Interactive Design of Animated Plushies

JAMES M. BERN, Carnegie Mellon University
KAI-HUNG CHANG, Carnegie Mellon University
STELIAN COROS, Carnegie Mellon University

Fig. 1. An animated plushie designed and fabricated using our computational approach. Tendons run through the plushie’s skin, and are contracted by

motorized winches inside of the plushie’s body.

We present a computational approach to creating animated plushies, soft
robotic plush toys specifically-designed to reenact user-authored motions.
Our design process is inspired by muscular hydrostat structures, which drive
highly versatile motions in many biological systems. We begin by instru-
menting simulated plush toys with a large number of small, independently-
actuated, virtual muscle-fibers. Through an intuitive posing interface, users
then begin animating their plushie. A novel numerical solver, reminiscent
of inverse-kinematics, computes optimal contractions for each muscle-fiber
such that the soft body of the plushie deforms to best match user input.
By analyzing the co-activation patterns of the fibers that contribute most
to the plushie’s motions, our design system generates physically-realizable
winch-tendon networks. Winch-tendon networks model the motorized cable-
driven actuation mechanisms that drive the motions of our real-life plush
toy prototypes. We demonstrate the effectiveness of our computational
approach by co-designing motions and actuation systems for a variety of
physically-simulated and fabricated plushies.

CCS Concepts: « Computing methodologies — Physical simulation; «
Computer systems organization — Robotic control;

Additional Key Words and Phrases: animation, plushies, computational de-
sign, soft robotics

ACM Reference format:

James M. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive De-
sign of Animated Plushies. ACM Trans. Graph. 36, 4, Article 80 (July 2017),
11 pages.

DOIL: http://dx.doi.org/10.1145/3072959.3073700

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2017/7-ART80 $15.00

DOI: http://dx.doi.org/10.1145/3072959.3073700

1 INTRODUCTION

Endeared companions to children and adults alike, plush toys have
enjoyed widespread popularity since their commercial debut in the
late 1800’s. Thanks to the relative ease with which they are made, a
Do-It-Yourself movement for plush toys emerged shortly thereafter
and continues to flourish today. Recognizing an interesting technical
challenge, the research community has taken an interest in formal-
izing computational design methods that facilitate the creation of
plush toys [Igarashi and Igarashi 2008; Mori and Igarashi 2007] and
other related structures made by adjoining flat patterns [Furuta
et al. 2010; Skouras et al. 2014]. The solutions proposed to date help
non-experts create designs that depict static shapes. In contrast, our
goal is to make equally accessible the creation of plush toys that are
specifically-designed to produce compelling motions.

To create animated plush toys, it is common practice to enclose
traditional robotic devices in fabric exteriors. While great from
the point of view of motion capabilities, this approach has two
important drawbacks. First, the rigid nature of the embedded elec-
tromechanical assemblies hinders the large, organic deformations
that are expected during typical interactions. Second, designing and
fabricating the internal mechanisms can be very difficult, and there-
fore largely inaccessible to casual users. An alternative strategy,
which we adopt for our work, is to employ cable-driven setups. In
this setting, motions are created by activating, through pulling or
contractions, cables that are laid out within the soft body of the
plush toys. Ensuring that the resulting motions are desirable, how-
ever, requires solving a challenging design problem: the number
of cables to be used, their routing, the patterns of co-activation,
and the physical interactions between the tensioned cables and the
plush toy are all coupled and must be considered concurrently.

Overview and contributions. We propose a computational ap-
proach to interactively designing cable-actuated robotic plush toys.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

80:2 « James M. Bern, Kai-Hung Chang, and Stelian Coros

Our design methodology is characterized by two underlying prin-
ciples. First, we do not assume as input a target motion that needs
to be reproduced (cf. [Skouras et al. 2013]). This decision removes
the need for hard-to-quantify perceptual similarity measures or
unintuitive Cartesian or strain-space error metrics. Instead, users
are presented with a familiar posing and keyframing system that
allows plush toy motions to be interactively created. The posing
system employs a novel inverse kinematics-like solver that operates
in the space of deformations induced by activations of cable-based
contractile elements. Consequently, all motions authored by the user
are guaranteed to be realizable using the type of actuation that our
plush robots will employ.

