . This 268 
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projection is derived from the solution of the normal equation 0    T TA Ax A P which is equivalent 269 

to the associated least squares solution of 0  Ax P . Due to the difficulty associated with inverting 270 

a general matrix that may be singular or non-square depending on the number of neighboring 271 

points selected in the manifold method, the problem (1) can be posed as a minimization problem 272 

in which the Moore-Penrose pseudoinverse A+  (Golub and Van Loan, 2013) of the original 273 

matrix A is used. The pseudoinverse A  generalizes the concept of matrix inverse and arises in 274 

the minimum norm (that is, approximate as opposed to exact) or best-fit (in a least squares sense) 275 

solution to a system of linear equations. The problem: 0 2
minimize Ax P

x

  has the solution276 

0x A P . The pseudoinverse can be computed using SVD as follows: if TA U V   , where 277 

,U V  denote unitary matrices and   is a diagonal matrix containing the singular values of A , 278 

then TA V U   .   We used the function pinv to compute the pseudoinverse in MATLAB. 279 

3. Find a linear representation coefficient vector   of that projection onto the tangent space: 280 
  281 

This coefficient is calculated by solving the following equation: 282 

0T
( )P A           (2) 283 

4. Estimate the missing components of the point 0P  ( 0P ): 284 

The last step is finding a point on the subspace T  that is closest (in norm) to the point P0. In 285 

order to do that, T is projected using the projection coefficient   computed in step 3:  286 

0 .P T            (3) 287 

The result of this projection is the closest point to 0P  that belongs to its subspace. In this 288 

algorithm, high-dimensional coordinates of selected neighborhoods on the manifold are 289 
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projected to a low-dimensional subspace. An alternative to this approach is to use kernel 290 

regression to assign a weight to each neighbor based on the distance from 0P  (Fig. 3b). A 291 

weight for each selected neighborhood can be computed using the following Gaussian kernel 292 

function: 293 

 

  
2

22 , var ,
i oP P

i i oW e d P P
 

  




          (4) 294 

Examples of manifolds representing geophysical (bathymetry) and meteorological (wind) data 295 

are shown in Figures 4(a) and (b).  These figures support the assumption that the manifold can be 296 

considered as being linear locally, but with complicated topology overall. 297 

2.2 Test case: Analytical function 298 

 Before applying the manifold method to reconstruct complex geophysical and meteorological 299 

data, we first evaluate the effectiveness of the method in reproducing an analytical function, 300 

since errors can be computed relative to the known function values; therefore, the F7 function 301 

suggested by Lazzaro and Montefusco (2002) and Renka and Brown (1999) is used: 302 

 303 
7( , ) 2cos(10 ) sin(10 ) sin(10 )F x y x y x y       (5) 304 

 305 

where the domain of F7 is restricted to 0 1x  and 0 1y  (Fig. 5a) . Three sets of sparse 306 

random points from a normal distribution were generated in the domain with numbers of 307 

sampling points of 30, 60, and 90. The F7 function was sampled randomly as shown in Fig. 5b 308 

and the manifold method was tested by withholding one point at a time and estimating its 309 

associated value from the remaining points using the manifold method, in addition to other 310 
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methods such as the natural neighbor, nearest neighbor, and IDW interpolations. Since known 311 

components of the scatter points are located in the two-dimensional X-Y plane, at least two 312 

neighboring points are needed to form a tangent space for the manifold method. Therefore, for 313 

simplicity, only two nearest neighbors are used in both manifold and IDW interpolation methods. 314 

2.3 Assimilating Meteorological Data for Improved Lake Circulation Modeling: 315 

Lake Michigan 316 

The proposed method was first applied for the reconstruction of wind fields (time-varying 317 

vector fields) over Lake Michigan. Hourly wind speed and direction data during April-318 

September 2008 were obtained from the National Data Buoy Center (NDBC) weather stations 319 

surrounding the lake (Fig. 6). The wind measurements were adjusted to a 10 m anemometer 320 

height using the profile methods described in Schwab (1987). Since the aerodynamic roughness 321 

over the lake is much lower compared to its counterpart over the land, an empirical overland-322 

overlake adjustment was applied to the wind speeds recorded by overland stations (Schwab and 323 

