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Abstract  

The timing and quantity of fertilizer and herbicide applications in agricultural systems are 

critical where maximizing vigor and yield is the ultimate goal. While fertilizers are applied 

to the soil to promote plant growth, herbicides are commonly used to control weeds in 

order to reduce the weeds’ competition for nutrients. Satellite imagery is frequently used to 

monitor agricultural activities and vegetation indices (VIs) are widely applied in temporal 

analysis of crop status. This study considers monitoring Landsat VIs for the period 

between 5 June and 27 October 2014 in agricultural systems under four different 

management treatments at the Kellogg Biological Station (KBS), in Michigan, USA. The 

results show that 1) fine-tuning conventional treatments by intense early herbicide 

applications in combination with no-tilled soil results in significantly higher VIs during the 

early growth stage, a more rapid maturity rate, and the highest crop yield; 2) nitrogen 

uptake from nitrate-based rather than from ammonium-based fertilizers might be more 

beneficial in terms of crop vigor and yield return; 3) organic treatments, with organic corn 

and no agricultural chemicals, keep higher VIs longer in the season at the cost of lower 

yield; and 4) genetically modified (GM) breeds under conventional or reduced-chemical 

treatments have synchronized early senescence. A positive correlation between VIs during 

the early growth stage and yield is observed for conventional no-till treatment (coefficient 
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of determination, R2 = 0.70). The correlation becomes gradually weaker with each month 

from late June to October (29 June: R2 = 0.70; 16 August: R2 = 0.61; 17 September: R2 = 

0.44; 27 October: R2 = 0.01). The analysis of variance (ANOVA) - Tukey-Kramer 

approach suggests significant differences in VIs between organic and GM corn (treated 

conventionally or with reduced chemicals) for the pre-harvest season (27 October 2014). 

The leave-out-one cross-validation analysis confirms the predictive accuracy of the model 

(mean square error, MSE = 0.0014). The rapid evolution of herbicide-resistant weeds 

requires constant refinement of chemical inputs to agricultural systems, thus making the 

monitoring of (Landsat) VIs important in the years to come. 

Keywords  

Landsat, corn, vegetation index, treatments, conventional  

1. Introduction 

There are different measures for estimating grain yield throughout the growing season. 

Some studies concentrate on environmental factors and extreme weather events, while 

others consider biological constraints due to agricultural chemicals such as fertilizers, 

pesticides, biomass, and weeds (Kruse and Smith 1994). High-dimensional spatial and 

temporal dynamics of weather and soil properties add to the complexity of agricultural 

systems and to model the interactions between the crop and nutrients is a challenge (Kruse 

and Smith 1994; Tremblay, Bouroubi, and Belec 2012; Ibrahim, Mohd, and Nizar 2014; 

Sandip 2014). In the early 1970s, Glenn, Daynard, and Watson (1974) designed an 

experiment to study the relationship between spring vigor and grain yield in corn, arguing 

that hybrids with a high early photosynthetic rate have the ability to emerge rapidly and 

grow quickly, leading to a longer grain-filling period and higher yield. Donald (1968) 

argued that the ability of crops to be tolerant to high plant density and resistant to crowding 
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is the driving factor behind higher efficiency of nutrient uptake and higher yield. Schepers 

and Holland (2012) emphasized the importance of application rates of nitrogen (N) 

fertilizer as well as residual N levels in soil from previous years for early-season crop vigor 

and yield. According to Raun, Solie, and Stone (2011), the demand for fertilizer and 

responsiveness of crop to N are closely related to crop yield level.  

Quantification of fertilizer applications is time-sensitive and dependents upon several 

factors including weather, soil moisture and texture, competition from weeds, as well as 

crop type and its nutrient uptake efficiency. Herbicide applications are commonly used to 

control weeds in order to reduce the weeds’ competition for nutrients, thus making more 

nutrients available to crops. In addition to weed control, pre-harvest crop desiccation, i.e., 

the process of reducing green material in crops, involves the application of herbicides at 

maturity to speed up crop growth affecting yield (Guenther 2016). This is particularly 

important in northern climates where more even and synchronized ripening is needed for 

early harvest and earlier replanting due to unfavorable environmental conditions. Genetic 

modifications enhance a crop’s capability to be insect resistant and herbicide tolerant, 

which further enhances yield (Green 2014). Genetic modification could also be done to 

shorten or prolong the maturity state of crops or to manipulate nitrogen uptake efficiency 