As a second defining characteristic of our work, a plush toy’s
actuation system is designed while the user is creating its motions.
Our approach is inspired by muscular hydrostats — biological struc-
tures composed of muscles but lacking any rigid skeletal support. In
nature, these systems have proven to be extremely useful and versa-
tile. Elephant trunks, for example, are wonderfully dexterous; their
amazing motion repertoire is due to hundreds of thousands of mus-
cle fiber bundles. Unfortunately, this actuation complexity is clearly
well beyond current fabrication capabilities. Simulations, however,
are not bound to fabrication constraints. A key insight is to therefore
begin by instrumenting the physically-simulated body of a plush toy
with a large number of virtual muscles, which we call muscle-fibers.
Mimicking biological systems, each muscle-fiber is small and capa-
ble of contracting independently. While not physically realizable,
this dense arrangement of muscle-fibers gives rise to the richest
space of motions possible. During the motion authoring process,
our computational method analyzes the muscle-fibers’ co-activation
patterns; those with large activation levels contribute most to the
user-specified motions are merged into ready-to-fabricate winch-
tendon networks. Winch-tendon networks are used to model the
motorized devices and cables which, when embedded in the soft
bodies of physical plush robots, will be driving their motions.

We demonstrate the versatility of our computational approach
by creating a variety of animated plush toys. Since the authoring
process is interactive, a key benefit of our method is that it enables
an intuitive exploration of the design space. Consequently, users can
find a balance between the intricacies of their plush toy’s motions
and the complexity of its design. To validate our results, we employ
simulations and fabricate several physical prototypes.

2 RELATED WORK

Our work is inspired by the considerable attention the research
community has given to the development of computational tools
for designing physical surfaces. Recent investigations, for exam-
ple, represent surfaces using paper-craft models [Kilian et al. 2008;
Mitani and Suzuki 2004] and paper pop-ups [Li et al. 2011, 2010],
inflatable structures [Skouras et al. 2012, 2014], wire-mesh sculp-
tures [Garg et al. 2014], flexible rod and curve networks [Pérez et al.
2015; Zehnder et al. 2016], procedurally-generated filigrees [Chen
et al. 2016], tensegrities [Gauge et al. 2014], inextensible sheets with
cut patterns that lead to auxetic behavior [Konakovi¢ et al. 2016],
modular interlocking [Skouras et al. 2015] or self-supporting [Song
et al. 2013; Vouga et al. 2012] primitives, and, closest to our work,
plush toys [Igarashi and Igarashi 2008; Mori and Igarashi 2007].

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

While these efforts are aimed at creating static depictions of shape,
the goal of our work is to create physical models that are capable of
producing purposeful animations.

The challenge of creating physical objects that are specifically
designed to produce interesting motions is also fueling an active
area of research. Design methods for articulated characters [Bacher
et al. 2012; Cali et al. 2012], mechanical automata [Ceylan et al.
2013; Coros et al. 2013; Thomaszewski et al. 2014; Zhu et al. 2012],
and even walking [Megaro et al. 2015] and flying [Du et al. 2016]
robots have been recently proposed. While these works study me-
chanical structures composed primarily of rigid body parts, the
method we propose considers soft physical systems that undergo
large deformations. Consequently, our work is most closely related
to the methods introduced by Bickel et al. [2012] and Skouras et
al. [2013]. The former employs shape optimization techniques to
control the deformations of a silicone skin driven by an underlying
animatronic system. The latter optimizes a distribution of soft and
rigid materials, as well as external actuation forces, so that the defor-
mations of elastic characters match a set of input poses. In contrast
to these methods, our approach lets users author the motions of soft
characters through an intuitive posing interface that automatically
computes contractions for embedded muscle-like elements. While
the animation is being authored, our design system also creates an
internal actuation system that will drive the motions of real-life
plush toy prototypes.

The formulation we propose is inspired by control methods devel-
oped to animate soft virtual characters [Coros et al. 2012; Tan et al.
2012]. These methods develop optimization solutions that couple
implicit time stepping with computation of control inputs. However,
solving for deformed configurations, control signals and contact
forces at the same time leads to challenging constrained optimiza-
tion programs. Our solution, in contrast, is specifically tailored for
soft and light plush toys driven by muscle-like actuators. Under the
assumption of quasi-static motions, an implicit relationship between
deformed configurations and actuation inputs can be established.
By exploiting this relationship, we develop an efficient numerical
solver to compute muscle activations that lead to desirable plush
toy motions. It is worth noting that while the method developed
by Tan et al. [2012] also uses strand-based actuation, physical con-
straints require us to make different modeling choices. In particular,
our actuating elements can be of arbitrary length, they generate
pull-only forces, and slide freely through a series of waypoints in
order to model the behavior of cables routed through the soft bodies
of plush toys [Yamashita et al. 2012]. As another key difference, our
approach is used to co-design motions along with the actuation
systems necessary to recreate them in a physical prototype. The
output of our computational design system consists of fabrication
blueprints for customized plush robots.

