
704 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 2, APRIL 2017

A Framework for Optimal Grasp Contact Planning
Kaiyu Hang, Johannes A. Stork, Nancy S. Pollard, and Danica Kragic

Abstract—We consider the problem of finding grasp contacts
that are optimal under a given grasp quality function on arbitrary
objects. Our approach formulates a framework for contact-level
grasping as a path finding problem in the space of supercontact
grasps. The initial supercontact grasp contains all grasps and in
each step along a path grasps are removed. For this, we introduce
and formally characterize search space structure and cost functions
under which minimal cost paths correspond to optimal grasps. Our
formulation avoids expensive exhaustive search and reduces com-
putational cost by several orders of magnitude. We present admissi-
ble heuristic functions and exploit approximate heuristic search to
further reduce the computational cost while maintaining bounded
suboptimality for resulting grasps. We exemplify our formulation
with point-contact grasping for which we define domain specific
heuristics and demonstrate optimality and bounded suboptimality
by comparing against exhaustive and uniform cost search on ex-
ample objects. Furthermore, we explain how to restrict the search
graph to satisfy grasp constraints for modeling hand kinematics.
We also analyze our algorithm empirically in terms of created and
visited search states and resultant effective branching factor.

Index Terms—Grasping, dexterous manipulation, multifingered
hands, contact modeling.

I. INTRODUCTION

C
ONTACTS are the most fundamental building blocks of

grasps and determine stability and utility of a grasp. Find-

ing good grasp contacts is a key challenge in robotic grasping

[1] and fixture layout design for industrial automation [2]. The

main difficulty consists in deciding where on the object’s surface

contacts should be placed and which combinations of contacts

result in a reliable grasp. Grasp reliability is commonly charac-

terized by wrench space analysis [1], [3]–[5] and grasp contacts

are found by some form of optimization [1], [6]–[8], heuristic

[3], [9], or data-driven approach [10].

While analytical methods for optimal quality grasps exist

for primitive objects [11], optimal grasping on arbitrary objects

still requires enumerating all contact combinations exhaustively

[12]. However, even for less than half of the contacts shown

Manuscript received September 10, 2016; accepted December 14, 2016. Date
of publication January 10, 2017; date of current version February 2, 2017. This
paper was recommended for publication by Associate Editor Y. Zheng and
Editor H. Ding upon evaluation of the reviewers’ comments. This work was
supported in part by the ERC FLEXBOT, Knut and Alice Wallenberg IPSYS
and in part by the NSF Award IIS-1637853. (Kaiyu Hang and Johannes A. Stork

contributed equally to this work.)
K. Hang, J. A. Stork, and D. Kragic are with the Robotics, Perception, and

Learning Lab, KTH Royal Institute of Technology, Stockholm 11428, Sweden
(e-mail: kaiyuh@kth.se; jastork@kth.se; dani@kth.se).

N. S. Pollard is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213-3890 USA (e-mail: nsp@cs.cmu.edu).

Color versions of one or more of the figures in this letter are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LRA.2017.2651381

Fig. 1. Our approach is based on reducing optimal grasping to finding a
minimal cost path. Starting with complete super-contacts that cover the whole
object, we step-by-step remove contacts until we reach m-contact grasps. Each
state is a combination of m super-contacts and each arc shrinks the included
super-contacts. The minimal cost path ends at the optimal grasp.

in Fig. 1, analyzing all three-finger grasps requires thousands

of minutes on current non-specialized hardware. This effort in-

creases exponentially with the number of fingers.

In this work, we offer an general formulation of the opti-

mal grasping problem that allows efficiently identifying optimal

and bounded suboptimal grasps while avoiding computation on

each possible grasp. In practice our algorithm can reduce com-

putational cost by several orders of magnitude. Intuitively, we

start with the set of all possible grasps and step-by-step remove

grasps until reaching the optimal grasp. For this, we represent a

set of grasps by a combination of super-contacts which contain

several contacts at once. Provided that the grasp quality function

can be applied to super-contact grasps, we show that this ap-

proach corresponds to a path finding problem. As illustrated in

Fig. 1, each state corresponds to a super-contact grasp and each

arc removes contacts from a super-contact until terminal states

are left with only one contact for each finger. We set the cost of

an arc to represent the loss in grasp quality between connected

states which means that minimal cost paths terminate in grasps

with maximal quality.

We contribute by (1) formally characterizing search graph

structure and grasp quality functions for reducing the optimal

grasping problem to a path finding problem. Further, we (2)

introduce a family of admissible heuristic functions for effi-

cient and approximative heuristic search. For exemplary eval-

uation with point-contact grasping, we (3) prove that the pop-

ular Ferrari-Canny quality Q1 [5] is compatible to our formu-

lation, and (4) define a family of domain specific successor

2377-3766 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

HANG et al.: FRAMEWORK FOR OPTIMAL GRASP CONTACT PLANNING 705

functions and heuristics. Finally, (5) we show incorporation of

grasping-related constraints, e.g., hand kinematics, into the con-

struction of the search graph. To the best of our knowledge, this

is the first work that provides an efficient complete and optimal

algorithm for finding optimal grasp contacts on arbitrary objects

that allows choosing an ε sub-optimality bound for grasp quality.