(Birger 2011). Certain genes’ mechanisms may decrease while others may increase at 

different growth stages irrespective of nitrogen regime (Mushongi et al. 2013), which 

ultimately influences the interaction between the crop and soil nitrogen. Genetic control of 

the leaf chlorophyll may also play a role in accelerating the maturation process. For 

instance, in areas where corn genotypes are source-limited under harsh conditions, 

incorporating a specific trait in the corn genotypes would improve grain yields by 

accelerating grain-filling (maturation) duration (Banziger et al. 2000; Subedi and Ma 

2005). Recent studies consider soil preparation as another important factor that influences 

the interaction between the crop and soil nutrients. Conservation tillage is a common 
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process of cultivating crops in which several tillage operations can take place during the 

growing season before, during, and after planting. The main purpose of these practices is to 

create conditions that would enhance good contact between seed and soil at the time of 

seed planting (Malhi, McAndrew, and Carter 1992). 

 

As remote sensing technology advances, vegetation indices (VIs), expressed as reflectance 

band ratios, are increasingly used in empirical analysis to quantify crop parameters 

important for yield estimation (Bannari et al. 1995; Blackburn 1998; Haboudane et al. 

2002; Sims and Gamon 2002; Almeida, De Souza Filho, and Ressetto 2006; Asner and 

Martin 2008; Jacquemoud et al. 2009; Ustin et al. 2009; Delegido et al. 2011; Simic et al. 

2011; Obade, Lal, and Chen 2013; Zarco-Tejada et al. 2013; Simic et al. 2014; Yu et al. 

2014; Rao et al. 2015). Due to their high spatial resolutions, very high resolution 

multispectral (e.g., WorldView or IKONOS), and Unmanned Aircraft System (UAS) 

technologies have been increasingly used to monitor agricultural systems (Zhang and 

Kovacs 2012). However, the multispectral technology of Landsat and Landsat-type sensors 

(e.g., Satellite Pour l’Observation de la Terre (SPOT)) is also important in precision 

farming applications due to their large synoptic view, large historical archived database, 

reasonably high resolution of 30 m or better, as well as their long history of understanding 

spectro-biophysical relationships using these sensors (Thenkabail 2003). The normalized 

Difference Vegetation Index (NDVI) and Simple Ratio (SR) are the two most commonly 

used VIs that characterize crop vigor (Blackburn 1998). VIs developed in such a way that 

they reduce the impact of soil background and canopy structure further increase their 

sensitivity to pigments (e.g., Optimized Soil Adjusted Vegetation Index (OSAVI), 

Transformed Chlorophyll Absorption Index (TCARI), Photochemical Reflectance Index 

(PRI)) (Gamon, Penuelas, and Field 1992; Rondeaux, Steven, Baret 1996; Haboudane et 

al. 2004; Motokha et al. 2010; Yu et al. 2014). In 2013, Lyle, Lewis, and Ostendorf (2013) 
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successfully used Landsat images to create a robust wheat yield prediction model over 

large areas for multiple seasons. Landsat near infrared (NIR) and mid infrared (MIR) 

reflectances are used to estimate crop water stress (Abduwasit et al. 2008; Lui et al. 2010) 

as well as chlorophyll and nitrogen content (Gitelson et al. 2008; Lui et al. 2010), and VIs 

early in the season (Yu et al. 2014).  

The objectives of this study are to explore the capability of Landsat VIs to capture the 

subtle differences in agricultural systems that undergo four different treatments and to 

evaluate their temporal patterns in relation to different fertilizer and herbicide applications 

and soil practice. In particular, the relations between early VIs, nitrogen uptake from (a) 

nitrate-based and (b) ammonium-based fertilizers, yield and corn maturity based on pre-

harvest VIs are explored.  