3 DESIGN PROCESS OVERVIEW

In this section we describe the computational approach we use to
create animated plush robots, and introduce the technical concepts
that form the core of our design methodology.

Input. Our design system takes as input a geometric mesh depict-
ing the shape of the desired plush robot. For this work, we restrict

Interactive Design of Animated Plushies « 80:3

Idealized Plushie

(a) Input

Realizable Plushie

(c) Network)
Discovery

(d) Fabricated
Result

Fig. 2. Overview of our computational approach to creating animated plushies. A simulation model of an input plush robot (a) is animated using our Soft IK
posing system. Based on target locations for user-selected nodes, the Soft IK solver computes muscle-fiber activations to optimally deform the idealized
plushie (b). By analyzing the pattern of muscle-fiber co-activations, our design system generates physically-realizable winch-tendon networks (c). Winches are
visualized as yellow circles. The output of our system directly informs the placement of actuators, the routing of cables throughout the body of the fabricated
prototypes, and the control signals required to reproduce the user-created motions (d).

our attention to designing planar motions, but note that the con-
cepts we develop are general. The plushie is visualized as a 2.5D,
optionally textured model, as illustrated in Figure 2 (a).

Modeling plush toys. We model the elastic behavior of plush toys
using a standard finite-element analysis approach. As detailed in
Section 4.1, we expect plushies to undergo large deformations, which
are assumed to be quasi-static, during the motion authoring process.
We therefore employ a non-linear Neo Hookean material model, but
assume constant strain over each element of the simulation mesh
in favor of computational efficiency. We note that the predictive
power of this elastic model depends on the method used to fabricate
the plush toys. The type of stuffing that is used and how tightly
packed it is, whether it clumps or not, how uniformly it is distributed
throughout the plushie, and the material characteristics of the fabric
layer all play a role in the plushie’s deformation behavior. Our
experiments show that the FEM model we use captures well the
low-frequency, most salient features of the plushie’s motions. It is
also worth mentioning that our computational methodology is very
general and would directly work with other material models as long
as they provide analytic derivatives of their strain energy.

Graphical Design Interface. Users are presented with two views of
their design, as shown in Figure 2 (b) and (c). For the view on the left,
the plush toy is equipped with a large number of muscle-like virtual
muscle-fibers. This model, which we call the idealized plushie, is ca-
pable of a rich space of motions that users can freely explore during
the animation authoring process. The view on the right shows the
plush robot instrumented with physically-realizable winch-tendon
networks. Its motions are in close correspondence to those of fabri-
cated plush robot prototypes. We therefore refer to this model as
the realizable plushie. As the main means for authoring motions, we
employ a posing system that is conceptually related to traditional
character animation techniques based on inverse kinematics, as
shown in Figure 2 (b).

Muscle-fibers and winch-tendon networks. Muscle-fibers and ten-
dons are the two types of contractile elements used in our design
system. They are modeled as unilateral springs that can change

their rest length in order to actively modulate the tension forces
they generate, as described in Section 4.2. The internal forces that
their contractions give rise to deform the soft body of the plush
toys. Inspired by biological muscular hydrostats, muscle-fibers are
small, independently activated, and instantiated in large numbers.
Although different alternatives can easily be considered, our design
system creates a muscle-fiber for every edge of the simulation mesh
that is used to model plush toys. Muscle-fibers are highly versa-
tile and can produce intricate motions. Unfortunately, they lead
to actuation systems that are far too complex to fabricate. Rather
than relying on them to animate the final plush toy prototypes,
therefore, we use them to guide the design of physically-realizable
winch-tendon networks.

Winch-tendon networks (Figure 3, left) model the physical mech-
anisms we employ to animate our fabricated prototypes (Figure 3,
right). Each winch is driven by a brushed DC motor and winds an
arbitrary number of cables, which we call tendons, onto the same
3D-printed spool. As a winch is activated, it therefore shortens all
tendons attached to it by the same amount. The motion capabilities
of a physical plush robot are therefore governed by 1) the number of
winch-tendon networks that are employed, 2) the number of tendons
connected to each winch, and 3) the path that each tendon takes as
it is routed through the soft body of the plushie. Our computational
method provides a systematic approach to creating winch-tendon
networks that are custom-designed based on the motions envisioned
for the plush toy.

