

1 ***Why don't they just change? Contract farming, informational influence, and barriers to***
2 ***agricultural climate change mitigation***

3

4 Rebecca Schewe and Diana Stuart

5 ***Abstract***

6 Using a mixed-methods study of contract seed-corn farmers in Southwest Michigan, we examine
7 the effect of interlocking macro and micro social forces on climate change behavior and apply
8 the theoretical frames of Treadmills of Production (Gould, Pellow, and Schnaiberg 2004) and
9 Informational Influence (Baron, Vandello, and Brunsman 1996). We find that competitive
10 agricultural contracts in the seed-corn industry impose significant structural barriers to adopting
11 climate change mitigation behaviors. Seed-corn contracts constrain adoption of climate
12 mitigation behaviors through competitive rankings based solely on net commodity production
13 and by limiting farmers' access to information to make judicious management decisions. At the
14 micro-level, findings suggest that informational influence – where farmers turn for trusted
15 information – also affects climate mitigation behaviors, and that these informational networks
16 are embedded within structural constraints. Our findings suggest that agricultural contracts serve
17 as a significant structural constraint on the adoption of climate mitigation practices and that
18 climate scholarship and policy must address both macro and micro dimensions simultaneously to
19 encourage adoption of climate change mitigation.

20

21

22

23 **Introduction**

24 As climate projections become increasingly dire and calls for mitigation and adaptation
25 actions more pressing (Gillis 2014), a fundamental question remains: what can be done to change
26 individual climate behaviors? What keeps individuals – farmers in this case – from adopting
27 climate change mitigation behaviors that natural scientists say are effective? The “information
28 deficit model” of behavior (Burgess, Harrison, and Filius 1998; Hargreaves 2011; Kollmuss and
29 Agyeman 2002; Owens 2000) that theorizes that knowledge and information about climate
30 change are the key to driving behavioral change has been widely dismissed by social theorists
31 and empirical studies (Attari et al. 2011; Coles, Zschiegner, and Dinan 2013; Hayles et al. 2013;
32 Schulte and Miller 2010; Semenza et al. 2008; Wells, Ponting, and Peattie 2010). So if lack of
33 knowledge is not the barrier to individual climate behavior, then what is? We apply this question
34 to agriculture to examine corn farmers’ climate change behavior. In other words, as one
35 extension specialist asked: “Why don’t farmers just do what we tell them to do?”

36 We explore this question through a mixed-method study of contract seed-corn farmers in
37 Southwest Michigan, comparing contract farmers to conventional commodity producers and
38 examining the application of Nitrogen fertilizer as a climate change behavior. Moving beyond a
39 focus on climate change knowledge and attitudes, we highlight mutually reinforcing structural
40 and micro-level barriers to adopting climate change mitigation behaviors. We identify several
41 features of seed-corn contract farming that inhibit reducing Nitrogen fertilizer as a climate
42 change mitigation behavior, as well as the role that informational influence – the influence of
43 trusted sources of information – plays in shaping these behaviors.

44 Our study simultaneously analyzes both macro and micro social forces as they shape
45 individual behavior. Specifically, we examine the structural influence of seed-corn contracts and

46 how those contracts constrain individual farmers' behaviors. Concurrently, we examine the more
47 micro-level influence of trusted informational networks on individual behavior. By examining
48 these social forces simultaneously, we are able to demonstrate how they act in concert to shape
49 behaviors and norms. The structural political economy creates the context for informational
50 networks and defines the stakes for behaviors, while informational networks may serve as an
51 important mechanism to transmit and/or mediate structural effects. Our findings suggest that
52 social scientists must examine multiple levels of social systems simultaneously to more fully
53 understand the constraints and drivers of behaviors such as climate change mitigation.

54 In this study, we focus specifically on seed-corn farmers who grow corn under contract
55 with seed companies, comparing them to commercial corn growers who grow for the
56 conventional commodity market. Seed-corn farmers enter into annual production contracts with
57 seed companies, agreeing to grow whichever variety of corn the company assigns to them and to
58 sell that corn back exclusively to said company. The company will then later sell that corn as
59 seed to other producers. Payment for seed-corn contracts is not agreed upon ex-ante or paid as a
60 fixed-rate per quantity of yield. Instead, “payments to seed producers are comprised of a fixed
61 payment plus a bonus or penalty” (Preckel et al. 2000:470). Bonus payment and penalties (and
62 future contract renewals) are based upon a “tournament” in which contract farmers are ranked
63 against each other based on their net commodity production (i.e. how much corn they grew).
64 This tournament contract structure is a key feature of seed-corn contract farming. Seed-corn
65 farming is an instructive case to examine contract farming and is distinct from conventional
66 commercial corn production in which growers sell commodity corn on the “open” commodity
67 market. The structure of the seed-corn industry and contracts are discussed in further detail
68 below.

69 While seed-corn farms are a minority of corn farms within the US, seed-corn contract
70 farming is an illustrative case in which to examine structural constraints on farmers'
71 management decisions because contracts make visible, through formal contractual restrictions,
72 the often-invisible structural effects of political and economic systems. Investigating seed-corn
73 contract farmers' climate behaviors reveals specific features of production contracts that
74 constrain management behaviors. Then, we can compare the effects of these production contracts
75 to the effects of other variables such as information networks and agronomic features. This case
76 study of seed-corn contract farming elucidates the macro-structural constraints on farmers'
77 behavior and how these structural constraints interact with micro-level effects of informational
78 and trust networks.

79 Contract farming has reemerged as a prominent topic of study in contemporary agrifood
80 studies. Across agricultural sectors, contract farming allows corporations and growers to limit
81 liability and externalize risks (Ashwood, Diamond, and Thu 2014) and complicates the role of
82 individual farmers (Pechlaner 2013). Scholars have explored agricultural contracts across a
83 variety of agricultural sectors and geographic regions to highlight the overwhelmingly adverse
84 impacts of contract farming on environmental and labor outcomes (Ashwood et al. 2014; Borlu
85 2015; Burch 1994; Dixon 1982; Goss, Skladany, and Middendorf 2001; Mabbett and Carter
86 1999; Vandergeest, Flaherty, and Miller 1999; Welsh 1997) and the constraints that contracts
87 place upon farmers' practices (Little and Watts 1994; Stuart 2009; Wells 1981, 1984, 1996;
88 Wolf, Hueth, and Ligon 2001). We extend this literature by studying contract farming within
89 corn production, the most common crop grown in the US (USDA, Economic Research Service
90 2014), by examining specific features of seed-corn contracts that may constraint behavior, and
91 by linking contract production to a specific climate change mitigation behavior.

92 We also build upon a literature that questions an often-assumed link between climate
93 change knowledge/attitudes and adoption of mitigation behaviors. Several empirical studies have
94 questioned this link, finding that climate change knowledge/attitudes poorly predict climate
95 change behaviors (Attari et al. 2011; Coles, Zschiegner, and Dinan 2013; Hayles et al. 2013;
96 Schulte and Miller 2010; Semenza et al. 2008; Wells, Ponting, and Peattie 2010). Many have
97 emphasized the importance of a sense of efficacy in predicting climate change mitigation
98 behaviors (Choi, Price, and Vinokur 2003; Gifford 2011; Kollmuss and Agyeman 2002;
99 Leiserowitz 2006; O'Neill and Nicholson-Cole 2009; Sampaio, Thomas, and Font 2012; Spence,
100 Poortinga, and Pidgeon 2012). Others have found that the relative cost of adaptation/mitigation
101 behaviors is related to their likelihood of adoption, particularly when short-term costs are high
102 and potential benefits are diffuse and long-term (Coles et al. 2013; Hall 2006; Hobson and Essex
103 2001; Lorenzoni, Nicholson-Cole, and Whitmarsh 2007; Semenza et al. 2008). This climate-
104 specific literature builds upon a much broader literature concerning the adoption and diffusion of
105 innovations in agriculture (for examples, see Levins and Cochrane 1996; Napier and Tucker
106 2001; Rogers 2003).

107 We extend these literatures by combining two distinct theoretical frames –Treadmills of
108 Production and Informational Influence – and by studying micro and macro-level social forces
109 simultaneously. By using these lenses to examine our case, we demonstrate the ways in which
110 structural features can constrain climate mitigation behaviors and how norms and informational
111 influence may mediate those effects. Our findings suggest that scholarship and policy to address
112 climate change must incorporate these structural and micro dimensions simultaneously.

113

114

115 **Background: Nitrogen and Corn Production**

116 The use of Nitrogen fertilizer is nearly ubiquitous in contemporary agriculture, with
117 American farmers applying approximately 13.5 million tons of Nitrogen fertilizer in 2012
118 (Association of American Plant Food Control Officials and The Fertilizer Institute 2013).
119 Although Nitrogen fertilizer has played an important role in increasing global crop production, it
120 is associated with a number of environmental concerns, particularly ground and surface-water
121 contamination (Dowd, Press, and Huertos 2008) and climate change. Nitrogen fertilizer use
122 contributes to anthropogenic climate change through the release of Nitrous Oxide gas. In 2011,
123 Nitrous Oxide comprised about 5% of greenhouse gasses released by human activity, and
124 agriculture is responsible for approximately 70% of US Nitrous Oxide emissions (US EPA
125 2011). Although Nitrous Oxide is a smaller proportion of greenhouse gasses than Carbon
126 Dioxide, its Global Warming Potential is 298 times higher than Carbon Dioxide (US EPA 2011).
127 One of the most effective climate change mitigation strategies in agriculture is reducing the
128 application of Nitrogen fertilizer, therefore reducing release of Nitrous Oxide (Snyder et al.
129 2009). Despite the effectiveness of this climate change mitigation strategy, use of Nitrogen
130 fertilizer increased 16% between 1990 and 2007 in the US (USDA Economic Research Service
131 2012) and agronomists estimate that at least 50% of US farms still apply more fertilizer than
132 recommended (Millar et al. 2010).

133 We focus on corn production for several reasons. First, approximately 50% of all
134 Nitrogen fertilizer is applied to corn production in the US (USDA Economic Research Service,
135 2012) and corn has an especially low Nitrogen Use Efficiency – approximately half of the
136 fertilizer applied is lost to the environment (Cassman, Dobermann, and Walters 2002). Corn is
137 also the most widely grown crop in the US, constituting approximately 96% of annual US feed

138 grain production with approximately 80 million acres of corn planted annually (USDA,
139 Economic Research Service 2014).

140 Previous studies have demonstrated a failure to acknowledge anthropogenic climate
141 change amongst American farmers (Arbuckle Jr. et al. 2013; Haden et al. 2012; Stuart, Schewe,
142 and McDermott 2012; White and Selfa 2013), consistent with larger American climate change
143 beliefs (McCright and Dunlap 2000, 2011). Additional studies have demonstrated the failure of
144 American farmers to adopt climate change mitigation practices (Arbuckle Jr. et al. 2013),
145 particularly the reduction of Nitrogen fertilizer (Millar et al. 2010). We offer an explanation of
146 *why* this might be the case, focusing on both structural and micro social forces.

147

148 **Contract Farming Literature**

149 Seed-corn contract farming, and contracting farming more generally, are best understood
150 within the context of the significant agricultural restructuring that has occurred in recent decades
151 (Goodman and Watts 1997; McMichael 1994). The contemporary agrifood system is
152 increasingly concentrated in nearly all stages and sectors (Hendrickson and Heffernan 2007;
153 Howard 2009, 2016), from consolidation amongst seed companies (Howard 2009) to grocery
154 retailers (Hollingsworth 2004; Messinger and Narasimhan 1995; Tennent and Lockie 2012).
155 Bonanno and Constance (2001) place agricultural contracts within an even broader context of
156 globalization and increasing capital mobility that allows transnational corporations to source
157 products globally and limits the possible regulatory responses of nation-states. Welsh (1997)
158 demonstrates the rising use of agricultural contracts across a variety of commodity sectors, using
159 an index to measure the “movement of decision-making control off the farm” and into the hands

160 of agribusiness firms (1997:496). He finds that “an increasing amount of agricultural production
161 is being accounted for by contracts” (Welsh 1997:495), including within the seed crop sector.