2. Materials and methods 

2.1 Study area and field data 

The study site is situated within the Kellogg Biological Station (KBS) in Michigan, USA 

(42°24'46.77"N, 85°22'23.42"W) (Figure 1(a)). The KBS is a research area where factorial 

field experiments, which include different experimental treatments, ecological interactions, 

and agronomic performance, have been established. The KBS farmland is managed under 

the Main Cropping System Experiment (MCSE) of the Long Term Ecological Research 

(LTER) program, as part of a national network of LTER sites established by the National 

Science Foundation (Robertson et al. 2012; Robertson and Hamilton 2015). The 1-ha plots 

are replicated along a management intensity gradient and they include four annual 

cropping systems, three perennial crops, and from early- to late-successional unmanaged 

ecosystems (Robertson et al. 2012). The annual cropping systems are corn-soybean-winter 

wheat rotations ranging in management intensity from conventional to biologically based 

(Robertson et al. 2012; Gage, Doll, and Safir 2014). The parcels that undergo different 
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treatments are mixed and randomly spread over the study area and the same seed genetics 

are kept in all cropping systems from year to year. The climate at KBS is humid, 

continental, and temperate. Annual precipitation averages 1027 mm year-1 and no crops are 

irrigated. The predominant soils at and around KBS are Alfisols, developed under upland 

forest vegetation. MCSE soils are well-drained Alfisol loams of the Kalamazoo series 

(fine-loamy, mixed, mesic Typic Hapludalfs) co-mingled with well-drained loams of the 

Oshtemo series (coarse-loamy, mixed, mesic Typic Hapludalfs), as summarized by 

Robertson et al. (2012). 

[Figure 1]  

In this study, 24 parcels of corn were considered (Figure 1(b)). Six parcels with the same 

management were assigned to each treatment (Michigan State University (MSU), 2016). 

There were two types of corn in the experiment: 

1) genetically modified (GM) corn (Dekalb DKC52-59 Corn Hybrid) treated in three 

different ways: a) T1 - conventional plowed; b) T2 - conventional with no tilling; and c) T3 

- biological with reduced chemical inputs (Table 1).   

2) T4 - certified organic, non-genetically modified (non-GM) corn (Blue River Hybrid 

25M75 Organic) with no chemical treatments (Table 1). 

Corn has a rapid growing pattern. Once planted, corn commonly yields many leaves in a 

short time, having the reproductive structures initiated while leaves are still growing. It 

becomes completely dry before being harvested (Figures 2(a)-(c)).  

[Figure 2]  

[Table 1]   

 

In-situ measurements included crop yield and soil chemistry during and after the growing 

season; all conducted under the LTER program. Agronomic yields were measured during 
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normal crop harvest at 15.5 % standardized moisture. Yields were determined by machine 

harvester as described in the Agronomic Protocol (MSU, 2016). Soil nitrate and 

ammonium concentrations were measured during the growing season. The protocol 

included triplicate subsamples (10 g fresh weight) extracted from the composite, sieved 

soil samples of each plot with 100 ml of 1 M KCl. Soil extracts were properly shaken and 

allowed to sit overnight before they were filtered with a syringe filter using a glass fiber 

filter. The analysis was performed on a Flow Injector Analyzer (Michigan State University, 

2016). Soil phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were 

measured after the harvest (12 November 2014). Phosphorus was analyzed with a 

colorimeter using a dip probe; K and Ca were analyzed using a flame photometer; and Mg 

was analyzed with a colorimeter on a segmented flow analyzer. BrayP1 was used to extract 

the P and 1N Ammonium Acetate before extracting K, Ca, and Mg (MSU, 2016). 

2.2 Satellite data and analyses 

Two Landsat 8 and four Landsat 7 images (Path 21 and Row 31) acquired from 5 June to 

27 October 2014 were used in this study (USGS, 2016) (Table 2). Although additional 

bands and better radiometric performance quantized over a 12 bit dynamic range are 

advantages of Landsat 8 over Landsat 7 (USGS, 2015), images from both sensors were 

used due to the low number of cloud-free images.  