II. RELATED WORK

The problem of finding grasp contacts on an object’s sur-

face is addressed by a host of diverse approaches as described

in overviews by Sahbani et al.. [8], Bohg et al. [10], Roa and

Suárez [4], and most relevant to our work Bicchi and Kumar

[1]. While most algorithms listed in the works above can result

in high-quality grasps under favorable conditions, none guar-

antees optimality or bounded sub-optimality with reasonable

computational effort. On the contrary, the most popular grasp-

ing approaches are based on ex post analysis of sampled con-

tacts [3], [13], [14] and operate with simplified object models

[11], [15]–[18]. Our only assumptions are a finite contact space

and a quality function that allows sets of contacts per finger.

The common quality function that models wrench resistance

for frictional hard-finger contacts [3], [5] is compliant with our

formulation and we use it in our experiments.

We argue that identifying optimal grasp contacts is useful

not only for grasping, but also for benchmarking, analyzing

objects, designing fixtures, and for providing training data for

learning. Approaches that aim for optimal grasps often improve

grasps iteratively and exploiting contact neighborhoods but fail

to provide optimality guarantees [6], [17]–[19]. In contrast, we

proceed in a top-down fashion refining super-contacts which

initially representing all grasps—similar to the concept of Object

Wrench Space [20].

In this, our search-based approach is conceptually related

to the branch-and-bound algorithm for optimal grasping of

Watanabe and Yoshikawa [12]. Both algorithms process a

discrete set of contacts and repeatedly eliminate low-quality

solutions. However, while Watanabe and Yoshikawa employ

problem relaxation and exploit bounds on subproblem solutions

to exclude suboptimal grasps from further consideration, we

define admissible heuristics. Instead of comparing subproblem

solutions for each candidate grasp, we construct grasps by

reducing each finger’s contact options step-by-step. In exper-

iments, we aim for maximally resilient force-closure grasps

while Watanabe and Yoshikawa want to satisfy an external

force set. Both algorithms are complete and identify optimal

grasps, but our algorithm allows trading efficiency for bounded

sub-optimality and we show satisfaction of additional grasp

constraints in form of hand kinematics.

III. OPTIMAL GRASPING AS PATH FINDING

We formulate contact-based grasping as a path finding

problem that can be solved using well-known heuristic search

algorithms. For this, we formally define the optimal grasping

problem over a set of contacts in Section III-A and present fun-

damentals and algorithms for optimal and bounded sub-optimal

heuristic search in Section III-B. In Section III-C we introduce

the concept of super-contact grasps which we use to reduce the

optimal grasping problem to a family of path finding problems.

By characterizing grasp quality functions and search graphs,

we prove that minimal cost paths correspond to optimal grasps.

The family of consistent or admissible heuristic functions that

we introduce in Section III-D provides the basis for bounded

sub-optimality results.

A. Optimal Grasping Problem and Grasp Quality

We consider grasping problems that are based on a finite set

of suitable contacts on the object’s surface C = {c1 , c2 , . . . ck}
and a grasp quality function q : 2C → R, where 2C is the power

set of C. For the set C we can imagine point contacts consisting

of positions and surface normals for a hard finger model with

Coulomb friction [6] or surface contacts defined by overlapping

surface patches [21]. A m-contact grasp g consists of a tuple of

m contacts from C, denoted as

g = (c1 , c2 , . . . cm), (1)

where ci ∈ C.

A grasp quality function determines how stable or reliable a

grasp is and assigns higher quality values to better grasps. For

our approach, we are only interested in grasp quality functions

that do not increase when contacts are removed.

Definition 3.1: A grasp quality function q : 2C → R is mono-

tone if grasp quality does not increase when the set of contacts

is reduced,

∀g′ ⊆ g : q(g′) ≤ q(g), (2)

where g,g′ ∈ 2C .

In the following, we consider all grasps over C of size m as

possible solutions and compare them solely based on their q. In

this context, we are interested in the best possible grasp which

leads to the class of grasping problems that is formalized below.

Definition 3.2: An optimal grasping problem (OGP) is a

tuple 〈C, q,m〉 where C and q as introduced above and m > 1
is the number of sought contacts. A solution is a grasp g∗ ∈ Cm

with maximum quality q(g∗) of all m-contact grasps over C.

An OGP is a difficult combinatorial optimization problem

with a large and unstructured search space of |C|m states. For

this type of problem stochastic optimization [6] and branch-

and-bound [12] methods have been designed. The first type

cannot guarantee quality bounds while the second has to solve

relaxed problems for each possible grasp. In the following sec-

tion, we introduce our novel top-down method for addressing

OGPs which instead constructs optimal solutions by iteratively

constraining contact options for each finger.

B. Heuristic Search With Bounded Sub-Optimality

When formulating a path finding problem (PFP), we pro-

vide a locally finite directed graph G = (S,E) with a set of

nodes or search states S = {s1 , s2 , . . . sn} and a set of edges

or arcs E = {(si , sj) | si , sj ∈ S, sj ∈ Γ(si)}. Arcs are de-

fined by a successor mapping into the power set of states,

Γ : S → 2S . While G specifies the problem domain, a PFP

instance additionally consists of an initial state s0 ∈ S, a set of

706 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 2, APRIL 2017

goal or terminal states ST ⊆ S, and a cost or distance function

d : E → R
+ . A solution to a PFP consists in a path from the

initial state to a terminal state, written as π = (s1 , s2 , . . . , sn),
where (si , si+1) ∈ E for all steps. The cost of a (partial) solu-

tion is computed along the path and referred to by the last state,

g(sn) =
∑n−1

i=1 d(si , si+1).