162 Within this environment of consolidation and restructuring, contracts are a
163 complementary alternative to vertical integration – direct control of the different nodes of a
164 commodity chain by a single entity (Kilmer 1986). A broad literature has developed to examine
165 the functions of contemporary agricultural contracts (Constance 2008; Constance and Tuinstra
166 2005; Goss et al. 2001; Stuart 2008; Vandergeest et al. 1999; Welsh 1997; Wolf et al. 2001) and
167 firms’ motivations to engage farmers in contract farming. Wolf et al. (2001), in a study of
168 contract farming in California’s fruit and vegetable sector, outline three key functions for
169 agricultural contracts: 1) coordinating production, 2) providing incentives to induce particular
170 behaviors amongst growers, and 3) sharing risk amongst the different actors from growers to
171 intermediaries to firms. In these ways, Wolf et al. argue that contracts serve to overcome some of
172 the limits of capital penetration into agriculture. Wolf and colleagues examine agricultural
173 contracts from the perspective of the firms and processors who engage farmers in contracts,
174 examining the policing mechanisms that firms employ to ensure that growers meet their quality
175 and production standards (Wolf et al. 2001). Mooney (1983) and others (Wells 1984, 1987,
176 1996) have argued that contracts allow firms to treat growers as employees, in that they can
177 control their behaviors and practices, without the actual legal and ethical responsibilities of
178 having them as employees.

179 This study does not examine the perspective of the seed companies that engage in seed-
180 corn contracts nor the vertical integration of the seed-corn industry broadly, although they must
181 be considered as an important context to the specific reality of seed-corn contract farmers’
182 experiences. We discuss the specific structure and function of seed-corn contracts in more detail

183 below. Generally, however, seed-corn contracts allow companies to coordinate production with
184 projected demand for seed (Jones et al. 2001, 2003), to mitigate risks (Jones et al. 2003), and to
185 incentivize growers to increase yield (Preckel et al. 2000), serving functions similar to those
186 described by Wolf and colleagues (Wolf et al. 2001).

187 A corresponding literature examines farmers' responses to agricultural contracts,
188 including a variety of alternative marketing strategies, collective bargaining of different types,
189 and pursuing regulatory responses. Welsh (1997) highlights a wide range of grower responses
190 and (sometimes) resistance to coercive contracts and argues that these responses are best
191 understood within the social movement literature. Growers have resisted the constraints of
192 vertical integration and/or contract farming through alternative marketing strategies (Cone and
193 Myhre 2000; Grey 2000; Hinrichs 2000, 2003; Sharp, Imerman, and Peters 2002; Starr et al.
194 2003), through a variety of collective bargaining or networks (Ashwood et al. 2014; Koehler,
195 Lazarus, and Buhr 1996; Welsh 1997), and through demands for regulatory responses (Hamilton
196 1994). Within hog farming, particularly, growers have utilized collective bargaining and
197 networks to respond to contract farming conditions (Koehler et al. 1996) and to limit liability
198 (Ashwood et al. 2014). Ashwood and colleagues argue that hog farmers are not passive victims
199 of contract farming, but rather have effectively utilized collectivities and limited liability
200 corporations (LLCs) to limit their own liability and place risks of concentrated hog farming onto
201 local communities (Ashwood et al. 2014). A number of empirical studies have examined the
202 impact of agricultural contracts across commodity sectors and sites, highlighting effects on labor
203 (Borlu 2015; Burch 1994; Dixon 1982; Goss et al. 2001), environment (Mabbett and Carter
204 1999; Vandergeest et al. 1999), and rural communities comprehensively (Ashwood et al. 2014;
205 Bonanno and Constance 2001; Constance and Tuinstra 2005).

206 However, it is crucial to recognize that, although agricultural contracts have increased in
207 penetration of the agrifood system broadly and are part of broader restructuring trends (Mooney
208 1983; Welsh 1997; Wolf et al. 2001), there is significant heterogeneity amongst agricultural
209 contracts and they intersect with unique features of different commodity systems in diverse
210 ways. Welsh (1997) outlines three primary types of agricultural contracts: 1) marketing contracts
211 that “require the producer to sell the production to a particular buyer on a predetermined
212 schedule” (1997:494) but the producer maintains most control over production, 2) production
213 management contracts in which a buyer defines “one or more production practices” (1997:494)
214 but does not control an input directly, and 3) resource providing contracts in which a buyer
215 controls one or more production practices and also controls a specific (or more than one) input
216 directly. The extent of off-farm control and coercion increases across the three contract types,
217 respectively. In this study, seed-corn contracts can be understood as the most restrictive
218 “resource providing contracts” since the seed company retains ownership of the seed/crop itself
219 (Jones et al. 2003). Agricultural contracts also vary significantly in their time span, with some
220 fruit and vegetable (Wolf et al. 2001) and swine (Ashwood et al. 2014; Koehler et al. 1996)
221 contracts being for multiple years and offering relative stability. Contracts for leafy greens
222 (Stuart 2008), broiler chickens (Constance 2008; Constance and Tuinstra 2005), and our case of
223 seed-corn (Jones et al. 2001, 2003; Preckel et al. 2000) are typically for only one season or year.
224 Further, agricultural contracts can be either fixed-rate contracts or tournament contracts.
225 In fixed-rate contracts, a rate or price is secured at the onset of the contract, as is the case with
226 most fruit and vegetable (Stuart 2008; Wolf et al. 2001) and swine contracts (Koehler et al.
227 1996). Tournament contracts, in contrast, are “ex post payment” contracts in which contracted
228 growers are ranked against each other on some measure of commodity quality or quantity and

229 payment is based on this tournament ranking (Preckel et al. 2000). Tournament contracts are
230 commonly used in broiler chicken production (Constance 2008; Constance and Tuinstra 2005)
231 and in our case of seed-corn contracts (Jones et al. 2001, 2003; Preckel et al. 2000).

232 Our contribution to this diverse literature on contract farming is three-fold: firstly we
233 study contract farming within corn production, the most widely grown crop in the US (USDA,
234 Economic Research Service 2014). Secondly, we examine climate change mitigation behavior
235 specifically. Thirdly, we recognize the heterogeneity of contract farming and focus on
236 identifying specific features of seed-corn contracts that shape impacts and outcomes. Contract
237 farming must be examined with appropriate historicity and specificity in order to address the
238 diversity of potential impacts; we combine the theoretical frames of Treadmill of Production and
239 Informational Influence with this contract farming literature to highlight the complex reality of
240 seed-corn contract farming and its effect on farmers' climate change mitigation behavior.

241

242 **Seed-Corn Contract Farming**

243 In this study, we examine seed-corn contract farmers, as compared to commercial corn
244 farmers. Commercial corn farmers grow for the conventional commercial market: corn that is
245 sold to distributors and processors, ultimately becoming a variety of commodities such as animal
246 feed, corn syrup, ethanol, and/or other processed goods. In contrast, seed-corn contract farmers
247 enter into annual production contracts with seed companies to grow varieties of corn that will
248 later be sold by that company as seed. Seed companies use contracts to ensure that they have an
249 adequate supply of different seed varieties available for the global market (Jones et al. 2001,
250 2003) and to "align incentives" of growers and the company (Jones et al. 2001, 2003; Preckel et
251 al. 2000). From the firms' perspective, seed-corn contracts serve the three key functions of

252 agricultural contracts described by Wolf et al. (2001): 1) coordinating production, 2) providing
253 incentives to induce particular behaviors amongst growers, and 3) sharing risk amongst the
254 different actors from growers to intermediaries to firms. Seed contracts typically offer growers
255 significantly higher profitability than the commercial corn market (Preckel et al. 2000), but are
256 highly competitive and risky, and can result in significant income losses if a contract is not
257 renewed or production suffers.

258 In seed-corn contract farming, “an agricultural producer grows a crop expressly to
259 provide seed for a supplier” (Preckel et al. 2000:470). Seed-corn contracts have several key
260 features: they are short-term annual contracts, they are exclusive (i.e. the contracted farmer can
261 only sell the contracted seed to one company), the company retains ownership of the seed, and
262 they are tournament contracts. In tournament contracts, growers are ranked against other growers
263 and then receive bonus and penalty payments based upon that ranking. Importantly, the higher
264 potential level of profitability of seed-corn contract farming versus commercial corn farming
265 ensures that:

266 Typically the number of producers seeking such contracts exceeds the number of
267 contracts available. In response, seed companies allocate contracts to preferred
268 producers, usually on the basis of high yields. As a result, a producer has two
269 incentives to seek a high yield: the bonus payment and the increased likelihood of
270 future contract allocations. (Preckel et al. 2000:470)

271 Preckel (2000) argues that the primary mechanism by which seed-corn contracts shape grower
272 behavior is through fear of losing their contract, similar to the fear of leafy green growers
273 described by Stuart (2008). Seed company representatives estimate that, on average, seed-corn
274 contract growers have profits-per-acre 20-50% higher than commercial corn growers. However,

275 seed-corn growers at the top of tournament rankings can have incomes three or four times higher
276 than commercial growers. Inversely, growers at the bottom of tournament rankings can have
277 extremely high annual losses and face contract non-renewal (personal communication).

278 While seed-corn represents the minority of corn farms in the US, it is an illustrative case
279 in which to study the effects of production contracts on farmers' management decisions, to
280 highlight specific features of contract production that constrain farmers' behaviors, and to
281 explore how these structural constraints interact with micro-level informational influence. Seed-
282 corn farmers have formal production contracts with seed companies that may have important
283 impacts on their climate change – or other – management behavior and that is what we explore in
284 this case study.

285 In recent decades there have been significant developments in corn production and
286 biotechnology, with new varieties of corn that are high producing, hardy, and have a number of
287 modifications such as herbicide resistance and higher oil content (Darrah, McMullen, and Zuber
288 2003). Seed-corn contracts have played an important role in these developments, as seed-corn
289 farmers are under contract to grow these new and experimental varieties of corn for seed.
290 Contracts give individual growers responsibility for production risks while allowing seed
291 companies to manage fluctuating global production and demand and ensuring access to a wide
292 array of corn varieties (Jones et al. 2001). Seed companies rely on contracts as a cost-effective
293 way to produce seed, mitigating risks associated with weather, pests, and other production
294 conditions by contracting with growers from around the world (Jones et al. 2003). Rather than
295 using contracts to police "quality control" as within the fresh fruit and vegetable sectors (Stuart
296 2008; Wolf et al. 2001), within the seed-corn sector the firms' primary policing objective is to

297 ensure quantity/yield, and contracts are structured in order to prioritize yield through tournament
298 ranking.

299 It is difficult to estimate the extent of contract seed-corn production in the US because the
300 Agricultural Census does not differentiate between commercial and seed-corn farms. However
301 seed-corn company representatives estimated that at least 100,000 acres in Southwest Michigan
302 are in seed-corn production (personal communication). Reflective of broader restructuring
303 trends, the seed-corn industry is highly concentrated; together Monsanto and Pioneer control
304 65% of the US seed-corn market (Howard 2009). According to industry representatives, in
305 Southwest Michigan these two companies control about 75% of the seed-corn market and have a
306 major influence over regional production practices (personal communication).

307 Amongst our sample, 17% of respondents grow any contract seed-corn, 12% grow
308 majority contract seed-corn, and only 7% of respondents grow only contract seed-corn (Table 1).
309 While a minority of the corn industry, seed-corn contract farms are significantly larger, on
310 average than commercial corn farms (Table 2). While few studies have empirically examined
311 seed-corn contract production, some studies have found that contracts were associated with
312 higher chemical inputs and use of non-family labor (Winters, Simmons, and Patrick 2005) and
313 higher rates of Nitrogen fertilizer use specifically (Jolejole 2009; Preckel et al. 2000). We build
314 upon these preliminary studies by examining why this may be the case.

