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A Framework for Optimal Grasp Contact Planning

Kaiyu Hang, Johannes A. Stork, Nancy S. Pollard, and Danica Kragic

Abstract—We consider the problem of finding grasp contacts
that are optimal under a given grasp quality function on arbitrary
objects. Our approach formulates a framework for contact-level
grasping as a path finding problem in the space of supercontact
grasps. The initial supercontact grasp contains all grasps and in
each step along a path grasps are removed. For this, we introduce
and formally characterize search space structure and cost functions
under which minimal cost paths correspond to optimal grasps. Our
formulation avoids expensive exhaustive search and reduces com-
putational cost by several orders of magnitude. We present admissi-
ble heuristic functions and exploit approximate heuristic search to
further reduce the computational cost while maintaining bounded
suboptimality for resulting grasps. We exemplify our formulation
with point-contact grasping for which we define domain specific
heuristics and demonstrate optimality and bounded suboptimality
by comparing against exhaustive and uniform cost search on ex-
ample objects. Furthermore, we explain how to restrict the search
graph to satisfy grasp constraints for modeling hand kinematics.
We also analyze our algorithm empirically in terms of created and
visited search states and resultant effective branching factor.

Index Terms—Grasping, dexterous manipulation, multifingered
hands, contact modeling.

I. INTRODUCTION

ONTACTS are the most fundamental building blocks of
C grasps and determine stability and utility of a grasp. Find-
ing good grasp contacts is a key challenge in robotic grasping
[1] and fixture layout design for industrial automation [2]. The
main difficulty consists in deciding where on the object’s surface
contacts should be placed and which combinations of contacts
result in a reliable grasp. Grasp reliability is commonly charac-
terized by wrench space analysis [1], [3]-[5] and grasp contacts
are found by some form of optimization [1], [6]-[8], heuristic
[3], [9], or data-driven approach [10].

While analytical methods for optimal quality grasps exist
for primitive objects [11], optimal grasping on arbitrary objects
still requires enumerating all contact combinations exhaustively
[12]. However, even for less than half of the contacts shown
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Fig. 1. Our approach is based on reducing optimal grasping to finding a
minimal cost path. Starting with complete super-contacts that cover the whole
object, we step-by-step remove contacts until we reach m-contact grasps. Each
state is a combination of m super-contacts and each arc shrinks the included
super-contacts. The minimal cost path ends at the optimal grasp.

in Fig. 1, analyzing all three-finger grasps requires thousands
of minutes on current non-specialized hardware. This effort in-
creases exponentially with the number of fingers.

In this work, we offer an general formulation of the opti-
mal grasping problem that allows efficiently identifying optimal
and bounded suboptimal grasps while avoiding computation on
each possible grasp. In practice our algorithm can reduce com-
putational cost by several orders of magnitude. Intuitively, we
start with the set of all possible grasps and step-by-step remove
grasps until reaching the optimal grasp. For this, we represent a
set of grasps by a combination of super-contacts which contain
several contacts at once. Provided that the grasp quality function
can be applied to super-contact grasps, we show that this ap-
proach corresponds to a path finding problem. As illustrated in
Fig. 1, each state corresponds to a super-contact grasp and each
arc removes contacts from a super-contact until terminal states
are left with only one contact for each finger. We set the cost of
an arc to represent the loss in grasp quality between connected
states which means that minimal cost paths terminate in grasps
with maximal quality.

We contribute by (1) formally characterizing search graph
structure and grasp quality functions for reducing the optimal
grasping problem to a path finding problem. Further, we (2)
introduce a family of admissible heuristic functions for effi-
cient and approximative heuristic search. For exemplary eval-
uation with point-contact grasping, we (3) prove that the pop-
ular Ferrari-Canny quality @1 [5] is compatible to our formu-
lation, and (4) define a family of domain specific successor
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functions and heuristics. Finally, (5) we show incorporation of
grasping-related constraints, e.g., hand kinematics, into the con-
struction of the search graph. To the best of our knowledge, this
is the first work that provides an efficient complete and optimal
algorithm for finding optimal grasp contacts on arbitrary objects
that allows choosing an € sub-optimality bound for grasp quality.