Definition 3.3: A path finding problem (PFP) is a tuple

〈G, d, s0 , ST 〉 with elements as introduced above. An optimal

solution is a path π∗ = (s0 , . . . , st) where st ∈ ST with mini-

mal integral cost.

To construct a solution, a search algorithm begins with the

initial state s0 and applies the successor mapping to explore

the graph until a terminal state s ∈ ST is encountered. Heuristic

search algorithms attempt to improve average case efficiency by

estimating the remaining cost to a terminal state by a heuristic

function h : S → R
+ . The A∗

SEARCH algorithm employs a

combined cost function,

f(s) = g(s) + h(s), (3)

and terminates with the optimal solution if the heuristic function

is a lower bound of the true minimal cost [22]. A∗ SEARCH is

also optimally efficient compared to other algorithms provided

with the same heuristic function [23].

For optimality A∗ SEARCH must consider all equally optimal

partial solutions. However, using bounded relaxation we can

increase efficiency at the expense of optimality if we instead

accept solutions with bounded sub-optimality. We can turn A∗

SEARCH into such an approximate algorithm by inflating the

heuristic estimate (i.e. WA∗)[24]–[26],

f(s) = g(s) + (1 + ε)h(s), (4)

and guarantee that the found solution does not exceed the opti-

mal cost by a factor larger than (1 + ε) for ε > 0. This relaxation

quickly directs the search into a more promising direction [26].

C. Path Finding Problems for Optimal Grasping

We reduce an optimal grasping problem 〈C, q,m〉 (see

Def. 3.2) to a path finding problem 〈G, d, s0 , ST 〉 (see Def.

3.3) by defining a search graph G with cost function d and show

that we can interpret the terminal state of a minimal cost path

π∗ as the sought optimal grasp g∗. For this, we introduce the

concepts of super-contacts and super-contact grasps.

Definition 3.4: If C is a set of contacts, then c ⊆ C with

|c| > 0 is a super-contact and C = 2C \ ∅ is the super-contact

set of C. A m-contact super-contact grasp

s = (c1 , c2 , . . . , cm) (5)

consists of one super-contact ci ∈ C for each of the m > 1
contacts.

We define the state space S as all super-contact grasps based

on the contact set C. The initial state s0 has the maximal

super-contact at each position s0 = Cm , while each of the ter-

minal states s ∈ ST consist of minimal super-contacts ST =
{(c1 , c2 , . . . , cm) : ci ∈ C, |ci | = 1}. Consequently, a solution

path π = (s0 , . . . , st) leads from m maximal super-contacts to

Fig. 2. A reducing and preserving successor function Γ defines a search graph
based on super-contacts si . The grasp set G(s1) = {c1 , . . . , c10}

2 is repre-
sented by all states si ∈ Γ(s1) together where the grasp sets of successor states
of s1 are strictly smaller than G(s1). Since the grasp (c6 , c1) is represented by
two successors, G is not necessarily a tree. However, G can be constructed as a
tree if the partitions do not overlap. For this figure m = 2.

a state st ∈ ST that is equivalent to a grasp of m single con-

tacts g = (c1 , c2 , . . . , cm) as introduced in Section III-A. In this

context, we use the notation s and s interchangeably.

Each super-contact grasp s = (c1 , c2 , . . . , cm) represents

a set of grasps G(s) where each contained grasp g =
(c1 , c2 , . . . , cm) ∈ G(s) draws one contact ci from each super-

contact ci . When defining our successor function Γ, we preserve

the grasp set G(s) represented by a state while at the same time

reducing at least one super-contact ci along each arc in E. This

means that the collection of all successors Γ(s) represents the

same grasp set as their single common predecessor s but each

single successors s′ represents strictly less grasps.

Definition 3.5: The successor function Γ reduces grasp sets

if for all states s ∈ S and s′ ∈ Γ(s),

G(s′) � G(s), (6)

and preserves the grasp sets G(s) if for all states s ∈ S and

s′ ∈ Γ(s)

∀g ∈ G(s)∃s′ ∈ Γ(s) : g ∈ G(s′), (7)

where g is a grasp as introduced in Section III-A.

As Fig. 2 shows, a reducing and preserving Γ does also not

necessarily define G as a tree since two different parent states

with overlapping super-contacts allow for identical successor

states. Nevertheless, a reducing and preserving successor func-

tion Γ induces pairwise relationships for super-contacts ci and

c′i of directly connected states (s, s′) ∈ E,

∀i : c′i ⊆ ci and ∃i : c′i � ci , (8)

where i ∈ {1, 2, . . . ,m}. This allows us to define the cost func-

tion d based on the grasp qualities q(s) and q(s′) of the con-

nected states (s, s′) ∈ E. We lift the grasp quality function q to

super-contacts,

q(s) = q(c1 ∪ c2 ∪ . . . ∪ cm) (9)

where s = (c1 , c2 , . . . , cm) and we define the arc cost as

d(s, s′) = q(s) − q(s′). (10)

The expression in Eq. (10) is the loss in quality associated with

reducing super-contacts along the arc. Consequently, the best

HANG et al.: FRAMEWORK FOR OPTIMAL GRASP CONTACT PLANNING 707

successor state for s is the state with maximal grasp quality

from Γ(s) if q is monotone as defined in Def. 3.1.