315

316

317 <Table 1 here>

318

319 <Table 2 here>

320

321

322 **Treadmills of Production**

323 We bring together two theoretical perspectives to explore barriers to adopting climate
324 change mitigation behaviors in seed-corn production: Treadmills of Production and
325 Informational Influence. Treadmill of Production theory (Gould et al. 2004; Gould, Pellow, and
326 Schnaiberg 2008; Schnaiberg 1980; Schnaiberg and Gould 2000) offers a Marxian structural
327 perspective, highlighting the ways in which a competitive capitalist system creates an
328 unavoidable speeding up of production and associated social and environmental costs. Firms (in
329 this case, farms) compete to increase production and lower costs, through technology adoption
330 and/or labor exploitation, in order to capture a larger portion of the market than competitors. This
331 relentless pursuit of growth is the defining feature of capitalist systems, the “dominating social
332 good” (Schnaiberg and Gould 2000:viii). Increased production relies on increased extraction and
333 new technologies that are often more input-intensive (“withdrawals”). Conversely, increased
334 production and consumption also generate increased waste and increasing pollution
335 (“additions”). Schnaiberg, Gould, and colleagues argue that this Treadmill is both
336 environmentally and socially unsustainable (Gould et al. 2004, 2008; Schnaiberg 1980;
337 Schnaiberg and Gould 2000).

338 Specifically within the study of agriculture, Treadmill of Technology theory (Cochrane
339 1958; Levins and Cochrane 1996) makes a similar theoretical argument highlighting structural
340 pressures to continuously increase production within capitalist systems. Cochrane and colleagues
341 (Cochrane 1958; Levins and Cochrane 1996) emphasize that increasing production, primarily
342 through technology, is the primary way for farmers to increase income. However, investment in

343 technology increases debt burdens and industry-wide production increases suppress commodity
344 prices, placing farmers under further pressure to increase production (hence, the Treadmill
345 analogy). Treadmill of Production and Treadmill of Technology theory highlight the ways in
346 which individual farms and actors are constrained by the larger capitalist political economy that
347 creates structural demands for increased production.

348 Rural sociologists and agricultural economists have also explored the Treadmill of
349 Production within a political context, highlighting how the structure of political and economic
350 systems emphasize continuously increasing production (Buttel 2001; Buttel, Jr, and Larson 1990;
351 Marsden 1989; Ploeg 1990; Wilson 2001). The majority of Western nation-states have
352 agricultural price supports and an agricultural regulatory system built to prioritize production,
353 built on narratives of modernity and “feeding the world.”

354 This structural perspective offers a theoretical basis for our examination of the role
355 political economy may play in constraining climate mitigation behaviors in agriculture.
356 Specifically, we engage with Treadmill of Production theory to answer three research questions:
357 do seed-corn contracts create or reinforce a competitive pursuit of production at almost any cost,
358 as described in the Treadmill of Production? To answer this question, we use survey data to
359 compare seed-corn contract growers to conventional growers. If so, what specific features of
360 contract production may serve to underpin the Treadmill? To answer this question, we analyze
361 interview and focus group data for constraints identified by producers themselves. And does this
362 competition to increase production lead to increased ‘additions’ – in this case Nitrous Oxide gas
363 from Nitrogen fertilizer – as described in the Treadmill of Production? By examining Treadmill
364 of Production theory within the context of agricultural production contracts, we extend existing

365 theory to identify some specific structural features that may serve to create and reinforce the
366 pressures of the treadmill.

367

368 **Informational Influence**

369 Informational influence is a social psychological theory to explain behavior.
370 Informational influence (Deutsch and Gerard 1955) argues that normative influence occurs when
371 individuals accept information from others as accurate and valid, particularly in cases of
372 uncertainty (Kaplan and Miller 1987) and/or high “task importance” (i.e. when a decision has a
373 potentially large impact) (Baron et al. 1996). In the absence of certainty or complete information
374 when making decisions, individuals are more likely to rely on information from others and to
375 conform their behavior to the normative expectations of others. “More concretely, informational
376 influence often occurs in situations where members are trying to solve a complex problem
377 unfamiliar to them” (Michener, DeLamater, and Myers 2004:340).

378 The relative importance of tasks/decisions at hand is also crucial to understandings of
379 informational influence. Baron and colleagues conceptualize task importance as “the extent to
380 which making correct or accurate judgments mediates important rewards and punishments”
381 (1996:915). In “high stakes” situations in which there is a lot to gain or lose as a result of a
382 decision, individuals are more susceptible to informational influence. In these ways,
383 informational influence is a key mechanism for the creation and transmission of norms and
384 behaviors (Michener et al. 2004).

385 In this study, we engage with informational influence to answer two research questions:
386 do trusted sources of information affect farmers’ climate change behavior? To answer this
387 question, we examine the impact of trusted sources of information for all producers. Secondly,

388 does the high-risk, low-information context of seed-corn farming increase the salience of
389 informational influence? To answer this question, we again turn to a comparison between seed-
390 corn contract growers and commercial corn growers. Decisions surrounding Nitrogen fertilizer
391 use are a situation of both high uncertainty and high task importance, exactly the type of scenario
392 in which informational influence is most pronounced. All farmers face an absence of complete
393 information regarding their crop and agronomic conditions, and extremely unpredictable and
394 influential “forces of nature” (Nafzinger, Sawyer, and Hoeft 2004; Roberts 2007; Robertson and
395 Vitousek 2009). Further, corn farmers’ decisions surrounding Nitrogen fertilizer are of crucial
396 importance to the success of their crop and livelihood (Robertson and Vitousek 2009). A misstep
397 in Nitrogen management can have significant effects on the outcome for a corn crop and have
398 long-lasting effects on farmers’ livelihoods, creating a situation of low information and high risk.
399 However, as we will discuss in depth in our findings, the structure of seed-corn contracts
400 exaggerates this high-risk/low-information environment through competitive ranking and
401 extremely limited agronomic information available to growers. Therefore, seed-corn contract
402 farming provides the sort of high stakes and low information environment in which we would
403 expect high levels of informational influence.

404 We bring these diverse theoretical perspectives together to demonstrate the mutually
405 reinforcing relationship between the capitalist political economy and informational influence and
406 how these social forces affect farmers’ use of Nitrogen fertilizer as a climate change behavior.

407

408 **Methods**

409 This study relies on interviews, focus groups, and a mail survey with corn farmers in
410 Branch, Calhoun, Kalamazoo, and St. Joseph counties in Southwest Michigan. This data was

411 collected as a social science supplement to the Long Term Ecological Research project at
412 Kellogg Biological Station (Michigan State University) and was part of a larger interdisciplinary
413 research project focused on climate change mitigation and adaptation in row-crop agriculture.

414 Together, the four study counties contain 1,200 corn farms and over 300,000 acres of
415 corn (USDA 2007). Both Pioneer and Monsanto's North American seed-corn subdivisions are
416 located in St. Joseph County, and St. Joseph, and Kalamazoo counties have a large number of
417 seed-corn acres while Branch and Calhoun Counties are primarily composed of commercial corn
418 growers.

419 Between January and May 2011, in-depth, semi-structured interviews were conducted
420 with farmers in each county. 40 farmers were interviewed: 11 farmers in Calhoun County, 9 in
421 Kalamazoo County, 12 in St. Joseph County, and 8 in Branch County. Michigan State University
422 Extension agents recommended initial contacts and we used snowball sampling for subsequent
423 interviews. Interviews included 23 commercial corn growers, 11 seed-corn growers, and 11
424 growers of both commercial and seed-corn. Questions focused on factors influencing Nitrogen
425 fertilizer application, willingness to reduce application, and interest in climate offsets, as well as
426 questions concerning climate change knowledge and belief and the relationship between
427 Nitrogen fertilizer and climate change. Recordings and notes were transcribed and analyzed
428 using NVivo software (QSR International 2010), iteratively coded by both authors for major
429 themes and subthemes using a grounded theory approach (Charmaz 2006). Following
430 preliminary analysis of survey and focus group data (described below), a second round of
431 iterative coding was conducted to triangulate and extend survey and focus group findings.

432 During February and March 2011, we conducted four focus groups with corn farmers,
433 one per county. The Branch, Calhoun, and Kalamazoo County focus groups included

434 commercial corn growers and growers who grew both commercial and seed-corn, while the St.
435 Joseph County focus group included six growers who grew only seed-corn. The Branch focus
436 group included six growers, two of which grew seed-corn. The Calhoun focus group included
437 four growers, all of whom grew commercial corn. The Kalamazoo focus group included eight
438 growers, three of whom also grew seed corn. The group format and discussion amongst
439 participants allowed us to observe points of consensus and disagreement amongst growers and
440 the diversity and commonalities of practices and beliefs. The data generated by the focus groups
441 was particularly helpful for answering questions related to the role of informational influence
442 and peer influence. Focus group participants were recruited by the co-authors introducing the
443 research project and passing a sign-up sheet at local meetings of the Michigan Corn Growers'
444 Association, the annual Michigan Ag Action Day, the Michigan Agricultural Conference on the
445 Environment, and through recommendations from Michigan State University Extension. All
446 focus groups followed the same list of questions and were recorded. Early questions focused on
447 what factors influence Nitrogen fertilizer use and tools and challenges to increasing Nitrogen
448 efficiency. Then, a possible climate offsets program focused on reducing Nitrogen fertilizer use
449 as a climate change mitigation strategy was introduced. The second set of questions focused on
450 such a potential offsets program, climate change knowledge and beliefs, and the link between
451 Nitrogen fertilizer and climate change. Focus groups were transcribed and analyzed using NVivo
452 software (QSR International 2010) and grounded theory coding (Charmaz 2006). After
453 preliminary analysis of survey data, we conducted a second round of iterative coding of focus
454 group transcripts to triangulate and extend survey findings.

455 To generate a third and more representative data set, in February and March 2011 we sent
456 a mail survey to a stratified random sample of 1,000 corn farmers in the four counties. The

457 survey was administered with the National Agricultural Statistical Service (NASS) and used the
458 Census of Agriculture as the sampling frame. To ensure that the final sample included an
459 adequate number of large farms, the sample was stratified by acreage (Table 3). All survey
460 analysis was conducted using Stata's svy prefix and appropriate weights to reflect that both the
461 sampling rate and strata size vary in the survey design (StataCorp 2013).

462

463 <Table 3 here>

464

465 Because of sociopolitical division regarding climate change in the US (McCright and
466 Dunlap 2000, 2011), survey packaging emphasized the study of Nitrogen fertilizer and questions
467 specific to climate change were reserved for the survey's second half. Using methods
468 recommended by Dillman (Dillman 2007; Dillman et al. 2009), we used four points of contact
469 with the sample. 274 completed surveys (27% response rate) were returned. Such a low response
470 rate does raise questions concerning potential non-response bias. Unfortunately, limited access to
471 the sampling frame from NASS due to privacy restrictions prohibited conventional non-response
472 analysis. However, we found no significant differences between our respondents and the Census
473 of Agriculture or a previous statewide survey (Jolejole 2009) on key measures including age and
474 farm size (acreage) (see Appendix A).

475

476 *Survey analysis*

477 Our dependent variable is self-reported total Nitrogen fertilizer applied per acre in the
478 most recent season. Agricultural scientists have argued that “fertilizer Nitrogen (N) rate is the
479 best single predictor of Nitrous Oxide emissions in rowcrop agriculture in the US Midwest”

480 (Millar et al. 2010:185). Further, “although other management and environmental factors can
481 influence Nitrous Oxide emissions, fertilizer Nitrogen rate can be viewed as a single
482 unambiguous proxy” (Millar et al. 2010:185) for GHG emissions in corn production. Therefore
483 we are confident in the use of overall Nitrogen fertilizer per acre as an effective proxy for
484 Nitrous Oxide emissions and, as introduced previously, an effective measure of increased
485 ‘additions’ theorized in the Treadmill of Production (Buttel 2004; Gould et al. 2004).

