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ABSTRACT

We conduct a pilot investigation to determine the optimal combination of color and variability information to
identify quasars in current and future multi-epoch optical surveys. We use a Bayesian quasar selection algorithm to
identify 35,820 type 1 quasar candidates in a 239 deg2

field of the Sloan Digital Sky Survey (SDSS) Stripe 82,
using a combination of optical photometry and variability. Color analysis is performed on 5-band single- and
multi-epoch SDSS optical photometry to a depth of r 22.4.~ From these data, variability parameters are calculated
by fitting the structure function of each object in each band with a power-law model using 10 to 100> observations
over timescales from ∼1 day to ∼8 years. Selection was based on a training sample of 13,221 spectroscopically
confirmed type-1 quasars, largely from the SDSS. Using variability alone, colors alone, and combining variability
and colors we achieve 91%, 93%, and 97% quasar completeness and 98%, 98%, and 97% efficiency, respectively,
with particular improvement in the selection of quasars at z2.7 3.5< < where quasars and stars have similar
optical colors. The 22,867 quasar candidates that are not spectroscopically confirmed reach a depth of i 22.0;~
21,876 (95.7%) are dimmer than coadded i-band magnitude of 19.9, the cutoff for spectroscopic follow-up for
SDSS on Stripe 82. Brighter than 19.9, we find 5.7% more quasar candidates without confirming spectra in sky
regions otherwise considered complete. The resulting quasar sample has sufficient purity (and statistically
correctable incompleteness) to produce a luminosity function comparable to those determined by spectroscopic
investigations. We discuss improvements that can be made to the process in preparation for performing similar
photometric selection and science on data from post-SDSS sky surveys.
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1. INTRODUCTION

The identification of large numbers of quasars/active
galactic nuclei (AGNs) over a broad range of redshift and
luminosity is crucial for many science projects. Work that
requires object densities higher than have been provided to date
by spectroscopic surveys includes cross-correlating the catalogs
with the cosmic microwave background (Giannantonio
et al. 2008) to constrain dark energy; using quasars to measure
cosmic magnification (Scranton et al. 2005); finding binary
quasars which can be used to test the merger hypothesis of
quasars (Hennawi et al. 2010); finding gravitationally lensed
quasars (Oguri et al. 2006); constraining quasar evolution
(Myers et al. 2006); studying dust in galaxies (Ménard
et al. 2010); and broader cosmological studies (Leistedt
et al. 2013).

Historically, quasar candidates have been identified by virtue
of their colors, variability, and (lack of) proper motion—but
generally not through all of these methods combined. The
standard way of identifying large numbers of candidate quasars
is to make “color cuts” using optical (or infrared) photometry
(e.g., Warren et al. 2000; Richards et al. 2002; Croom et al.
2004; Lacy et al. 2004; Stern et al. 2005; Maddox et al. 2012;
Assef et al. 2013). This is because the majority of unobscured

quasars at z 2.5 are< much bluer than the majority of stars in
the optical and are much redder in the infrared. However, this
process is neither complete (identifying all true quasars) nor
efficient (minimizing false positives). Such methods do an
effective job of identifying a large number of interesting
objects with relatively little effort; however, better methods are
needed to scale to future surveys in a way that allows scientific
analysis without the need for spectroscopic confirmation.
In addition to classification by color, time-domain data make

variability a promising way for classifying objects. For
examples of such work, see Koo et al. (1986), Hughes et al.
(1992), Vanden Berk et al. (2004), de Vries et al. (2005), Sesar
et al. (2007), Kelly et al. (2009), Kozłowski et al. (2010),
MacLeod et al. (2010, 2011, 2012), Schmidt et al. (2010),
Butler & Bloom (2011), and Graham et al. (2014). Specifically,
quasars exhibit stochastic, aperiodic variability with variations
of the order of 10% on the timescale of years (de Vries
et al. 2003; Vanden Berk et al. 2004). The amplitude and
timescale of this variability are sufficiently distinctive to allow
one to identify an object as a candidate quasar.
Many current and future astronomical imaging surveys

(SkyMapper: Keller et al. 2007; Palomar Transient Factory:
Law et al. 2009; Pan-STARRS: Kaiser et al. 2010; DES: The
Dark Energy Survey Collaboration 2005; LSST: Ivezić
et al. 2008) are focusing on time-domain astronomy and in
anticipation it is important to determine the effectiveness of
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classification using variability information. These surveys will
observe areas of the sky many times. There is great hope that
variability selection will fill in the gaps in color selection
methods (or replace color selection entirely). Indeed, investiga-
tions such as Schmidt et al. (2010), MacLeod et al. (2011), and
Butler & Bloom (2011) have been quite successful. However,
variability-only selection suffers from its own set of problems.
For example, high-redshift quasars can be lost when using a
fixed observed-frame variability analysis: Lyα absorption
reduces the quasar continuum in blue bands and the redder
bands have larger photometric errors for fainter objects. In
addition, variability increases with lower luminosity (e.g.,
Vanden Berk et al. 2004), but so does the host galaxy
contribution—potentially complicating the selection of such
objects without careful difference imaging to remove the host
galaxy contribution. Thus it is important to investigate how
well variability selection works by itself versus being combined
with other methods (e.g., colors and astrometry).

The premise of this project is to simultaneously use the
distinctive and quantifiable characteristics of color and
variability to distinguish quasars from stars and inactive
galaxies. The Sloan Digital Sky Survey (SDSS; York
et al. 2000) repeatedly imaged a 2 5 equatorial section of the
sky referred to as Stripe9 82 (Abazajian et al. 2009; Annis
et al. 2014; Jiang et al. 2014). The light curves of spectro-
scopically confirmed quasars and stars from Stripe 82 give us
the information we need to develop and test classification of
quasars.

The specific goal of this project is to use color, variability,
and astrometric data in combination with modern machine
learning techniques to uncover previously unidentified quasars
in the SDSS Stripe 82 region and to pave the way for improved
multi-faceted selection in the future. The goal is not necessarily
to produce the most complete or efficient catalog possible, but
to test the combined use of colors and variability data in
classification. In this pilot investigation we make some
simplifications to the process that will be explored in more
detail in future work. Specifically, we concentrate on point
sources to avoid the problem of the host galaxy washing out the
variable nucleus (reducing our sensitivity to low-redshift
quasars), we utilize a simple power-law model of variability
as opposed to more sophisticated (but not necessarily “correct”)
models such as the damped random walk, we use variability
data from each band separately instead of merging them
together, and we take a simplistic approach to combining
photometric redshift information from different methods. Each
of these simplifications for this pilot study is worthy of their
own separate investigation to determine how to best deal with
these issues.

A shortcoming of the traditional quasar identification process
is that it usually involves selecting quasar candidates by
identifying them as outliers using cuts in the observed data
space (e.g., selecting all point sources with u g 0.6- < ). Our
classification instead makes simultaneous use of all of the data
types available and uses modern statistical techniques (based
on kernel density estimation; KDE) to make cuts in probability
space (e.g., objects with an expected quasar probability greater
than 50%). We will extend the methods developed by our
group (Richards et al. 2004, 2009a, 2009b; Riegel et al. 2008)
and others (e.g., Suchkov et al. 2005; Ball et al. 2006; Davoodi

et al. 2006; Bailer-Jones et al. 2008; Gao et al. 2008;
D’Abrusco et al. 2009; Guy et al. 2010; Schmidt et al. 2010;
Abraham et al. 2012; Bovy et al. 2012; Peng et al. 2012; Gupta
et al. 2014) to create a classification algorithm for time-domain
focused sky surveys. While this approach has been shown to
work well in the past (e.g., Richards et al. 2004, 2009a), in
future work we also intend to explore other modern statistical
techniques such as described by Feigelson & Babu (2012) and
the references therein.
The quasar candidates that result from application of this

method are only identified photometrically; they lack spectro-
scopy which not only would confirm the type of an object, but
it crucially also would determine the redshift. There are many
sophisticated methods for estimating photometric redshifts
(e.g., Rowan-Robinson et al. 2008; Salvato et al. 2009); we use
the algorithm described in Richards et al. (2001) and Weinstein
et al. (2004) which ranks among the most accurate for
(luminous) quasar photometric redshift estimates. We improve
this process further by using the effective prismatic effects of
the Earth’s atmosphere as a low-resolution spectrograph
(Kaczmarczik et al. 2009). In short, the positions of quasars,
with their strong emission features, are a function of passband
and redshift. This behavior of quasars allows us to uniquely
incorporate astrometric information into our photometric
redshift estimates.
Our work provides a stepping stone for quasar classification

for future surveys such as the Large Synoptic Survey
Telescope10 (LSST). Eventually, each region of LSST will be
imaged about 200 times in each filter over the 10 years of the
survey, allowing for the study of the variability of the object on
scales of minutes to a decade. This focus on time-domain
astronomy is an exciting new era in surveys, but the lack of
spectroscopy creates a problem for confirming the type of
object. As the number of spectroscopic fibers allocated to
quasar identification pales in comparison to the number of
photometrically detected objects that merit spectroscopic
follow-up, it is only through complete and efficient object
classification coupled with accurate redshift estimates that we
can overcome the lack of spectroscopy in LSST and other
future astronomical surveys and maximize their science output.
The layout of this paper is as follows. In Section 2 we

introduce the SDSS Stripe 82 data that we will use. We then
describe how the variability parameters used for classification
are calculated. In Section 3 we summarize the Non-parametric
Bayesian Classification Kernel Density Estimation (NBC
KDE) selection algorithm and describe how it is used in this
case. We test the various classification parameters and
determine the optimal combination in Section 4. Then, in
Section 5, we build the quasar candidate catalog using these
optimal parameters, first using the full quasar training set, then
using the training set divided into redshift bins to perform
simultaneous classification and redshift estimation. In Section 6
we describe how the astrometric parameters are calculated, then
estimate photometric and astrometric redshifts for all the
candidate quasars. Next, we describe a cut to remove
contamination and describe the final catalog of quasar
candidates in Section 7. In Section 8 we compare to cuts in
variability space and to color-based quasar selection, and
calculate number counts and a luminosity function for the

9 sdss.org/legacy/stripe82.html 10 lsst.org
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candidates. We discuss possible next steps in Section 9 and
conclude in Section 10.

Cosmology-dependent parameters are determined using
Ho = 70 km s−1 Mpc−1, 0.3mW = , and WL = 0.7 (Hinshaw
et al. 2013). Throughout this paper magnitudes will be reported
on the AB system of Oke & Gunn (1983).

2. DATA

In this section, we describe the origin of the data and the
parameters used for classification by our algorithm. Section 2.1
describes the imaging data and 2.2 the spectroscopic data.
Sections 2.3 and 2.4 discuss derivation of the color and
variability classification parameters, respectively. In principle,
we could use astrometric information for classification as well;
however, for this pilot study we have limited astrometric data
to estimate photometric redshifts as discussed in Section 6.
Machine learning algorithms need both training sets to find
patterns in the data and a test set of data to verify that these
patterns are useful; these data sets are described in Section 2.5.

2.1. SDSS Stripe 82

The SDSS is an optical survey that has used the 2.5 m Sloan
telescope (Gunn et al. 2006) at Apache Point Observatory in
New Mexico to map 14,500 deg2 of the sky (Aihara
et al. 2011). Photometry was performed with a drift-scan
CCD camera (Gunn et al. 1998) taking nearly simultaneous
54.1 s exposures in five broad optical bands (u, g, r, i, and z)
between 3000 and 10,000Å (Fukugita et al. 1996).

The imaging data used in our analysis consists of objects
solely from the SDSS Stripe 82 area, which were made
available as part of SDSS Data Release 7 (DR7; Abazajian
et al. 2009) and includes observations from 1999 October to
2007 November. The Stripe 82 region covers a 2 5 wide
“stripe” on the celestial equator from right ascension ∼300° to
∼60° in the Southern Galactic Cap. Repeated observations
were performed on this region throughout the SDSS I/II, with
increasing frequency as part of the SDSS Supernova Survey
(Frieman et al. 2008), with ∼100 repeat imaging scans by the
end of observations. The initial observations were done under
optimal seeing, sky brightness, and photometric conditions.
The supernova survey runs were done on useable nights, but

under less than optimal conditions. We limit our analysis to
those objects detected as point sources.
The multiple observations on Stripe 82 were aligned and

stacked into a coadded catalog described in Annis et al. (2014;
see also Jiang et al. 2014 and Huff et al. 2014). This catalog
uses 20–40 observations on the region, mostly the early runs
under optimal conditions. The data were downloaded from the
SDSS Stripe 82 Catalog Archive Server (CAS).11 Database
entries having SDSS “run” numbers of 106 and 206,
representing objects with co-added photometry, were extracted
along with the individual epoch photometry for each of these
objects in order to generate light curves.12 The single epoch
images go to a depth of r 22.4~ (5σ), with a median seeing of
1 4. Coaddition of the imaging data reaches ∼ 2 mag deeper
and improves the median seeing to 1 1. The improvement in
using coadded magnitudes over single epoch magnitudes for
classification is demonstrated in Section 4.2; see also Ivezić
et al. (2007).

2.2. Master Quasar Catalog

Definition of our quasar training set requires a subsample
with spectroscopic confirmation. Our primary source of
spectroscopy comes from a “Master” Quasar Catalog (MQC),
described in Section 2.1 of Richards et al. (2015), containing
over 1.5 million sources, for which over 250,000 have
confirming spectroscopy. This data set consists of sources
within the SDSS survey areas and draws objects from the
sources described in Table 1.
This quasar sample represents nearly every quasar known

fainter than i 16~ (including candidate photometric quasars)
at the time of Data Release 10 (DR10; Ahn et al. 2014) of
SDSS-III (Eisenstein et al. 2011; Dawson et al. 2013). The
majority of the confirmed quasars come from the SDSS I/II
quasar catalog, which is described in detail by Richards et al.
(2002) and Schneider et al. (2010) and from the SDSS-III/
BOSS quasar catalog, which is described in detail by Ross et al.
(2012) and Pâris et al. (2014).