Beletsky, 1998). The datasets of wind speed and direction were converted to two coordinates in 324 

the Cartesian coordinate system (  and   directions).  325 

Instead of using the cross-validation method to evaluate the interpolated wind data, results from 326 

the hydrodynamic model of the lake were compared with current measurements to test the 327 

applied method. To this end, a well-tested three-dimensional hydrodynamic model of the lake 328 

(Safaie et al., 2016) was used. The model was based on the unstructured grid Finite Volume 329 

Community Ocean Model (FVCOM; Chen et al., 2006) which was successfully used in the past 330 

in ocean (Li et al., 2014), lake (Nguyen et al., 2014) and river (Anderson and Phanikumar, 2011) 331 
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modeling. Details of the unstructured mesh used in the hydrodynamic model are presented in 332 

Table 1. 333 

Wind fields from April to September 2008 were reconstructed at the locations of nodes in the 334 

numerical mesh. Other hourly meteorological observations related to heat flux fields, including 335 

air temperature, cloud cover, dew point, long-wave solar radiation, short-wave solar radiation, 336 

and relative humidity, obtained from the National Climatic Data Center (NCDC) and NDBC 337 

stations, were interpolated over the computational grid using a smoothed natural neighbor 338 

method with a smoothing radius of 30 km. Air pressure was assumed to be constant (105 Pa) 339 

through the course of the study and a constant startup water temperature with a value of 2.5 oC 340 

was used in the model. The overlake dew points were estimated from overland observations 341 

using an empirical formula described in (Schwab and Beletsky, 1998). Air temperature and cloud 342 

cover were used to estimate long-wave solar radiation (Parkinson and Washington, 1979) and 343 

short-wave solar radiation was modeled using the clear-sky value and cloud cover (Nguyen et al., 344 

2014). Six arc-second bathymetric data obtained from the NOAA National Geophysical Data 345 

Center (NGDC) combined with two-meter resolution LIDAR data along the Indiana coast from 346 

the National Oceanic and Atmospheric Administration (NOAA) were interpolated to the 347 

numerical mesh using the natural neighbor method (Safaie et al., 2015).  348 

Three bottom-mounted, upward-looking Acoustic Doppler Current Profilers (ADCPs) were 349 

deployed at stations M, BB and S  (Fig. 6) in  southern Lake Michigan  from early June to late 350 

August 2008 to measure nearshore currents for model testing (Thupaki et al., 2013; Safaie et al., 351 

2016). The hydrodynamic model was run from April to August 2008 to have a two-month spin-352 

up period. Evaluation of the manifold method was carried out by comparing the simulated 353 

currents with data collected by the ADCPs. Comparisons between simulated and observed 354 
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currents can be improved by identifying an optimal set of parameters in the manifold method. 355 

These parameters include: an optimum number of the nearest neighbors to create a tangent space, 356 

the time scale c, and parameters of the Gaussian kernel function. In addition, the method used for 357 

creating a tangent space from a set of data points (Appendix-A) can be changed to improve the 358 

agreement between simulated and observed currents. The manifold method for the reconstruction 359 

of wind fields was directly applied to reconstruct the other six scalar observations to calculate the 360 

heat flux fields. This time, however,    is a scalar, rather than a vector. 361 

2.4 Assimilating Geophysical Data for Improved Lake Circulation Modeling: Gull 362 

Lake 363 

In the second example, the bathymetry of Gull Lake was reconstructed using a manifold 364 

method. The lake bathymetry data were collected using a SonTek RiverSurveyor M9 system. 365 