 

[Table 2] 

 

ENVI FLAASH was used for the radiometric and atmospheric corrections of the images 

(Harris Geospatial Solutions, 2015). ENVI was used to extract spectral signature and to 

generate VIs. To avoid any edge effect, the final spectral signatures were extracted from 

the central pixel or a pixel closest to the center of each parcel. The common chlorophyll- 
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and leaf structure- related multispectral VIs and indices with the reduced impact of soil 

background were used in the analysis (Table 3). Temporal trends of VIs were examined 

and related to the in-situ soil chemistry and yield. In particular, the effects of the four 

treatments were assessed by examining the relations between early VIs, nitrogen uptake 

from (a) nitrate-based and (b) ammonium-based fertilizers, yield and corn maturity based 

on pre-harvest VIs. To evaluate the impact of early VIs, we consider data from 29 June 

when leaves were fully developed and soil exposure was minimal (Figure 2). The mean 

values of different treatments were compared using t-test statistics, the analysis of variance 

(ANOVA) and Tukey-Kramer method, a multiple comparison procedure to compare all the 

pairs of mean values at a significance level of 0.05. Given the small sample sizes, the 

leave-out-one cross-validation analysis was conducted to examine the predictive accuracy 

of the model. The analysis was done comparing two ANOVA models, with and without 

treatment effect. In the process of iterations, one observation was omitted at each step and 

each model was fitted for the remaining observations. The mean square errors (MSE) were 

recorded and compared.  

 

[Table 3] 

 

Due to differences in spectral resolution and the location of the bands between Landsat 7 

and 8, some minimal uncertainty may be involved in our analysis. The uncertainties were 

expected to be minimized by using the reflectance ratios.  

3. Results 

3.1. Temporal trends of spectral reflectance for the different crop treatments  
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While the average spectral signals acquired on 5 June and 27 October consist of mixed soil 

and crop reflectances, the vegetation signals dominate from 29 June to 19 October (Figures 

3(b)-(e)). Treatment T2 has significantly higher mid-infrared (MIR1) reflectance than other 

treatments in early June (p ≤ 0.008 for 5 June) probably due to higher reflectance of no-till 

over tilled soil (Figure 3(a)). Significantly higher NIR reflectance (p ≤ 0.009) for treatment 

T2 over other treatments is observed on 29 June (Figure 3(b)). The no-till soil, early 

herbicide applications, and increased amounts of herbicides are the only factors that may 

cause the differences between treatments T1 and T2 (Table 1).  

 

In September, the reflectance in the red spectrum is lower for treatments T3 and T4 than 

for conventional treatments T1 and T2 (Figure 3(d)). While treatment T3 has a 

significantly lower NIR reflectance than treatments T1 and T2 in June, its values become 

significantly higher in September (Figures 3(b) and 3(d)). Treatment T4 has the lowest 

reflectance in all bands during early growth stage (Figures 3(a) and 3(b)). Interestingly, 

during the pre-harvest (senescence) stage (19 and 27 October), NIR reflectance for 

treatment T4 is significantly higher than for any other treatment (p ≤ 0.001) (Figures 3(e) 

and 3(f)). The same trends are observed in all six replicates for each treatment and there is 

no significant difference between the parcels except for one T1 replicate that showed 

somewhat higher variability. 

   

[Figure 3] 

 

3.2. Comparison of Landsat vegetation indices between the different crop treatments 

The performance of VIs used in this study (SR, NDVI, OSAVI, modified NDVI (mNDVI), 

Chlorophyll Index Green (Clgreen), and Green-Red Index (GRI)) is similar for all four 
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treatments (Figures 4(a)-(f)). For SR, OSAVI, and Clgreen, treatment T2 has significantly 

higher values on 29 June than any other treatment (Figures 4(a), 4(c), and 4(e)) based on 

the Tukey-Kramer test (see p values in Table 4). Treatment T3, with reduced chemical 

applications, and organic treatment T4 show significantly higher VIs than treatments T1 

and T2 during September. This trend is observed for all VIs with some minor differences 

in their maximum values (Figures 4(a)-(f)). VIs for treatment T4 are significantly higher in 

October than for other treatments except for GRI (Figures 4(a)-(f)) (see p values in Table 

4).  

              

[Figure 4] 

 

Out of all treatments, treatment T2 exhibits the most rapid decrease in the VI values during 

the season (Figures 4(a)-(f)). Differently, the VI values for treatment T1 are lower early in 

the season and decrease at a lower rate when compared to treatment T2. The prolonged 

high VI values for treatment T3 rapidly decrease after September and become 

insignificantly different from treatments T1 and T2 in October (Figures 4(a)-(f)). All three 

GM related treatments (T1, T2, and T3) exhibit synchronized decrease in VIs when 

compared with the control (organic) treatment T4.  