Table 1
Master Quasar Catalog

Source Description w/Spectra w/o Spectra Training Set

Table 5 from Schneider et al. (2010) SDSS I/II 105472 0 6082
Croom et al. (2004) 2QZ 9663 0 0
Croom et al. (2009) 2SLAQ 8881 0 1576
S. M. Croom et al. (2015, in preparation) AUS 2200 0 1706
Kochanek et al. (2012) AGES 2844 4 0
Lilly et al. (2007) and Elvis et al. (2009) COSMOS 259 0 0
Fan et al. (2006) and Jiang et al. (2008) z 5.8> 27 0 0
Pâris et al. (2014) SDSS-III/BOSS 168820 0 7383
Ross et al. (2012) MMT 836 0 278
Richards et al. (2009b) NBCKDE Photometric Catalog 174663 965542 9061
Bovy et al. (2011) XDQSO Photometric Catalog 142567 682831 7088
Table 5 of Papovich et al. (2006) BROADLINE objects 104 0 0
Table 5 of Glikman et al. (2006) z 4~ 10 0 0
Tables 4 and 6 of Maddox et al. (2012) KX-selected 3608 0 986

Total 274329 1301846 13221

11 http://cas.sdss.org/stripe82/en
12 This process has since been made somewhat easier through the use of
a unifying “thingIndex” table in Data Release 12 (Alam et al. 2015):
http://skyserver.sdss.org/dr12/en/help/browser/browser.aspx
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The SDSS I/II quasars were primarily color selected (with
some radio and X-ray selection) over a broad redshift range
( z0 5< < ). Richards et al. (2002) describe the quasar target
selection of the main quasar survey, which went to i 19.1< for
quasars with colors consistent with z 3< and to i 20.2< for
quasars expected to be at higher redshifts. On Stripe 82, deeper
targeting was performed (Adelman McCarthy et al. 2006)
going to i = 19.9 and i 20.4,= respectively, in targeting
“chunk” 22; to i = 20.2 (for low-redshift sources) and
i = 20.65 (for radio sources) in targeting chunk 48; and to
i 21< for sources more variable (between two epochs) than 3σ
(and 0.1 mag) in both g and r in targeting chunk 73. The BOSS
quasars (focused on z2.2 3.5;< < Ross et al. 2012) were, in
addition to color selection, also targeted by variability (on
Stripe 82). This variability selection is described in Palanque-
Delabrouille et al. (2011) and uses an algorithm that was also
based on the same parameterization of variability as used
herein (see Section 2.4). Thus it is interesting to see if our
method finds additional quasars beyond those already spectro-
scopically confirmed. Quasar candidates in our catalog that are
previously known from SDSS-I/II and SDSS-III spectroscopy
are indicated as such in our catalog; see the Appendix.

2.3. Classification Parameters: Colors

The optical color information used in our analysis consists of
the four adjacent SDSS colors (u g,- g r,- r i,- and i z- ),
which were determined from the cataloged photometry using
point-spread function (PSF) magnitudes, corrected for Galactic
extinction (Schlegel et al. 1998). We used both single-epoch
colors, from a single observation of the object, and the coadded
colors, from the Annis et al. (2014) catalog.
The level of contamination from stars and galaxies varies

significantly in various regions of colorspace; see Figure 1.
Optical surveys for quasars often use relatively simple color
cuts (drawing lines of demarcation in these color spaces) to

select objects that are likely to be quasars. In SDSS, outliers
from the stellar locus in the color space were potential
spectroscopic target candidates (Richards et al. 2002). The
ugri bands were used to identify low-redshift quasars and the
griz bands for high-redshift quasars. For low- and high-redshift
quasars, selecting by colors is effective, but mid-redshift
quasars ( z2.2 3.5< < ) occupy the same region of color space
as many stars and contamination becomes a serious problem.
Note how the mid-redshift quasars, shown as dark blue
contours and scatter points in Figure 1, overlap with the non-
quasars, shown as orange contours. It is most efficient to
choose quasars outside of this redshift region for spectroscopic
follow-up, but this creates a strong selection effect in the quasar
sample. For efficient selection of mid-redshift quasars, it
becomes necessary to have another method to distinguish the
quasars from non-quasars and this is where the variable nature
of quasars becomes particularly useful.

2.4. Classification Parameters: Variability

Most quasars vary at optical wavelengths by about 10% over
several years, which distinguishes them from most normal
galaxies and stars (de Vries et al. 2003; Vanden Berk et al.
2004). Most variable stars vary periodically or quasi-periodi-
cally (Richards et al. 2012) and with smaller amplitude, but
quasars generally show no periodic variability (Bailer-
Jones 2012; Andrae et al. 2013). While the physical causes
for the variability in quasars are not well understood (see
Dexter & Agol 2011 for a recent investigation), the nature of
the variability enables one to distinguish quasars from non-
quasars.
We use the structure function (SF) to characterize variability

by quantifying the amplitude of variability as a function of the
time difference between paired observations. For this analysis,
based on empirical experiment (balancing the number of
epochs with the quality of the data), we required that the

Figure 1. Quasar and non-quasar training sets in two projections of the SDSS color space using coadded photometry. Non-quasars (shown in orange contours), such as
stars and compact galaxies, are considered contaminants when trying to accurately classify quasars (shown in cool colors). Notice the number of non-quasars in the
region in which mid-redshift quasars ( z2.2 3.5;< < shown as dark blue contours and scatter points for outliers) lie. This overlap makes it difficult to accurately
classify an object in this region as a quasar or non-quasar and motivates searches for alternative methods of classification, like variability. Quasars are shown as three
redshift regions: low-redshift (z 2.2;< shown as green contours and scatter points for outliers), mid-redshift, and high-redshift (z 3.5;> shown as light blue dots).
The extension of the non-quasar color space at g r 1.4- ~ is not real, but is an artifact of including objects with large u-band photometric errors (and thus spilling
into the true quasar parameter space).
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FWHM of the PSF fit in the r-band be less than 2″ and the
airmass in the r-band be less than 1.575 for the observation to
be included. These cuts remove approximately 15% of
observations. After this procedure, we found that a small
number of non-astrophysical outliers in the light curve still
must be removed; these points are such strong outliers that we
are not concerned that removing them is compromising the
variability analysis. Similar to the approach in Schmidt et al.
(2010), we accomplish this by calculating a running median
light curve then removing all measurements with a difference
between the median light curve and the observed magnitude
greater than 0.25 mag (Figure 2 left panel). The SF is calculated
in all of the SDSS bands where at least 10 observations remain
after these cuts.

There are other methods currently being used to characterize
the variability of quasars, including Slepian wavelet variance
(SWV; Graham et al. 2014), AutoRegressive Moving Average,
or ARMA, processes (Kasliwal et al. 2015), or damped random
walk (DRW; Kelly et al. 2009; Kozłowski et al. 2010) . Future
work could consider using these methods instead of the SF.

In our work, the SF is defined as the root mean square
magnitude difference as a function of time lag between
magnitude measurements:

V t m t m t t . 12 2( ) ( ( ) ( )) ( )D = á - + D ñ

In the above equation, m t m t t( ) ( )- + D is the measured
magnitude difference between two observations in a given band
and tD is the time difference between the two observations in
the observer’s frame. The SDSS has a high cadence of
observations during the fall months each year and then gaps of
∼9 months before the next set of observations. This irregular
sampling in the light curve (Figure 2 left panel) results in a SF
with gaps (Figure 2 right panel).

The SF can be modeled as a power law (Equation (3) in
Schmidt et al. 2010):

V t A A
t

,
1 year

. 2PowerLaw ( ∣ ) ( )gD =
D

g⎛
⎝⎜

⎞
⎠⎟

Such a parameterization is not effective at describing the
underlying type of variability or the mechanism for it, but
provides a sufficiently robust statistical description for the
timescales (∼1 day to ∼8 years) covered by our data (Schmidt
et al. 2010) to distinguish variable sources from non-variable
sources, which is our objective. Using this model for the SF,
we find that 93% of quasars are more variable than non-
variable stars on average (using white dwarfs as representative)
and show more growth in variability at longer timescales than
80% of non-quasar point sources.
The variability can also be modeled as a DRW (Kelly

et al. 2009, Kozłowski et al. 2010, MacLeod et al. 2010), which
predicts the following form of the SF:

V t , 2 1 e . 3t
DRW

1
2( )( ∣ ) ( )s t sD = - t-D

To first order in t,D the DRW behaves as:

V t
t

, 2 , 4DRW

1
2

( ∣ ) ( )s t s
t

D ~
D⎜ ⎟⎛

⎝
⎞
⎠

a realization of Equation (2) where 1 2.g = In short, the
DRW model is similar to the power-law model except that it
truncates the growth of the magnitude differences at some
characteristic timescale. For the sake of this proof of concept,
the power-law model will suffice and is what we shall use
hereafter. In future work we will investigate whether a more

Figure 2. g and u-band light curves (left panel) and g-band structure function fit with a power-law model (right panel) of SDSS J013417.81–005036.2, a redshift 2.26
quasar from SDSS Stripe 82 (also shown in Figure 12). This quasar is shown as an example representative of the data set. Left panel: there are 126 observations in the
g-band. The 106 observations that meet the PSF-width and the airmass requirements are shown as green points with error bars, while those that were removed are
shown in orange. The dark green dashed line is the running median (with a window of 50 days and steps of 5 days) calculated from the g-band observations. The
orange dot was removed from the light curve because it is more than 0.25 mag from the median. The u-band observations are similarly shown in blue and red. Right
panel: the pairs of photometric points from the g-band light curve in the left panel are shown as a hex-bin density plot where the darkness of the hex bin indicates the
number of points in that bin. The power law fit is shown as a green line. The method for calculating the structure function and the equation used to fit the structure
function are detailed in Section 2.4. In the case of this object, the fitting algorithm gives Ag = 0.105 and 0.102.gg = The points removed as outliers in the left panel
would only contribute m 0.25∣ ∣D > mag values.
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sophisticated model, such as the DRW model, improves quasar
selection; however, even that model may be too simplistic to
describe quasar variability across the range of timescales
probed by modern optical monitoring data (Mushotzky
et al. 2011; Zu et al. 2013; Graham et al. 2014; Kasliwal
et al. 2015).

To fit the power-law model to the observational data for each
object we used the likelihood function (Equation (4) in Schmidt
et al. 2010):

A L, , 5
j k

j k
,

,( ) ( ) g =

where Lj k, is the likelihood of observing one particular
magnitude difference mj k,D between two light curve points
separated by t .j k,D To determine the maximum likelihood of a
Gaussian distribution, as in the case of the noise and intrinsic
photometric variability, the likelihood function is:

m1

2
exp

1

2
. 6

i

N

i

i

i

2

2

( ) ( ) 
ps s

= -
D⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

The variance A t tj k j k
2 2

phot,
2

phot,
2( ( ) )s s s= - + +g repre-

sents the scatter around the line that we are fitting and includes
both intrinsic variability and noise. The jphot,s and kphot,s are the
measured photometric errors on the measurements. Both the
noise and the intrinsic photometric variability are assumed to
have a Gaussian distribution.

If there is no variability or measurement noise, the SF would
be equal to zero for all t.D The likelihood function now has the
form:

A t t

m m

A t t

1

2

exp
1

2
. 7

j k j k j k

j k

j k j k

2
phot,

2
phot,

2

2

2
phot,

2
phot,

2

( )

( )

( )

( )

( )
( )

 
p s s

s s

=
- + +

´ -
-

- + +

g

g

> ⎡⎣ ⎤⎦
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The product only counts those observations where j k,> so
there is no double counting and there are n n 1

2

( )- data pairs
where n is the number of observations. We require the fitting to
return physical values, A 0> and 0,g > so that the power-law
exponent and the average variability on a 1-year timescale are
positive. This is because we are fitting m∣ ∣D and t∣ ∣D and all
light curves will have some level of measurement noise,
causing A 0.> Non-variable stars generally have γ approach-
ing 0. The expected increasing deviation from the mean for
quasars with increasing t∣ ∣D will cause 0.g >

We found a strong degeneracy between A and γ when
maximizing the likelihood. To break this degeneracy, we
applied a Gaussian prior to the likelihood on A. With a typical
observing cadence of ∼1 year, the prior is centered on the
observed median m∣ ∣D value, A ,ˆ at 0.5 years t 1.5∣ ∣< D <
years and the standard deviation, ,As for those values. We place
no explicit prior on γ in the likelihood, but the requirement that

0g > functions as a flat prior. In addition to breaking the
degeneracy, this prior encourages the minimization routine to
converge on a realistic A value more quickly. The cadence of
the Stripe 82 data gives sufficient data points over this time
difference to support this constraint. We combine the log of the

likelihood function and the prior as follows:
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where N is the number of terms in the sum and P(A) is the prior
on A.
The posterior probability is maximized, by minimizing13

Equation (8) (the negative of the posterior probability) for each
object in each of the five bands, so that for each object there are
now ten variability parameters that can be used for classifica-
tion: Au, ,ug Ag, ,gg Ar, ,rg Ai, ,ig Az, and .zg Figure 3 shows an
example for the g-band variability parameters; note that the
different redshift ranges are well mixed (but are largely distinct
from non-quasars) in this case. In practice, our implementation
of the likelihood method is biased (10%–20% in the best-fit
values) which becomes relevant when light curves are much
better sampled than those discussed here. An approach such as
that described in the appendices of Kozłowski et al. (2010) or
Hernitschek et al. (2015) would be more robust. However, for
the sake of this pilot investigation, our approach is more than
sufficient, particularly because any bias in the variability
parameters is the same for both selection by variability only,
and by combined color and variability selection.