The M9 system has an Acoustic Doppler Profiler (ADP) with two sets of four profiling beams 366 

and one vertical acoustic beam (0.5-MHz echo-sounder) for river discharge measurements and 367 

bathymetric surveys. The system was equipped with differential GPS with sub-meter precision 368 

and mounted on a SonTeck hydroboard to avoid high pitch and roll angles. The vertical acoustic 369 

beam has a range of 0.2 m to 80 m with an accuracy of 1% and a resolution of 0.001 m. The 370 

bathymetry survey was performed in four days (June 9 – June 12, 2015) by collecting data along 371 

longitudinal and transverse transects of the lake with an approximate interval of 200 m between 372 

each transect pair and sampling interval of 0.2 m- 2 m along the transects depending on the boat 373 

speed (Fig. 7). 374 

In order to assimilate the bathymetry of the lake, a three-dimensional hydrodynamic model 375 

based on FVCOM has been developed for the lake during the period of thermal stratification 376 
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(June-August of 2014). The hydrodynamic equations were solved by the numerical model on an 377 

unstructured grid and details are given in Table 1. 378 

 The meteorological observations for calculation of wind and heat flux fields were obtained 379 

from NCDC, Weather Underground (https://www.wunderground.com), and the Kellogg 380 

Biological Station Long-Term Ecological Research (KBS LTER, http://lter.kbs.msu.edu) 381 

stations, a total of 22 locations surrounding Gull Lake from May to August (Fig. 8). Instead of a 382 

constant air pressure, hourly air pressure data recorded by the KBS LTER stations were used to 383 

improve the performance of the model. This also helped in the calculation of water density in 384 

FVCOM based on a polynomial expression (Jackett and Mcdougall, 1995) that takes pressure 385 

into account. After applying overland-overlake adjustments, all observations were interpolated 386 

over the numerical mesh using a smoothed natural neighbor method with a smoothing radius of 387 

15 km. This radius provided the best simulated results between the ranges of 0 to 30 km. Air 388 

temperatures were adjusted using the empirical formula of 0.4 0.6a la wT T T  (Schwab and 389 

Beletsky, 1998), where Ta is the adjusted air temperature over water, Tla is the air temperature 390 

reported by overland stations, and Tw is the surface water temperature. The surface water 391 

temperature was collected using an Onset HOBO Pro v2 sensor with an accuracy of 0.2oC. A 392 

linearly varying startup water temperature was used with a value of 12oC at the water surface and 393 

4oC at the depth of 10 m. The hydrodynamic model was tested using observed current data 394 

measured using a Teledyne - RDI Sentinel-V ADCP (1000 kHz frequency with a bin size of 0.3 395 

m) deployed in the nearshore waters of the lake in approximately 10 m of water (Fig. 7b). 396 

Finally, the bathymetry of the lake interpolated to grid nodes using the manifold method was 397 

assimilated into the model. 398 
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2.5 Assimilating Precipitation Data for an Integrated, Distributed Hydrologic 399 

model 400 

In the third example, we simulate the hydrology of a watershed in the Great Lakes region using 401 

the spatial distribution of six-year (2000-2005)  daily participation data over the Grand River 402 

(GR) watershed in Michigan  using an integrated, process-based hydrologic model, 403 

PAWS+CLM (Shen and Phanikumar, 2010; Shen et al., 2013; Niu et al., 2014). The model is 404 

able to simulate different hydrologic components and states including channel discharge, surface 405 

runoff, evapotranspiration, groundwater, soil moisture, soil temperature, and vegetation growth. 406 

PAWS+CLM uses a structured finite-volume grid to solve the governing partial differential 407 

equations for different hydrologic components. Governing equations and numerical details of 408 

PAWS have been described in (Shen and Phanikumar, 2010) and in Table 2 of (Niu et al., 2014).  409 

The Grand River (GR) watershed (Fig. 9) was selected as our study domain. GR watershed is 410 

located in the middle of Michigan’s Lower Peninsula and it is the second largest watershed in 411 

Michigan. The watershed has a drainage area of 14, 431 km2 and drains portions of 15 counties 412 

in Michigan. The GR stretches 420 kilometers to the outlet at Grand Haven on Lake Michigan 413 

and it is the longest river in Michigan. Shen et al. (2014) described the details of data input and 414 

integration algorithms of PAWS+CLM; thus we simply introduce the basic data input and 415 

processing information for our model in this section.  We used a grid resolution of 1 km x 1 km 416 

for horizontal discretization which produced a 170×195 mesh for the GR watershed and 20 417 

vertical layers to simulate the vadose zone dynamics by solving the Richards equation and 2 418 

layers for the groundwater domain (unconfined and confined aquifers) (Table 1).  419 
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For topographic calculations (e.g. surface slope and overland flow), the 30 m resolution 420 