II. RELATED WORK

The problem of finding grasp contacts on an object’s sur-
face is addressed by a host of diverse approaches as described
in overviews by Sahbani et al.. [8], Bohg ef al. [10], Roa and
Sudrez [4], and most relevant to our work Bicchi and Kumar
[1]. While most algorithms listed in the works above can result
in high-quality grasps under favorable conditions, none guar-
antees optimality or bounded sub-optimality with reasonable
computational effort. On the contrary, the most popular grasp-
ing approaches are based on ex post analysis of sampled con-
tacts [3], [13], [14] and operate with simplified object models
[11], [15]-[18]. Our only assumptions are a finite contact space
and a quality function that allows sets of contacts per finger.
The common quality function that models wrench resistance
for frictional hard-finger contacts [3], [5] is compliant with our
formulation and we use it in our experiments.

We argue that identifying optimal grasp contacts is useful
not only for grasping, but also for benchmarking, analyzing
objects, designing fixtures, and for providing training data for
learning. Approaches that aim for optimal grasps often improve
grasps iteratively and exploiting contact neighborhoods but fail
to provide optimality guarantees [6], [17]-[19]. In contrast, we
proceed in a top-down fashion refining super-contacts which
initially representing all grasps—similar to the concept of Object
Wrench Space [20].

In this, our search-based approach is conceptually related
to the branch-and-bound algorithm for optimal grasping of
Watanabe and Yoshikawa [12]. Both algorithms process a
discrete set of contacts and repeatedly eliminate low-quality
solutions. However, while Watanabe and Yoshikawa employ
problem relaxation and exploit bounds on subproblem solutions
to exclude suboptimal grasps from further consideration, we
define admissible heuristics. Instead of comparing subproblem
solutions for each candidate grasp, we construct grasps by
reducing each finger’s contact options step-by-step. In exper-
iments, we aim for maximally resilient force-closure grasps
while Watanabe and Yoshikawa want to satisfy an external
force set. Both algorithms are complete and identify optimal
grasps, but our algorithm allows trading efficiency for bounded
sub-optimality and we show satisfaction of additional grasp
constraints in form of hand kinematics.

III. OPTIMAL GRASPING AS PATH FINDING

We formulate contact-based grasping as a path finding
problem that can be solved using well-known heuristic search
algorithms. For this, we formally define the optimal grasping
problem over a set of contacts in Section III-A and present fun-
damentals and algorithms for optimal and bounded sub-optimal
heuristic search in Section III-B. In Section III-C we introduce
the concept of super-contact grasps which we use to reduce the
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optimal grasping problem to a family of path finding problems.
By characterizing grasp quality functions and search graphs,
we prove that minimal cost paths correspond to optimal grasps.
The family of consistent or admissible heuristic functions that
we introduce in Section III-D provides the basis for bounded
sub-optimality results.

A. Optimal Grasping Problem and Grasp Quality

We consider grasping problems that are based on a finite set
of suitable contacts on the object’s surface C' = {c¢y, ¢, ...}
and a grasp quality function ¢: 2¢ — R, where 2¢ is the power
set of C.. For the set C' we can imagine point contacts consisting
of positions and surface normals for a hard finger model with
Coulomb friction [6] or surface contacts defined by overlapping
surface patches [21]. A m-contact grasp g consists of a tuple of
m contacts from C, denoted as

g:(017027~-~crrL)a (1)

where ¢; € C.

A grasp quality function determines how stable or reliable a
grasp is and assigns higher quality values to better grasps. For
our approach, we are only interested in grasp quality functions
that do not increase when contacts are removed.

Definition 3.1: A grasp quality function q: 2¢ — R is mono-
tone if grasp quality does not increase when the set of contacts
is reduced,

vg' Cg:alg) <alg), 2
where g, g’ € 2¢.

In the following, we consider all grasps over C' of size m as
possible solutions and compare them solely based on their g. In
this context, we are interested in the best possible grasp which
leads to the class of grasping problems that is formalized below.

Definition 3.2: An optimal grasping problem (OGP) is a
tuple (C, q, m) where C and q as introduced above and m > 1
is the number of sought contacts. A solution is a grasp g* € C™
with maximum quality q(g*) of all m-contact grasps over C.

An OGP is a difficult combinatorial optimization problem
with a large and unstructured search space of |C|™ states. For
this type of problem stochastic optimization [6] and branch-
and-bound [12] methods have been designed. The first type
cannot guarantee quality bounds while the second has to solve
relaxed problems for each possible grasp. In the following sec-
tion, we introduce our novel top-down method for addressing
OGPs which instead constructs optimal solutions by iteratively
constraining contact options for each finger.