486 To arrive at our dependent variable, we combined several survey questions. First,
487 respondents were asked how many acres of commercial corn and how many acres of seed-corn
488 they grow in a typical season. Secondly, respondents were asked four questions concerning total
489 Nitrogen application: total Nitrogen application for unirrigated commercial corn acreage, for
490 irrigated commercial corn acreage, for unirrigated seed-corn acreage, and for irrigated seed-corn
491 acreage. From these, we calculated an average Nitrogen application rate per acre for commercial
492 corn and for seed-corn. Third, we determined if the respondent grew only commercial corn, only
493 seed-corn, or a combination of commercial and seed-corn. If they grew only commercial or seed-
494 corn, then the average Nitrogen application per acreage for the appropriate type of corn was
495 assigned as their overall Nitrogen application rate per acre. If they grew a combination of
496 commercial corn and seed-corn, then whichever type of corn constituted the majority of their
497 corn acreage was assigned as the their overall Nitrogen application rate per acre. Finally, since
498 analysis of the distribution of the overall Nitrogen application rate per acre failed to confirm
499 normality, we performed a Box-Cox transformation to ensure normality. Tests of skewness and
500 kurtosis indicated no significant difference from normality (see Appendix B).

501 We then conducted bivariate comparison of means (Table 4), using Wald tests for
502 significance and OLS regression¹ with the Nitrogen fertilizer application rate as the dependent

503 variable (Table 5). Model 1 includes all respondents, with sociodemographic controls² and a
504 dummy variable for the whether the respondent grew seed-corn. In order to test the role of
505 informational influence, it also includes independent variables representing farmers' trusted
506 information sources. Respondents were asked: "Where do you get information that is influential
507 in determining Nitrogen fertilizer application?"³ with responses including: 1) fertilizer dealers,
508 2) seed company agronomists/dealers/newsletters, 3) other farmers, 4) industry trade magazines,
509 5) company fieldman/contract production, 6) private consultants, 7) university recommendations,
510 or 8) other sources, all coded as dummy variables. We also included a variety of agronomic
511 variables as controls: type of Nitrogen fertilizer used (urea or UAN solution of urea and
512 anhydrous ammonia, anhydrous ammonia, or manure), percent of cropland that is irrigated,
513 whether the respondent plants cover crops⁴, the most common soil type of cropland, whether the
514 respondent uses side-dressing to apply Nitrogen fertilizer⁵, whether the farm is part of any
515 USDA conservation programs⁶, whether the respondent uses Pre-sidedress Nitrate Testing
516 (PSNT) to determine how much Nitrogen fertilizer is needed⁷, and corn acreage in a typical
517 season. In addition, we asked respondents "How important is each factor in determining how
518 much Nitrogen fertilizer you apply?" with potential factors including: 1) fertilizer price, 2) corn
519 price, 3) yield, 4) and the balance of costs and expected returns. Model 2 includes the full
520 collection of independent variables but is limited to the subpopulation of respondents who grow
521 majority seed-corn.

522 These multivariate analyses allow us to better isolate the effects of our key variables of
523 interest to answer our research questions. We are able to isolate the effect of production contracts
524 from other potential influences in order to determine whether contracts do, in fact, reinforce the
525 Treadmill of Production and ultimately increase 'additions.' We are also able to isolate the

526 effects of informational sources to determine whether trusted sources of information do, in fact,
527 influence behavior and whether the high-risk, low-information context of seed-corn contract
528 farming does ultimately increase the salience of informational influence (Model 2).

529

530 **Results**

531

532 *Political Economy of Contract Corn Production*

533 The political economy of seed-corn contract production provides structural reinforcement
534 that encourages over-application of Nitrogen fertilizer and makes farmers unlikely to reduce
535 Nitrogen fertilizer as a climate change mitigation behavior. Rather than farmers being irrational
536 or wasteful in over-application of Nitrogen fertilizer, our findings suggest that seed-corn farming
537 creates a context in which it is rational for farmers to focus on production as the key measure of
538 success and to apply high rates of Nitrogen fertilizer to ensure that production. Seed-corn
539 growers do, in our study, apply 20% more pounds of Nitrogen fertilizer per acre than commercial
540 corn growers (Table 4). Amongst the small subpopulation of growers who grow both commercial
541 corn and some of their acreage under seed-corn contracts, they apply nearly four times as much
542 Nitrogen per acre on their seed-corn acreage as on their commercial acreage (Table 4).

543

544 <Table 4 here>

545

546 Regression analysis (Table 5, Model 1) confirms that seed-corn farmers apply
547 significantly more Nitrogen fertilizer than commercial corn growers, even when controlling for a

548 number of other variables. In fact, growing seed-corn has a larger effect than any other
549 independent variable.

550 Interview and focus group data confirm the role of seed-corn production structures in
551 reinforcing over-application of Nitrogen fertilizer, elucidating the processes by which this
552 occurs. In particular, interviewees and focus group participants highlighted three features of
553 seed-corn production that reinforced excessive Nitrogen application: 1) unpredictable
554 introduction of new corn varieties, 2) protection of intellectual property rights by seed
555 companies, and 3) a competitive “tournament contract” ranking system.

556 Firstly, seed companies assign corn varieties to growers based on projected global market
557 demand, with virtually no input from growers themselves (Jones et al. 2001, 2003). Contract
558 growers report having no input in which varieties they are assigned, often being assigned and
559 expected to manage several different varieties in a single season, and having assigned varieties
560 changed frequently. This constant changing of corn varieties prohibits seed-corn growers from
561 accumulating knowledge from growing the same or similar varieties over several years in your
562 own fields, limiting their ability to make judicious decisions regarding how much Nitrogen to
563 apply. Contract growers spoke frequently about the difficulties of this rapid change and lack of
564 accumulated knowledge about different varieties, as a focus group participant explained: “I don’t
565 have two fields with the same variety. I get so many different things.... We don’t know the
566 history.” Another seed-corn grower in a focus group explained: “You really don’t know {how
567 much Nitrogen to apply} unless you build some kind of history and get some knowledge behind
568 it.” The unpredictability of seed-corn assignments limits farmers’ ability and willingness to
569 reduce Nitrogen fertilizer.

570 Secondly, to protect the intellectual property rights of the seed companies and patented
571 corn varieties, growers report that they are provided extremely limited information about the
572 corn varieties they are assigned. One contract grower in a focus group said: “Well, some inbreds
573 will only produce 60 bushels and some inbreds will produce 120, 130, 140, 150. So, you have no
574 idea what you’re really putting out there.... We can’t calculate anything.” Another seed-corn
575 grower and focus group participant expressed his frustration with the lack of information
576 provided by seed companies:

577 The thing that does cost us is that [seed company] is turning over product and
578 wanting us to grow inbreds that they’re not familiar with. We’re getting less and
579 less testing and less information with regard to what we should do as growers.

580 Contract growers report that seed companies provide extremely limited information on new
581 varieties, especially crucial information on expected yield and nutrient demands that would allow
582 them to make reductions to Nitrogen fertilizer. Without this information their response is to
583 apply large amounts of Nitrogen fertilizer in order to ensure production. In this way, seed-corn
584 contracts reinforce high Nitrogen application.

585 Finally, competition to secure and maintain seed contracts is fierce, and most seed
586 contracts are “tournament contracts” based on competitive ranking amongst growers. Growers
587 are ranked by net production in comparison to other growers of the same variety and receive
588 bonus payments or penalties based on ranking. Low production may also result in the seed
589 company not renewing the contract the following season. These competitive contract structures
590 have previously been shown to result in over-application of Nitrogen fertilizer (Preckel et al.
591 2000). One contract grower and focus group participant spoke of the widespread unwillingness
592 to reduce Nitrogen fertilizer because of contracts: “We have a fear of losing our contracts, we

593 need to protect our position.” During an interview, one contract grower explained: “In our
594 company there have been a lot of cutbacks and it’s always those five guys at the bottom who get
595 cut, it’s a big motivation.” Failure to renew contracts places farmers’ livelihoods at risk. This
596 makes farmers extremely risk averse concerning any behavior, such as reduction of Nitrogen
597 fertilizer, which may threaten their production, again reinforcing production as the key measure
598 of success and incentivizing Nitrogen over-application.

599 The competitive ranking structure of seed-corn contracts involves pitting growers against
600 each other based on net production, discouraging any practice that might reduce yield. One seed-
601 corn grower said during an interview:

602 Contracts are based off of yield goals, so therefore, if you don’t have the amount
603 of nutrients out there and you don’t meet your yield goal, you won’t get paid for
604 it. You’re expected to make a goal, and if you don’t, you run the risk of being cut
605 as a grower.

606 Bonus payments for high yield rankings further incentivize Nitrogen application and production
607 by distorting the cost/benefit ratios of fertilizer. A focus group participant said: “That last little
608 bit {of Nitrogen} could give you 17-19 bushels {of additional production}, which makes it worth
609 a fortune” if it bumps a farmer up in the rankings to receive a bonus. Another contract grower
610 and focus group participant said: “Our contracts give us complete flexibility in how much {N} to
611 apply, but the competitive structure locks us in.” Although contracts do not formally require high
612 Nitrogen application, their competitive structure creates a formal mechanism to incentivize over-
613 application.

614 During a focus group that included both commercial and seed-corn growers, growers
615 discussed the different incentives between commercial growers and seed-corn contract growers

616 regarding applying Nitrogen fertilizer. In the following discussion between two farmers at the
617 focus group, Farmer 1 grew both commercial and seed-corn, while Farmer 2 grew only
618 commercial corn:

619 Farmer 1: Well I equate {efficient use of Nitrogen} with milking. That, in the
620 dairy world people talk about how many pounds or gallons {of} production, and
621 that's kind of a measuring stick, but it's not really a great measuring stick of
622 profitability or efficiency. I don't know if that's kind of the same thing in the
623 grain world but I don't think people are really hog wild {about applying
624 Nitrogen}, you know. I kind of kid about the seed corn, but seed corn is such a
625 unique product, and you can have hybrids that can go from 20 bushels to 120
626 bushels, so it's really tough... and I don't know what the rest of the seed corn
627 guys do, but the incentive to over-apply is a lot more than commercial guys. I'm
628 just trying to think of the people that I know in the {commercial corn} grains. I
629 don't think you have too many people that really go hog wild on N anymore. Do
630 you?

631 Farmer 2: I don't believe so, no.

632 Farmer 1: Just because of the economics.

633 During the focus group that included all seed-corn growers, participants openly discussed, from
634 the very start of conversation, how concepts of efficiency or cost/benefit analysis related to
635 Nitrogen application are shaped by their competitive contracts:

636 Focus group coordinator: OK. Great. OK. So, um, the first question is, for your
637 seed corn farming operations, how do you determine how much nitrogen fertilizer
638 to use?

639 Farmer 1: Darn good question.

640 Farmer 2: That is a good question.

641 Farmer 3: We're given suggestions by the companies.... And you take that with a

642 kind of grain of salt...But I'm sure as the conversation's going to go along, you'll

643 be filled in on the competitiveness of the contracts and how that skews our

644 thought pattern. At least, mine. I don't want to speak for the whole group, but it

645 does skew mine.

646 Farmer 2: Margin analysis goes out the window on most inputs in the seed corn

647 contract. So you wont hear much of that here, I don't think.

648 Again, the competitive tournament structure of contracts incentivizes over-application of

649 Nitrogen and undermines any potential focus on "efficient" use of this input.

650

651 *Mediation by Informational Influence*

652 Given the importance of Nitrogen fertilizer decisions and the lack of complete

653 information, farmers are particularly susceptible to informational influence. We find that

654 informational influence, represented by where farmers turn for trusted information regarding

655 Nitrogen fertilizer, is related to how much Nitrogen fertilizer they apply. Informational influence

656 may mediate the relationship between the political economy, social norms, and climate

657 behaviors, particularly for contract growers.

658 Regression results demonstrate the significance of trusted sources of information on this

659 climate mitigation behavior (Table 5). Amongst all respondents, those who report that fertilizer

660 dealers are their most trusted source of information regarding Nitrogen fertilizer apply

661 significantly more Nitrogen per acre (Table 5, Model 1). This is perhaps not surprising, given

662 that there is little incentive for fertilizer dealers to encourage reduced Nitrogen application rates,
663 but may serve as a significant informational barrier to adopting this climate change mitigation
664 behavior.