National Elevation Dataset (NED, http:/ned.usgs.gov) from U.S. Geological Survey (USGS) was 421 

used as the Digital Elevation Model (DEM). For river network simulation, National 422 

Hydrography Dataset (NHD) from USGS was assimilated and reorganized as ‘river segments’ 423 

with a length of one kilometer. We used the 30 m resolution raster data provided by the 424 

Michigan Department of Natural Resources, i.e. the Integrated Forest Monitoring Assessment 425 

and Prescription (IFMAP) dataset as the land use and land cover (LULC) layout (MDNR, 2010). 426 

Soil information was obtained from Soil Survey Geographic (SSURGO) (Soil Survey Staff) 427 

database from U.S. Department of Agriculture. This information was processed by the 428 

pedotransfer functions provided in ROSETTA (Schaap et al., 2001) to provide soil properties of 429 

water retention and unsaturated conductivities. Climate driven data (e.g. precipitation, daily 430 

maximum temperature and minimum temperature, wind speed) are acquired as point input (Fig. 431 

9) from National Climatic Data Center (NCDC, 2010) of the National Oceanic and Atmospheric 432 

Administration (NOAA).  433 

In this study, 14 rain gauges in the GR were selected to obtain the spatial distribution of rainfall 434 

over the watershed and for assimilation into the model. Previous applications of the 435 

PAWS+CLM model used the nearest neighbor method as the default for processing precipitation 436 

data. In our work, the manifold method was tested by evaluating the stream discharge outputs of 437 

PAWS+CLM against USGS data. The parameters of PAWS+CLM are listed in Table 1 of (Shen 438 

et al., 2013), most of which are spatially distributed and have taken into account the spatial 439 

heterogeneity of parameters such as the soil parameters and groundwater hydraulic 440 

conductivities. 441 
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3 Results and Discussion 442 

3.1 Analytical function 443 

True values of the analytical function at each of the randomly selected sampling locations were 444 

compared with the estimated values obtained by the manifold method as well as other standard 445 

interpolation methods. The performance statistics for this example are provided in Table 2. For 446 

all methods, the approximation of the F7 function improved by increasing the number of 447 

sampling points. In this particular example, the results show that the manifold method produced 448 

better overall performance compared to the other three methods considered.  However, the best 449 

method in this example might perform differently on another test function or for a different 450 

sampling point distribution; therefore, we examine the performance of the method for other 451 

datasets in the following sections. 452 

3.2 Lake Michigan  453 

Due to the sparse distribution of weather stations around Lake Michigan, it was not clear a 454 

priori how many neighboring stations would provide an adequate representation of the data. 455 

Since choosing a relatively few (e.g., three) neighboring stations in this situation would involve 456 

using information from stations that are far apart as neighbors, we used  kernel regression  to 457 

assign weights to each station depending on the distance from the point of interest.  For each 458 

node of the numerical grid of Lake Michigan, k number of nearest neighbors were selected and 459 

their assigned weights were projected to a low-dimensional subspace. The free parameters in the 460 

method are c (time scale), σ (the parameter used in kernel regression), and k. The standard 461 

deviation of weather station distances from the point of interest was used for the parameter   in 462 

kernel regression. Performance of the manifold method as measured by a comparison of 463 
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simulated and observed currents in Lake Michigan is summarized in Table 3 relative to the other 464 

standard methods considered. We note that the manifold method based on kernel weighting 465 

considering all stations produced the best overall performance as measured by the root mean 466 

squared error (RMSE) between the observed and simulated currents. The performance of the 467 

method without kernel regression and with only three neighboring stations was comparable to 468 

the other methods but slightly inferior to the natural and nearest neighbor methods. Fig. 10 469 

shows the RMSE and R2 values for different numbers of nearest neighbors at different ADCP 470 

locations. Having all stations to create the tangent space for the manifold method resulted in a 471 

better representation of wind fields, and improved the results of the hydrodynamic model (Fig. 472 