Figure 3. Quasar and non-quasar training sets in variability parameter space for
the g-band observations. Note that, unlike in the color–color plots in Figure 1,
there are no distinct changes in the variability parameters as a function of
quasar redshift in this parameter space. This is advantageous because it allows
us to separate the quasars from the non-quasars in the variability space without
extreme changes in completeness at specific redshifts, as seen with color
selection. Non-quasars, such as stars and normal galaxies, are shown in orange
contours. Quasars are shown in cool colors as three redshift regions: low-
redshift (z 2.2;< shown as green contours and scatter points for outliers), mid-
redshift ( z2.2 3.5;< < shown as dark blue contours and scatter points for
outliers), and high-redshift (z 3.5;> shown as light blue dots).

13 Using Scipy’s Optimization package, Powell’s method:
scipy.optimize.fmin_powell
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We currently fit the SF to the multi-epoch data for all bands
separately to compare their performance in the NBC KDE
selection algorithm (see Section 3). However, there are several
ideas on how best to combine the observations in all five bands
to obtain one light curve and one SF to describe the overall
variability. These methods are complicated by differences in
how quasars vary in the different bands. For example, different
bands represent different distances in the accretion disk
resulting in a time lag between the bands and different
characteristic timescales.

As shown in Figure 4, there are different amplitudes of
variability in different bands. Additionally, Lyα absorption
obscures the true variability of quasars at high redshift. This is
quite apparent in the u-band (top left panel) where the
measured variability parameters for high-z quasars are caused
by the high photometric errors of the u-band dropouts. It is also
recognized that quasars become more luminous as they become
bluer (Schmidt et al. 2010, 2012) and that bluer quasars in

general are more variable (Vanden Berk et al. 2004; MacLeod
et al. 2010). Both of these effects must be taken into account
when combining observations to describe the overall varia-
bility. A further complication for LSST will be the non-
simultaneity of the observations in different bands. Thus,
proper treatment of the combined variability data is complex
and beyond the scope of this paper. For our purposes,
describing the variability in each band is sufficient, and we
therefore proceed with fitting the SF for each of the bands
separately.

2.5. Test Set and Training Sets

Now that we have described the data inputs to our algorithm
we can formally define the test and training sets. The test set
begins with all stellar morphology (objc_type 6== ) objects
on the SDSS Stripe 82 with observations in DR7. Restricting
our sample to point sources allows us to concentrate on the
improvements gained by combining colors and variability

Figure 4. All spectroscopically confirmed quasars shown in A vs. γ space in each of the SDSS bands, colored by redshift. Shown to demonstrate the difficulty
involved in combining the observations in all five bands to obtain one light curve and one structure function in order to describe the overall variability without
previously knowing the object’s redshift. Note how the distribution of points shifts with band and with redshift. In particular, A and γ values agree well in the g, r, and
i bands, but the large photometric errors in u and z bands artificially increase the apparent amplitude of the variability.
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without having to worry about the differences in color and
variability at redshifts and luminosities where the host galaxy
contributes significantly to these properties. This set of
observations was then limited by the following criteria:

40 R. A. 55 ,-  < <  g i 6.0,- < g 23.5,< i 22,<
0.5,gs < and 0.33.is < These cuts are intended to reduce

scatter due to high stellar density near the Galactic plane, high
dust obscuration, and non-astrophysical colors. Observations
with flags indicating poor photometry, such as those discussed
in Section 3.2 of Richards et al. (2002) were also excluded.
There are 1,163,174 objects with 49,274,136 observations that
meet these cuts.

Only objects where we had sufficient observations to calculate
variability parameters in all five bands and astrometric parameters
in u and g were included in the test and training sets.
Additionally, we require coadded colors u g1.0 9.0,- < - <

g r0.75 2.5,- < - < r i0.5 3.0,- < - < and i1.5- <
z 1.75,- < to constrain the parameter space for the NBC

KDE to limit the necessary computational time for objects with
unusually deviant colors. After these cuts, 916,587 objects
remain. These objects compose the cleaned data set. The test set
consists of the 903,366 sources from the cleaned data set that
have not been spectroscopically identified as quasars.

The quasar training set is formed from the 13,221 spectro-
scopically confirmed quasars in the MQC that have matches in
the cleaned data set. To keep computational time reasonable,
we select a subsample of 72,680 non-matches for the non-
quasar training set. As with our previous work (e.g., Richards
et al. 2009b), we note that the vast majority of these non-quasar
training set objects are not actually spectroscopically confirmed
to be non-quasars and thus there will be some level of
contamination as is discussed further in Section 3. We do not
explicitly include or exclude spectroscopically confirmed stars
or galaxies in the non-quasar training set as most of these were
selected as quasars (and found to be contaminants) and are thus
biased in their color-space distribution. In practice, when we
run the classification on the test set we include the training set
objects so that our catalog of candidate objects includes the
known quasars, making it easier to determine our completeness
of these sources.

3. NBC KDE ALGORITHM

Using training sets described in Section 2.5, classification of
the test set objects (based on parameters described in
Sections 2.3 and 2.4) was performed using NBC based on
applying KDE to select quasars; see Richards et al. (2004),
Gray et al. (2005), and Riegel et al. (2008). The algorithm takes
training sets of objects divided into quasars and non-quasars. It
creates an N-dimensional probability space for each of the
classes, where N is the number of parameters that describe each
type of object and the parameter space is normalized to give
equal weight to each parameter (Gray et al. 2005). A
probability density function (PDF) is constructed for each
class of objects using KDE, by representing each individual
object within a class by an N-dimensional Gaussian distribution
and summing together the result for each object. Using the
NBC KDE selection algorithm it is possible to combine all the
classification parameters (u g,- g r,- r i,- i z,- Au, ,ug Ag,

,gg Ar, ,rg Ai, ,ig Az, and zg ) and perform the classification
simultaneously considering all the characteristics to determine
if the object is a quasar or a non-quasar.

From this PDF, the probability of an unclassified object
being a quasar or non-quasar can be calculated, but first we
need an understanding of the real-world ratio of quasars to non-
quasars. When a new point is placed in the PDF, the probability
of it being a quasar or a non-quasar is weighted by its prior
probability. This prior is an expectation of how many of the
unknown objects are non-quasars. This weighting is an
application of Bayes’ Theorem:

P M D I
p D M I P M I

p D I
,

,
. 9( ∣ )

( ∣ ) ( ∣ )
( ∣ )

( )=

In Equation (9), Bayes’ Theorem (Bayes 1763; Ivezić
et al. 2014), D stands for data, M for model, and I for prior
information. This relates the posterior for the model based on
the likelihood given the data and a prior. The pair of multi-
dimensional weighted PDFs measures the probability of an
unknown object being a quasar or a non-quasar, while taking
into account the expected ratio of quasars to non-quasars, and
classifies it accordingly. Throughout this work we use a prior of
0.95, meaning that we expect 95% of the objects to be non-
quasars. The lower limit for the prior is determined by the
fraction of known quasars in the test set. In Richards et al.
(2009b) the ratio of quasar candidates to the test set was 2.6%.
We use a slightly lower prior to capture some of the quasars
that Richards et al. (2009b) did not. We assumed the prior to be
independent of position on the sky and magnitude. Changing
the prior by 1% does not change the number of quasar
candidates by 1% of the test set, but changes the number by
roughly 1% of the quasar candidates (Richards et al. 2015,
submitted).
The algorithm requires a bandwidth for each of the training

sets. The bandwidth controls the width of the kernel (a
Gaussian distribution in our case) used to build the KDE. It is
important to choose an optimal bandwidth when calculating the
KDE or the distribution will be too smooth (under-fit) or will
be too structured (over-fit)—in the same way as choosing an
incorrect bin size for a histogram. The optimal bandwidth was
found by performing leave-one-out cross-validation (leaving
one object out and using the remainder of the training set to
classify) over a range of bandwidths. We also refer to this as a
self test.
This process was repeated to find the optimal bandwidth

based on the product of completeness and efficiency.
Completeness is defined as the number of known quasars
correctly classified as quasars divided by the number of known
quasars. It is also referred to as sensitivity. Efficiency is defined
as the number of known quasars correctly classified as quasars
divided by the number of objects (known quasars and non-
quasars) classified as quasars. It is also referred to as purity.
Different metrics could be chosen depending on the desired
science and whether completeness is needed over efficiency,
but we use the product of completeness and efficiency as a
middle ground for this proof of concept. That is, an efficiency
of 85% and a completeness of 70% is considered a better
selection than efficiency of 99% and a completeness of 55%.
After an initial self-classification of the training set is done,

all those objects in the non-quasar training set that were
classified as quasars in the self test are removed. This process is
expected to remove the majority of quasars that may have
contaminated the non-quasar training set due to lack of prior
spectroscopic confirmation. This new “cleaned” non-quasar
training set is used for the final classification. This cleaning
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process is a single iteration process and is performed separately
for each of the classifications that we attempt below.

Having established the quasar prior probability, the quasar
training set, a “cleaned” non-quasar training set, and the
bandwidths for each of the training sets, we can proceed to
classification of the unknown sources (i.e., the test set).
Application of the NBC KDE algorithm results in each object
receiving a binary quasar versus non-quasar classification,
bifurcated at P M D I, 0.5.( ∣ ) = In the future, it may make
more sense to simply output a probability for each object to
facilitate combining this information with other data, but for the
sake of this pilot study, we have chosen to make a hard cut (but
in probability space rather than color space).

We explore which set of parameters (color, variability, or
both) produces the best results in Section 4, then we will apply
the algorithm to the test set to obtain a set of quasar candidates
in Section 5.

4. TESTING CLASSIFICATION PARAMETERS

Our goal is to establish whether combining color and
variability information in quasar selection is superior to using
just colors or variability alone. To accomplish this goal, the
NBC KDE algorithm was used in a series of self tests, which
consists of performing leave-one-out cross-validation on the
training sets (rather than on a test set). The object being
classified is not included in the training set and the process is
repeated for each object in the training sets. The classifications
returned by the algorithm are compared to the known
classifications of the objects to estimate the completeness and
efficiency of selection using those particular input parameters.

Section 4.1 uses the NBC KDE algorithm with the above
quasar and non-quasar training sets to perform a self test using
colors alone. This process serves as our basis of comparison: do
other parameters enable more robust quasar selection than
colors alone? In Section 4.2, we attempt variability-only
classification along with combined color and variability
classification. We then compare the results of these self tests.
This process reveals which variability (and color) parameters
yield the most robust classification.

4.1. Classification Using Color

Our first self test was performed using only the single-epoch
SDSS adjacent colors (u g,- g r,- r i,- i z- ) as inputs to
the algorithm. In practice, we chose a random epoch (meeting
our requirements for good photometric and astrometric data)
for each object. Using single epoch data is the most fair
comparison for the majority of the objects in the SDSS
footprint and we can use this as a control to compare how our
method improves selection by adding variability. We could
have chosen the “best” epoch for optimal classification by
single-epoch colors alone; however, as we are testing the
improvement from adding variability to the color classification,
any epoch with quality data will serve.

The results of the classification are shown in Table 2, row 1,
which indicates that these parameters are successful at not
classifying non-quasars as quasars, at the expense of missing
more than 37% of known quasars. Indicative of the well-known
problem of separating high-redshift quasars from the locus of
moderate-to-cool temperature stars (e.g., Richards et al. 2002),
most of these missing quasars are at high redshift as can be
seen from Figure 5. On the other hand, low-redshift quasars,

which can be selected robustly by traditional color cuts, are
also easily identified using the NBC KDE algorithm as shown
in Richards et al. (2004).
The completeness of our single-epoch selection is distinctly

different from Richards et al. (2006): it is seemingly too high at
low-z (given our restriction to point sources) and too low at
high-z. For low-z this merely reflects the completeness of point
sources. At high-z it is important to realize that in Richards
et al. (2006) the purpose was to perform as complete a selection
as possible, with efficiency as low as 50%, using hard color
cuts. We will discuss how complete our selection is for all
quasars, including extended sources, in Section 8.
In the SDSS Stripe 82 region, where we will conduct our

experiments on variability selection of quasars, we are able to
combine multiple epochs of imaging data to produce more
accurate color measurements of the quasars (as discussed in
Section 2.1). Thus, we perform a second self test using
coadded colors for each object. Table 2, row 2 demonstrates
that the use of coadded colors yields a small improvement in
the efficiency of the sample, but a large improvement in the
completeness—now being 93% complete. Figure 5 shows that
most of this improvement comes from the recovery of high-
redshift quasars; smaller photometric errors make it easier to
distinguish the high-redshift quasar distribution from stars.
However, there is still a dip at z 2.8~ where even the coadded
colors do not enable better than 75% completeness.