B. Heuristic Search With Bounded Sub-Optimality

When formulating a path finding problem (PFP), we pro-
vide a locally finite directed graph G = (S, E') with a set of
nodes or search states S = {s1, $2,...5,} and a set of edges
or arcs E ={(s;,s;)|si,s; €S5,s; €T'(s;)}. Arcs are de-
fined by a successor mapping into the power set of states,
I': S — 2% While G specifies the problem domain, a PFP
instance additionally consists of an initial state sy € S, a set of
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goal or terminal states S C .S, and a cost or distance function
d: E — R". A solution to a PFP consists in a path from the
initial state to a terminal state, written as m = (1, S2, ..., Sy ),
where (s;,s;+1) € E for all steps. The cost of a (partial) solu-
tion is computed along the path and referred to by the last state,

Q(Sn) = Z?;l d(si; 57:+1)-

Definition 3.3: A path finding problem (PFP) is a tuple
(G,d, sy, ST) with elements as introduced above. An optimal
solution is a path ™™ = (sq, ..., s;) where s; € Sy with mini-
mal integral cost.

To construct a solution, a search algorithm begins with the
initial state sy and applies the successor mapping to explore
the graph until a terminal state s € Sp is encountered. Heuristic
search algorithms attempt to improve average case efficiency by
estimating the remaining cost to a terminal state by a heuristic
function h: S — R*. The A* SEARCH algorithm employs a
combined cost function,

f(s) = g(s) + h(s), ©)

and terminates with the optimal solution if the heuristic function
is a lower bound of the true minimal cost [22]. A* SEARCH is
also optimally efficient compared to other algorithms provided
with the same heuristic function [23].

For optimality A* SEARCH must consider all equally optimal
partial solutions. However, using bounded relaxation we can
increase efficiency at the expense of optimality if we instead
accept solutions with bounded sub-optimality. We can turn A*
SEARCH into such an approximate algorithm by inflating the
heuristic estimate (i.e. WA*)[24]-[26],

f(s) = g(s) + (1 +¢) h(s), Q)

and guarantee that the found solution does not exceed the opti-
mal cost by a factor larger than (1 + ) fore > 0. This relaxation
quickly directs the search into a more promising direction [26].

C. Path Finding Problems for Optimal Grasping

We reduce an optimal grasping problem (C,q,m) (see
Def. 3.2) to a path finding problem (G,d, sy, St) (see Def.
3.3) by defining a search graph G with cost function d and show
that we can interpret the terminal state of a minimal cost path
m* as the sought optimal grasp g*. For this, we introduce the
concepts of super-contacts and super-contact grasps.

Definition 3.4: If C' is a set of contacts, then ¢ C C with
|c| > 0is a super-contact and C = 2€ \ @ is the super-contact
set of C. A m-contact super-contact grasp

- Cm) &)

consists of one super-contact c; € C for each of the m > 1
contacts.

s = (cy,cCo, ..

We define the state space .S as all super-contact grasps based
on the contact set C'. The initial state sy has the maximal
super-contact at each position sy = C"™, while each of the ter-
minal states s € Sp consist of minimal super-contacts Sp =
{(c1,¢2,...,¢n) : ¢; € C,|c;| = 1}. Consequently, a solution
path T = (sg, ..., s;) leads from m maximal super-contacts to

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 2, APRIL 2017

S5

54

53

52

DStGST

Target states

Fig.2. Areducing and preserving successor function I' defines a search graph
based on super-contacts s;. The grasp set G(s1) = {c1,...,c10}> is repre-
sented by all states s; € I'(s1) together where the grasp sets of successor states
of s1 are strictly smaller than G (s1 ). Since the grasp (cg, ¢1) is represented by
two successors, G is not necessarily a tree. However, GG can be constructed as a
tree if the partitions do not overlap. For this figure m = 2.

a state s, € Sr that is equivalent to a grasp of m single con-
tactsg = (c1,¢2,. .., ¢y ) as introduced in Section ITI-A. In this
context, we use the notation s and s interchangeably.

Each super-contact grasp s = (c¢y,Co,...,C,,) represents
a set of grasps G(s) where each contained grasp g =
(c1,¢2,...,¢m) € G(s) draws one contact ¢; from each super-
contact ¢;. When defining our successor function I', we preserve
the grasp set G(s) represented by a state while at the same time
reducing at least one super-contact c; along each arc in £. This
means that the collection of all successors I'(s) represents the
same grasp set as their single common predecessor s but each
single successors s’ represents strictly less grasps.