11 shows the comparison at station M). We can see that the manifold method performs better 473 

than the IDW method at two of the offshore stations (M and BB) but not at the nearshore 474 

location S. We believe that the reason for this has to do with the fact that in the nearshore region 475 

there are a number of additional processes (waves, wave-current interactions etc) which are not 476 

simulated in our model. Therefore model performance in that region cannot be directly attributed 477 

to the wind field. At the other two offshore stations M and BB, where the flow is predominantly 478 

wind-driven, an improvement in the simulated hydrodynamic fields can be seen. 479 

Finally, cross-validation was used to compare the performance of the manifold method with 480 

other standard methods for the same Lake Michigan datasets.  The performance metrics are 481 

summarized in Table 4. In this cross-validation method, one weather station was withheld to be 482 

used later for validating the manifold method, and all other stations surrounding the lake were 483 

used for the manifold training set. This process was repeated so that each weather station was 484 

given a chance to be part of this validation process. Based on these results the proposed manifold 485 

method with three nearest neighbors gave better results compared to other standard methods. 486 
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However, the performance of the hydrodynamic model based on these methods was relatively 487 

inferior compared to the performance of the model when the manifold method used all 488 

neighboring points. All different versions of the manifold methods had reasonable computational 489 

efficiency. The computational time for the O-kriging was high due to the time needed for finding 490 

the best variogram at each time step. 491 

3.3 Gull Lake 492 

Wind and heat flux fields of the Gull Lake were interpolated over the numerical mesh of the 493 

lake using the natural neighbor method. Then, the bathymetry of the lake was interpolated over 494 

the mesh using the same natural neighbor method to develop the initial version of the lake 495 

hydrodynamic model. The raw bathymetry data, which has some regions of steep bathymetry 496 

change, created artificial currents in the model due to an error in the pressure gradient force 497 

introduced by the sigma-coordinate system of FVCOM (Mellor et al., 1998). Therefore, the 498 

interpolated bathymetry was smoothed with a radius of 100 m in order to reduce the errors. The 499 

results of the developed model using natural neighbor method and IDW with three nearest 500 

neighbors are presented in Fig. 12.  501 

The model was used to assimilate the bathymetry of the lake based on the manifold method. 502 

The bathymetry data were reconstructed from the tangent space of the manifold with three 503 

nearest neighbors and smoothed with the same method described above. The hydrodynamic 504 

model was run with the reconstructed bathymetry. The final comparisons of the vertically-505 

averaged velocity profiles at the ADCP location are presented in Fig. 12. The best value of σ 506 

used in kernel regression was equal to the standard deviation of distances of observational points 507 

where water depth values are available within a search radius of 50 m from the point of interest.  508 
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When the number of samples within this radius was smaller than 100, σ value was calculated 509 

based on locations of 100 nearest samples. This method is more accurate when enough samples 510 

are available around an estimated point, unless selecting 100 samples itself does a reasonable 511 

job. RMSE values (m/s) of eastward and northward velocities in Gull Lake for comparison of the 512 

manifold method with other standard methods used in limnology and oceanography are 513 

presented in Table 5. The statistics of cross-validation for all (=71) measured longitudinal and 514 

transverse transects are shown in Table 6. The cross-validation was performed by omitting one 515 

transect at each step and calculating the bathymetry for that transect from the rest of the 516 

observation data and repeating the process for all other transects.  517 

3.4 Grand River watershed 518 

The daily distributions of precipitation over the GR watershed for the period 2000 to 2005 were 519 

reconstructed from selected rain gauges using the manifold method. The precipitation fields over 520 

a period of six years were tested by comparing the simulated and observed stream discharges at 521 

selected USGS gaging stations within the watershed. In this example, kernel regression with a 522 

standard deviation of all rain gauge distances from the estimated points was used in the manifold 523 

method. The tangent space at each grid point of the numerical model was obtained from three-524 

nearest neighbors around that point. The PAWS+CLM model was run with precipitation 525 

distributions built using the manifold, natural neighbor, nearest neighbor, and inverse distance 526 

methods. . The final comparisons of simulated and observed stream flows for USGS gauges are 527 

presented in Figs. 13 and 14. Model performance metrics (NASH, Absolute Percent Bias (APB), and 528 

RMSE) were computed to evaluate the performance of the manifold method with other standard methods 529 