4.2. Choosing Optimal Classification Parameters

Variability alone can be the basis for a robust quasar
classification (e.g., Schmidt et al. 2010; Butler & Bloom 2011;
MacLeod et al. 2011), so we next perform a self test by
applying KDE to the pair of variability parameters for each
band (as defined in Section 2.4) and then on combinations of
variability parameters from the multiple bands. The results are
shown in Table 2 and Figure 5. It is interesting to compare the
performance of the bands because each represents different
distances from the center of the accretion disk, different
characteristic timescales, and different (redshift-dependent)
peak amplitudes.
Particularly important is that variability selection has a

higher completeness in the range z2.6 3.0< < than do colors.
There are no significant trends with redshift in the A–γ space in
the g, r, and i bands, so the quasars can be separated out from
the non-quasars in the variability space without completeness
issues at specific redshifts (unlike the dramatic drops seen for
color-only selection). The completeness drops off gradually
with higher redshift, which is a result of changes in observed
magnitude, signal-to-noise ratio, and timescale of variability in
the observer’s frame. Combining g and r, r and i, and g, r, and
i, we find similar trends as using just the variability parameters
from a single band, with marginally higher completeness (and
efficiency) at all redshifts.
Selection by u- and z-band variability performs much worse

than both coadded and single epoch colors. The u band is
strongly influenced by Lyα forest absorption of the (variable)
quasar continuum at high redshift, thus suppressing the signal-
to-noise ratio. This results in discordant variability parameters
for quasars that are quite apparent in Figure 4. The lower
performance of the z-band is likely due to the lower signal-to-
noise ratio of the photometry and thus the larger scatter of the
variability parameters as seen in Figure 4. These discrepant
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values increase the probability of high-redshift quasars being
classified as stars.

While variability selection produces more consistent results
with redshift than color selection, we find that, at many
redshifts, color selection is still superior. We thus consider
coadded colors with combinations of variability parameters
from single and multiple bands. The results are shown in
Table 2 and Figure 6. Adding variability parameters from just

one band significantly improves the selection, especially the
high signal-to-noise ratio bands g, r, and i. The addition of the
u- and z-band variability to colors still fails at z ∼ 2.8 because
the variability signal is not strong enough (as demonstrated in
Figures 4 and 5) to overcome color selection bias.
We graphically summarize the results of the self tests in

Figure 7. Quasar completeness as a function of redshift is
shown in the left panel, quasar completeness as a function of

Table 2
NBC KDE Results—Self Test Non-quasar and Quasar Fraction

Self Test Non-quasars As Non-quasars Quasars As Quasars

Correct Total Fraction Correct Total Fraction

Single epoch colors 68611 69566 0.986 8232 13221 0.623
Coadded colors 69474 69738 0.996 12353 13221 0.934
u variability 70970 71936 0.987 5550 13221 0.420
g variability 69489 70040 0.992 11138 13221 0.842
r variability 69998 70476 0.993 11137 13221 0.842
i variability 69935 70397 0.993 10782 13221 0.816
z variability 70665 71372 0.990 5403 13221 0.409
g and r variability 69777 70054 0.996 12060 13221 0.912
r and i variability 69714 70050 0.995 11933 13221 0.903
g, r, and i variability 69728 70034 0.996 12150 13221 0.919
Coadded colors; u variability 69644 70077 0.994 12311 13221 0.931
Coadded colors; g variability 69822 70114 0.996 12739 13221 0.964
Coadded colors; r variability 69912 70229 0.996 12741 13221 0.964
Coadded colors; i variability 69880 70157 0.996 12634 13221 0.956
Coadded colors; z variability 69682 69990 0.996 12359 13221 0.935
Coadded colors; g and r variability 69663 70081 0.994 12816 13221 0.969
Coadded colors; r and i variability 69658 70096 0.994 12800 13221 0.968
Coadded colors; g, r, and i variability 69948 70108 0.998 12626 13221 0.955

Note. Fraction of non-quasars correctly classified as non-quasars and quasars correctly classified as quasars from the leave-one-out cross-validation of the training sets.
The non-quasar total is different in the different rows because the non-quasar training set is “cleaned” before it is used for the final classification, as described in
Section 3. The bandwidths are chosen to optimize the product of completeness and efficiency.

Figure 5. Fraction of quasars correctly classified as quasars (completeness). These panels demonstrate that we are able to separate the quasars from the non-quasars in
the variability space without extreme changes in completeness at specific redshifts. In both panels the gray line shows the number of quasars in each bin (right axis)
and light blue (single epoch) and peach (coadded epochs) histograms show the completeness of color-only selection (left axis, Section 4.1). Note the catastrophic loss
of high-z quasars from single-epoch colors and the incompleteness at z 2.8~ even for coadded colors. We also show classification from variability only: single bands
(left panel) and combinations of multiple bands (right panel). The g, r, and i bands are shown as blue, green, and orange lines, respectively. There are no dramatic
drops in the g-, r-, or i-bands variability at distinct redshifts, just a gradual decline with increasing redshift, which is related to observed magnitude, signal to noise
ratio, and timescale of variability in the observer’s frame. The overall completeness using variability alone is not as high as coadded colors alone at low redshifts, but is
more successful than single-epoch colors alone at high redshifts.
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i magnitude in the center panel, and quasar efficiency as a
function of i magnitude in the right panel. For colors alone,
both coadded and single epoch, there are regions of color
space where the quasar training set and non-quasar training
set overlap, resulting in redshift regions with poor
completeness. Variability alone, as demonstrated by the r-
band selection, does not have these redshift trends, but has a
lower efficiency than coadded colors at all other redshifts.
The addition of coadded colors to the r-band variability
information helps to improve upon the colors alone at all
redshifts, but in particular in the dips at z 2.7~ and z 3.5.~
Using coadded colors together with variability in multiple
bands improves the classification even further (e.g., compare
the solid green lines to the dotted green lines). The left panel
of Figure 7 shows that adding the i-band variability makes
things worse (possibly because the i-band has a lower
signal-to-noise ratio than g or r given that quasars generally
have blue spectral energy distributions; SEDs), but note that
there are relatively few high-redshift objects and the middle

panel shows that the loss of completeness is coming from
very faint objects. Moreover, the right panel shows that
adding the i-band variability improves the efficiency. Table 3
shows that while adding the i-band variability reduces the
completeness by 1%, it compensates by increasing the
efficiency by 2%.
These self tests of the quasar and non-quasar training sets

validate our hypothesis that the most successful option is a
combination of coadded colors and variability. No combination
of colors and variability was highest in both completeness and
efficiency; however, the combination of coadded colors and
both g and r variability parameters give the most robust
selection with a combined product of completeness and
efficiency of 93.88% (see Table 3) and was consistent in
completeness across all redshift values (see Figure 6). As such,
for our analysis of the test set in the next section, we have
adopted coadded colors with both g and r variability
parameters as our basis set.

Figure 6. Fraction of quasars correctly classified as quasars using coadded colors and variability, as a function of redshift. Notice the improved completeness near
redshifts 2.7 and 3.5, where the quasars and non-quasars overlap in color space, with the addition of variability parameters. Shown are single bands of variability
combined with coadded colors (left panel) and combinations of multiple bands of variability combined with coadded colors (right panel). In both panels the gray line
shows the number of quasars in each bin (right axis).

Figure 7. Comparison of self tests using different combinations of color and variability. These panels demonstrate that the combination of color and variability gives
the best results for completeness and efficiency as a function of redshift and magnitude with more details in the text. Shown are the completeness (known quasars
classified as quasars divided by known quasars) as a function of redshift (left panel), completeness as a function of coadded i-band magnitude (center panel), and
efficiency (known quasars classified as quasars divided all objects classified as quasars) as a function of coadded i-band magnitude (right panel). The gray line shows
the number of quasars in each bin (right axis).
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5. BUILDING A QUASAR CANDIDATE CATALOG

Now that the most efficient set of parameters are chosen, in
Section 5.1 the algorithm is applied to the test set using the full
quasar training set. Finally, in Section 5.2 we test a process
where the algorithm is used to perform simultaneous
classification and redshift estimation. Specifically, the test set
is classified using a series of quasar training sets that only
contains quasars from limited redshift ranges.

5.1. Classifying the Test Set

In the previous section we identified coadded colors
combined with both g and r variability as producing the best
classification for the training set objects. We now apply the
selection to the test set. The NBC KDE algorithm was used to
perform an 8D classification (u g,- g r,- r i,- i z,- Ag, ,gg
Ar, and rg ), using the same bandwidths used during the self
tests and an identical prior. The objects identified as quasar
candidates, with P Q d 0.5,( ∣ ) > are listed in the catalog
(available online) which is described in more detail in
Section 7.

The results of the classification are shown in Figure 8. We
will discuss the new candidate quasars, their characteristics,
and contaminants in Sections 7 and 8. In general, the candidate
quasars (green contours) closely mirror the distribution of the
known quasars (orange contours) and extend slightly beyond in
the parameter space. The incorrectly classified quasars lie in the
area where quasars and non-quasars overlap in color and
variability space. When comparing to the quasar distribution as
a function of redshift shown in Figure 1, the candidate quasars
extend beyond the known quasars into mid-redshift and high-
redshift regions of color space. The candidate quasars have a
higher density in the areas overlapping the non-quasars (gray
contours), than the known quasars. This could be caused by the
variability parameters selecting quasars that were missed by
color selection because they are hidden in the stellar locus, or
stellar contaminants in our selection. There are also some new
candidates in the bluest corner of g r- versus r i- color
space which are likely white dwarf contaminants that we will
attempt to purge in Section 7.

5.2. Classification using Redshift Bins

Quasar colors depend on redshift as shown in Figure 1. As
such, it is possible to identify quasars while simultaneously

estimating their redshifts (e.g., Suchkov et al. 2005; Bovy
et al. 2012). We test the extension of our method in a similar
manner simply by limiting the quasar training set to a narrow
redshift region. By doing so, we are able to select quasars with
colors similar to other quasars of that redshift, thereby
simultaneously providing a rough estimate of the redshift.
To accomplish this, the full quasar training set (see

Section 2.5) was divided into 18 separate training sets by
redshift: non-overlapping redshift bins from 0.4 to 4.0 with a
bin width of 0.2. The quasars outside each redshift bin were
added to the non-quasar training set. A handful of quasars that
were significant outliers (5σ) from the modal color in each bin
were removed from the quasar training set. These outliers could
be caused by errors in the photometry and/or heavy dust
reddening. Including them caused us to find objects with those
colors that are not really quasars or are quasars at a different
redshift.
As above, a self test was performed on the training sets for

each redshift bin to find the optimal bandwidths. Specifically,
the redshift-bin training sets were used to classify the full
quasar training set (13,221 quasars spanning the full redshift
range). The results of these self tests are shown in Table 4 and
Figures 9 and 10. These show that the completeness of quasar
classification (both identifying known quasars as quasars and
also as being in the correct redshift bin) is generally better than
75%. The contamination (here quasars from the wrong redshift
bin being selected) is typically less than 10%.
Of the 13,221 training set quasars, 12,535 were classified in

at least one bin (94.8% overall completeness). These objects
are shown as a density plot in Figure 10 in z 0.2D =
photometric redshift bins. The regions of misclassification at
spectroscopic redshifts ∼0.75 and ∼2.1 stem from degen-
eracies in color-redshift space.
With the self test completed, we finally classify the test set

described in Section 2.5, the same that was classified in
Section 5.1. For each of the non-overlapping redshift bins from
0.4 to 4.0, each object in the test set is returned as either a
quasar candidate or a non-quasar candidate. If it is found to be a
quasar candidate, we calculate the quasar probability (in
addition to the initial binary classification). Many objects were
found to be quasar candidates in several bins and the
classification probability in each bin was calculated. Results
of the classification are given in Table 5; Figure 11 shows the
results of the classification in color and variability parameter

Table 3
NBC KDE Results: Self Test Completeness and Efficiency

Self Test Variability Only Single Epoch Colors w/Variability Coadded Colors w/Variability

Completeness Efficiency Completeness Efficiency Completeness Efficiency

Color only L L 0.6226 0.8960 0.9343 0.9791
u variability 0.4198 0.8517 0.6934 0.9289 0.9312 0.9660
g variability 0.8424 0.9529 0.8372 0.9149 0.9635 0.9776
r variability 0.8424 0.9588 0.8583 0.9165 0.9637 0.9757
i variability 0.8155 0.9589 0.8126 0.9235 0.9556 0.9785
z variability 0.4087 0.8843 0.7158 0.9214 0.9348 0.9757
g and r variability 0.9122 0.9775 0.8115 0.9758 0.9694 0.9684
r and i variability 0.9026 0.9726 0.8076 0.9734 0.9682 0.9669
g, r, and i variability 0.9190 0.9754 0.8573 0.9761 0.9550 0.9875

Note. Completeness (known quasars classified as quasars divided by known quasars) and efficiency (known quasars classified as quasars divided all objects classified
as quasars) for each of the self tests described in Section 4.2. This indicates that the most successful option is a combination of coadded colors and variability, but no
particular variability bands stood out when in combination with colors.
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space, as in Figure 8. We discuss the difference in this selection
and the selection in Section 5.1 in Section 7. An analysis of the
quasar candidates is performed in Section 8.

6. REDSHIFT ESTIMATION

In this section we will improve on the accurate, but not
precise, redshift estimation of Section 5.2 and compute
photometric redshifts for the quasar candidates. First, we will
describe the astrometric information (Section 6.1) and near-
infrared colors (Section 6.2), that will be used in addition to
optical colors (Section 2.3). We combine these inputs to
calculate photometric redshifts using the method described in
Weinstein et al. (2004). We compare the robustness of our
different redshift estimates in Section 6.3.

6.1. Astrometry

In addition to colors, our analysis will make use of
astrometric measurements of quasars (Kaczmarczik
et al. 2009). Light rays from extraterrestrial sources are bent
according to Snell’s law as they enter the Earth’s atmosphere
from the vacuum of space. A celestial source observed from the
Earth will appear higher in the sky than it actually is, unless it is
at the zenith. The amount of this deflection depends on the
index of refraction in the air and the photon’s angle of
incidence. Since the index of refraction of air is a function of
wavelength, shorter wavelength photons are bent more than
longer wavelength photons. This effect is known as differential
chromatic refraction (DCR).