Definition 3.5: The successor function I reduces grasp sets
if for all states s € S and ' € T'(s),

G(s') € G(s), (6)

and preserves the grasp sets G(s) if for all states s € S and
s eT(s)

Vg € G(s)3s' € T'(s) : g € G(5), (7
where g is a grasp as introduced in Section III-A.

As Fig. 2 shows, a reducing and preserving I' does also not
necessarily define G as a tree since two different parent states
with overlapping super-contacts allow for identical successor
states. Nevertheless, a reducing and preserving successor func-
tion I' induces pairwise relationships for super-contacts c¢; and
c; of directly connected states (s, s') € E,

Vi:c, Cc; and Ji:c; Cc, (8)

where ¢ € {1,2,...,m}. This allows us to define the cost func-
tion d based on the grasp qualities ¢(s) and ¢(s’) of the con-
nected states (s, s') € E. We lift the grasp quality function ¢ to
super-contacts,

q(s) =q(ctUcoU...Ucy) 9)

where s = (cy, ¢o, . .., ¢, ) and we define the arc cost as

d(s,s') = q(s) — q(s').

The expression in Eq. (10) is the loss in quality associated with
reducing super-contacts along the arc. Consequently, the best

(10)
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successor state for s is the state with maximal grasp quality
from I'(s) if ¢ is monotone as defined in Def. 3.1.

Finally, given a minimal cost solution to the PFP 7* =
(so,-..,8) with s; € Sy, we interpret the last state’s grasp
as the final result g*. In the following, we show that this step
yields an optimal solution to the original OGP.

Lemma 3.1: In the PFP (G,d, sy, St) as introduced in this
section, all grasps from the contact space g € C"™ are possible
as final results.

Proof: All grasps from the contact space are contained in the
grasp set of the initial node G(sg ) as well as in the set of terminal
states St . Since the successor function is preserving, each grasp
g € G(sg) is represented by some state in each depth-level of
the search graph. Since the successor function is reducing all
nodes in Sy are finally reached. |

This result shows that a search algorithm as described in
Section III-B (e.g. A" SEARCH) can produce a solution path 7*
with minimal cost that could terminate at any m-contact grasp
over the contact set g € C"™ . It remains to show that the solution
path 7 provides the correct optimal grasp g*.

*

Lemma 3.2: Given a minimal cost solution 7* =

(S0,-.-,8t), the grasp s, is optimal.

Proof: If 7 is the minimal cost path to a state in Sy, then
g(st) is minimal. Therefore ¢(sg) — ¢(s;) is minimal because
all intermediate terms cancel. Since ¢(s) is fixed and equal for
all paths, ¢(s;) must be maximal. |

Since the solution space of our PFP is complete and any
minimal cost path represents an optimal grasp, we can state our
main result.

Theorem 3.1: We can reduce the optimal grasping problem
(C, q, m) to a path finding problem (G, d, sy, St ) as introduced
in this section.

Proof: The result follows from Lemma 3.1 and 3.2 and the
fact that C is finite and therefore G is finite. [ |

D. Path Finding Heuristics for Optimal Grasping

The search graph G = (S, E) introduced for the OGP in
Section III-C has a large state space, |S| > |C™|, that con-
tains all possible super-contact grasps and we expect that many
super-contact grasps have similar grasp quality as large contact
sets provide for redundancy. This makes finding the minimal
cost path 7% computationally expensive. However, often a sub-
optimal grasp is sufficient and more desirable if it can be ob-
tained at significantly lower computational cost and still exceeds
a quality threshold. Approximate heuristic search as described
in Section III-B allows for such a tradeoff.

For estimating the remaining cost to a terminal state, we
introduce a family of admissible heuristic functions i : S — R
that are based on a reducing and preserving successor function
T'j,. We define the heuristic estimate h(s) as the minimal quality
difference between the state s and its children s’ € T, (s) with
reduced super-contacts,

h(s)= min q(s) —q(s) = q(s) — max q(s'). (1D

s'ely, (s) s'el’y, (s)
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In Section IV-A, we define a domain specific I'j, that generates
a search tree, for which A* SEARCH with an admissible heuristic
is optimal (i.e. expands states at most once) and result with the
shortest path [25].