 

SR, OSAVI, NDVI, Clgreen, and mNDVI are more consistent in their trends (Figures 4(a)-

(e)). GRI, which does not include the NIR band, demonstrates more sudden changes from 

late June to October than other VIs (Figure 4(f)). Based on the variance-to-mean ratio 

(VMR), on 29 June the most variability is observed for treatment T4, particularly for VIs 

that involve NIR band (SR, NDVI, OSAVI, Clgreen, and mNDVI). Significantly smaller 

VMR as well as the lowest p value are observed for GRI on 29 June (see p values in Table 
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4). SR and OSAVI are most consistent (Figures 4(a)-(f)). OSAVI is used as a 

representative index in the next sections.  

 

The leave-out-one cross-validation analysis, applied to the pre-harvest dataset (27 

October), shows that the ANOVA model with treatment effect has significantly lower 

MSE (MSE = 0.0014) than the ANOVA model without treatment effect (MSE = 0.0037), 

suggesting the validity of the results shown in Table 4. A similar trend is observed for the 

early season (29 June) but the MSE value for the model with treatment effect is 

insignificantly lower (MSE = 0.0056) than for the model without treatment effect (MSE = 

0.0060).  

 

[Table 4] 

 

3.3. Relationship between vegetation indices, yield, and soil chemistry 

Based on the field measurements, treatment T4 has significantly lower yield when 

compared with other treatments (e.g., for OSAVI p ≤ 0.000) (Figures 5(a) and 5(b)). 

Although the difference in yield between treatments T1, T2, and T3 is not significant, 

treatment T2 exhibits the highest yield of all treatments. We have found no correlation 

between early VIs and yield when all values from 29 June 2014 are considered (coefficient 

of determination R2= 0.03) (Figure 5(a)). There is a strong positive correlation between 

OSAVI and yield for treatment T2 (R2 = 0.70); however, a larger sample size is needed to 

confirm the findings. The correlation for treatment T2 becomes gradually weaker with 

each month from late June to October (16 August 2014: R2 = 0.61; 17 September 2014: R2 

= 0.44; 27 October 2014: R2 = 0.01). 
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We have also explored the relationship between VIs and yield during the pre-harvest 

season. A relatively strong negative correlation between VIs and yield is observed on 27 

October 2014 (R2= 0.64) (Figure 5 (b)) when all measurements are included in the analysis, 

which is different than in the study of Kross (2015). This is an important finding in our 

study because it reveals a connection between VIs, corn grain-filling period, yield, and 

corn maturity, to be discussed later. The linear discriminant analysis suggests clustering 

and strong separability between the organic treatment T4 and treatments T1-T3 with GM 

corn (Figure 5(b)). No correlation is observed for treatments T1-T3 with GM corn (R2 = 

0.01) (Figure 5(b)).  

   

[Figure 5] 

 

The average soil nitrate level rapidly decreases for treatment T2 in June and July, which 

may indicate a high initial uptake rate of nitrate-based nitrogen during the early growth 

stage while keeping the highest VI values (Figures 6(a) and 4(a)-(f)). Note that a nitrate-

based fertilizer was applied to T1-T3 in May and that a larger quantity of Roundup 

agricultural herbicides was applied only to T2 earlier in the season just before planting 

(Table 1). Unlike treatment T2, the average soil nitrate level for treatment T1 is always 

greater relative to the control organic treatment T4 (Figure 6(a)), indicating low initial 

uptake of nitrate-based nitrogen. Treatment T3 shows a similar trend to treatment T2 at 

first, with a sudden decrease in uptake rate afterwards. Unlike T1 and T2, treatment T3 

received Dual II Magnum agricultural herbicide (Table 1). Its VI values stay higher longer 

in the season, through August and September, meaning a potential longer grain-filling 

period than for treatments T1 and T2.   

With respect to the relative concentration of soil ammonium, treatment T2 has a lower 

initial uptake rate during the early growth stage when compared with the control treatment 
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T4, but then it is followed by a sudden uptake in August (Figure 6(b)). Treatment T1 also 

exhibits a higher uptake of ammonium-based nitrogen in August. After August, treatments 

T1 and T2 behave similarly, both with low soil ammonium levels, while treatment T3 

behaves similarly to the control treatment for most of the time. On 19 October, most likely 

due to some environmental conditions, all treatments show an increase in soil nitrate levels 

and a decrease in soil ammonium levels (Figures 6(a) and 6(b)).  