665 Amongst the subpopulation of seed-corn farmers (Table 5, Model 2), the impact of
666 informational influence appears even stronger (larger effect sizes). This suggests that the effect
667 of informational influence is stronger for seed-corn farmers than for corn farmers generally. This
668 is consistent with theories of informational influence (Deutsch and Gerard 1955), particularly the
669 role of “task importance” in increasing informational influence (Baron et al. 1996; Michener et
670 al. 2004). Seed-corn farmers, as outlined above, must make decisions with even less information
671 and even higher risk/reward than commercial corn growers. In these conditions, seed-corn
672 farmers are more susceptible to informational influence. Sources of trusted information not only
673 were associated with Nitrogen behavior, but that influence varied between commercial and seed-
674 corn growers, suggesting that a more complex relationship exists between the structural variable
675 – contract farming – and the informational variable. Those seed-corn farmers who rely on other
676 farmers as their most important source of advice apply significantly higher rates of Nitrogen
677 fertilizer, while those who are part of a USDA conservation program apply significantly lower
678 rates of Nitrogen fertilizer. Taken comprehensively, these results suggest that informational
679 influence may be an important mediator in the relationship between the political economy of
680 corn production and Nitrogen fertilizer application rates.

681 Interview and focus group data further illustrate the importance of trusted sources of
682 information. When we asked where farmers turned for information about Nitrogen fertilizer
683 decisions, interview and focus group participants echoed survey findings: they predominantly

684 rely on fertilizer dealers and/or seed companies. One contract grower discussed his trusted
685 relationship with both fertilizer dealer and seed company agronomists during an interview:

686 Farmer: I used to take my soil samples to one {fertilizer} dealership and buy my
687 fertilizer from another so that I didn't get bad feedback based on them wanting to
688 make a sale.

689 Interviewer: You don't do that anymore?

690 Farmer: I don't need to. I'm okay with who we're using as a distributor now to
691 the point where I'm okay with it.

692 Another seed-corn farmer emphasized the importance of advice from his fertilizer dealer during
693 an interview: "I don't want to sound like I don't take advice, because I do take
694 advice...{Fertilizer dealer 1} was one and {Fertilizer dealer 2} was the other one.... Their
695 manager is a pretty good agronomist and he helps us though questions we have and things like
696 that."

697 Overwhelmingly, seed-corn farmers spoke of a reluctance to share information with peers
698 or to ask for advice from other farmers. When asked if he was willing to share Nitrogen
699 information or advice with other farmers, one seed-corn farmer said during an interview:
700 "Actually, not too many.... generally speaking, it's only if you have a neighbor or a friend that
701 wants to know what you are doing." Seed-corn growers emphasized the competitive nature to
702 their peer relationships. During an interview, one seed-corn grower lamented the competitive
703 edge to his peer relationships because of the contracts:

704 One of the things that is difficult about growing seed-corn is that if the field
705 across the road is planted the same as mine, and I'm competing against it, then it's
706 hard for me to ever feel good about seed on my neighbor's ground. And you wish

707 for back in the day when you could just say 'Well, it's all just commercial corn
708 and I don't care how much corn he grows...' But now I'm thinking: 'Geeze,
709 when's the hail going to get here?' You know, it's that kind of thing that you
710 can't be happy for the neighbor because it means so much to you. We're all
711 friendly to each other, but we all know the stakes of competition.

712 During a focus group one seed-corn farmer shared his experience with different types of
713 Nitrogen fertilizer, but then added an important aside to the authors:

714 You know, I didn't know if I should put out some of these figures I have. But this
715 is a real good group here. I mean, good people that I trust and I know that, you
716 know, I can share this information with. So, I wanted to make sure you
717 understood that.

718 He wanted the authors and focus group coordinators to understand that ordinarily he would not,
719 and did not, share advice or information regarding Nitrogen fertilizer with other contract farmers.

720 Later in the focus group, mistrust amongst competitive seed-corn farmers came up again:

721 Focus group coordinator: Do you think there's a disincentive to share information
722 amongst seed-corn farmers?

723 <Group Laughter>

724 Farmer 2: You didn't catch the implication with {Farmer 1}? I trust the people in
725 this room, but I don't trust anybody else.

726 Again, the causal direction is unclear, but the informational influence of trusted sources
727 of information is clearly related to Nitrogen application rates for producers, and may serve as an
728 important context for transmission of structural constraints into practices.

729

730 **Discussion: Implications for Climate Change Mitigation**

731 Our findings suggest that much more significant barriers exist to the adoption of climate
732 change mitigation behaviors than lack of information or climate change denialism: competitive
733 seed-corn contracts that reinforce excessive Nitrogen application and informational networks that
734 interlock with these structural constraints. Within row-crop agriculture, overall Nitrogen
735 application rate is the most parsimonious and appropriate proxy for Nitrous Oxide emissions and
736 overall climate impacts of production (Millar et al. 2010). Therefore, higher rates of Nitrogen
737 fertilizer application translate directly to higher climate impacts for seed-corn contract
738 production, as compared to commercial corn production.

739 Rather than being irrational or willfully wasteful in use of Nitrogen fertilizer, however,
740 we argue that over-application of Nitrogen fertilizer is a logical response to the structure of
741 contract seed-corn production and the constraints it places on producers. Rather than sell a crop
742 on the “open” commodity corn market, seed-corn farmers enter into annual, exclusive,
743 production contracts with seed companies to grow whichever varieties of corn they are assigned
744 by the company. These production contracts are “tournament contracts” in which growers’
745 payment and penalties are based on overall yield. Contracts limit farmers’ access to information
746 and change their economic incentives through this competitive ranking, reinforcing net
747 production as the key measure of success and Nitrogen fertilizer as the strategy to ensure
748 production. In these ways, seed-corn contracts place farmers squarely on the Treadmill of
749 Production (Gould et al. 2004) and/or Treadmill of Technology (Levins and Cochrane 1996),
750 chasing higher and higher production through intensification and technology, in this case the use
751 of Nitrogen fertilizer.

752 Our findings also clearly demonstrate how the structural features of contract farming
753 interact with the micro-level phenomena of information sources. We find that the reinforcement
754 between structure and behavior may be mediated by where farmers turn for trusted information –
755 informational influence. Farmers who rely on fertilizer dealers for information also apply
756 significantly more Nitrogen fertilizer per acre than others. Amongst seed-corn contract farmers,
757 those who rely on other farmers for information actually apply substantially more Nitrogen
758 fertilizer per acre than others, suggesting that the competitive peer influence created by
759 tournament contracts may further negatively affect their climate behaviors through information
760 transfer. Those seed-corn farmers who are part of a USDA conservation program, however,
761 report applying substantially less Nitrogen fertilizer per acre than others, suggesting a continued
762 important role for traditional conservation programs in encouraging climate mitigation
763 behaviors.

764 Together, our findings illustrate the reciprocal and mutually reinforcing relationships
765 amongst the structural forces of contracts, micro forces of informational influence, and climate
766 mitigation behaviors, and the necessity for social scientists and policy makers to acknowledge
767 their simultaneity in order to understand (and change) individuals' climate change mitigation
768 behaviors. The mediating role of informational influence and sources of information regarding
769 Nitrogen fertilizer suggests that information networks may be a key component of behavioral
770 change but that their influence is not uniformly positive. Programs/policies supporting
771 information sharing and trust networks, outside of competitive contract systems, or information
772 sources outside of direct industry control may play a key role in changing climate behaviors.

773 However, the Treadmill of Production reinforced by seed-corn contracts serves as a
774 structural barrier to potential climate mitigation programs. Without structural reforms,

775 specifically reforms to agricultural contracts to provide more information, continuity, and
776 autonomy to farmers and to reduce competitive incentives, individual farmers are unlikely to
777 change behaviors. While there is no easy solution to structural problems facing climate policy
778 and agriculture, the political economy of contract farming must be considered in the design of
779 climate policy and reforms must move beyond a focus on individual farmers and their behaviors.

780

781 Conclusion

782 In this study, we have examined mutually reinforcing structural and informational
783 influences on climate change mitigation practices. Using a mixed-methods study of seed-corn
784 contract farmers, we find that the structure of seed-corn contracts encourages over-application of
785 Nitrogen fertilizer. We have demonstrated the ways in which specific features of seed-corn
786 contracts reinforce excessive Nitrogen fertilizer application and how these structural forces
787 constrain climate mitigation behaviors. Importantly, we find that these effects may be mediated
788 by informational influence, specifically where farmers turn for trusted sources of information.

789 We have focused on seed-corn contract farmers, specifically, as a case study in which to
790 examine the structural constraints on farmers' management and climate change behaviors and
791 how those structural constraints interact with micro-level informational influence. This case
792 allows us to highlight specific features of production contracts and how they constrain farmers'
793 behaviors. While a minority of corn production, seed-corn contract production is an excellent
794 case study to illustrate the complexity of climate change behaviors and illuminate the
795 interlocking micro and macro social processes that shape that behavior.

796 On the structural level, we identify three key features of seed-corn contracts that serve to
797 reinforce over-application of Nitrogen fertilizer: 1) unpredictable introduction of new corn

798 varieties, 2) protection of intellectual property rights by seed companies, and 3) a competitive
799 “tournament contract” ranking system. These serve to reinforce and create formal mechanisms to
800 reward excessive application of Nitrogen fertilizer and a focus on production as the key measure
801 of success, keeping farmers on the Treadmill of Production (Gould et al. 2004, 2008). These
802 structural forces make individual farmers extremely unwilling to adopt any new behavior that
803 might threaten production even if that behavior provides demonstrated environmental benefits.

804 However, we also find a potentially important role of informational influence (Deutsch
805 and Gerard 1955; Kaplan and Miller 1987) operating at the micro level to mediate the
806 relationship between structure and behaviors. Amongst seed-corn contract growers, those who
807 rely on peers for influential information report higher rates of actual Nitrogen application,
808 suggesting peer-to-peer informational influence is important, but that competitive peer
809 relationships may actually discourage climate mitigation behaviors. Our findings also suggest the
810 informational influence of other key sources of information, such as fertilizer dealers, are related
811 to this climate behavior. Together, this suggests that informational influence may mediate the
812 relationship between structural forces and behavior or be a mechanism by which structural
813 features are translated into behaviors. Thus, information and knowledge networks may provide a
814 key component to explaining variation in climate change mitigation behavior and social behavior
815 more generally.

816 Our findings make a significant contribution to the growing literature on contract farming
817 by highlighting the specific mechanisms by which seed-corn contracts shape farmer behavior and
818 by examining a new empirical case. There are a number of unique features of seed-corn
819 production that demonstrate the heterogeneity of contract farming: contracts are short-term with
820 high risk of non-renewal; the concept of quality control is less salient than in fruit and vegetable

821 production, instead yield is the primary conceptualization of quality; and farmers operate with
822 very little information due to the rapid introduction of varieties and protection of intellectual
823 property rights (Hamilton 1994). These circumstances differ from those described in other
824 agricultural contracts in fruit and vegetable (Wells 1981; Wolf et al. 2001) or livestock
825 production (Ashwood et al. 2014; Bonanno and Constance 2001; Constance 2008; Constance
826 and Tuinstra 2005; Koehler et al. 1996).