Theorem 3.2: If T'j, is reducing and preserving, then h from
Eq. (11) is (a) admissible, and (b) if ' = I'y,, consistent.

Proof: For (a), we show that h(s) < h*(s), Vs € S,

q(s) — Jmax q(s") < q(s) — q(s1)

(12)

max q(s") > q(st),

s'el'y (s)
where h*(s) is the actual cost to the optimal leaf s; € St below
s. For (b) with I" = T),, we show that h(s) < d(s,s’) + h(s'),
Vs € Sand Vs € ', (s),

q(s")

q(s) — max q(s") < q(s) —q(s') +q(s') — max

T'(s) s"€l(s")
!/ > " . 13
Jois a(s) 2 mar, (") a3
Eq. (12) and Eq. (13) hold since ¢ is monotone (Def. 3.1) and
both I' and I'j, are reducing. |

The heuristics from Eq. (11) can be used for both A* SEARCH
and WA* SEARCH which—to our knowledge—for the first time
allows increasing efficiency for solving optimal grasping prob-
lems by relaxing optimality with a guaranteed sub-optimality
bound.

E. Computational Complexity

If we use a successor function I" with a bounded number of
successor states |['(s)| < b and the heuristic function h from
Eq. (11), A* SEARCH and Dijkstra’s search algorithm share the
worst case time complexity O(]S]log(|S])) [27] for solving a
PFP for an OGP. This analysis assumes that the search graph is a
tree and both G and the arc costs d(s, ') are known in advance.
In practice graph expansion and arc costs determination have
additional computational cost which we detail in the Section IV
where we define variants of I" and I', that induce search trees.

IV. PRACTICAL EXAMPLE: POINT CONTACTS

In this section, we apply results from Section III-C in a con-
crete example considering point contact grasping [1], [3], [5],
[6], [10], [20], [28]. Here, the contact set C' consists of point
contacts ¢; = (p;, n;) with positions on the object’s surface
p; € R? and surface normals n; € R? [1]. The goal is to find
a static hard-finger grasp that can withstand maximal external
influences as characterized by the Ferrari-Canny grasp quality
function ), : C' — R [5]. With the object’s center of mass as a
reference point for wrenches and approximating friction cones
by 8 vectors, we use ()1 to map force-closure grasps to positive
values. For reducing the OGP (C, ¢, m) with C' = {(p;, n;)};
and ¢ = @)1, we define reducing and preserving successor func-
tions I}" and I‘ic according to a partitioning scheme and
show that ), is monotone in Section IV-A. We generate op-
timal grasps satisfying grasp constraints in Section IV-C and in
Section IV-D we identify equivalent solutions to improve search
performance.
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A. Search Space and Heuristics for Point Contact Grasping

Defining a successor function that allows the search
algorithm to quickly eliminate low quality grasps from grasp
sets G(s) improves search performance significantly. For com-
parison, we define one random-based and one domain specific
successor function. Both partition each super-contacts c; into
b > 1 disjoint subsets P(c;) = {c!,c?,...,c’} and assign dif-
ferent partition elements c{ to different successors,

Lp(s) ={(c",c,....cI") e P(c;)" }. (14)

With such a successor function, GG is a tree and each state
has b™ successor states with disjoint grasp sets. The successor
function I'}"" partitions super-contacts randomly with most uni-
formly sized partition elements cg . This results in super-contacts
with size |c;| = % in tree level [. The successor function I'lC is
domain specific and partitions super-contacts by clustering their
contacts in a position and normal based feature space ¥ [21],
[29] using ¢ iterations of k-MEANS [30]. Therefore, Fff groups
contacts that result in grasps of similar quality but does not en-
sure equal super-contact size which can result in G becoming

unbalanced.

Theorem 4.1: The successor function Iy, (and therefore I'}*
and I‘ff ) is reducing and preserving.

Proof: All super-contacts with |c;| > 1 are split up, ensuring
that corresponding super-contacts in successor states are strictly
smaller. Partitionings P(c; ) are exhaustive and all combinations
are maintained in successor states. |

For using the heuristic defined in Section III-D, we set I', to
" or I'j¢ for a fixed branching factor b > 1 and show that the
grasp quality function ()7 is monotone.

Theorem 4.2: The Ferrari-Canny [5] grasp quality function
Q1 is monotone.