Finally, given a minimal cost solution to the PFP π∗ =
(s0 , . . . , st) with st ∈ ST , we interpret the last state’s grasp

as the final result g∗. In the following, we show that this step

yields an optimal solution to the original OGP.

Lemma 3.1: In the PFP 〈G, d, s0 , ST 〉 as introduced in this

section, all grasps from the contact space g ∈ Cm are possible

as final results.

Proof: All grasps from the contact space are contained in the

grasp set of the initial node G(s0) as well as in the set of terminal

states ST . Since the successor function is preserving, each grasp

g ∈ G(s0) is represented by some state in each depth-level of

the search graph. Since the successor function is reducing all

nodes in ST are finally reached. �

This result shows that a search algorithm as described in

Section III-B (e.g. A∗
SEARCH) can produce a solution path π∗

with minimal cost that could terminate at any m-contact grasp

over the contact set g ∈ Cm . It remains to show that the solution

path π∗ provides the correct optimal grasp g∗.

Lemma 3.2: Given a minimal cost solution π∗ =
(s0 , . . . , st), the grasp st is optimal.

Proof: If π∗ is the minimal cost path to a state in ST , then

g(st) is minimal. Therefore q(s0) − q(st) is minimal because

all intermediate terms cancel. Since q(s0) is fixed and equal for

all paths, q(st) must be maximal. �

Since the solution space of our PFP is complete and any

minimal cost path represents an optimal grasp, we can state our

main result.

Theorem 3.1: We can reduce the optimal grasping problem

〈C, q,m〉 to a path finding problem 〈G, d, s0 , ST 〉 as introduced

in this section.

Proof: The result follows from Lemma 3.1 and 3.2 and the

fact that C is finite and therefore G is finite. �

D. Path Finding Heuristics for Optimal Grasping

The search graph G = (S,E) introduced for the OGP in

Section III-C has a large state space, |S|
 |Cm |, that con-

tains all possible super-contact grasps and we expect that many

super-contact grasps have similar grasp quality as large contact

sets provide for redundancy. This makes finding the minimal

cost path π∗ computationally expensive. However, often a sub-

optimal grasp is sufficient and more desirable if it can be ob-

tained at significantly lower computational cost and still exceeds

a quality threshold. Approximate heuristic search as described

in Section III-B allows for such a tradeoff.

For estimating the remaining cost to a terminal state, we

introduce a family of admissible heuristic functions h : S → R

that are based on a reducing and preserving successor function

Γh . We define the heuristic estimate h(s) as the minimal quality

difference between the state s and its children s′ ∈ Γh(s) with

reduced super-contacts,

h(s) = min
s ′∈Γh (s)

q(s) − q(s′) = q(s) − max
s ′∈Γh (s)

q(s′). (11)

In Section IV-A, we define a domain specific Γh that generates

a search tree, for which A∗ SEARCH with an admissible heuristic

is optimal (i.e. expands states at most once) and result with the

shortest path [25].

Theorem 3.2: If Γh is reducing and preserving, then h from

Eq. (11) is (a) admissible, and (b) if Γ = Γh , consistent.

Proof: For (a), we show that h(s) ≤ h∗(s), ∀s ∈ S,

q(s) − max
s ′∈Γh (s)

q(s′) ≤ q(s) − q(st)

max
s ′∈Γh (s)

q(s′) ≥ q(st), (12)

where h∗(s) is the actual cost to the optimal leaf st ∈ ST below

s. For (b) with Γ = Γh , we show that h(s) ≤ d(s, s′) + h(s′),
∀s ∈ S and ∀s′ ∈ Γh(s),

q(s) − max
s ′∈Γ(s)

q(s′) ≤ q(s) − q(s′) + q(s′) − max
s ′′∈Γ(s ′)

q(s′′)

max
s ′∈Γ(s)

q(s′) ≥ max
s ′′∈Γ(s ′)

q(s′′). (13)

Eq. (12) and Eq. (13) hold since q is monotone (Def. 3.1) and

both Γ and Γh are reducing. �

The heuristics from Eq. (11) can be used for both A∗
SEARCH

and WA∗
SEARCH which—to our knowledge—for the first time

allows increasing efficiency for solving optimal grasping prob-

lems by relaxing optimality with a guaranteed sub-optimality

bound.

E. Computational Complexity

If we use a successor function Γ with a bounded number of

successor states |Γ(s)| ≤ b and the heuristic function h from

Eq. (11), A∗
SEARCH and Dijkstra’s search algorithm share the

worst case time complexity O(|S| log(|S|)) [27] for solving a

PFP for an OGP. This analysis assumes that the search graph is a

tree and both G and the arc costs d(s, s′) are known in advance.

In practice graph expansion and arc costs determination have

additional computational cost which we detail in the Section IV

where we define variants of Γ and Γh that induce search trees.

IV. PRACTICAL EXAMPLE: POINT CONTACTS

In this section, we apply results from Section III-C in a con-

crete example considering point contact grasping [1], [3], [5],

[6], [10], [20], [28]. Here, the contact set C consists of point

contacts ci = (pi ,ni) with positions on the object’s surface

pi ∈ R
3 and surface normals ni ∈ R

3 [1]. The goal is to find

a static hard-finger grasp that can withstand maximal external

influences as characterized by the Ferrari-Canny grasp quality

function Q1 : C → R [5]. With the object’s center of mass as a

reference point for wrenches and approximating friction cones

by 8 vectors, we use Q1 to map force-closure grasps to positive

values. For reducing the OGP 〈C, q,m〉 with C = {(pi ,ni)}i

and q = Q1 , we define reducing and preserving successor func-

tions Γru
b and Γfc

b according to a partitioning scheme and

show that Q1 is monotone in Section IV-A. We generate op-

timal grasps satisfying grasp constraints in Section IV-C and in

Section IV-D we identify equivalent solutions to improve search

performance.