827 We identify several unique features of seed-corn contracts that constrain farmers'
828 behavior: unpredictable introduction of new varieties, protection of intellectual property rights by
829 seed companies, and a competitive "tournament contract" ranking system. Identifying these
830 specific features of seed-corn contracts that operate as structural constraints makes an important
831 extension to the existing literature on contract farming by recognizing the potential heterogeneity
832 of contract impacts. The diversity of contract structures (Welsh 1997) and the way that they
833 intersect with features of specific commodity systems have important implications for the
834 diversity of effects of contract farming. For example, while swine farmers have resisted contract
835 coercion through collectivities and LLCs (Ashwood et al. 2014; Koehler et al. 1996), broiler
836 chicken farmers have exercised little collective resistance to restrictive contracts (Constance
837 2008; Constance and Tuinstra 2005) and neither have leafy greens growers (Stuart 2008). Our
838 findings demonstrate that this is likely related to the competitive structure of the contract systems
839 in those sectors: tournament contracts in which producers are competing against each other for
840 payment and short-term contracts in which growers have a constant fear of losing their contracts.
841 Stuart (2008) makes a similar argument when she explains:

842 The {leafy green} market can be very competitive: growers indicated that if a
843 buyer is not satisfied, they can usually find another grower who is willing to

844 comply with their requests. Growers interviewed also acknowledged that in this
845 competitive market they primarily work alone and there are currently no attempts
846 to organize a unified response to buyers' requests, no matter how outlandish they
847 seem. (Stuart 2008:63)

848 Preckel (2000) theorizes that "the primary goal of a tournament contract is to foster competition
849 between {growers} by basing rewards for the {buyer} on some measure of {grower}
850 performance" (Preckel et al. 2000:469). Our findings demonstrate that this competition and fear
851 of contract non-renewal operate as a powerful constraint upon farmers' behaviors and that
852 producers in tournament contracts are significantly motivated by this fear of losing their
853 contracts. This is in contrast to the emphasis on quality control as the primary constraint
854 described by Wolf et al. (2001) in the fruit and vegetable sectors and with the opportunity for
855 collectivities described in the hog sector (Ashwood et al. 2014; Koehler et al. 1996). Together,
856 our findings demonstrate the need for historicity and specificity in discussions of contract
857 farming, recognizing the diversity of contract structures and how they may uniquely intersect
858 with commodity systems.

859 Our findings both confirm and extend the Treadmill of Production and Informational
860 Influence theoretical frames by revealing the interlocking mechanisms of micro and macro social
861 forces. We confirm Treadmill of Production theory with our finding that seed-corn contracts do,
862 ultimately, reinforce an emphasis on production at almost any cost and the use of technology –
863 Nitrogen fertilizer – to achieve that production. We also confirm that tournament contract
864 production does ultimately boost increased 'additions' of pollution, in this case the greenhouse
865 gas Nitrous Oxide, as would be theorized by the Treadmill of Production. However, Treadmill of
866 Production theory is so structural in perspective that it often verges on a tone of linear

867 inevitability and has been critiqued for not adequately addressing avenues for social change
868 (Gould et al. 2004). In our case study, we are able address this critique by examining specific
869 features of contract production that reinforce the Treadmill and therefore highlighting potential
870 avenues for revision, and by simultaneously examining micro-level information networks. Our
871 findings also confirm the theory of informational influence by demonstrating how where farmers
872 turn for trusted information ultimately affects their behavior. By showing how informational
873 influence is amplified within the high-risk, low-information context of seed-corn contract
874 farming, we specifically confirm theories of task importance.

875 Our most significant extension comes from examining macro and micro constraints on
876 individual behavior simultaneously. By incorporating a focus on informational influence, we are
877 able to extend the structural perspective of Treadmill of Production and highlight the ways in
878 which micro and macro-level interactions may help transmit, and possibly transform, these
879 structural forces. Conversely, the Treadmill of Production perspective extends the theory of
880 Informational Influence by demonstrating how the structure of the political economy creates the
881 context in which interactions occur and information is exchanged. Together, these perspectives
882 demonstrate the mutually reinforcing micro and macro social forces that shape individual
883 behaviors.

884 These findings have significant implications for understanding barriers to adopting
885 climate change mitigation behaviors, specifically, and the relationship amongst macro and micro
886 social forces generally. They suggest that social scientists and policy makers must be engage
887 with multiple levels of analysis simultaneously in order to capture the full complexity of social
888 systems and human behaviors. Political and economic structures create the context for
889 interaction and informational networks, and define the stakes for decisions. But informational

890 influence may serve as a key mechanism for the transmission or moderation of structural
891 influences into normative values and behaviors. Together, these social forces interact to constrain
892 individual behaviors and decisions. Theorizing macro, meso, and micro-level factors as
893 integrated social systems, rather than distinct social forms, demands a social science that is
894 simultaneously attentive to all levels.

895 The interaction amongst these macro and micro social forces creates a context in which
896 individual farmers are unwilling and/or unable to adopt an important climate change mitigation
897 behavior. Nitrogen application rate is the most direct proxy for overall climate impacts of row-
898 crop production (Millar et al. 2010), and reducing Nitrogen fertilizer use is a highly effective
899 climate change mitigation practice (Snyder et al. 2009) that could dramatically reduce the
900 climate impacts of contemporary agriculture and improve long-term climate prospects. However,
901 contract seed-corn production and the informational influence of sources such as fertilizer
902 dealers make it very unlikely to be widely adopted without significant changes across all
903 dimensions. As climate models and their predicted effects become increasingly dire (Gillis
904 2014), it is unreasonable to expect widespread individual behavioral change without changes that
905 address these multiple levels of social forces systemically.

906 The interlocking effects of macro and micro social forces also suggest that education and
907 outreach targeted at climate change “awareness” will not be enough to expect widespread
908 behavioral changes. As has been demonstrated with a variety of climate change behaviors and
909 environmental behaviors more generally (Attari et al. 2011; Schulte and Miller 2010; Wells et al.
910 2010), education and awareness are unlikely to directly increase adoption of climate change
911 mitigation behaviors if they conflict with structural constraints and normative values.

912

913 ENDNOTES

914 ¹ Standardized effect sizes were estimated using the “listcoef” command for survey weighted
915 data in Stata. The estimates standardize both the X and Y variables with a mean of zero and a
916 standard deviation of one (Long and Freese 2014:179).

917 ² The sample included no non-white respondents and only two women so these variables were
918 omitted from the regression model. This reflects the composition of corn growers in the region
919 and US generally (USDA 2007).

920 ³ Categories were not mutually exclusive, respondents were asked to mark all that apply.

921 ⁴ Cover crops are crops, usually legumes, planted to support the primary crop and/or soil health
922 by reducing nutrient loss through leaching, preventing erosion, reducing weeds, and adding
923 nitrogen to the soil through nitrogen fixation (SARE 2007). Cover crops are generally considered
924 to be a conservation farming practice that may reduce the need for Nitrogen fertilizer (McVay,
925 Radcliffe, and Hargrove 1989).

926 ⁵ Side-dressing is applying the fertilizer in lines close to the rows of corn. Side-dressing is
927 considered to be an efficient method of supplying fertilizer to the crop directly where and when it
928 is needed, possibly reducing overall Nitrogen fertilizer used (Mulvaney, Khan, and Ellsworth
929 2006).

930 ⁶ USDA conservation programs include the Environmental Quality Incentive Program,
931 Conservation Reserve Program, and/or Conservation Stewardship Program that provide financial
932 and other incentives for conservation practices.

933 ⁷ PSNT is a soil test to evaluate existing nitrate resources in soil to determine if additional
934 Nitrogen fertilizer supplementation is needed, and how much (Mulvaney et al. 2006).

935 ⁸ Social psychological theories of “productivism” highlight the importance of norms surrounding
936 success in agriculture that use net production as the central conceptualization of farmers’ identity
937 (Bell 2004; Burton and Wilson 2006; McGuire, Morton, and Cast 2013). Productivism involves a
938 definition of success and a “good farmer” identity tied to net production, rather than other
939 measures of success.

940 **Works Cited**

941

942 Arbuckle Jr., J. Gordon et al. 2013. "Climate Change Beliefs, Concerns, and Attitudes toward
943 Adaptation and Mitigation among Farmers in the Midwestern United States." *Climatic
944 Change* 117(4):943–50.

945 Ashwood, Loka, Danielle Diamond, and Kendall Thu. 2014. "Where's the Farmer? Limiting
946 Liability in Midwestern Industrial Hog Production." *Rural Sociology* 79(1):2–27.

947 Association of American Plant Food Control Officials and The Fertilizer Institute. 2013. *History
948 of U.S. Fertilizer Use*. Wash: The Fertilizer Institute. Retrieved December 31, 2014
949 (http://www.tfi.org/sites/default/files/images/history_of_us_fert_use.pdf).

950 Attari, Shahzeen Z., Michael L. DeKay, Cliff I. Davidson, and Wändi Bruine de Bruin. 2011.
951 "Changing Household Behaviors to Curb Climate Change: How Hard Can It Be?"
952 *Sustainability: The Journal of Record* 4(1):9–11.

953 Baron, Robert S., Joseph A. Vandello, and Bethany Brunsman. 1996. "The Forgotten Variable in
954 Conformity Research: Impact of Task Importance on Social Influence." *Journal of
955 Personality and Social Psychology* 71(5):915–27.

956 Bell, Michael Mayerfeld. 2004. *Farming for Us All: Practical Agriculture & the Cultivation of
957 Sustainability*. University Park, Pennsylvania: Pennsylvania State University Press.

958 Bonanno, Alessandro and Douglas Constance. 2001. "Corporate Strategies in the Global Era:
959 The Case of Mega-Hog Farms in the Texas Panhandle Region." *International Journal for
960 the Sociology of Agriculture and Food* 9:5–28.

961 Borlu, Yetkin. 2015. "A Story of Post-Fordist Exploitation: Financialization and Small-Scale
962 Maize Farmers in Turkey." *Rural Sociology* 80(2):173–97.

963 Burch, David. 1994. "Agribusiness, Peasant Agriculture and the State: The Case of Contract
964 Farming in Thailand." in *Poverty, Inequality and Rural Development*, edited by T. Lloyd
965 and O. Morrissey. London: St. Martin's.

966 Burgess, J., C. M. Harrison, and P. Filius. 1998. "Environmental Communication and the
967 Cultural Politics of Environmental Citizenship." *Environment and Planning A*
968 30(8):1445–60.

969 Burton, Rob JF and Geoff A. Wilson. 2006. "Injecting Social Psychology Theory into
970 Conceptualisations of Agricultural Agency: Towards a Post-Productivist Farmer Self-
971 Identity?" *Journal of Rural Studies* 22(1):95–115.

972 Buttel, Frederick H. 2001. "Some Reflections on Late Twentieth Century Agrarian Political
973 Economy." *Sociologia Ruralis* 41(2):165.

974 Buttel, Frederick H. 2004. "The Treadmill of Production An Appreciation, Assessment, and
975 Agenda for Research." *Organization & Environment* 17(3):323–36.

976 Buttel, Frederick H., Gilbert W. Gillespie Jr, and Olaf F. Larson. 1990. *The Sociology of
977 Agriculture*. New York: Praeger.

978 Cassman, Kenneth G., Achim Dobermann, and Daniel T. Walters. 2002. "Agroecosystems,
979 Nitrogen-Use Efficiency, and Nitrogen Management." *AMBIO: A Journal of the Human
980 Environment* 31(2):132–40.

981 Charmaz, Kathy. 2006. *Constructing Grounded Theory: A Practical Guide through Qualitative
982 Analysis*. 1st ed. Sage Publications Ltd.

983 Choi, Jin Nam, Richard H. Price, and Amiram D. Vinokur. 2003. "Self-Efficacy Changes in
984 Groups: Effects of Diversity, Leadership, and Group Climate." *Journal of Organizational
985 Behavior* 24(4):357–72.

986 Cochrane, Willard Wesley. 1958. *Farm Prices, Myth and Reality*. U of Minnesota Press.

987 Coles, Tim, Anne-Kathrin Zschiegner, and Claire Dinan. 2013. "A Cluster Analysis of Climate
988 Change Mitigation Behaviours among SMTEs." *Tourism Geographies*.

989 Cone, Cynthia and Andrea Myhre. 2000. "Community-Supported Agriculture: A Sustainable
990 Alternative to Industrial Agriculture?" *Human organization* 59(2):187–97.

991 Constance, Douglas H. 2008. "The Southern Model of Broiler Production and Its Global
992 Implications." *Culture & Agriculture* 30(1-2):17–31.

993 Constance, Douglas H. and Reny Tuinstra. 2005. "Corporate Chickens and Community Conflict
994 in East Texas." *Culture & Agriculture* 27(1):45–60.

995 Darrah, L. L., M. D. McMullen, and M. S. Zuber. 2003. "Breeding, Genetics, and Seed Corn
996 Production." Pp. 35–68 in *Corn: chemistry and technology*, edited by P. J. White and L.
997 A. Johnson. St. Paul, MN: American Association of Cereal Chemists.

998 Deutsch, Morton and Harold B. Gerard. 1955. "A Study of Normative and Informational Social
999 Influences upon Individual Judgment." *The Journal of Abnormal and Social Psychology*
1000 51(3):629–36.