Proof: Since the convex hull operator is nondecreasing [31],
()1 does not increase when contacts and their wrenches are
removed. |

B. Computational Complexity With Point Contacts

The computational cost for expanding states in G is domi-
nated by computing the partitioning PP. For I';", time complexity
is O(|c;|) while for I'® time complexity is O(t |c;|) for each
super-contacts c;. The computational cost of determining the
step cost d(s, s') is dominated by computing the convex hull
of polyhedral wenches cones having worst case time complex-
ity quadratic in number of wenches [32]. If we for analysis
assume that |C| = b and that T', produces a balanced search
tree with [ levels and branching factor b, then level 7 of G has
b'™ states which have m super-contacts of size b'~*. The com-
putational complexity of completely searching level ¢ for the
worst case scenario is therefore O(b™ (mb'~")?) with addi-
tional costs O(b"b™™ (mb!~"/b;,)?) for h excluding expansion
using expansion factor b;, . However, the branching factor b is of
little relevance in practice since an informative heuristic results
in an effective branching factor b* < b for A* SEARCH as we
show empirically in Section V.
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Fig.3. Optimal grasps with m = 3 contacts found by our approach using A*
SEARCH shown by arrows for the objects bunny, amphora, sphere, donut, plane,
and homer and with m = 4,5 and 6 for bunny and plane. The contact set C' is
indicated in yellow. The results obtained are identical to ES.

C. Grasp Constraints and Valid State

We model constraints on grasps g as predicates P that deter-
mine whether a grasp is valid, P(g). If a super-contact’s grasp
set G(s) cannot provide any grasp that satisfies the constraint,
we can prune the search tree below without risking incom-
pleteness which models grasp constraints via the state space’s
structure. For this, the successor function I' is restricted to valid
states s’ as in

L'[p(s)={s'€Tl(s)[Ig € G(s) : P(g)}-

Such constraints can model robot kinematics, tasks, and envi-
ronments relevant to the gasp.

s)

D. Search Space Symmetries

In the presence of symmetry, search algorithms evaluate many
equivalent states and progress towards terminal states is slowed
down. Several of our search states are identical or nearly iden-
tical grasps since we consider m ordered contacts and many
objects are geometrically symmetric. In the first case, swapping
contact indexes, in the second case rotating or translating the
object results in grasps with similar quality and relative contacts
arrangement. For removing symmetries, we define an (approx-
imate) equivalence relation ~ on search states and search the
quotient space .S/ . instead of S. We define ~ by mapping states
into a discretized domain specific feature space ¥ = U; ¥; with
volumes ¥; and set

s~s < 3V, :k(s) € ¥, and k(s') € I;  (16)

where k : S — W is the feature space embedding [29], [33].
Firstly, the feature space contains the relative distances and
normal differences for each of the m fingers’ mean contact and
is therefore invariant under translations and rotations. Secondly,
it also contains the distance between the object’s center of mass
and the grasping center to account for moment arms of contacts.
The feature space is discretized by a fixed distance threshold
and class representative during state expansion. The effects of
this symmetry removal are analyzed in Section V-B.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate and compare the performance of
our approach from Section IV based on objects with complex
asymmetric or symmetric shapes as shown in Fig. 3. For evalu-
ation, we synthesize grasps with m = 3 contacts on the object
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bunny amphora sphere
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Fig. 4. Comparison between ES, HFTS, and our approach for m=3 His-
tograms (blue) show the )1 quality distributions for each object. Minimum
path cost indicates the quality drop from ¢(so)| Qo w s to the optimal solution
g(s¢ ). Empirical standard deviation shows large quality variance for HFTS. A*
SEARCH identifies the optimal solution (red) and e=0.4 bounds (green) show
ranges of bounded sub-optimality results.

surface and maximize the Ferrari-Canny grasp quality @)1 [5].
The grasp quality 97 of the initial state s is denoted as the qual-
ity of Object Wrench Space @ ows [20]. We set the inflation
factor ¢ to the indicated values and employ different successor
functions for search tree expansion and heuristic, I and I';, re-
spectively. For tree expansion we set I' = I''‘, and vary T, for
evaluation. Symmetries are removed as defined in Section IV.
In Section V-A, we empirically verify optimality and compare
to baseline approaches. In Sections V-B and V-C we analyze
heuristic search in terms of state space exploration and number
of search steps. Timing results are discussed in Section V-D. In
Section V-E we generate optimal grasps for a specific robotic
hand with kinematic grasp constraints.