 

[Figure 6] 

 

Because P, K, Ca, and Mg, were collected after the harvest (12 November 2014), the 

correlation between their concentrations and VIs is unlikely to be strong (Figures 7(a)-(d)). 

An exception is phosphorus for which the correlation is strongly negative for treatment T4 

(R2=0.67) (Figure 7(a)). However, a larger sample size is needed to confirm the results. 

The linear discriminant analysis separates the data in two clusters: one cluster for the 

organic corn (T1) and another for the GM corn (T1-T3). In all cases, treatment T4 has 

higher OSAVI values for similar ranges of soil chemicals. No correlation is observed 

between OSAVI (or other VIs) and soil chemistry for the GM corn (T1-T3), indicating 

most likely its senescence stage (Figures 7(a) and 7(b)).     

    

[Figure 7] 

4. Discussion  

4.1. The impact of soil tillage, early herbicide and reduced nutrient applications on VIs   

The intense early herbicide applications of Roundup and ammonium sulfate in 

combination with no-till soil management produce 1) the highest early VIs, 2) high early 
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uptake of nitrate-based nitrogen, and 3) the highest grain yield (treatment T2). The trend is 

observed on 29 June when leaves were fully developed and the impact of soil on the 

overall reflectance signal was minimal (Figures 2 and 6(a)). There are several possible 

explanations for this trend. The herbicide management used for treatment T2 may have an 

earlier and a stronger effect on weeds, reducing the crop-weeds competition for nutrients 

(Green 2014). It is also possible that nutrients and water are leached less in no-till soils 

having better interactions with the roots at initial contact, which further may increase green 

leaf productivity and transpiration (Bender and van der Heijden 2015; Yu, Hui et al. 2016). 

Improved early vigor is an important trait for increasing water-use efficiency and thereby 

grain yield in rain-fed environments, which goes hand in hand with the probability of 

better preservation of soil moisture in no-till soils (Botwright et al. 2001; Lopez-Castaneda 

et al. 1996).  

 

For opposite reasons, the soil tillage management as well as later and less intense herbicide 

application (Roundup, in particular) most likely inhibit the early nitrogen uptake for 

treatment T1. High uptake of ammonium-based nitrogen later in the season, during the 

grain-filling period, and the absence of high early uptake of nitrate-based nitrogen make 

this treatment less productive than the no-till treatment T2. Low VIs throughout the whole 

season result in significantly lower VIs and notably lower crop yield than treatment T2.  

While maximizing VIs during the grain-filling period may be important for high yield, 

maximizing the initial VIs by the high initial nitrate-based nitrogen uptake may be critical 

for high yield. Most likely the high nitrogen uptake from ammonium later in the season 

enhances already high VIs for treatment T2 triggered by the high initial nitrate-based 

nitrogen uptake making its grain-filling period shorter. 
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Literature sources suggest that nitrogen utilization is directly related to chlorophyll 

concentration and thus to corn vitality and maturity. Furthermore, urea-ammonium-nitrate 

fertilizers are considered main sources of nitrogen to the crop. Urea is decomposed by the 

enzyme urease or chemically hydrolyzed into ammonia and CO2. In the process of 

ammonification, ammonia is converted to ammonium by ammonium-oxidizing bacteria, 

which is further changed into nitrate by nitrifying bacteria in the process of nitrification 

(PNA 2015). Unlike ammonium, which has to be converted to organic nitrogen in the 

roots, the conversion of nitrates to amino acid occurs in the leaf. The former requires 

additional energy at the expense of the plant leaf processes and yield (PNA 2015). Nitrates 

have higher mobility in soil and are readily absorbed by the crop without going through 

any further conversion (PNA 2015). As reported by PNA (2015), several studies suggest 

that high nitrate can be more beneficial over high ammonium in soil in terms of grower 

return.  

 

Treatment T3, with the reduced amount of agricultural chemicals, also triggers high initial 

uptake of nitrate-based nitrogen keeping the VI values relatively high for a longer time. 