708 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 2, APRIL 2017

A. Search Space and Heuristics for Point Contact Grasping

Defining a successor function that allows the search

algorithm to quickly eliminate low quality grasps from grasp

sets G(s) improves search performance significantly. For com-

parison, we define one random-based and one domain specific

successor function. Both partition each super-contacts ci into

b > 1 disjoint subsets P(ci) = {c1
i , c

2
i , . . . , c

b
i } and assign dif-

ferent partition elements c
j
i to different successors,

Γb(s) = {(cj1

i , cj2

i , . . . , cjm

i) ∈ P(ci)
m}. (14)

With such a successor function, G is a tree and each state

has bm successor states with disjoint grasp sets. The successor

function Γru
b partitions super-contacts randomly with most uni-

formly sized partition elements c
j
i . This results in super-contacts

with size |ci | = |C |
b l in tree level l. The successor function Γfc

b is

domain specific and partitions super-contacts by clustering their

contacts in a position and normal based feature space Ψ [21],

[29] using t iterations of k-MEANS [30]. Therefore, Γfc
b groups

contacts that result in grasps of similar quality but does not en-

sure equal super-contact size which can result in G becoming

unbalanced.

Theorem 4.1: The successor function Γb (and therefore Γru
b

and Γfc
b) is reducing and preserving.

Proof: All super-contacts with |ci | > 1 are split up, ensuring

that corresponding super-contacts in successor states are strictly

smaller. PartitioningsP(ci) are exhaustive and all combinations

are maintained in successor states. �

For using the heuristic defined in Section III-D, we set Γh to

Γru
b or Γfc

b for a fixed branching factor b > 1 and show that the

grasp quality function Q1 is monotone.

Theorem 4.2: The Ferrari-Canny [5] grasp quality function

Q1 is monotone.

Proof: Since the convex hull operator is nondecreasing [31],

Q1 does not increase when contacts and their wrenches are

removed. �

B. Computational Complexity With Point Contacts

The computational cost for expanding states in G is domi-

nated by computing the partitioningP . For Γru
b , time complexity

is O(|ci |) while for Γfc
b time complexity is O(t |ci |) for each

super-contacts ci . The computational cost of determining the

step cost d(s, s′) is dominated by computing the convex hull

of polyhedral wenches cones having worst case time complex-

ity quadratic in number of wenches [32]. If we for analysis

assume that |C| = bl and that Γb produces a balanced search

tree with l levels and branching factor b, then level i of G has

bim states which have m super-contacts of size bl−i . The com-

putational complexity of completely searching level i for the

worst case scenario is therefore O(bim (mbl−i)2) with addi-

tional costs O(bm
h bim (mbl−i/bh)2) for h excluding expansion

using expansion factor bh . However, the branching factor b is of

little relevance in practice since an informative heuristic results

in an effective branching factor b∗ � b for A∗ SEARCH as we

show empirically in Section V.

Fig. 3. Optimal grasps with m = 3 contacts found by our approach using A∗

SEARCH shown by arrows for the objects bunny, amphora, sphere, donut, plane,
and homer and with m = 4, 5 and 6 for bunny and plane. The contact set C is
indicated in yellow. The results obtained are identical to ES.

C. Grasp Constraints and Valid State

We model constraints on grasps g as predicates P that deter-

mine whether a grasp is valid, P (g). If a super-contact’s grasp

set G(s) cannot provide any grasp that satisfies the constraint,

we can prune the search tree below without risking incom-

pleteness which models grasp constraints via the state space’s

structure. For this, the successor function Γ is restricted to valid

states s′ as in

Γ �P (s) = {s′ ∈ Γ(s) | ∃g ∈ G(s′) : P (g)}. (15)

Such constraints can model robot kinematics, tasks, and envi-

ronments relevant to the gasp.

D. Search Space Symmetries

In the presence of symmetry, search algorithms evaluate many

equivalent states and progress towards terminal states is slowed

down. Several of our search states are identical or nearly iden-

tical grasps since we consider m ordered contacts and many

objects are geometrically symmetric. In the first case, swapping

contact indexes, in the second case rotating or translating the

object results in grasps with similar quality and relative contacts

arrangement. For removing symmetries, we define an (approx-

imate) equivalence relation ∼ on search states and search the

quotient space S/∼ instead of S. We define ∼ by mapping states

into a discretized domain specific feature space Ψ = ∪̇iΨi with

volumes Ψi and set

s ∼ s′ ⇐⇒ ∃Ψi : κ(s) ∈ Ψi and κ(s′) ∈ Ψi (16)

where κ : S → Ψ is the feature space embedding [29], [33].

Firstly, the feature space contains the relative distances and

normal differences for each of the m fingers’ mean contact and

is therefore invariant under translations and rotations. Secondly,

it also contains the distance between the object’s center of mass

and the grasping center to account for moment arms of contacts.