A. Optimality and Baseline Comparison

We compare our approach with T, = T’ using both A*
SEARCH and WA* SEARCH with € = 0.4 to one exact and one
approximate baseline: First, exhaustive search (ES), which con-
siders each of the (10300) = 166, 167,000 m-contact grasp over
C and returns the optimal grasp. Second, hierarchical finger-
tip space optimization (HFTS) [21], which iteratively optimizes
grasp in refined representations. To characterize the difficulty
of the OGP for each of the objects, we plot histograms of grasp
qualities in Fig. 4. The diagrams show that the percentage of
force-closure grasps on each object is low while most force-
closure grasps have low quality making it difficult to identify
high quality grasps.

HFTS identifies high quality grasps from the tail of the dis-
tributions, but the variance in grasp quality is large. In no case
the optimal grasp is returned and for all objects besides the sim-
ple sphere and donut a substantial margin is left to the optimal
grasp. A* SEARCH identifies the same optimal grasps as ES (see
Figs. 3 and 4) for m = 3 which confirms that our algorithm is
complete and optimal. For m > 3 contacts, exhaustive search is
prohibitively expensive, examples of optimal m = 4,5, 6 con-
tacts grasps found by our algorithm for bunny and plane are
shown in Figs. 3. and 4 also shows that € = 0.4 limits WA*
SEARCH to high quality force-closure solutions for all objects
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Fig. 5.  Circular plot of the search tree GG showing created and visited search
states according to search depth for the box with 100 contacts. A* SEARCH creates
512 and visits 70 states. Colored sections indicate visited states and stems show
created but unvisited states. The dark red lines show the optimal solution path.
Only a small fraction of the search space is explored. For 4 states, we show
the m = 3 super-contacts, which indicate the reason why the corresponding
branches did not lead to the optimal solution.
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Fig. 6. Created and visited states for A* SEARCH with and without symmetry

removal. Most states are considered on the middle levels in the search tree.
Effective branching factors are shown as b*. Note that the total number of

082 [l ym )i ~ 1,227,133, 513,

possible states is approximately: Z
but plane where the e-bound includes low-quality force-closure
grasps as indicated.

B. Heuristic Search

We qualitatively analyze the efficiency of A* SEARCH with
I';, = I'l by recording the search tree for box in a circular plot.
In Fig. 5 we see that only a small fraction of the search tree G
is visited which indicates that the heuristic informs the search.
The pruned tree branches represent grasps with overlapping or
ill-placed contacts while the explored branches show spread
out contact positions. Fig. 6 shows statistics of created and
visited states per level for homer and amphora and allows a
more detailed analysis. Most states are both created and visited
in the middle levels but the visiting ration is highest for lower
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Fig.7.  Efficiency analysis based on number of iterations for different random-

based and domain specific expansion and heuristic functions for A* search
and Dijkstra’s search from 100 executions. (a) Overview and closeup plots of
iterations against combined cost. Table: Legend and effective branching factor.
(b) Different heuristic functions.

levels indicating that the heuristic is more precise for smaller
super-contacts. The data also show that retaining symmetries
leads to factor 17 and 9 more created and factor 7 and 3 more
visited states for homer and amphora respectively.

Search efficiency can also be measured by number of search
iterations as seen in Fig. 7 where the number of iterations is
plotted against the current state’s combined cost f(s) given in
Eq. (3). First we see in Fig. 7(a) that heuristic search with do-
main specific expansion and heuristic using I'' requires the
least amount of iterations. In this case, the effective branch-
ing factor b* which characterizes a balanced tree with identical
depth and number of explored states [25] is 1.9 as compared to
8 = 0™ in the search tree. Using I'y" for heuristic or expansion
instead requires more iterations where expansion is more sensi-
tive leading to b* of 2.4 and 4.7. Dijkstra’s search has b* = 6.1
when expanding with I'}". The improvement from b* = 2.4 for
Dijkstra’s expansion with T'¢ to b* = 1.9 for heuristic search is
due to the domain specific heuristic. Different domain specific
heuristics are analyzed in Fig. 7(b) where we see again that Di-
jkstra’s is worse than heuristic search with I';, = I'l® while the
largest value b = 4 corresponding to largest size reduction has
the best result. In both Fig. 7(a) and (b), some curves show drops
in combined cost, when I # I', i.e. the heuristic function is lo-
cally inconsistent. Theorem 3.2 shows that A is still admissible
and solutions are optimal.