(Table 7). The manifold method provided superior results as can be seen from the improved 530 

representation of baseflow over the simulation period. This can be seen clearly from semi-log 531 
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plots of the stream hydrograph comparison. The cross-validation results for precipitation are 532 

presented in Table 8. In this method, data from one rain gauge was withheld and data from the 533 

rest of the gauges were used for manifold training. This process was repeated for all 14 rain 534 

gauges. Since rain gauges have a sparse distribution, the cross-validation method could not 535 

identify the best method for this case. The results of the integrated, distributed hydrologic model, 536 

however, clearly demonstrate the efficacy of the manifold method in the reconstruction of 537 

precipitation fields. In particular, the better simulated baseflow shows the strength of using 538 

precipitation data based on the manifold method to improve the simulation of heterogeneous 539 

partitioning of surface runoff and infiltration processes. 540 

4 Conclusions 541 

We presented a novel manifold method of reconstructing spatio-temporal data for assimilating 542 

geophysical and meteorological data in integrated land surface subsurface, and oceanic/lake 543 

models. All three case studies illustrate the superior performance of the presented manifold 544 

algorithm over standard methods in terms of accuracy and computational efficiency.  The 545 

hydrodynamic model of Lake Michigan based on the manifold method of reconstructing wind 546 

fields produced better performance relative to the other methods. The best results were obtained 547 

using kernel regression applied to all weather stations (neighbors). However, the cross-validation 548 

results show that the results of the three nearest neighbors were better than the other methods.  549 

The Gull Lake model results indicated that the proposed method has the ability to reconstruct 550 

geophysical data at unsampled locations. The use of spatiotemporal precipitation fields 551 

constructed using the manifold method produced better stream discharge simulations compared 552 

to similar results from the nearest neighbor, natural neighbor and IDW interpolation methods in a 553 
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large watershed (> 10000 km2). Finally, all three examples show that evaluating the performance 554 

of interpolation methods using the cross-validation method without considering the data structure 555 

and the purpose of interpolation can lead to misleading conclusions about the relative 556 

performance of the methods considered. The comparisons presented here indicate that manifold 557 

methods show promise for modeling Earth system processes based on data from sensor 558 

networks. Our future work will combine manifold methods with approaches such as the EnKF 559 

method to further improve process-based modeling of land surface, subsurface and lake/ocean 560 

models.  561 

Based on the results presented, we note that:  (1) Details of the manifold method such as the 562 

tangent space estimation, the distance metric that defines spatiotemporal proximity and other 563 

details can be further improved to improve the performance of the manifold method; however, 564 

these topics are beyond the scope of the present paper. (2) We do not claim that the manifold 565 

method provides superior performance on all datasets and for all performance metrics but from 566 

the examples considered here it appears that the manifold method may offer an attractive method 567 

that is comparable or superior to other standard methods. More research is needed to understand 568 

the relative strengths and weaknesses of different manifold-based approaches compared to 569 

standard methods.  570 
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Appendix-A. Tangent Space Estimation 577 

To understand the local geometry of the surface ( )f x  near a point  nx , we consider the first-578 

order Taylor series expansion of the surface: 579 

 
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where    D n
fJ x  is the Jacobian matrix of f  at the point x . If the components of ( )f x  can 581 

be written as:  1 2 3( ) ( ), ( ), ( ) ( ) T
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can be written as: 583 

 

1 1

1

1

n

f

D D

n

f f
x x

J x
f f
x x

  
  
 

  
 
  
   

         (A2) 584 

To understand the local shape of the surface in equation (A1), we seek to determine the space585 

 x x , such that as we move away from x , the value of the function doesn’t change to within 586 

first order. This is equivalent to finding the space T such that:  587 

     0fT x x J x x x             (A3) 588 
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This space is the tangent space to the surface at point x  and is the right null space of the Jacobian 589 

matrix ( )fJ x . The space orthogonal to the tangent space is the row space of the Jacobian and 590 

orthogonal representations of these spaces can be obtained from SVD. The right null space of 591 

fJ  is the columns of V  corresponding to zero singular values. Therefore, the tangent space of 592 

the manifold M at ( )y f x  is: 593 

  ( ) span fT M J x           (A4) 594 

From a practical computation point of view, given a set of sample points 1 2 3{ , , , }my y y y y , a 595 

simple method of constructing the tangent space is to approximate it as the line/surface obtained 596 

by joining the local neighboring points.  The tangent space can also be directly estimated using 597 