The feature space is discretized by a fixed distance threshold

and class representative during state expansion. The effects of

this symmetry removal are analyzed in Section V-B.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate and compare the performance of

our approach from Section IV based on objects with complex

asymmetric or symmetric shapes as shown in Fig. 3. For evalu-

ation, we synthesize grasps with m = 3 contacts on the object

HANG et al.: FRAMEWORK FOR OPTIMAL GRASP CONTACT PLANNING 709

Fig. 4. Comparison between ES, HFTS, and our approach for m=3 His-
tograms (blue) show the Q1 quality distributions for each object. Minimum
path cost indicates the quality drop from q(s0)| QO W S to the optimal solution
g(st). Empirical standard deviation shows large quality variance for HFTS. A∗

SEARCH identifies the optimal solution (red) and ε=0.4 bounds (green) show
ranges of bounded sub-optimality results.

surface and maximize the Ferrari-Canny grasp quality Q1 [5].

The grasp quality Q1 of the initial state s0 is denoted as the qual-

ity of Object Wrench Space QOWS [20]. We set the inflation

factor ε to the indicated values and employ different successor

functions for search tree expansion and heuristic, Γ and Γh re-

spectively. For tree expansion we set Γ = Γfc
2 , and vary Γh for

evaluation. Symmetries are removed as defined in Section IV.

In Section V-A, we empirically verify optimality and compare

to baseline approaches. In Sections V-B and V-C we analyze

heuristic search in terms of state space exploration and number

of search steps. Timing results are discussed in Section V-D. In

Section V-E we generate optimal grasps for a specific robotic

hand with kinematic grasp constraints.

A. Optimality and Baseline Comparison

We compare our approach with Γh = Γfc
2 using both A∗

SEARCH and WA∗
SEARCH with ε = 0.4 to one exact and one

approximate baseline: First, exhaustive search (ES), which con-

siders each of the
(

1000
3

)

= 166, 167, 000 m-contact grasp over

C and returns the optimal grasp. Second, hierarchical finger-

tip space optimization (HFTS) [21], which iteratively optimizes

grasp in refined representations. To characterize the difficulty

of the OGP for each of the objects, we plot histograms of grasp

qualities in Fig. 4. The diagrams show that the percentage of

force-closure grasps on each object is low while most force-

closure grasps have low quality making it difficult to identify

high quality grasps.

HFTS identifies high quality grasps from the tail of the dis-

tributions, but the variance in grasp quality is large. In no case

the optimal grasp is returned and for all objects besides the sim-

ple sphere and donut a substantial margin is left to the optimal

grasp. A∗ SEARCH identifies the same optimal grasps as ES (see

Figs. 3 and 4) for m = 3 which confirms that our algorithm is

complete and optimal. For m > 3 contacts, exhaustive search is

prohibitively expensive, examples of optimal m = 4, 5, 6 con-

tacts grasps found by our algorithm for bunny and plane are

shown in Figs. 3. and 4 also shows that ε = 0.4 limits WA∗

SEARCH to high quality force-closure solutions for all objects

Fig. 5. Circular plot of the search tree G showing created and visited search
states according to search depth for the box with 100 contacts. A∗

SEARCH creates
512 and visits 70 states. Colored sections indicate visited states and stems show
created but unvisited states. The dark red lines show the optimal solution path.
Only a small fraction of the search space is explored. For 4 states, we show
the m = 3 super-contacts, which indicate the reason why the corresponding
branches did not lead to the optimal solution.

Fig. 6. Created and visited states for A∗
SEARCH with and without symmetry

removal. Most states are considered on the middle levels in the search tree.
Effective branching factors are shown as b∗. Note that the total number of

possible states is approximately:
∑log 2 |C |

i=0
(bm)i ≈ 1, 227, 133, 513.

but plane where the ε-bound includes low-quality force-closure

grasps as indicated.

B. Heuristic Search

We qualitatively analyze the efficiency of A∗ SEARCH with

Γh = Γfc
2 by recording the search tree for box in a circular plot.

In Fig. 5 we see that only a small fraction of the search tree G
is visited which indicates that the heuristic informs the search.

The pruned tree branches represent grasps with overlapping or

ill-placed contacts while the explored branches show spread

out contact positions. Fig. 6 shows statistics of created and

visited states per level for homer and amphora and allows a

more detailed analysis. Most states are both created and visited

in the middle levels but the visiting ration is highest for lower

710 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 2, APRIL 2017

Fig. 7. Efficiency analysis based on number of iterations for different random-
based and domain specific expansion and heuristic functions for A∗ search
and Dijkstra’s search from 100 executions. (a) Overview and closeup plots of
iterations against combined cost. Table: Legend and effective branching factor.
(b) Different heuristic functions.

levels indicating that the heuristic is more precise for smaller

super-contacts. The data also show that retaining symmetries

leads to factor 17 and 9 more created and factor 7 and 3 more

visited states for homer and amphora respectively.