1001 Dillman, D. A. 2007. *Mail and Internet Surveys: The Tailored Design Method*. John Wiley &
1002 Sons Inc.

1003 Dillman, Don A. et al. 2009. "Response Rate and Measurement Differences in Mixed-Mode
1004 Surveys Using Mail, Telephone, Interactive Voice Response (IVR) and the Internet." *Social
1005 Science Research* 38(1):1–18.

1006 Dixon, Ruth B. 1982. "Women in Agriculture: Counting the Labor Force in Developing
1007 Countries." *Population and Development Review* 8(3):539–66.

1008 Dowd, Brian M., Daniel Press, and Marc Los Huertos. 2008. "Agricultural Nonpoint Source
1009 Water Pollution Policy: The Case of California's Central Coast." *Agriculture, Ecosystems*
1010 & Environment 128(3):151–61.

1011 Gifford, Robert. 2011. "The Dragons of Inaction: Psychological Barriers That Limit Climate
1012 Change Mitigation and Adaptation." *American Psychologist* 66(4):290.

1013 Gillis, Justin. 2014. "Panel's Warning on Climate Risk: Worst Is Yet to Come." *The New York*
1014 *Times*, March 31. Retrieved October 24, 2014
1015 (<http://www.nytimes.com/2014/04/01/science/earth/climate.html>).

1016 Goodman, David and Michael Watts. 1997. *Globalising Food: Agrarian Questions and Global*
1017 *Restructuring*. Psychology Press.

1018 Goss, Jasper, Mike Skladany, and Gerard Middendorf. 2001. "Dialogue: Shrimp Aquaculture in
1019 Thailand: A Response to Vandergeest, Flaherty, and Miller*." *Rural Sociology*
1020 66(3):451–60.

1021 Gould, Kenneth A., David N. Pellow, and Allan Schnaiberg. 2004. "Interrogating the Treadmill
1022 of Production Everything You Wanted to Know about the Treadmill but Were Afraid to
1023 Ask." *Organization & Environment* 17(3):296–316.

1024 Gould, Kenneth A., David N. Pellow, and Allan Schnaiberg. 2008. *The Treadmill of Production:
1025 Injustice and Unsustainability in the Global Economy*. Paradigm Publishers.

1026 Grey, Mark. 2000. "' Those Bastards Can Go to Hell!' Small-Farmer Resistance to Vertical
1027 Integration and Concentration in the Pork Industry." *Human organization* 59(2):169–76.

1028 Groth, P. E. and T. W. Bressi. 1997. *Understanding Ordinary Landscapes*. Yale Univ Pr.

1029 Haden, Van R., Meredith T. Niles, Mark Lubell, Joshua Perlman, and Louise E. Jackson. 2012.
1030 "Global and Local Concerns: What Attitudes and Beliefs Motivate Farmers to Mitigate
1031 and Adapt to Climate Change?" *PLoS ONE* 7(12):e52882.

1032 Hall, C. Michael. 2006. "New Zealand Tourism Entrepreneur Attitudes and Behaviours with
1033 Respect to Climate Change Adaptation and Mitigation." *International Journal of*
1034 *Innovation and Sustainable Development* 1(3):229–37.

1035 Hamilton, Neil D. 1994. "Why Own the Farm If You Can Own the Farmer (and the Crop):
1036 Contract Production and Intellectual Property Protection of Grain Crops." *Nebraska Law*
1037 *Review* 73:48.

1038 Hargreaves, Tom. 2011. "Practice-Ing Behaviour Change: Applying Social Practice Theory to
1039 pro-Environmental Behaviour Change." *Journal of Consumer Culture* 11(1):79–99.

1040 Hayles, Carolyn S., Moira Dean, Sarah A. Lappin, and Jane E. McCullough. 2013. "Climate
1041 Change Adaptation." *Smart and Sustainable Built Environment* 2(2):192.

1042 Hendrickson, M. and W. Heffernan. 2007. "Concentration of Agricultural Markets." *Columbia,*
1043 *MO, Department of Rural Sociology, University of Missouri.* Retrieved September 19,
1044 2012 (<http://www.foodcircles.missouri.edu/CRJanuary02.pdf>).

1045 Hinrichs, C. Clare. 2000. "Embeddedness and Local Food Systems: Notes on Two Types of
1046 Direct Agricultural Market." *Journal of rural studies* 16(3):295–303.

1047 Hinrichs, C. Clare. 2003. "The Practice and Politics of Food System Localization." *Journal of*
1048 *Rural Studies* 19(1):33–45.

1049 Hobson, K. and S. Essex. 2001. "Sustainable Tourism: A View from Accommodation
1050 Businesses." *The Service Industries Journal* 21(4):133–46.

1051 Hollingsworth, Andrew. 2004. "Increasing Retail Concentration: Evidence from the UK Food
1052 Retail Sector." *British Food Journal* 106(8):629–38.

1053 Howard, Philip H. 2009. "Visualizing Consolidation in the Global Seed Industry: 1996–2008." *Sustainability*
1054 1(4):1266–87.

1055 Howard, Philip H. 2016. *Concentration and Power in the Food System: Who Controls What We*
1056 *Eat?*. Bloomsbury Academic.

1057 Jolejole, M. C. B. 2009. "Trade-Offs, Incentives, and the Supply of Ecosystem Services from
1058 Cropland." M.S. Thesis in Agricultural, Food and Resource Economics, Michigan State
1059 University, East Lansing, MI.

1060 Jones, Philip C., Greg Kegler, Timothy J. Lowe, and Rodney D. Traub. 2003. "Managing the
1061 Seed-Corn Supply Chain at Syngenta." *Interfaces* 33(1):80–90.

1062 Jones, Philip C., Timothy J. Lowe, Rodney D. Traub, and Greg Kegler. 2001. "Matching Supply
1063 and Demand: The Value of a Second Chance in Producing Hybrid Seed Corn."
1064 *Manufacturing & Service Operations Management* 3(2):122–37.

1065 Kaplan, Martin F. and Charles E. Miller. 1987. "Group Decision Making and Normative versus
1066 Informational Influence: Effects of Type of Issue and Assigned Decision Rule." *Journal*
1067 *of Personality and Social Psychology* 53(2):306–13.

1068 Kilmer, Richard L. 1986. "Vertical Integration in Agricultural and Food Marketing." *American*
1069 *Journal of Agricultural Economics* 68(5):1155–60.

1070 Koehler, Bob, William F. Lazarus, and Brian L. Buhr. 1996. *Swine Production Networks In*
1071 *Minnesota: Resources For Decision Making.* University of Minnesota, Department of
1072 Applied Economics. Retrieved October 9, 2015
1073 (<https://ideas.repec.org/p/ags/umaesp/14232.html>).

1074 Kollmuss, Anja and Julian Agyeman. 2002. "Mind the Gap: Why Do People Act
1075 Environmentally and What Are the Barriers to pro-Environmental Behavior?"
1076 *Environmental education research* 8(3):239–60.

1077 Leiserowitz, Anthony. 2006. "Climate Change Risk Perception and Policy Preferences: The Role
1078 of Affect, Imagery, and Values." *Climatic change* 77(1-2):45–72.

1079 Levins, Richard A. and Willard W. Cochrane. 1996. "The Treadmill Revisited." *Land Economics*
1080 72(4):550.

1081 Little, Peter D. and Michael Watts. 1994. *Living under Contract: Contract Farming and*
1082 *Agrarian Transformation in Sub-Saharan Africa*. Univ of Wisconsin Press.

1083 Long, J. Scott and Jeremy Freese. 2014. *Regression Models for Categorical Dependent*
1084 *Variables Using Stata*. 3rd ed. College Station, Tex.: Stata Press.

1085 Lorenzoni, Irene, Sophie Nicholson-Cole, and Lorraine Whitmarsh. 2007. "Barriers Perceived to
1086 Engaging with Climate Change among the UK Public and Their Policy Implications."
1087 *Global Environmental Change* 17(3–4):445–59.

1088 Mabbett, J. and I. Carter. 1999. "Contract Farming in the New Zealand Wine Industry: An
1089 Example of Real Substitution." in *Restructuring Global and Regional Agricultures:*
1090 *Transformations in Australasian Agri-Food Economies and Spaces*, edited by D. Burch,
1091 J. Goss, and G. Lawrence. Aldershot: Ashgate.

1092 Marsden, Terry. 1989. "Restructuring Rurality." *Sociologia Ruralis* 29(3/4):312.

1093 McCright, Aaron M. and Riley E. Dunlap. 2000. "Challenging Global Warming as a Social
1094 Problem: An Analysis of the Conservative Movement's Counter-Claims." *Social*
1095 *Problems* 47:499.

1096 McCright, Aaron M. and Riley E. Dunlap. 2011. "The Politicization of Climate Change and
1097 Polarization in the American Public's Views of Global Warming, 2001–2010."
1098 *Sociological Quarterly* 52(2):155–94.

1099 McGuire, Jean, Lois Wright Morton, and Alicia D. Cast. 2013. "Reconstructing the Good Farmer
1100 Identity: Shifts in Farmer Identities and Farm Management Practices to Improve Water
1101 Quality." *Agriculture and Human Values* 30(1):57–69.

1102 McMichael, Philip. 1994. *The Global Restructuring of Agro-Food Systems*. Cornell University
1103 Press.

1104 McVay, K. A., D. E. Radcliffe, and W. L. Hargrove. 1989. "Winter Legume Effects on Soil
1105 Properties and Nitrogen Fertilizer Requirements." *Soil Science Society of America*
1106 *Journal* 53(6):1856.

1107 Messinger, Paul R. and Chakravarthi Narasimhan. 1995. "Has Power Shifted in the Grocery
1108 Channel?" *Marketing Science* 14(2):189–223.

1109 Michener, H. Andrew, John D. DeLamater, and Daniel J. Myers. 2004. *Social Psychology*. 5th
1110 ed. Belmont, CA: Wadsworth Publishing.

1111 Millar, Neville, G. Philip Robertson, Peter R. Grace, Ron J. Gehl, and John P. Hoben. 2010.
1112 “Nitrogen Fertilizer Management for Nitrous Oxide (N₂O) Mitigation in Intensive Corn
1113 (Maize) Production: An Emissions Reduction Protocol for US Midwest Agriculture.”
1114 *Mitigation and Adaptation Strategies for Global Change* 15(2):185–204.

1115 Mooney, Patrick H. 1983. “Toward a Class Analysis of Midwestern Agriculture.” *Rural*
1116 *Sociology* 48:563–84.

1117 Mulvaney, R. L., S. A. Khan, and T. R. Ellsworth. 2006. “Need for a Soil-Based Approach in
1118 Managing Nitrogen Fertilizers for Profitable Corn Production.” *Soil Science Society of*
1119 *America Journal* 70(1):172.

1120 Nafzinger, ED, JE Sawyer, and RG Hoeft. 2004. “Formulating N Recommendations for Corn in
1121 the Corn Belt Using Recent Data.” Brookings, South Dakota: Potash and Phosphate
1122 Institute.

1123 Napier, Ted L. and Mark Tucker. 2001. “Use of Soil and Water Protection Practices Among
1124 Farmers in Three Midwest Watersheds.” *Environmental Management* 27(2):269–79.

1125 O’Neill, Saffron and Sophie Nicholson-Cole. 2009. “‘Fear Won’t Do It’ Promoting Positive
1126 Engagement With Climate Change Through Visual and Iconic Representations.” *Science*
1127 *Communication* 30(3):355–79.

1128 Outreach, SARE. 2007. *Managing Cover Crops Profitably*. 3rd edition. edited by A. Clark.
1129 College Park, MD: SARE Outreach.

1130 Owens, Susan. 2000. “‘Engaging the Public’: Information and Deliberation in Environmental
1131 Policy.” *Environment and Planning A* 32(7):1141–48.

1132 Pechlaner, Gabriela. 2013. *Corporate Crops: Biotechnology, Agriculture, and the Struggle for*
1133 *Control*. Austin: University of Texas Press.