Figure 8. Color and variability parameter space plots showing the results of test set classification using a single quasar training set covering the full quasar redshift
range (Section 5.1). These panels demonstrate that the incorrectly classified quasars lie in the area where quasars and non-quasars overlap in color and variability space
and that the candidate quasars closely mirror the distribution of the known quasars and extend slightly beyond in the parameter space (including a region known to be
inhabited by white dwarfs in the blue corner of the upper right panel). Colors left panel: u g- color vs. g r,- colors right panel: g r- vs. r i,- variability left
panel: Ag vs. ,gg and variability right panel: Ar vs. .rg Objects in the test set classified as non-quasars are shown as gray contours. Levels for contours in Figures 8 and
11: gray: colors—95%, 90%, 80%, 60%, 40%, 20%, variability—98%, 95%, 90%, 80%; green: colors—90%, 80%, 60%, 40%, 20%, variability—90%, 80%, 60%;
orange: 90%, 80%, 60%, 40%, 20%, quasar candidates that are not spectroscopically identified are shown as green contours and scatter points for outliers,
spectroscopically identified quasars classified as quasars are shown as orange contours and scatter points for outliers, and spectroscopically identified quasars
incorrectly classified as non-quasars are shown as purple dots. The red dashed line in the upper right panel is the white dwarf cut described in Equation (12).
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The automated corrections for the DCR effect to the SDSS
astrometry are computed as a function of a broad-band flux
ratio. The DCR for any given object depends on the effective
wavelength of the bandpass (the convolution of the object’s
SED and the filter transmission curve) of the object within a
given bandpass, which in turn depends upon the filter’s
transmission properties and on the distribution of the source’s
flux within the bandpass. A pure power-law (without emission
lines) changes the effective wavelength in a correctable way,
but the DCR corrections become anomalous when there are
emission lines. For example, adding an emission line on the
blue side of the filter makes the effective wavelength bluer,
while adding an emission line on the red side makes the

effective wavelength redder. For emission line objects (like
quasars), the effective wavelength can be very different from
the assumed power law, changing by as much as 150Å in the
u-band (Kaczmarczik et al. 2009). The difference between the
expected and observed astrometric displacements due to DCR
enables the distinction of quasars and non-quasars in addition
to providing an additional source of information about the
redshift of the object. We examine the differential DCR offset
(along the parallactic angle; Filippenko 1982) in the u-band
(auPar) and in the g-band (agPar); the effect is too small to
measure in r, i, and z given the astrometric errors of our data
and the smaller DCR at longer wavelengths.
Kaczmarczik et al. (2009) reduced the statistical error in the

astrometric offsets of individual objects by normalizing the
DCR offsets at multiple epochs (each with different airmass) to
some fiducial airmass. Here we take a different approach that
we find to be more robust. To first order, differential refraction
is linear in Ztan ,( ) where Z is the zenith angle, with zero
intercept (no DCR at airmass of one at the zenith). Thus, a plot
of multiple epochs of noisy quasar DCR measurements should
cluster around a line with a fixed slope (for a given bandpass
and object redshift) with zero intercept.
In a manner similar to our SF fitting above, we use

minimization of a log likelihood function to calculate the
astrometric parameters in the u and g band. We fit the data with
a straight line that runs through the origin and parameterize the
DCR simply by the slope of the line. The light curve is cleaned
of outliers in the same way as was done for the variability
parameter calculation. We require at least 10 good observations
in each band and at least one observation with airmass in the r
band greater than 1.5, which is Ztan 1.1( ) ~ —contrary to the
variability analysis above since here higher airmass means a
larger DCR signal despite greater extinction. We weight each
observation by the r-band airmass since higher airmass
observations are more rare and should have greater discrimi-
natory power. Further work could be performed in the future to
determine if this weighting scheme is indeed optimal.

Table 4
NBC KDE Results: Test Set Classification of Spectroscopically Confirmed Quasars

Redshift Bin Number Inside Redshift Bin Number Outside Redshift Bin

Correct Total Fraction Correct Total Fraction

z0.4 0.6< 67 84 0.798 12788 13137 0.973
z0.6 0.8< 368 494 0.745 11855 12727 0.932
z0.8 1.0< 662 870 0.761 11704 12351 0.948
z1.0 1.2< 891 1043 0.854 11368 12178 0.934
z1.2 1.4< 949 1097 0.865 11307 12124 0.933
z1.4 1.6< 1100 1262 0.872 11147 11959 0.932
z1.6 1.8< 1085 1191 0.911 10766 12030 0.895
z1.8 2.0< 851 1078 0.790 11343 12143 0.934
z2.0 2.2< 1036 1278 0.811 11150 11943 0.934
z2.2 2.4< 1151 1322 0.871 10349 11899 0.870
z2.4 2.6< 996 1084 0.919 10572 12137 0.871
z2.6 2.8< 535 782 0.684 11866 12439 0.954
z2.8 3.0< 469 540 0.869 12093 12681 0.954
z3.0 3.2< 340 435 0.782 12377 12786 0.968
z3.2 3.4< 223 298 0.748 12587 12923 0.974
z3.4 3.6< 103 119 0.866 12933 13102 0.987
z3.6 3.8< 107 111 0.964 12966 13110 0.989
z3.8 4.0< 61 65 0.939 13026 13156 0.990

Note. Fraction of quasars inside the redshift bin correctly classified as inside the redshift bin and quasars outside the redshift bin correctly classified as outside the
redshift bin from the leave-one-out cross-validation of the training sets, using the training sets divided into redshift bins.

Figure 9. Classification of a test set of quasars with known spectroscopic
redshifts, using the training sets divided into redshift bins. Dark blue indicates
all quasars in that bin, light blue indicates quasars classified with the correct
redshift. The ratio of the two is the completeness of quasars inside the
redshift bin.
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Figure 12 shows an example of this process for a single
quasar with the u-band data in blue and the g-band data in
green. These astrometric data can be used to constrain
photometric redshifts for quasars in surveys where there are
many observations and/or observations at high airmass that can
provide constraints on the DCR slope. See Figure 7 of
Kaczmarczik et al. (2009). We will use the astrometric
parameters auPar and agPar in Section 6.3 when calculating
the photometric redshifts of the quasar candidates.

In the left panel of Figure 13 we plot all of the empirical
DCR slopes for the quasar training set. The right panel of
Figure 13 shows that non-quasars and quasars have somewhat
different signals in this parameter space. We have only
included point sources in this analysis, but the process should
work for normal star-forming galaxies too, as the 4000Å break

can produce significant astrometric shifts relative to the SED
model assumed in the astrometric solution. In this pilot
investigation, we have not used the DCR effect for classifica-
tion; however, the information provided by DCR would add yet
another piece of information that could be used to refine the
classification probabilities of the objects in the test set. For
example, objects with large negative values of auPar are
(empirically) more likely to be non-quasars than quasars.

6.2. VISTA Hemisphere Survey

While we select objects only using optical imaging data, we
can make use of near-IR (NIR) photometry to improve our
photometric redshift estimates. The VISTA Hemisphere Survey
(VHS) is a near-infrared survey with coverage in the southern

Figure 10. Comparison of spectroscopic redshift to the bin into which known quasars were classified with the highest probability. Left panel: spectroscopic redshift
vs. the most probable redshift bin. Right panel: histogram of zD (the most probable redshift bin minus the spectroscopic redshift). Only 5.6% of the quasars have

z 0.5∣ ∣D > .

Table 5
NBC KDE Results: Test Set Classification with Redshift Bins

Redshift Bin QSO Candidates Known QSOs Returned

All qso_prob > 0.8 Known QSOs Returned Fraction qso_prob > 0.8 Fraction

z0.4 0.6< 2925 380 84 67 0.798 46 0.548
z0.6 0.8< 3433 801 494 367 0.743 293 0.593
z0.8 1.0< 3590 767 870 671 0.771 332 0.382
z1.0 1.2< 4775 1920 1043 883 0.847 567 0.544
z1.2 1.4< 6238 2981 1097 945 0.861 656 0.598
z1.4 1.6< 5543 2237 1262 1097 0.869 754 0.598
z1.6 1.8< 7838 3516 1191 1083 0.909 740 0.621
z1.8 2.0< 5931 2585 1078 840 0.779 574 0.533
z2.0 2.2< 5195 1948 1278 1034 0.809 582 0.455
z2.2 2.4< 4162 2354 1322 1146 0.867 895 0.677
z2.4 2.6< 4540 2477 1084 993 0.916 832 0.768
z2.6 2.8< 3023 1028 782 524 0.670 327 0.418
z2.8 3.0< 2246 1295 540 465 0.861 410 0.759
z3.0 3.2< 1390 753 435 334 0.768 260 0.598
z3.2 3.4< 1228 644 298 223 0.748 181 0.607
z3.4 3.6< 1122 671 119 102 0.857 99 0.832
z3.6 3.8< 596 399 111 106 0.955 106 0.955
z3.8 4.0< 514 348 65 60 0.923 58 0.892

Total 32108 20962 13153 10940 0.831 7712 0.586

Note. Classification of the full test set of objects, using the training sets divided into redshift bins. Total will not be a sum of the above rows because many objects
were classified in multiple bins.
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hemisphere, including the full Stripe 82 footprint. The second
VHS public data release (VHSDR2) was made available on the
VISTA Science Archive (VSA)14 in 2014 April. These data
include three bands J, H, and Ks, with (Vega) magnitude limits
of J 20.2,= H 19.3,= and Ks=18.2 (McMahon et al. 2013).
Using the Rayleigh criteria, the surveys were matched at 1 0
(Parejko et al. 2008): 48% of the quasar candidates had
matches in all three bands. It would be beneficial to calculate
photo-z estimates for the remaining non-detections to put
constraints on the quasar SED, but that is beyond the scope of
this work.

6.3. Photometric/Astrometric Redshifts

Empirical photometric redshifts (Richards et al. 2001) were
calculated for all of the objects that were found to be potential
quasars in Sections 5.1 or 5.2. The algorithm is described in
detail in Weinstein et al. (2004) and essentially involves least-
squares fitting (without error weighting) between the candidate
quasar colors and the mean (sigma clipped) colors of quasars as
a function of redshift. The covariance matrix used in the
process was calculated using the quasars with known spectro-
scopically determined redshifts. The quasars are binned by
redshift in bins of width 0.02. The mean color-vector and the
color covariance matrix is found for the quasars in each redshift

Figure 11. Same as in Figure 8 (color and variability space plots showing the results of test set classification), but using redshift bins (described in Section 5.2). In the
bottom panels, we find that the selection in variability parameter space shows no noticeable difference to Figure 8, which is not surprising as Ag vs. gg and Ar vs. rg
have no strong redshift trends. However, there are slight differences in color space (top panels). We discuss these further in Section 7.

14 http://horus.roe.ac.uk/vsa/index.html
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bin; see Figure 4 of Richards et al. (2015, submitted). For each
of the quasar candidates, we calculate how “far” its colors are
from these calculated mean colors and convert this information
into a probability distribution as a function of redshift bin, as
shown in Equation (5) of Weinstein et al. (2004). The peak of
the probability distribution is reported as the photometric
redshift and the confidence is calculated by integrating under
the curve down to a threshold. A few examples of photometric
redshift PDFs are shown in Figure 14.

First, the photometric redshift was calculated using SDSS
adjacent colors (u g,- g r,- r i,- i z- ). The mean colors
were calculated using all MQC objects with known spectro-
scopic redshifts (i.e., not just the Stripe 82 quasars) using
coadded photometry when available. We did this to improve
the constraints on the photometry for high-redshift quasars.
Those objects without coadded photometry have larger
photometric errors, but the increase in the number of objects
overcomes the noise. The color-based photo-z PDF of 4
representative objects is shown in green in Figure 14. The
13,419 quasars on Stripe 82 with spectroscopic redshifts are
shown in Figure 15 (top left panel). Of these objects, 5843
(43.5%) have a calculated photometric redshift within 0.1 of
the spectroscopic redshift and 10,201 (76.0%) are within 0.3, as
seen in Figure 16. The quasars around redshift 0.8 and 2.2 have
particularly poor photometric redshifts because of a color-
redshift degeneracy. This is described in detail in Section 4.2.3
of Weinstein et al. (2004).
Next, a redshift based on the astrometric data (the

astrometric redshift) was calculated using the parameters
described in Section 6.1. The mean vector and the covariance
matrix were calculated using auPar and agPar, using the same
method as for the SDSS adjacent colors. The astrometric
redshift PDF is shown in orange in Figure 14. The 13,028
quasars on Stripe 82 with spectroscopic redshifts and for which
we were able to calculate astrometric redshifts are shown in
Figure 15 (top right panel). This process gives poorer redshift
estimates than the SDSS photometric redshifts, but the purpose
is to break degeneracies in the photometric redshifts by
combining photometric and astrometric information. That is,
the astrometric redshift serves as an informative prior.
Next, the astrometric redshift PDFs and the photometric

redshift PDFs are combined using weighted averages in a
similar manner as Carrasco Kind & Brunner (2014)
(Section 3.1.2 and Equation (7)) to make astro-photometric
redshifts. Specifically, we have combined the PDFs by adding
rather than multiplying in order to enable a relative weighting
of the two PDFs. In future work, we will consider a
multiplicative joining of the data with smoothing to provide
relative weighting. The colors curve is given five times the

Figure 12.Measured astrometric offset along the parallactic angle as a function
of Ztan .( ) Shown is SDSS J013417.81–005036.2, a redshift 2.26 quasar from
SDSS Stripe 82, the same object shown in Figure 2. This quasar is shown as an
example representative of the data set. Each point refers to a different
observation of this object, at a different airmass. The astrometric accuracy is
∼0.03 arcsecs for g 20.0,< but up to 0.1 arcsecs for g 22.0~ (Pier
et al. 2003). u-band observations are shown in blue, with those points that were
outliers removed from the light curve in Figure 2 are shown in red. g-band
observations are shown in green, with outliers removed from the light curve
shown in orange. The fits, shown as solid blue and green lines, have a y-axis
intercept of zero. For this quasar, the slope of the line (offset along the
parallactic angle) in the u-band (auPar) is −0.055 and g-band (agPar) is 0.105.
The astrometric redshift is found to be 2.57.