Search efficiency can also be measured by number of search

iterations as seen in Fig. 7 where the number of iterations is

plotted against the current state’s combined cost f(s) given in

Eq. (3). First we see in Fig. 7(a) that heuristic search with do-

main specific expansion and heuristic using Γfc
2 requires the

least amount of iterations. In this case, the effective branch-

ing factor b∗ which characterizes a balanced tree with identical

depth and number of explored states [25] is 1.9 as compared to

8 = bm in the search tree. Using Γru
2 for heuristic or expansion

instead requires more iterations where expansion is more sensi-

tive leading to b∗ of 2.4 and 4.7. Dijkstra’s search has b∗ = 6.1
when expanding with Γru

2 . The improvement from b∗ = 2.4 for

Dijkstra’s expansion with Γfc
2 to b∗ = 1.9 for heuristic search is

due to the domain specific heuristic. Different domain specific

heuristics are analyzed in Fig. 7(b) where we see again that Di-

jkstra’s is worse than heuristic search with Γh = Γfc
b while the

largest value b = 4 corresponding to largest size reduction has

the best result. In both Fig. 7(a) and (b), some curves show drops

in combined cost, when Γ �= Γh i.e. the heuristic function is lo-

cally inconsistent. Theorem 3.2 shows that h is still admissible

and solutions are optimal.

C. Approximative Heuristic Search

For WA∗ SEARCH, we analyze the tradeoff between sub-

optimality and search steps using different values of ε for bunny

Fig. 8. Combined cost plotted against iterations WA∗
SEARCH using Γh =

Γfc
4 . Larger inflation factors ε lead to less computation. Dashed lines show

solution qualities.

Fig. 9. CPU time in minutes using our method (with A∗ and WA∗
SEARCH)

compared to exhaustive search (ES). Results are collected by setting different ε
as indicated and Γh = Γfc

2 . Execution in Python with Ubuntu 12.04 running on
an Intel Core i7-3770 @ 3.40 GHz × 8. with 32GB RAM and QHULL version
5.0 [32].

and plane using Γh = Γfc
4 . The results in Fig. 8 show that in-

creasing values of ε lead to earlier termination but that quality

remains high when taking Fig. 4 as reference. Since inflation can

result in an inadmissible heuristic, the current state’s combined

cost may drop during search as seen clearly for larger ε-values

in Fig. 8.

D. Computational Cost

The main computational load of our algorithm is caused by

computing grasp quality for super-contact grasps which can

contain many contacts. In Fig. 9 we compare timing results

for finding optimal and bounded sub-optimal grasps using our

algorithm against the computational cost of evaluation all grasps

with ES. Comparing the first and last rows in Fig. 9 reveals

that for optimal solutions, our approach is significantly more

efficient than ES. The data also show that approximate search

tends to be faster than A∗
SEARCH for larger ε. Due to the cost

of computing Q1 , the algorithm does not perform for real-time

application but it is faster than exhaustive search by several

orders of magnitude. On average, our approach spends 87.3%
of time on calculating convex hulls for grasp quality.

E. Hand Kinematics as Grasp Constraint

We constrain the successor function Γ as described in

Section IV-C for generating optimal grasps for a specific

robotic hand. The predicate P models fingertip reachability

and is approximated by lookup in a pre-sampled feature space

that contains all kinematically feasible fingertip configurations

HANG et al.: FRAMEWORK FOR OPTIMAL GRASP CONTACT PLANNING 711

Fig. 10. Constraints on grasps: Optimal kinematically feasible grasps by
Schunk-SDH hand for 3 fingertip contacts.

[21], [33]. Fig. 10 shows the optimal grasps for the hand as

modeled by P .

VI. CONCLUSION

We addressed the problem of finding optimal grasp contacts

on arbitrary objects with a novel complete and optimal algo-

rithm by formulating a path finding problem. The advantage of

our formulation is that it—for the first time—allows for efficient

optimal and bounded sub-optimality solutions. This is important

not only for grasping, but also for benchmarking other grasping

approaches, for analyzing and characterizing objects, design-

ing fixtures, and generating grasp databases for learning-based

grasping. The formulation rendered optimal grasps as minimal

cost paths and the search space consisted of super-contact grasps

which represented sets of grasps. In each step along a path, the

state’s grasp set was reduced by removing contacts. We charac-

terized grasp quality functions and state successor functions for

reducing optimal grasping to a path finding problem and thereby

defined a general framework for optimal grasping.

For the example of point-contact grasping, we presented a

concrete search space constructed by a domain specific succes-

sor function and showed how a common grasp quality function

can be used in our framework. Furthermore, we showed that

a state validation mechanism can be employed to incorporate

hand kinematic feasibility constraints, which ensures the pro-

duced optimal grasp contacts can be realized by a given robotic

hand. In experiments, our approach required substantially less

computational effort than exhaustive search to results with opti-

mal grasps. Our evaluation was based on number of visited and

created nodes and the development of the search fringe. The

smallest effective branching factor was obtained with our do-

main specific heuristic function. Evaluation with approximate

search showed significant cost reduction while maintaining high

grasp quality.

REFERENCES

[1] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,” in
Proc. IEEE Int. Conf. Robot. Autom., 2000, pp. 348–353.

[2] Y.-H. Liu, M.-L. Lam, and D. Ding, “A complete and efficient algorithm
for searching 3-D form-closure grasps in the discrete domain,” IEEE Trans.

Robot., vol. 20, no. 5, pp. 805–816, Oct. 2004.
[3] C. Borst, M. Fischer, and G. Hirzinger, “Grasping the dice by dicing the

grasp,” in Proc. 2003 IEEE/RSJ Int. Conf. Intell. Robots Syst., 2003, vol. 4,
pp. 3692–3697.