However, the reduced amount of nutrients, absence of the ammonium-based fertilizer, and 

different herbicide type (Dual II Magnum) and its later application may be the reason for 

lower yield.  The starting point of nitrate uptake is lower, and VIs are high but not maximal 

longer in the season, suggesting a longer grain-filling period. The relatively high initial 

nitrate uptake for treatments T3 can also be due to nitrogen residuals, stored in soil from 

the previous year when red clover, a natural soil N fixer, was planted on treatment T3 

parcels (MSU, 2016). These proposed underlying mechanisms are in agreement with the 

negative correlation between VIs and yields observed in Figure 5(b). The decreasing trend 

of VIs and the increasing trend of yields for T4, T3, T1, and T2, respectively seem to be 

directly related to the nitrogen uptake. The possibility remains that high initial (early) 
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uptake of nitrate-based nitrogen and high uptake of the ammonium-based nitrogen later in 

the season make the grain-filling period shorter, and maturity rate and yield higher.  

 

4.2. The effects of corn type (GM vs. organic) on corn maturity and yield 

 

At the end of the season, Landsat captures the synchronously low VIs for all GM 

treatments (T1-T3) when compared with the control (organic) treatment. The VIs are low 

over a wide range of soil chemistry, meaning that the crop is no longer productive. Early 

maturity is desirable in northern climates to avoid damage to the crop under harsh winter 

conditions as well as to be able to harvest the crop efficiently. The organic corn (T4), 

however, continues to keep its productivity longer in the growing season under minimal 

nutrient availability. The few days’ delay in planting corn under treatment T4 is not 

considered a critical factor for the difference (Tables 1 and 3). The LTER program was 

carefully designed by Michigan State University so that it can compare the outcomes of all 

treatments. 

 

Literature sources also suggest that the leaf chlorophyll concentration and vigor are 

associated with the physiological maturity of genotypes. The greater the time the genotype 

takes to reach maturity, the more chlorophyll is involved, whereas shorter maturing 

genotypes may lose chlorophyll earlier and faster under similar conditions. This means that 

in short-maturity scenarios, the high chlorophyll concentration would lead to high yield 

(Tollenaar and Daynard 1978; Mushongi et al. 2013). Using satellite images to predict crop 

yield from early vigor and crop maturity from the duration of the grain-filling period would 

give another dimension to remote sensing technology for precision agriculture 

applications.  
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Although some recent studies question whether organic and conventionally-treated corn 

exhibit differences in yield, a number of studies show that this is indeed the case 

(Mazzoncini et al. 2015). The ‘greener’ organic corn at pre-harvest season, despite its 

lower yield, could occur because of its high nutrient management efficiency. Organically 

treated corn most likely uses naturally-available nutrients in a slower development, while 

other treatments consume the nutrients at a higher rate, investing more in corn 

development (Rembialkowska 2007). The strong negative correlation between OSAVI and 

phosphorus for treatment T4 in our study should be further explored to confirm this 

conclusion. While in some studies nitrogen shortage explains the different composition of 

phenolic acid and the higher antioxidant power in the organic crops, many studies 

conclude that this effect is difficult to prove (Ceseviciene et al. 2012; Mazzoncini et al. 

2015). Several reports introduce phosphate solubilizing bacteria (PSB) as being 

responsible for the increase in plant growth and P uptake (Liu et al., 2011; Pereira and 

Castro, 2014), while some authors report contradictory results (Yu et al. 2011). In the study 

of Xie, Pasternak, and Glick (1996) a positive correlation was observed between root 

biomass and root P concentration for corn growing in P-deficient soil due to bacterial 

inoculation. According to the “growth/differentiation balance” theory, plants always 

optimize the resources available by exploiting them in 1) growth or 2) primary and 

secondary metabolic processes, considering the particular needs at each growing stage 

(Mahdi et al. 2011; Rembialkowska 2007).  

 

Overall, our findings show that Landsat VIs are capable of detecting subtle corn responses, 

in conjunction with soil preparation as well as type, timing, and quantity of nutrient and 

herbicide applications. Ground measurements of crops’ structural and biochemical 

properties are further required to validate our findings and hypothesis that monitoring 

Landsat VIs can be useful in refining the timing and quantity of chemical applications to 
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promote higher crop yield. Future genetic modification of GM corn along with the increase 

of herbicide-resistant weeds will require further and ongoing refinement of chemical 

inputs, thereby making the monitoring of (Landsat) vigor algorithms important in years to 

come.  

5. Conclusion   

This research explored the capabilities of Landsat Vegetation Indices (VIs) to capture 

subtle differences in corn status under different agricultural treatments and soil practices. 