Figure 13. Slope of the line (offset along the parallactic angle) with respect to redshift in the u-band (auPar) and g-band (agPar) as a function of redshift for the
quasar sample (left panel) and as a function of magnitude for non-quasars (right panel). Left panel: while the changes in these astrometric parameters are not as strong
as the changes in color with redshift, they provide another source of redshift information. Right panel: the differences between the distributions in the left panel and
right panel can aid in the separation of quasars from non-quasars. See Section 9. For example, objects with large negative values of auPar are more likely to be non-
quasars than quasars.
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weight of the astrometry curve chosen based on empirical
experiments with different weights. The resulting curve is
shown in Figure 14 in purple. When the photometric redshifts
returned by the colors alone are inconsistent with the spectro-
scopic redshifts, the correct redshift is generally one of the
secondary peaks in the color-based PDF. The astrometric-
redshift PDF generally has a plateau at one end of the redshift
range or several large peaks. When the two PDFs are
combined, it pulls out the correct peak in the color-based
PDF as the best estimate of the redshift. The 13,028 training set
quasars in Stripe 82 with spectroscopic redshifts and
astrometric values are shown in Figure 15 (bottom left panel).
Of these objects, 6717 (51.6%) have a calculated astro-
photometric redshift within 0.1 and 10,010 (76.8%) are within
0.3, as seen in Figure 16.

Finally, for the 17,321 quasar candidates with matches to the
VHS catalog (about 48%) (see Section 6.2) the photometric

redshift was calculated using the SDSS and VHS adjacent
colors (u g,- g r,- r i,- i z,- z J,- J H,- H K- ). The
9244 quasars on Stripe 82 with spectroscopic redshifts and
matches to VHS data are shown in Figure 15 (bottom right
panel). Of these objects, 4951 (53.6%) have a calculated
photometric redshift within 0.1 of the spectroscopic redshift
and 7250 (78.4%) are within 0.3, as seen in Figure 16.
Figure 16 demonstrates that adding either NIR colors or

astrometric information significantly improves the redshift
estimates over using only optical colors. Comparison of the
continuously determined redshifts versus the discrete redshift
binning from Section 5.2, suggests that the binning method is
somewhat more accurate (in terms of having fewer outliers),
but not as precise as the astro-photometric redshifts or optical
+NIR photometric redshift.
We graphically summarize the quality of the photometric

redshifts in Figure 17 by showing the distribution of true
redshifts within a given photometric redshift bin. The
photometric redshift bins were chosen to match those of the
Richards et al. (2006) quasar luminosity function (QLF). It will
be necessary to correct for such photometric redshift errors
before determining the QLF in Section 8.3. We find that objects
with photometric redshifts of z 1.25~ and z 3.25 are~
particularly robust, whereas the z 0.85~ objects are often
mistaken for z 2.2.~ This is caused by degeneracies in color-
redshift space. As shown in Figure 1 of Richards et al. (2001),
the colors of particular quasars can fall within the 1s
distribution of the color-redshift relation at many redshifts.
Using all four SDSS colors decreases the areas of degeneracy
and adding IR colors or astrometry decreases them still further.
The degeneracies found in this work are similar to those
described in Section 3.4 of Richards et al. (2001).
Overall, we find that optical+NIR magnitudes can improve

the photometric redshift accuracy; however, with astro-
photometric redshifts we can surpass the improvements due
to NIR data alone.

7. CATALOG

From the classification test set, described in Section 2.5, we
present a FITS catalog of the 36,569 objects classified as
quasars in either Section 5.1 or 5.2. The number of objects and
their origin (5.1 or 5.2) is summarized in Table 6 and a
description of the columns in the binary FITS catalog table are
provided for reference in Appendix. The catalog is available
online.
Another Bayesian selection method using optical and mid-

infrared (MIR) colors (Richards et al. 2015, submitted) was
able to clean out contaminating bright stars using some simple
color cuts. We similarly use MIR color cuts to clean bright stars
out of our final candidate list. To do so, we matched the quasar
candidate catalog to the WISE ALLWISE data release.15 Of our
candidates, 19,720 (53.9%) had matches in both W1 and W2
(AB magnitudes). For these objects, we made the following
cuts:

i 19.5 10( )<
i W W5.5 1 2 19.5 11( ( ) ) ( )< - - +

following Richards et al. (2015, submitted) and using the
coadded i magnitude. This process identified 573 candidates
that are flagged as likely stellar contaminants in the catalog as

Figure 14. Four selected example quasars demonstrating the photometric
redshift probability function using the SDSS colors (green), astrometry
(orange), and astro-photometric (purple). The expectation value of the SDSS
colors PDF is shown as a vertical green line and the peak of the astro-
photometric PDF is shown as a vertical purple line. The spectroscopic redshift
is shown as a vertical black line. The colors curve is given five times the weight
of the astrometry curve, then the two are added, and finally renormalized to
create the purple curve. The top two panels demonstrate how, when the
photometric redshifts returned by the colors, are inconsistent with the
spectroscopic redshifts, the colors often return the spectroscopic redshift as
one of the secondary peaks in the PDF. The astrometric PDF generally has
several large peaks or an extended plateau. When the two PDFs are combined it
often pulls out the correct peak in the colors PDF. In the top panel, the tertiary
peak of the astro-photometric PDF correctly identifies the spectroscopic
redshift for a low-redshift quasar where colors alone failed; a different
weighting of the colors and astrometry PDFs might have picked up the correct
peak. In the second panel, the primary peak of the astro-photometric PDF
identifies the spectroscopic redshift for a high-redshift quasar where colors
alone failed. The third panel shows how the astrometry PDF helps to identify
which peak in the colors PDF is correct. The bottom panel shows how a broad
plateau in the colors PDF converges to the spectroscopic redshift by the
addition of the astrometry PDF information.

15 wise2.ipac.caltech.edu/docs/release/allwise/
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noted in Table 7. The majority of these objects have colors that
are consistent with the stellar locus and have a mean i
magnitude of 16.8.

Most white dwarf contaminants are below WISE detection
thresholds. Thus, to eliminate these contaminants we made the
following optical color cut, guided by the SDSS white dwarf
catalog of Pietro Gentile Fusillo et al. (2015):

r i g r0.62 0.37 . 12( ) ( ( ) ) ( )- < - - -

We used the coadded magnitudes and confirmed that this cut
would remove none of the spectroscopically confirmed quasars
from our training set. It removes 48% of the known white
dwarfs in Pietro Gentile Fusillo et al. (2015) and identified 178
quasar candidates as possible white dwarfs. These candidates

are flagged as likely white dwarf contaminants in the catalog as
noted in Table 7. These possible white dwarfs are all in the
bluest corner of g r- versus r i- color space and have a
mean i magnitude of 21.7.
All together, after the ALLWISE and white dwarf cuts, there

are a total of 35,820 “good” quasar candidates in Stripe 82.
(Perform the following query to retrieve these objects from the
catalog: WISEcut_label == 0 & WDcut_label == 0 &
candidate_label == 1.) These candidates are used in the
analysis that follows.
Classification over the whole redshift range (as described in

Section 5.1) returned 33,240 quasar candidates, or 3.63%, of
the 916,587 objects in the test set—roughly consistent with the
prior of 5%. Of the 13,221 spectroscopically confirmed quasars

Figure 15. Spectroscopic redshift vs. photometric redshift in hex bins with logarithmic gray scale, using (top left panel) SDSS colors (both single epoch and coadded,
when available), (top right panel) astrometry, (bottom left panel) SDSS and astrometry PDFs combined, and (bottom right panel) SDSS and VHS adjacent colors. This
illustrates those redshifts where the algorithm has the largest error rate (either due to degeneracy between distinct redshifts or smearing of nearby redshifts). The
bottom left panel demonstrates that when the photometric redshifts returned by the SDSS colors are inconsistent with the spectroscopic redshifts, the addition of the
astrometry PDF often pulls out one of the secondary peaks in the SDSS PDF as the spectroscopic redshift. The bottom right panel demonstrates how optical+IR
magnitudes can similarly improve the photometric redshift accuracy. However, with the addition astrometry we can surpass the improvements due to IR data.
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that could have been returned, we found 12,898 (97.6%
completeness). Classification in redshift bins (Section 5.2)
returned 31,600 objects as potential quasars. Of the 13,221
spectroscopically confirmed quasars that could have been
returned, we found 12,511 (94.6% completeness). Thus, our
attempts at simultaneous classification and redshift estimation
are somewhat less complete than our efforts to classify quasars
regardless of redshift. Using either method, of the 13,221
spectroscopically confirmed quasars that could have been
returned, we found 12,953 (98.0% completeness).

Of the candidates, 29,020 (81.0%) were identified by both
methods. As shown in Figures 8 and 11, the quasars selected
using these two methods show similar distributions. In the
bottom panels, we find that the selection in variability
parameter space shows no noticeable difference, which is not
surprising, as Ag versus gg and Ar versus rg have no strong
redshift trends. However, there are slight differences in color
space (top panels). Using the quasar training set in redshift bins
we select more g r 1.0,- > u g 2.0,- < and z 3.4phot >
quasar candidates, many of them potential contaminant stars.
Using the full redshift range we select more objects in the
bluest corner of g r- versus r i- space, many of them
flagged as potential white dwarf contaminants.

As described in Section 2.2, the SDSS I/II quasars were
primarily color-selected to i 19.1< for low-redshift and to
i 20.2< for high-redshift (Richards et al. 2002), but the target
selection on Stripe 82 was deeper, initially going to i = 19.9 for
low-redshift and i = 20.4 for high-redshift; later to i = 20.2 for
low-redshift sources and i = 20.65 for radio sources; and later
to i 21.0< for variable sources (Adelman McCarthy
et al. 2006). As such, when we consider the completeness of
previous spectroscopic observations on Stripe 82, it is
important to consider the magnitude of the objects. The “good”
quasar candidates are shown in Figure 18. Note the change in
character of the new quasar candidates at i 20.0.~

According to Vanden Berk et al. (2005), the completeness of
the SDSS quasar selection algorithm for sources with i 19.1<
is C 94.9q 3.8

2.6= -
+ % at the 90% confidence level. We will

consider the completeness of existing quasar spectroscopy on
Stripe 82 both brighter and fainter than this limit. Our region of
selection extends beyond the region of uniform spectroscopic
follow-up by SDSS: 10 R. A. 50 ,-  < <  therefore in order
to do this comparison, we must limit our examination to this
region. This includes 12,107 of the 22,867 “good” quasar
candidates in the catalog that are not spectroscopically
confirmed. There are 1090 (3183) spectroscopically confirmed
quasars brighter than a coadded i-band magnitude of 19.1
(19.9) and we find 61 (192) additional quasar candidates.
Assuming that all of our new “good” candidates are real, this
completeness of 94.7% (94.3%) agrees well with Vanden Berk
et al. (2005). However, we might have expected it to be higher
given the additional spectra taken on Stripe 82 since 2005 as
part of the BOSS program.
Fainter than this limit, it could be that quasars are not being

targeted or that there simply have not been enough fibers
devoted to quasar candidates to find all of the objects that we
consider to be valid quasar candidates. There are 4591
spectroscopically confirmed quasars dimmer than a coadded
i-band magnitude of 19.9 and with a redshift z 3.0.< To this
we add 9536 quasar candidates with astro-photometric redshift
z 3.0.< There are 561 spectroscopically confirmed quasars
dimmer than a coadded i-band magnitude of 19.9 and with a
redshift z 3.0.> To this we add 576 quasar candidates with
astro-photometric redshift z 3.0.>
Figure 19 shows the completeness and new quasar selection

as a function of redshift. The left panel shows the quasars and
candidates for i 19.9< and right panel shows i 19.9.> In
short, we have shown that current methods, (only colors, only
variability, and other techniques used for Stripe 82 target
selection) still are incomplete. Next-generation surveys like
LSST will have to adopt more sophisticated methods, of which
ours is just a pilot example, to fully exploit the data.
While we find new quasars in Stripe 82, the catalog also

includes 466 objects that were not selected by our algorithms as
quasar candidates, but that are spectroscopically confirmed
quasars. This incompleteness demonstrates where there is room
for improvement beyond our pilot project. For the sake of
completeness, to illustrate where we may be less sensitive, and
to make it easier to compute the completeness corrections for
our catalog without needing another data source, these
quasars are included in our catalog. They are indicated by
candidate_label 0.== In general, they are in the densest
part of the stellar locus and have very small gg and rg values.
More than 50% are between redshifts z2.2 3.2< < and more
than are third are i 21.5> compared to 5% and 9% of the
quasar training set as a whole, making these objects particularly
difficult to distinguish as quasars.

8. DISCUSSION

We will now explore the quality of the quasar catalog by
comparing to other cuts and catalogs, in addition to evaluating
it for remaining contaminants. In Section 8.1 we use the quasar
variability selection box from Schmidt et al. (2010) as a
comparison in time-domain classification. In Section 8.2, we
evaluate how well our algorithm recovers quasars from BOSS
DR10 and DR12 quasar catalogs. Finally, in Section 8.3, we
evaluate completeness and contamination of the candidate
quasars using number counts and luminosity function analysis.