1134 Ploeg, Jan Douwe van der. 1990. “Labor, Markets, and Agricultural Production.” *Labor,*
1135 *markets, and agricultural production*. Retrieved October 24, 2014
1136 (<http://library.wur.nl/WebQuery/clc/529563>).

1137 Preckel, P. V., G. E. Shively, T. G. Baker, M. C. Chu, and J. E. Burrell. 2000. “Contract
1138 Incentives and Excessive Nitrogen Use in Agriculture.” *Journal of Agricultural and*
1139 *Resource Economics* 25(2):468–84.

1140 QSR International. 2010. *Nvivo 9*. Melbourne, Australia: QSR International PL.

1141 Robertson, G. Philip and Peter M. Vitousek. 2009. “Nitrogen in Agriculture: Balancing the Cost
1142 of an Essential Resource.” *Annual Review of Environment and Resources* 34(1):97–125.

1143 Roberts, TL. 2007. “Right Product, Right Rate, Right Time and Right Place...the Foundation of
1144 Best Management Practices for Fertilizer.” Pp. 29–32 in. Brussels, Belgium.

1145 Rogers, Everett M. 2003. *Diffusion of Innovations, 5th Edition*. Original. New York: Free Press.

1146 Sampaio, Ana Rita, Rhodri Thomas, and Xavier Font. 2012. "Why Are Some Engaged and Not
1147 Others? Explaining Environmental Engagement among Small Firms in Tourism." *International Journal of Tourism Research* 14(3):235–49.

1149 Schnaiberg, Allan. 1980. *The Environment: From Surplus to Scarcity*. Oxford University Press,
1150 USA.

1151 Schnaiberg, Allan and Kenneth Alan Gould. 2000. *Environment and Society : The Enduring
1152 Conflict*. The Blackburn Press.

1153 Schulte, S. and K. A. Miller. 2010. "Wildfire Risk and Climate Change: The Influence on
1154 Homeowner Mitigation Behavior in the Wildland-Urban Interface." *SOCIETY &
1155 NATURAL RESOURCES* 23(5):417–35.

1156 Semenza, Jan C. et al. 2008. "Public Perception of Climate Change: Voluntary Mitigation and
1157 Barriers to Behavior Change." *American Journal of Preventive Medicine* 35(5):479–87.

1158 Sharp, J., E. Imerman, and G. Peters. 2002. "Community Supported Agriculture (CSA): Building
1159 Community among Farmers and Non-Farmers." *Journal of extension* 40(3):5.

1160 Snyder, C. S., T. W. Bruulsema, T. L. Jensen, and P. E. Fixen. 2009. "Review of Greenhouse
1161 Gas Emissions from Crop Production Systems and Fertilizer Management Effects."
1162 *Agriculture, Ecosystems & Environment* 133(3–4):247–66.

1163 Spence, Alexa, Wouter Poortinga, and Nick Pidgeon. 2012. "The Psychological Distance of
1164 Climate Change." *Risk Analysis* 32(6):957–72.

1165 Starr, Amory et al. 2003. "Sustaining Local Agriculture Barriers and Opportunities to Direct
1166 Marketing between Farms and Restaurants in Colorado." *Agriculture and Human Values*
1167 20(3):301–21.

1168 StataCorp. 2013. *Stata: Release 13*. College Station, Tex.: StataCorp LP.

1169 Stuart, D. 2009. "Constrained Choice and Ethical Dilemmas in Land Management:
1170 Environmental Quality and Food Safety in California Agriculture." *JOURNAL OF
1171 AGRICULTURAL & ENVIRONMENTAL ETHICS* 22(1):53–71.

1172 Stuart, Diana. 2008. "Constrained Choice and Ethical Dilemmas in Land Management:
1173 Environmental Quality and Food Safety in California Agriculture." *Journal of
1174 Agricultural and Environmental Ethics* 22(1):53–71.

1175 Stuart, Diana, Rebecca L. Schewe, and Matthew McDermott. 2012. "Responding to Climate
1176 Change Barriers to Reflexive Modernization in U.S. Agriculture." *Organization &
1177 Environment* 25(3):308–27.

1178 Tennent, Rebeka and Stewart Lockie. 2012. "Production Relations under GLOBALG.A.P: The
1179 Relative Influence of Standards and Retail Market Structure." *Sociologia Ruralis*
1180 52(1):31–47.

1181 USDA. 2007. *US Census of Agriculture 2007*. Retrieved
1182 (<http://www.agcensus.usda.gov/Publications/2007/index.php>).

1183 USDA Economic Research Service. 2012. *Fertilizer Use and Price*. Retrieved
1184 (<http://www.ers.usda.gov/data-products/fertilizer-use-and-price.aspx#.UZZtwIJAt2U>).

1185 USDA, Economic Research Service. 2014. "Background: Corn." Retrieved September 30, 2014
1186 (<http://www.ers.usda.gov/topics/crops/corn/background.aspx#.VCsAZildXUc>).

1187 US EPA, Climate Change Division. 2011. "Nitrous Oxide Emissions." Retrieved May 17, 2013
1188 (<http://epa.gov/climatechange/ghgemissions/gases/n2o.html>).

1189 Vandergeest, Peter, Mark Flaherty, and Paul Miller. 1999. "A Political Ecology of Shrimp
1190 Aquaculture in Thailand1." *Rural Sociology* 64(4):573–96.

1191 Wells, Miriam J. 1981. "Social Conflict, Commodity Constraints, and Labor Market Structure in
1192 Agriculture." *Comparative Studies in Society and History* 23(04):679–704.

1193 Wells, Miriam J. 1984. "The Resurgence of Sharecropping: Historical Anomaly or Political
1194 Strategy?" *American Journal of Sociology* 90(1):1–29.

1195 Wells, Miriam J. 1987. "Sharecropping in the United States: A Political Economy Perspective."
1196 Retrieved April 11, 2014 (<http://agris.fao.org/agris-search/search/display.do?f=1989/US/US89166.xml;US8863645>).

1198 Wells, Miriam J. 1996. *Strawberry Fields: Politics, Class, and Work in California Agriculture*.
1199 Cornell University Press.

1200 Wells, Victoria K., Cerys A. Ponting, and Ken Peattie. 2010. "Behaviour and Climate Change:
1201 Consumer Perceptions of Responsibility." *Journal of Marketing Management* 27(7–
1202 8):808–33.

1203 Welsh, Rick. 1997. "Vertical Coordination, Producer Response, and the Locus of Control over
1204 Agricultural Production Decisions1." *Rural Sociology* 62(4):491–507.

1205 White, Stacey Swearingen and Theresa Selfa. 2013. "Shifting Lands: Exploring Kansas Farmer
1206 Decision-Making in an Era of Climate Change and Biofuels Production." *Environmental
1207 Management* 51(2):379–91.

1208 Wilson, Geoff A. 2001. "From Productivism to Post-Productivism ... and Back Again?
1209 Exploring the (un)changed Natural and Mental Landscapes of European Agriculture."
1210 *Transactions of the Institute of British Geographers* 26(1):77–102.

1211 Winters, Paul, Phil Simmons, and Ian Patrick. 2005. "Evaluation of a Hybrid Seed Contract
1212 between Smallholders and a Multinational Company in East Java, Indonesia." *Journal of*
1213 *Development Studies* 41(1):62–89.

1214 Wolf, Steven, Brent Hueth, and Ethan Ligon. 2001. "Policing Mechanisms in Agricultural
1215 Contracts*." *Rural Sociology* 66(3):359–81.

1216

217 Table 1: Seed-corn contract growers
218

	Grow Any Seed-corn	Grow Majority Seed-corn	Grow Only Seed-corn
No	83%	88%	93%
Yes	17%	12%	7%

219
220

221 Table 2: Mean corn acreage

222

	Grow Any Seed-corn	Grow Majority Seed-corn	Grow Only Seed-corn
	Mean Acres	Mean Acres	Mean Acres
No	271	281	296
Yes	498	517	426
F	10.46	6.28	1.64
Prob > F	0.0014	0.0128	0.2008

223

224

225
226

Table 3: Sample

acres	Branch	Population			Total farms (N)	Sample	
		Calhoun	K'zoo	St. Joseph		Sampled farms (n)	pweight
1-49	194	176	82	182	634	340	1.86
50-199	124	149	62	103	438	300	1.46
200-499	63	74	36	61	234	200	1.17
500+	45	37	34	45	161	160	1.00
all	426	436	214	391	1467	1000	
Total Respondents	84 (weighted n=128)	83 (weighted n=139)	29 (weighted n=37)	75 (weighted n=108)		271 (weighted n=380)	
Grow any seed-corn	13 (weighted n=15)	8 (weighted n=9)	8 (weighted n=11)	29 (weighted n=36)		58 (weighted n=66)	
Grow majority seed-corn	7 (weighted n=9)	5 (weighted n=6)	5 (weighted n=7)	20 (weighted n=26)		37 (weighted n=45)	
Grow only seed-corn	3 (weighted n=4)	7 (weighted n=9)	2 (weighted n=3)	10 (weighted n=13)		22 (weighted n=28)	

227

228

229

230
231
232
233 Table 4: Mean pounds of Nitrogen applied per acre
234

All Growers			Subpopulation: Grow both Commercial and Seed	
	Mean lbs. N per Acre	Std. Err.	Mean lbs. N per Acre	Std. Err.
Commercial growers	30.64	0.84	Commercial acres	42.64 1.73
Seed-corn growers	36.09	1.67	Seed-corn acres	167.69 16.04
F statistic	8.48		T statistic	7.75
Prob > F	0.004			0.0001

Table 5: OLS regression on pounds of Nitrogen applied per acre (Box Cox transformed)

	Model 1	Model 2
	All Respondents	Subpopulation: Seed-corn Growers
	β (standardized)	β (standardized)
Grow seed-corn ¹	15.40**	-----
Branch County	-1.17	-9.75*
Kalamazoo County	2.7	-8.91*
Age ²	0.15	0.40
Education ³	-0.08	-0.62
Fertilizer dealer most significant advice ⁴	4.34**	-6.49
Other farmers most significant advice ⁴	1.14	13.15**
University recommendations most significant advice ⁴	2.25	-7.45
Seed company most significant advice ⁴	3.02	0.78
Interaction: Seed company most imp. * seed-corn grower	-7.13	-----
UAN or Urea most common type of N ⁴	2.26	3.71
Manure most common type of N ⁴	6.45	34.61**
Anhydrous ammonia most common type of N ⁴	3.15	4.49
Percent of cropland that is irrigated	0.10***	-0.10
Use of cover crops ⁴	-2.35	3.01
Most common soil type of cropland ⁵	-0.62	1.69
Use of side-dressing to apply N ⁴	1.80	14.91
Participate in a USDA conservation program ⁴	-2.96	-9.08*
Use of preside-dress nitrate test ⁴	1.31	3.65
Corn acreage in a typical season	0.01***	0.01*
Importance of fertilizer price in Nitrogen decisions ⁶	-1.72	1.38
Importance of corn price in Nitrogen decisions ⁶	2.02	0.53
Importance of yield in Nitrogen decisions ⁶	-0.29	-1.81
Importance of balance of costs and expected returns in Nitrogen decisions ⁶	0.36	-3.39

Interaction: yield importance * seed-corn grower	-5.35*	-----
constant	21.30***	23.79
R-squared	0.3458	0.5278
F	6.77	8.76
Prob > F	0.000	0.000
VIF	1.53	2.12
Tolerance	0.6542	0.4722

* p <.05, ** p < .01, *** p <.001

1: 1=yes, 0=no, grow any seed-corn acres

2: 1=<30, 2=31-40, 3=41-50, 4=51-60, 5=61-70, 6=>70

3: 1 = <12 years, 2= high school diploma, 3= vocational/trade, 4= some college, 5= college degree, 6= graduate training

4: 1=yes, 0=no

5: 1=sand, 2=silt, 3=clay, 4=loam, 5=clay-loam, 6=sandy-loam, 7=silty-loam, 8=other, 9=Multiple

6: "How significant is the factor in determining how much Nitrogen you apply?" (0=Not, 1=Slightly, 2=Slightly, 3=Very)