[4] M. Roa and R. Suárez, “Grasp quality measures: Review and perfor-
mance,” Auton. Robots, vol. 38, no. 1, pp. 65–88, 2015.

[5] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proc. 1992 IEEE

Int. Conf. Robot. Autom., 1992, pp. 2290–2295.
[6] K. Hang, J. A. Stork, F. T. Pokorny, and D. Kragic, “Combinatorial opti-

mization for hierarchical contact-level grasping,” in Proc. 2014 IEEE Int.

Conf. Robot. Autom., 2014, pp. 381–388.

[7] M. T. Ciocarlie and P. K. Allen, “Hand posture subspaces for dexter-
ous robotic grasping,” Int. J. Robot. Res., vol. 28, no. 7, pp. 851–867,
2009.

[8] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3D object
grasp synthesis algorithms,” Robot. Auton. Syst., vol. 60, pp. 326–336,
2012.

[9] S. El Khoury, M. Li, and A. Billard, “Bridging the gap: One shot grasp
synthesis approach,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Oct.
2012, pp. 2027–2034.

[10] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp
synthesis—A survey,” IEEE Trans. Robot., vol. 30, no. 2, pp. 289–309,
Apr. 2014.

[11] B. Mirtich and J. Canny, “Easily computable optimum grasps in 2-
D and 3-D,” in Proc. 1994 IEEE Int. Conf. Robot. Autom., 1994,
pp. 739–747.

[12] T. Watanabe and T. Yoshikawa, “Grasping optimization using a required
external force set,” IEEE Trans. Autom. Sci. Eng., vol. 4, no. 1, pp. 52–66,
Jan. 2007.

[13] R. Diankov and J. Kuffner, “OpenRAVE: A planning architecture for
autonomous robotics,” Robot. Inst., Carnegie Mellon Univ., Pittsburgh,
PA, USA, Tech. Rep. CMU-RI-TR-08-34, 2008, vol. 79.

[14] A. T. Miller and P. K. Allen, “Graspit! A versatile simulator for robotic
grasping,” IEEE Robot. Autom. Mag., vol. 11, no. 4, pp. 110–122, Dec.
2004.

[15] R. Pelossof, A. Miller, P. Allen, and T. Jebara, “An SVM learning approach
to robotic grasping,” in Proc. 2004 IEEE Int. Conf. Robot. Autom., 2004,
vol. 4, pp. 3512–3518.

[16] J. Ponce and B. Faverjon, “On computing three-finger force-closure grasps
of polygonal objects,” IEEE Trans. Robot. Autom., vol. 11, no. 6, pp. 868–
881, Dec. 1995.

[17] S. Liu and S. Carpin, “Global grasp planning using triangular meshes,” in
Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 4904–4910.

[18] J. Cornella and R. Suárez, “Efficient determination of four-point form-
closure optimal constraints of polygonal objects,” IEEE Trans. Autom.

Sci. Eng., vol. 6, no. 1, pp. 121–130, Jan. 2009.
[19] M. A. Roa and R. Suárez, “Finding locally optimum force-closure

grasps,” Robot. Comput.-Integr. Manuf., vol. 25, no. 3, pp. 536–544,
2009.

[20] N. S. Pollard, “Parallel methods for synthesizing whole-hand grasps from
generalized prototypes” , MIT Artif. Intell. Lab., Cambridge, MA, USA,
Tech. Rep. AI-TR-1464, 1994.

[21] K. Hang, J. A. Stork, and D. Kragic, “Hierarchical fingertip space for
multi-fingered precision grasping,” in Proc. 2014 IEEE/RSJ Int. Conf.

Intell. Robots Syst., 2014, pp. 1641–1648.
[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[23] R. Dechter and J. Pearl, “Generalized best-first search strategies and the
optimality of A,” J. ACM, vol. 32, no. 3, pp. 505–536, 1985.

[24] I. Pohl, “Heuristic search viewed as path finding in a graph,” Artif. Intell.,
vol. 1, no. 3–4, pp. 193–204, 1970.

[25] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem

Solving. Reading, MA, USA: Addison-Wesley, 1984.
[26] R. Ebendt and R. Drechsler, “Weighted A search—Unifying view

and application,” Artif. Intell., vol. 173, no. 14, pp. 1310–1342,
2009.

[27] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in im-
proved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp. 596–
615, 1987.

[28] V.-D. Nguyen, “Constructing force-closure grasps,” Int. J. Robot. Res.,
vol. 7, no. 3, pp. 3–16, 1988.

[29] J. A. Stork, “Representation and learning for robotic grasping, caging, and
planning,” Ph.D. dissertation, School Comput. Sci. Commun., KTH Roy.
Inst. Technol., Stockholm, Sweden, Jun. 2016.

[30] J. A. Hartigan and M. A. Wong, “Algorithm as 136: A k-means clustering
algorithm,” J. Roy. Statist. Soc. Ser. C (Appl. Statist.), vol. 28, no. 1,
pp. 100–108, 1979.

[31] F. P. Preparata and M. Shamos, Computational Geometry: An Introduction.
New York, NY, USA: Springer, 2012.

[32] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, “The quickhull algorithm
for convex hulls,” ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469–483,
1996.

[33] K. Hang, J. A. Haustein, M. Li, A. Billard, C. Smith, and D. Kragic, “On
the evolution of fingertip grasping manifolds,” in Proc. IEEE Int. Conf.

Robot. Autom., 2016, pp. 2022–2029.