SVD. If mC  denotes the local covariance matrix: 598 

1

1 m
m T T

i i
i

C y y U U
m 

             (A5) 599 

where  1 2 3, , , DU u u u u   and  1 2 3diag , , D      denote the eigenvector and eigenvalue 600 

matrices respectively, then the optimal (in a least-squares sense) n-dimensional linear subspace is 601 

the span of the n-largest eigenvectors in U: 602 

 1 2 3( ) span , , , nT M u u u u          (A6) 603 
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Fig. 3. A tangent space created from the set of nearest points using (a) coordinates of selected 794 
neighborhoods or (b) Kernel regression. 795 

Fig. 4. Manifolds representing  (a) bathymetry of Gull Lake and (b) wind components over Lake 796 
Michigan in three dimensional space. 797 

Fig. 5. (a) Analytical function used to test the manifold method for interpolation of scattered data. 798 
Random sampling was used to generate scatter points as shown in figures (b, 30 points), (c, 60 points) and 799 
(d, 90 points) to reconstruct the function.  800 
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Fig. 6.  Locations of the ADCPs deployed during summer 2008 and weather stations surrounding Lake 801 
Michigan. 802 

Fig. 7(a). Bathymetry of Gull Lake. (b) Boat tracks generated during the sampling survey in Gull Lake. 803 

Fig. 8. Selected weather stations surrounding Gull Lake. 804 

Fig. 9. Map of Grand River watershed showing the locations of the USGS gauges, rain gauges and 805 
National Hydrography Dataset (NHD) streams. 806 

Fig. 10. Performance of the manifold method evaluated using observed and simulated currents at different 807 
stations in Lake Michigan. Different number of nearest neighbors were used to reconstruct the wind field 808 
using the manifold method with kernel regression. 809 

Fig. 11. Comparison of simulated (black lines) and observed (red lines) vertically averaged currents at the 810 
location M in Lake Michigan. (a) Alongshore velocity (b) Cross-shore velocity 811 

Fig. 12. Comparison of simulated (black lines) and observed (red lines) vertically averaged currents at the 812 
ADCP location in Gull Lake. (a) Eastward velocity and (b) Northward velocity 813 

Fig. 13. Comparison of simulated and observed stream flows for USGS gauge #04116000 in (a) a linear 814 
scale, and (b) logarithmic scale. 815 

Fig. 14. Comparison of simulated and observed stream flows for USGS gauge #04119000 in (a) a linear 816 
scale, and (b) logarithmic scale. 817 
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List of Tables 820 

Table 1. Properties of the numerical grids used for the hydrodynamic and hydrologic  821 

Model Grid 
Classification 

Element 
shape 

Grid 
Resolution 

# Nodes # Elements #Vertical 
layers 

FVCOM (Lake Michigan) Unstructured Triangle 4m -5 km 12,684 23,602 20 
FVCOM (Gull Lake) Unstructured Triangle 8-100m 5,132 9,361 20 
PAWS (Grand River) Structured Quadrilateral 1 km 33,150 32,786 22 

 822 

Table 2. Cross-validation results for the analytical function based on different sampling points selected 823 
randomly. 824 
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 825 
Sample 

size Method R2 RMSE Fn PBIAS NASH APB (%) 

30 

Manifold 0.667 0.778 0.710 14.420 0.416 0.652 
Natural neighbor 0.582 0.876 0.799 -8.866 0.259 0.713 
Nearest neighbor 0.619 0.882 0.804 -14.689 0.250 0.669 
IDW 0.577 0.870 0.793 35.847 0.270 0.727 

        

60 

Manifold 0.846 0.579 0.531 -33.924 0.703 0.472 
Natural neighbor 0.816 0.615 0.564 16.912 0.664 0.466 
Nearest neighbor 0.779 0.720 0.660 -34.524 0.540 0.512 
IDW 0.832 0.603 0.553 -44.292 0.677 0.469 