Figure 16. Normalized histogram of the difference between spectroscopic
redshift and photometric redshift for quasars. Note how the distribution tightens
toward z 0.0D = from the SDSS color photometric redshifts to the astro-
photometric redshifts. Shown are SDSS colors (green), SDSS colors and
astrometry (purple), and SDSS and VHS colors (orange). Shown in solid black
is the histogram of classification in redshift bins from Figure 10.
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8.1. Comparison to Other Variability-based Selection

First we compare our results to the performance of the
(variability-based) quasar selection box (in A and γ space)
defined in Equations (7)–(9) of Schmidt et al. (2010):

A0.5 log 0.50 13r r( ) ( )g = +

A2.0 log 2.25 14r r( ) ( )g = - -

0.055. 15r ( )g =

Using Stripe 82 data, Schmidt et al. (2010) achieve a
completeness of 90% and an efficiency of 96% with this box.
Applying the same cuts to our own training sets, as shown in
Figure 20’s left panel, results in 87% completeness and 74%
efficiency. We achieved very different results because we have
very different quasar and non-quasar data sets. Schmidt et al.
(2010) used quasars with i15.4 22.0< < with a mean of 19.5
and only 5000 bright F/G-star colored objects with

g r0.2 0.48< - < and g14.0 20.2.< < We used quasars
with i15.9 22.7< < with a mean of 20.2 and 72,680 non-

Figure 17. Normalized histogram of spectroscopic redshift in panels based on bins of photometric redshift from 0.3 to 5.0 in the same bins as the luminosity function
in Section 8.3. These panels demonstrate which photometric redshift ranges are most unreliable and most reliable. Photometric redshifts were calculated using SDSS
colors (green), SDSS colors and astrometry (purple), and SDSS and VHS colors (orange). In particular, note the bimodal distribution at z0.68 1.06phot< < compared
to the precision at z1.06 1.44phot< < and z3.0 3.5.phot< < This bimodality is caused by degeneracies in color-redshift space. We correct for photometric redshift
errors when calculating the quasar luminosity function in Section 8.3.

Table 6
Quasar Candidates

Data Set Candidate Quasars w/Spectra w/o Spectra
Total Fraction Total Completeness Total i 19.9< i 19.9>

All Candidates 36569 0.040 12953 0.980 23616 1570 0.066 22046 0.934
Whole Redshift Range 33673 0.037 12898 0.976 20775 1048 0.050 19727 0.950
Redshift Bins 32108 0.035 12511 0.946 19597 1282 0.065 18315 0.935
Both Methods 29212 0.032 12456 0.942 16756 760 0.045 15996 0.955
After WISE and WD Cut 35820 0.039 12953 0.980 22867 991 0.043 21876 0.957
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quasars (not just F/G stars) with g14.8 25.5< < and a mean
of 20.6.

Applying these cuts instead to our full test set, as shown in
Figure 20 right panel, gives 49,649 quasar candidates. Of these,
23% are spectroscopically confirmed quasars and another 27%
are objects that we identified as quasar candidates in either

Section 5.1 or 5.2 (with the remaining being previously
unidentified potential new candidates). If all of our previously
identified candidates were actually quasars and the remaining
objects identified by these cuts were instead contaminants, then
the efficiency of this variability quasar selection box would be
50% and the completeness would be 69%. The majority of the

Table 7
Column Names

Index Name Description

1 id SDSS Coadded ParentID
2–3 R.A., decl. coadded right ascension, declination
4–8 u, g, r, i, z single epoch magnitude
9–13 uErr, gErr, rErr, iErr, zErr single epoch magnitude error
14–18 coadd_u, coadd_g... coadded magnitude
19–21 J, H, KS VHS magnitude
22–24 JErr, HErr, KSErr VHS magnitude error
25–26 W1, W2 WISE magnitude
27–28 W1Err, W2Err WISE magnitude error
29 zspec spectroscopic redshift, if none, the value is −9999.
30 candidate_label 1 if selected as a quasar candidate, 0 otherwise.
31 MQC_label 1 if in MQC, 0 otherwise.
32 DR10Q_label 1 if in DR10Q, 0 otherwise.
33 DR12Q_label 1 if in DR12Q, 0 otherwise.
34 WISEcut_label 1 if cut by Equations (10) and (11), 0 otherwise.
35 WDcut_label 1 if cut by Equation (12), 0 otherwise.
36–45 A_u, gamma_u, A_g, gamma_g... variability parameters, if none, the value is −9999.
46–47 auPar, agPar astrometry parameters, if none, the value is −9999.
48 qso_prob probability of being a quasar
49 star_dens star density
50 qso_dens quasar density
51 qso_prob_bins vector—probability of being a quasar
52 star_dens_bins vector—star density
53 qso_dens_bins vector—quasar density
54 qso_prob_max maximum value of qso_prob_bins vector
55 qso_prob_max_bin redshift bin of maximum value of qso_prob_bins vector
56 photoz_ugriz_pdf vector—full photo-z PDF, SDSS colors
57 photoz_ugriz_low low redshift end of the peak in photo-z PDF, SDSS colors
58 photoz_ugriz_best peak of photo-z PDF, SDSS colors
59 photoz_ugriz_high high redshift end of the peak in photo-z PDF, SDSS colors
60 photoz_ugriz_prob probability of photo-z, SDSS colors
61 photoz_astrometry_pdf vector—full photo-z PDF, astrometry
62 photoz_astrometry_low low redshift end of the peak in photo-zPDF astrometry
63 photoz_astrometry_best peak of photo-z PDF astrometry
64 photoz_astrometry_high high redshift end of the peak in photo-z PDF astrometry
65 photoz_astrometry_prob probability of photo-z astrometry
66 photoz_added_pdf vector—full photo-z PDF, SDSS colors and astrometry
67 photoz_added_max max of photo-z PDF, SDSS colors and astrometry
68 photoz_added_max_bin redshift bin of maximum value of photo-z PDF, SDSS colors and astrometry
69 photoz_ugrizJHK_pdf vector—full photo-z PDF, SDSS and JHK colors
70 photoz_ugrizJHK_low low redshift end of the peak in photo-z PDF, SDSS and JHK colors
71 photoz_ugrizJHK_best peak of photo-z PDF, SDSS and JHK colors
72 photoz_ugrizJHK_high high redshift end of the peak in photo-z PDF, SDSS and JHK colors
73 photoz_ugrizJHK_prob probability of photo-z, SDSS and JHK colors
74 gi_sigma g − i color offset from the mean color
75 SDSSSPECMATCH 1 if the object had a spectrum from the original SDSS, 0 otherwise
76 BOSSSPECMATCH 1 if the object had a spectrum from BOSS, 0 otherwise
77 DR12QSOMATCH 1 if the object is visually inspected as a quasars in the DR12Q, 0 otherwise
78 ZSDSS pipeline redshift from SDSS
79 CLASSSDSS pipeline classification from SDSS
80 ZBOSS pipeline redshift from BOSS
81 CLASSBOSS pipeline classification from BOSS
82 DR12QSO_Z_VI redshift of the quasars if included in the DR12Q

(This table is available in its entirety in FITS format.)
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quasar candidates outside the box are dimmer than a coadded i-
band magnitude of 20, where most variability is below the
noise level.

This comparison suggests that selection by variability alone,
while working well to discriminate between relatively bright
F/G stars and quasars, is incomplete when using a realistic
sample of non-quasar contaminants, and that our hybrid
approach of combining color and variability will yield better
results for future surveys.

In Graham et al. (2014) they compare the performance of
variability selection using a power law fit to the SF, a DRW fit,
and SWV. Using the power-law fit to the SF (SWV) to classify
quasars on Stripe 82 they achieve 92% (86%) completeness
and 93% (92%) efficiency.

8.2. BOSS Quasar Selection

As described in Section 2.2, in addition to color selection,
some of the BOSS quasars on Stripe 82 were targeted using an
algorithm based on the same parameterization of variability
used herein. We matched our candidate catalog to the SDSS-
III/BOSS Data Release 10 Quasar Catalog (DR10Q; Pâris
et al. 2014) to see how well we recovered these quasars. These
quasars are indicated by DR10_label 1.== There are 9590
quasars on Stripe 82 in DR10Q and 7241 were point sources
that met the quality cuts to be included in our test set. Of these
7241 known quasars, we recovered 7034 (97.1% completeness)
as candidate quasars. The quasars we missed have i 22.0<
with a mean of i = 20.0 and have 0.25:gg < much less variable
than the quasar training set on average.
We found 6562 quasar candidates in the BOSS redshift

range ( z2.2 3.5< < ) based on astro-photometric redshifts. Of
these, 49% are training set quasars with spectroscopic redshifts

z2.2 3.5< < (i 22.7< with mean i = 20.7) and another 3%
are known quasars with spectroscopic redshifts outside this
range. Of the remaining 48% (3157 quasar candidates),
1614 are high probability candidates with qso_prob > 0.8.
These are the objects that are highly likely to be quasars that
BOSS has missed, which is consistent with the known
incompleteness of BOSS (Ross et al. 2012). Our high
probability candidates have i 23.0< with a mean of
i 21.4,= suggesting that we are able to extend our selection
to less luminous objects using the combined color and
variability approach.
Since our test set was built, the 12th data release quasar

catalog of SDSS-III was made public (DR12Q; I. Pâris et al.
2015, in preparation). Since DR10Q, additional spectroscopic
plates were taken on Stripe 82, resulting in 2054 DR12Q
quasars on Stripe 82 that are not in the quasar training set, 1162
were point sources that met the quality cuts to be included in
our test set. We matched our candidate catalog to DR12Q to
see how well we recovered these new quasars. These objects
are indicated by DR12_label 1.== Of the quasars new in

Figure 18. Histogram of coadded i-band magnitude for known Stripe 82
quasars and new quasar candidates. In purple are the previously known,
spectroscopically confirmed quasars returned by the selection. The quasar
candidates returned by the selection are shown in orange and the new quasar
candidates are shown in green.

Figure 19. Stacked histogram of redshift for known Stripe 82 quasars and new quasar candidates. The left panel shows the quasars and candidates i 19.9< and the
right panel shows i 19.9.> Spectroscopic quasars found as quasar candidates and spectroscopic quasars missed are both binned by spectroscopic redshift. Quasar
candidates found by both methods and quasar candidates found only using a binned quasar training set are both binned by where the candidate was classified with the
highest probability. These bins only span z0.4 4.0.< < Quasar candidates found only using a quasar training set over the full redshift range are binned by the astro-
photometric redshift.
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DR12Q, we recovered 1141 (98.2% completeness). The objects
that were missed have i 22.1< with a mean of i = 21.3 and
have 0.33.gg < Again, they are much less variable than the
quasar training set on average.

8.3. Number Counts and the Luminosity Function

In Figure 21 we reproduce the number counts analysis
shown in Figure 9 of Richards et al. (2009b), using our
candidate quasars. The counts have been corrected for
incompleteness as given by the fraction of MQC quasars

recovered as shown in the left panel of Figure 21. In short, the
correction is the ratio of known quasars to quasar candidates.
This process corrects for: objects with too few observations to
calculate variability parameters, the exclusion of extended
sources, and incompleteness in the selection algorithm. The
right panel shows the number of quasars per deg2 and per 0.25
mag as a function of coadded i-band magnitude. Open points
represent the raw number counts, while the closed points give
the completeness-corrected number counts. The turnover at
i = 19.9 is due to the incompleteness of the spectroscopic
sample. This analysis suggests that our selection algorithm is

Figure 20. Ar vs. rg for the training sets (left panel) and test set (right panel) shown with the Schmidt et al. (2010) variability selection cuts (Equations (13)–(15)) as
gray lines. Left panel: orange contours show the non-quasar training set and purple contours and scatter points show the quasar training set. Right panel: gray contours
show all objects in the test set classified as non-quasars and green contours and scatter points show all objects in the test set classified as quasars.

Figure 21. Left panel: ratio of quasars in the MQC on Stripe 82 to those MQC quasars returned by classification using a training set over the full redshift range. This
allows us to correct for objects with too few observations to calculate variability parameters, the exclusion of extended sources, and incompleteness in the selection
algorithm. The fraction is given as a function of coadded i-band magnitude for two redshift ranges. Right panel: quasar number counts as a function of redshift and
i-band magnitude. Black points give the spectroscopic number counts reported in Richards et al. (2009b); circles for z 2.2< and triangles for z3 5.< < The open
purple and green squares give the raw number counts (with Poisson error bars) for the candidates reported here. The filled colored squares give the number counts
corrected using the left panel. The vertical dashed red line at i = 19.9 indicates the target selection depth for low-redshift on Stripe 82.
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neither heavily contaminated (e.g., as might be evidenced by a
large excess of bright objects versus known quasars), nor very
incomplete—since the corrected counts agree well with the
spectroscopic quasar distribution.

Next, we calculate the QLF for our candidate quasars. This
QLF calculation was not intended to be a scientific result of this
pilot project, as we expected more incompleteness and
contamination than shown in Figure 21. However, the result
does suggest that accurate determination of the QLF will be
possible with photometric selection from LSST and other next-
generation surveys.

In order to compare space densities at different redshifts, we
must correct our photometry for the effects of redshift on the
portion of the spectrum sampled by a given filter. We do this by
using a mean K-correction for z = 2 in the i-band as described
in Richards et al. (2006, Section 5).