In particular, the effects of four treatments were assessed by examining the relations 

between early VIs, nitrogen uptake from (a) nitrate-based and (b) ammonium-based 

fertilizers, yield, and corn maturity based on pre-harvest VIs. Four different agricultural 

systems, located at the Kellogg Biological Station (KBS), in Michigan, USA, were 

explored: 1) genetically modified (GM) corn (Dekalb DKC52-59 Corn Hybrid) treated in 

three different ways: a) T1 - conventional plowed; b) T2 - conventional with no tilling, and 

c) T3 - biological with reduced chemical inputs, and 2) T4 - certified organic, non-

genetically modified (non-GM) corn (Blue River Hybrid 25M75 Organic) with no 

chemical treatments. 

The results showed that Landsat was capable of capturing the following trends:  

1) Intense early herbicide applications in combination with no-tilled soil resulted in 

significantly higher VI values early in the season, more rapid maturity rate, and the highest 

corn yield. Strong correlations were observed between VIs values early in the season and 

yield. 

2) Nitrogen uptake from nitrate-based rather than from ammonium-based fertilizers 

might be more beneficial in terms of crop vigor and yield return.  

3) Organically treated corn kept high VIs longer in the season than any other 

treatment. 
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4) The GM breeds under conventional or reduced-chemical treatments exhibited 

synchronized early senescence, a crop property desired in northern climates. 

The findings are a technical confirmation that monitoring of multispectral Landsat 

vegetation algorithms could be used for fine-tuning agricultural treatments and soil 

practices to reach high yield and early senescence. With the increase of herbicide-resistant 

weeds and rapid development of new herbicides and new varieties of GM corn, monitoring 

satellite vegetation indices is becoming increasingly important in precision agriculture.  
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Figures:  

 

Figure 1. (a) Landsat image of the study area: W. K. Kellogg Biological Station, Michigan 

(42°24'46.77"N, 85°22'23.42"W), (b) Distribution of 24 parcels used in the study. Source: 

USGS and Google Earth.  
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Figure 2. Corn growth stages at KBS: (a) Corn in late June (tassel initiation and growth); 

(b) Corn in mid-August (kernel growth and fill); (c) Corn in late October/November (corn 

to be harvested). Source:  KBS LTER Photo Gallery (Michigan State University, 2016). 
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Figure 3. Averaged spectral signatures for the treatments collected on (a) 05 June 2014, (b) 

29 June 2014, (c) 16 August 2014, (d) 17 September 2014, (e) 19 October 2014, and (f) 27 

October 2014. Note: Conventionally-treated sites: T1 (plowed, GM), T2 (no-till, GM), T3 

(biologically-treated, reduced input, GM), and T4 (certified organic, non-GM).  
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Figure 4. Vegetation indices for different treatments through the growing season based on 

Landsat 7 and 8: (a) SR, (b) NDVI, (c) OSAVI, (d) mNDVI, (e) CIgreen, and (f) GRI. 

Note: Conventionally-treated sites: T1 (plowed, GM), T2 (no-till, GM), T3 (biologically-

treated, reduced input, GM), and T4 (certified organic, non-GM).  
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Figure 5. Relationship between OSAVI and yield measurements: (a) at the early growing 

stage (29 June), (b) at the pre-harvest stage (27 October). Note: Conventionally-treated 

sites: T1 (plowed, GM), T2 (no-till, GM), T3 (biologically-treated, reduced input, GM), 

and T4 (certified organic, non-GM).  
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Figure 6. Temporal trends of soil nitrate (a) and soil ammonium (b) average levels, with 

OSAVI. Note: Conventionally-treated sites: T1 (plowed, GM), T2 (no-till, GM), T3 

(biologically-treated, reduced input, GM), and T4 (certified organic, non-GM).  
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Figure 7. Relationship between OSAVI and soil chemical measurements (a) phosphorus, 

(b) potassium, (c) calcium, and (d) magnesium collected after harvest (12 November 

2014). Note that each treatment type (T1-T4) has six replicates. Note: Conventionally-

treated sites: T1 (plowed, GM), T2 (no-till, GM), T3 (biologically-treated, reduced input, 

GM), and T4 (certified organic, non-GM).  

 

 

 