C. Approximative Heuristic Search

For WA* SEARCH, we analyze the tradeoff between sub-
optimality and search steps using different values of ¢ for bunny
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Fig. 8. Combined cost plotted against iterations WA* SEARCH using '}, =
Fi“. Larger inflation factors € lead to less computation. Dashed lines show
solution qualities.

(e) bunny amphora  sphere  donut plane homer
A* 14.59 18.87 26.2 15.46 13.81 17.79
WA*
(0.2) 9.99 14.31 17.07 8.98 11.47 17.21
(0.4) 7.42 7.83 20.39 9.05 6.8 13.05
(0.6) 8.08 10.42 17.22 8.01 9.21 9.98
(0.8) 7.28 16.19 17.29 7.64 6.98 13.50
(1.0) 4.29 4.51 8.85 4.69 4.39 10.43
(1.2) 4.61 7.33 16.26 5.43 5.53 8.92
(1.4) 4.81 6.26 11.44 6.35 2.94 7.63
ES On average 2386.96 + 6.73
Fig. 9. CPU time in minutes using our method (with A* and WA* SEARCH)

compared to exhaustive search (ES). Results are collected by setting different
asindicated and I';, = I‘fz“. Execution in Python with Ubuntu 12.04 running on
an Intel Core i7-3770 @ 3.40 GHz x 8. with 32GB RAM and QHULL version
5.0[32].

and plane using T', = T'¢. The results in Fig. 8 show that in-
creasing values of ¢ lead to earlier termination but that quality
remains high when taking Fig. 4 as reference. Since inflation can
result in an inadmissible heuristic, the current state’s combined
cost may drop during search as seen clearly for larger e-values
in Fig. 8.

D. Computational Cost

The main computational load of our algorithm is caused by
computing grasp quality for super-contact grasps which can
contain many contacts. In Fig. 9 we compare timing results
for finding optimal and bounded sub-optimal grasps using our
algorithm against the computational cost of evaluation all grasps
with ES. Comparing the first and last rows in Fig. 9 reveals
that for optimal solutions, our approach is significantly more
efficient than ES. The data also show that approximate search
tends to be faster than A* SEARCH for larger €. Due to the cost
of computing ()1, the algorithm does not perform for real-time
application but it is faster than exhaustive search by several
orders of magnitude. On average, our approach spends 87.3%
of time on calculating convex hulls for grasp quality.

E. Hand Kinematics as Grasp Constraint

We constrain the successor function I' as described in
Section IV-C for generating optimal grasps for a specific
robotic hand. The predicate P models fingertip reachability
and is approximated by lookup in a pre-sampled feature space
that contains all kinematically feasible fingertip configurations
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Fig. 10. Constraints on grasps: Optimal kinematically feasible grasps by
Schunk-SDH hand for 3 fingertip contacts.

[21], [33]. Fig. 10 shows the optimal grasps for the hand as
modeled by P.

VI. CONCLUSION

We addressed the problem of finding optimal grasp contacts
on arbitrary objects with a novel complete and optimal algo-
rithm by formulating a path finding problem. The advantage of
our formulation is that it—for the first time—allows for efficient
optimal and bounded sub-optimality solutions. This is important
not only for grasping, but also for benchmarking other grasping
approaches, for analyzing and characterizing objects, design-
ing fixtures, and generating grasp databases for learning-based
grasping. The formulation rendered optimal grasps as minimal
cost paths and the search space consisted of super-contact grasps
which represented sets of grasps. In each step along a path, the
state’s grasp set was reduced by removing contacts. We charac-
terized grasp quality functions and state successor functions for
reducing optimal grasping to a path finding problem and thereby
defined a general framework for optimal grasping.

For the example of point-contact grasping, we presented a
concrete search space constructed by a domain specific succes-
sor function and showed how a common grasp quality function
can be used in our framework. Furthermore, we showed that
a state validation mechanism can be employed to incorporate
hand kinematic feasibility constraints, which ensures the pro-
duced optimal grasp contacts can be realized by a given robotic
hand. In experiments, our approach required substantially less
computational effort than exhaustive search to results with opti-
mal grasps. Our evaluation was based on number of visited and
created nodes and the development of the search fringe. The
smallest effective branching factor was obtained with our do-
main specific heuristic function. Evaluation with approximate
search showed significant cost reduction while maintaining high
grasp quality.
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