As we have seen, and as discussed in Ross et al. (2013,
Section 3.4.1), variability selection is less biased than color
selection, but we cannot assume variability selected samples
are complete and unbiased. Just as with the number counts
above, the candidate object QLF must be corrected for the
completeness fraction and, additionally, for systematic errors in
astro-photometric redshifts. For the QLF, we need to correct for
incompleteness in two dimensions: redshift and absolute
magnitude (luminosity). The gray-scale M z- bins in the left
panel of Figure 22 gives the fraction of MQC quasars
recovered. This includes quasars that were not included in
our test set so as to correct to the true number of quasars, not
just those that met our test set criteria.

Since catastrophic errors in astro-photometric redshifts can
distort the QLF, corrections were determined as follows: using
bins of zD = 0.1, the number of quasars with astro-photometric
redshift in that bin was divided by the number of quasars with
spectroscopic redshifts in that bin. The resulting ratio is the
correction that needs to be applied to objects in each astro-
photometric redshift bin to statistically account for errors in the
astro-photometric redshift distribution (as opposed to correct-
ing individual values) and is shown in Figure 22’s center panel.

The two corrections are multiplied together and used as a
weight for the objects in the QLF.
We compute the QLF by binning the quasars in redshift and

absolute magnitude, using the method from Page & Carrera
(2000). Figure 22’s right panel shows absolute magnitude as a
function of astro-photometric redshift for all quasar candidates.
The grid shows the bins within which the QLF is calculated.
The edges of the redshift bins are 0.30, 0.68, 1.06, 1.44, 1.82,
2.20, 2.6, 3.0, 3.5, 4.0, 4.5, and 5.0. The Mi bins
are in increments of 0.3 mag. The adopted limiting magnitude
of i 22.0,= is shown as a green line. The resulting i-band QLF
is shown as black dots with Poisson error bars in Figure 23.
As with the number counts, the QLF analysis shows

relatively close agreement with the space density of known
quasars. There is evidence for both incompleteness and
contamination in the lowest redshift bin. This is perhaps not
surprising given the effects the host galaxy has on quasar colors
and apparent variability and the fact that we only include point
sources. We show the Richards et al. (2006, Figure 18) and
Ross et al. (2013, Figure 11) SDSS spectroscopic QLFs in the
z = 2.4, 2.8, and 3.25 bins. This comparison reveals that our
QLF agrees better with the Ross et al. (2013) QLF. The Ross
et al. (2013) QLF has the smaller corrections of the two
spectroscopic QLFs, which suggests that the Richards et al.
(2006) QLF was undercorrected. In the three highest redshift
bins our QLF suggests a higher space density than the Richards
et al. (2006) QLF. This could be a sign of contamination in our
catalog, though it could also be true to some extent, given the
relatively large completeness fraction for candidate selection
needed for the smaller spectroscopic sample from which the
Richards et al. (2006) QLF was derived. Most importantly,
given the lack of contamination and the dependability of the
completeness corrections, this analysis bodes well for our
future ability to determine the QLF for faint populations in
post-SDSS sky surveys.

9. FUTURE WORK

The purpose of this investigation was to demonstrate that
using a combination of optical colors and variability parameters

Figure 22. Corrections and cuts used in the QLF in Figure 23. Left panel: completeness fraction, in bins of redshift and absolute magnitude, M z 2 ,i [ ]= for candidate
selection. Similar to Figure 21’s left panel, but in two dimensions. The number of quasars with spectroscopic redshifts on Stripe 82, even if they were excluded from
our training set and test set, was divided by all quasars with spectroscopic redshifts that were recovered as candidate quasars. This is to correct for incompleteness from
too few observations to calculate variability parameters, the exclusion of extended sources, and incompleteness in the classification algorithm. Center panel:
completeness fraction for astro-photometric redshifts. All of the training set quasars are binned by spectroscopic redshift (purple) and astro-photometric redshifts
(green). The ratio of the two is shown in gray (right axis). The astro-photometric redshifts of the candidate quasars, after being corrected by the completeness fraction
and assuming that objects without spectroscopic redshifts have the same astro-photometric redshift errors as those with spectroscopic redshifts, are shown in black.
Right panel: astro-photometric redshift vs. absolute magnitude, M z 2 ,i [ ]= of all quasar candidates. The green line shows the brightness limit for bins that are used in
computing the luminosity function. Purple curves show the i = 15.0, 19.1, and 20.2 mag limits for SDSS spectroscopic follow-up.
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improves quasar classification efficiency and completeness
over the use of colors alone. This is one step toward finding an
optimal strategy for photometric quasar selection.

In the future, we hope to use a data set that includes both point
sources and extended sources, thus incorporating the variable
nucleus with the steady host galaxy. Additionally, we plan to
explore alternative parameterizations of quasar variability. The
underlying mechanism and most appropriate model for quasar
variability remain open questions and there are more sophisti-
cated models (e.g., Kelly et al. 2009; MacLeod et al. 2010;
Kasliwal et al. 2015) that merit exploration. Given the large
quantity of data expected in future surveys such as LSST, a more
computationally efficient approach than the SF may become
important; e.g., the Kelly et al. (2009), Kozłowski et al. (2010),
and MacLeod et al. (2010) approaches require only O(N) rather
than O(N2) operations to determine the model parameters for a
light curve with N data points. As described in Section 2.4, the
likelihood method is biased and more robust approaches such as
those described in the appendices of Kozłowski et al. (2010) or
Hernitschek et al. (2015) should be investigated. Currently, we
use variability data from each band separately. We hope to
explore the various methods for merging bands together, even

with non-simultaneous observations, as will be the case
with LSST.
This work relies on KDE for classification and it is important

to explore other methods to see if they will be more successful.
In the future, we hope to make use of other types of algorithms
(e.g., Feigelson et al. 2003, 2012; Chakraborty et al. 2013),
such as random forests (e.g., Gao et al. 2009; Richards et al.
2011; Carrasco Kind & Brunner 2013), gradient boosting
machines (Hastie et al. 2001), and Bayesian classification with
hash tables (Gupta et al. 2014). Additionally, in the future our
catalogs will not have binary classifications, but will simply
give probabilities for all objects.
We have used the combination of optical and MIR colors for

quasar selection in another paper (Richards et al. 2015,
submitted). In the future we will combine optical, IR, and
variability data to produce the most complete and efficient
catalog possible.
In order to improve the astro-photometric redshift estima-

tions, we will multiply smoothed PDFs instead of adding by
weights. Additionally, we will incorporate the clustering
redshift estimation of Ménard et al. (2013) and Rahman et al.
(2015) and explore photometric and astro-photometric redshift
accuracy without u-band observations (to mimic DES and Pan-

Figure 23. M z 2i [ ]= binned luminosity function of the sample with astro-photometric redshifts using the method from Page & Carrera (2000) (with Poisson error
bars). The mean redshift of each slice is given in each panel. Black filled circles are complete bins, empty triangles indicate the lower limit for complete bins where the
completeness fraction (shown in Figure 22’s left panel) is 0, and empty circles are partial bins (a portion of the bin is dimmer than i = 22). The gray circles show the
binned luminosity function and the gray dashed line shows the z = 2.01 curve both from Richards et al. (2006, Figure 18) for comparison. In the z = 2.4, 2.8, and 3.25
panels, the red squares show the binned luminosity function for BOSS quasars from DR9 from Ross et al. (2013, Figure 11). In the 4.75 panel, the green squares,
purple squares, and dashed black line show the binned luminosity function at z = 4.9 for Stripe 82, DR7, and double power law fits from the maximum likelihood
analysis from McGreer et al. (2013, Figures 12 and 13).
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STARRS observations). Finally, we will explore how simulta-
neous color and variability classification performs using other
time-domain surveys, including DES (The Dark Energy Survey
Collaboration 2005), Pan-STARRS (Kaiser et al. 2010), and
LSST simulated data (Connolly et al. 2014).

10. CONCLUSIONS

Using the NBC KDE quasar selection algorithm, we
demonstrated that using a combination of optical colors and
variability parameters improves quasar classification efficiency
and completeness over the use of colors alone. For classifica-
tion using colors alone, there are redshift ranges with poor
completeness where the quasar and non-quasar training sets
overlap in color space. Variability alone does not have these
redshift trends, but it has a lower efficiency than coadded colors
at all other redshifts. The addition of coadded colors to
variability information improves classification at all redshifts.
Using variability alone, colors alone, and combining variability
and colors we achieve we achieve 91%, 93%, and 97% quasar
completeness and 98%, 98%, and 97% efficiency, respectively,
with particular improvement in the selection of quasars at

z2.7 3.5,< < as shown in Figure 7.
We classified quasars and estimated their redshifts simulta-

neously by limiting the training set to non-overlapping redshift
bins from 0.4 to 4.0 with a bin width of 0.2. We successfully
classified known quasars into the correct redshift bins with 75%
or higher completeness, depending on the redshift bin, as
shown in Figure 9.

Overall, we identified 35,820 type 1 quasar candidates in the
SDSS Stripe 82 field using the combination of optical
photometry and variability either over the full redshift range
or within one of the redshift bins. Of the 13,221 spectro-
scopically confirmed quasars that could have been returned, we
found 12,953 (98.0% completeness). Of the 22,867 quasar
candidates that are not spectroscopically confirmed, 21,876
(95.7%) are dimmer than a coadded i-band magnitude of 19.9.
Figure 18 shows the magnitude distribution of the candidate
quasars.

Photometric redshift estimates of these candidates using
optical photometry and astrometric parameters are accurate to
within z 0.1∣ ∣D < for 51.6% of quasars and within 0.3 for
76.8% of quasars. The combination of optical photometry and
astrometry makes the photometric redshifts more accurate
when colors alone returns the correct redshift as one of the
secondary peaks in the PDF. The astrometric PDF pulls out the
correct peak in the color PDF, as shown in Figure 14. We find
that objects with photometric redshifts of z 1.25~ and
z 3.25 are~ particularly robust.

In Figure 20, our color and variability selection was
compared to other cuts in variability space that have been
used on Stripe 82. We demonstrated that variability alone is
incomplete and that our hybrid approach will yield better
results for future surveys. Additionally, we have shown that our
selection recovered 97% of the quasars in the DR12 quasar
catalog and we selected additional candidates in the BOSS
redshift range with high confidence (and at even higher
redshift).

We used MIR color cuts to remove a small number of bright
star contaminants from our final candidate list. Our number
counts and QLF analyses, shown in Figures 21 and 23, show
there is little contamination remaining and that there is

relatively close agreement with the space density of known
quasars.
From the NBC KDE classification test set, we present a

catalog of known quasars and candidate quasars on Stripe 82.
The catalog is available as a FITS file. Future work along these
lines will be needed to capitalize on the imaging data produced
by Pan-STARRS, DES, and LSST.
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APPENDIX
CATALOG COLUMNS

In Section 7 we created a catalog of quasar candidates. All of
the columns in the catalog are described in Table 7, but a few
columns need some extra explanation.
Columns 4–13 are the single epoch magnitudes and

magnitude errors used for the single epoch classification. We
used a randomly chosen epoch from the observations for each
object. The single epoch magnitudes are asinh magnitudes from
Lupton et al. (1999). Columns 14–18 are the coadded
magnitudes and magnitude errors. The coadded magnitudes
are from Annis et al. (2014). Columns 19–24 are the VHS
magnitudes and magnitude errors in Vega. Columns 25–28 are
the WISE magnitudes and magnitude errors in AB.
Columns 30–34 are labels. Specifically, column 30 is the

candidate label: if the object was classified as a quasar in
either Section 5.1 (over the whole redshift range) or 5.2 (in
redshift bins) the value is 1, otherwise it is 0. Column 31 is the
MQC label: if the object is in the catalog the value is 1,
otherwise it is 0. Column 32 is the DR10Q label: if the object
is in the catalog the value is 1, otherwise it is 0. Column 33 is
the DR12Q label: if the object is in the catalog the value is 1,
otherwise it is 0. Column 34 is the WISE cut label: if the
object is cut by Equations (10) and (11) the value is 1,
otherwise it is 0. Column 35 is the white dwarf cut label: if the
object is cut by Equation (12) the value is 1, otherwise it is 0.
To retrieve the quasar candidates that pass these cuts (the

16 astropy.org
17 www.star.bris.ac.uk/∼mbt/topcat
18 www.star.bris.ac.uk/∼mbt/stilts
19 matplotlib.org
20 github.com/CKrawczyk/densityplot
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“good” quasar candidates) perform this query on the catalog:
WISEcut_label == 0 & WDcut_label == 0 &
candidate_label == 1. To limit to the new candidates
(not spectroscopically confirmed quasars) add: & zspec

0.<
Columns 48–55 are the various classification results. Specifi-

cally, columns 48–50 are the results of classifying the test set
over the full redshift range as described in Section 5.1. Column
48 is the probability of being a quasar, column 49 is the star
density from the KDE (P D M( ∣ )), and column 50 is the quasar
density from the KDE. If the object was not found to be a
candidate over the full redshift range the value is −9999.
Columns 51–55 are the results of classification using redshift
bins as described in Section 5.2. Column 51 is the probability of
being a quasar, column 52 is the star density, and column 53 is
the quasar density. Each is a vector with 18 cells, one for each
redshift bin from 0.4 to 4.0. If the object was not found to be a
candidate in any bin, all cell values are −9999. Column 54 is the
maximum value of column 51, and column 55 is the center of
the redshift bin corresponding to that maximum probability. If
the object was not found to be a candidate in any bin these
columns will be −9999.

Columns 56 to 73 are the various redshift estimation results.
If we were unable to calculate a redshift estimate for the object
the value will be −9999. Column 74 indicates whether the
object’s g i- color is within 1σ (0.68), 2σ (0.95), or 3σ (0.99)
of the mean color for quasars at the astro-photometric redshift.
Outliers are an indication of either bad estimated redshifts or
non-quasar contaminants. Columns 75–82 are the details of
matching to all spectra taken on SDSS Stripe 82.
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