        

90 

Manifold 0.891 0.502 0.432 -14.103 0.791 0.400 
Natural neighbor 0.874 0.539 0.464 -10.666 0.759 0.344 
Nearest neighbor 0.867 0.571 0.491 -28.777 0.730 0.446 
IDW 0.859 0.567 0.487 -5.974 0.735 0.416 

 826 

 827 

 828 

 829 

Table 3. RMSE values (m/s) of alongshore and cross-shore velocities for comparison of the manifold 830 
method with other standard methods used in limnology and oceanography 831 

 Loaction: M  Location: BB  Location: S 
Method RMSE u RMSE v  RMSE u RMSE v  RMSE u RMSE v 
O-kriging 0.0385 0.0290  0.0590 0.0349  0.0540 0.0152 
Nearest Neighbor 0.0363 0.0286  0.0580 0.0348  0.0545 0.0152 
Natural Neighbor 0.0366 0.0275  0.0553 0.0334  0.0515 0.0158 
Manifold (3 NBR) 0.0383 0.0276  0.0594 0.0346  0.0568 0.0158 
Manifold+Kernel (3 NBR) 0.0371 0.0268  0.0576 0.0341  0.0559 0.0158 
Manifold+Kernel (all NBR) 0.0304 0.0265  0.0531 0.0312  0.0568 0.0154 
IDW (all NBR) 0.0328 0.0267  0.0535 0.0316  0.0498 0.0155 

 832 
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 833 

Table 4. Cross-validation results for wind field over Lake Michigan. 834 

Method R2u R2v RMSEu RMSEv Computational time (s) 
O-kriging 0.441 0.572 3.497 3.853 92463.8 
Nearest Neighbor 0.666 0.743 2.792 3.044 18.6 
Natural Neighbor 0.693 0.794 2.558 2.750 183.6 
Manifold (3 NBR) 0.690 0.801 2.433 2.595 28.1 
Manifold+Kernel (3 NBR) 0.710 0.806 2.392 2.566 55.1 
Manifold+Kernel (all NBR) 0.547 0.681 2.884 3.129 77.3 
IDW (3 NBR) 0.724 0.822 2.278 2.458 69.3 

 835 

 836 

Table 5. RMSE values (m/s) of eastward and northward velocities in Gull Lake for comparison of the 837 
manifold method with other standard methods used in limnology and oceanography 838 

Method RMSE u  RMSE v 
Natural Neighbor 0.0090  0.0205 
Manifold+Kernel (3 NBR) 0.0098  0.0200 
IDW (3 NBR) 0.0095  0.0204 

 839 

 840 

 841 

 842 

Table 6. Cross-validation results for Gull Lake bathymetry. 843 

Method R2 RMSE (m) Fn NASH PBIAS 
Manifold 0.890 2.011 0.222 0.678 -14.016 
Natural Neighbor 0.925 1.288 0.170 0.468 -13.301 
Nearest Neighbor 0.888 2.039 0.230 0.670 -17.132 
IDW (3 NBR) 0.839 3.282 0.6065 0.540 -15.918 

 844 

 845 
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Table 7. Comparison of the manifold method with other standard methods for precipitation over the 846 
Grand River watershed. 847 

 
USGS04116000 

 
USGS04119000 

Method NASH RMSE APB(%) 
 

NASH RMSE APB(%) 
Nearest Neighbor 0.56 37.13 36.47 

 
0.58 58.15 30.54 

Natural Neighbor 0.33 44.52 54.71 
 

0.36 71.88 48.72 
Inverse Distance 0.38 44.22 54.18 

 
0.37 70.29 48.01 

Manifold 0.59 35.56 33.76 
 

0.63 54.57 27.87 
 848 

 849 

Table 8. Cross-validation results for precipitation over the Grand River watershed. 850 

Method R2 RMSE (cms) Fn NASH APB (%) 
Manifold 0.543 7.933 0.910 0.624 72.4 
Natural Neighbor 0.543 7.920 0.901 0.574 73.6 
Nearest Neighbor 0.471 8.802 0.930 0.604 81.8 
IDW (3 NBR) 0.567 7.542 0.907 0.619 70.0 

 851 
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