Posing system. Our design system allows users to author motions
for their plush robot through an intuitive posing system. As visual-
ized in Figure 2 (b), the user can select any point on the body of the
plushie and drag it to a desired location in the scene. This mode of
operation is inspired by traditional inverse-kinematics techniques.
However, rather than operating on joint angles and assuming an un-
derlying rigidly articulated skeleton, our numerical solver computes
activations for each available contractile element such that optimal
quasi-static deformations of the soft robot are generated. In the
resulting deformed configuration, the points selected on the body
of the plushie are as close to their target location as the contractile

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

80:4 «+ James M. Bern, Kai-Hung Chang, and Stelian Coros

nature of its muscle-like actuators will allow. The technical details
of this Soft IK posing system are presented in Section 5.

Design Loop. A key insight is that physically-realizable actuation
systems can be incrementally designed while users are authoring
the motions they desire for their plush toy. The iterative design
process begins with an empty set N of winch-tendon networks. At
every iteration, the idealized plushie is rigged with the full set of
virtual muscle-fibers, as well as with the contractile elements stored
in N. The realizable plushie, in contrast, is only equipped with the
current set of winch-tendon networks. The user selects a number
of points on the body of the plush toy and drags them to different
locations in the scene. Based on this input, our Soft IK posing system
is applied in an interleaved fashion.

We begin by employing the Soft IK solver on the realizable plushie
design. The resulting deformed configuration represents the best
pose that can be achieved with the current set of physically real-
izable actuators. The activations of the contractile elements in N
are then transferred over to the idealized plushie. Keeping these
activations fixed, the Soft IK solver then computes contractions for
each individual muscle-fiber in order to generate the best possible
pose given the user input. Intuitively, the difference in the poses
assumed by the two plushies provides a direct measure of how much
more the final design could be improved. If the user is unhappy with
the pose reached by the realizable plushie, they initiate the network
discovery process, which adds a new winch-tendon network to N.

As the posing and network discovery steps repeat, new winch-
tendon networks are incrementally added to the design. This it-
erative design process terminates once the user finds the right
balance between the ability of the plushie to produce nuanced
motions and the complexity of its design. It is worth noting that
our alternating application of the Soft IK solver ensures that the
physically-realizable actuation system is used to its full potential
before any muscle-fibers contribute to the resulting deformations.
Muscle-fibers are therefore solely used to account for deficiencies
in the plushie’s current design. Importantly, we achieve this effect
without needing to resort to sparse regularization terms or to po-
tentially hard-to-tune objectives that bias the use of one type of
contractile element over the other.

Network discovery. Throughout the posing process, our design
system analyzes patterns of co-activation for the muscle-fibers that
contribute to the deformations of the idealized plushie. In particular,
active muscle-fibers with similar contraction patterns are merged
into candidate winch-tendon networks, as outlined in section 6.
These networks are presented to the user, who chooses whether
to integrate them into the realizable plushie in order to enrich its
motion repertoire.

4 SYSTEM MODEL

To capture the deformation behavior of soft plush toys, we represent
them using a finite element model. The contractile elements that
animate plushies are modeled as stiff unilateral springs with variable
rest length. Adopting standard notation, we refer to the deformed,
statically stable (e.g. minimum energy state) configuration of the
plush model as x, which is a vector storing the coordinates of all

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

Fig. 3. The “pig” example shown in simulation and fabricated.

nodes in the simulation mesh. Similarly, we let X denote the rest,
or undeformed configuration of the simulation mesh.
The total deformation energy of the system is defined as:

E= Eplush + Econtractile + Epins (1

where Epjygh is the energy due to deformations of the simulation
mesh, E.oniractile 1S the strain energy stored by the contractile ele-
ments, and Epins models the behavior of stiff springs that connect
a small number of simulation nodes to world anchors in order to
eliminate rigid body modes.

The gradient of this energy with respect to the nodal degrees of
freedom gives us the forces acting on each node of the simulation
mesh:

OE
F=-— 2
I @
and the Hessian of this energy outputs the force Jacobian
OF _ 0°E
ox o ®)
x 0“x

Likewise, differentiating the individual terms of the system energy
with respect to the nodal degrees of freedom allows us to separate
the forces generated by mesh deformations from those due to the
contractile elements.

F=FK plush + Feontractile + F pins (4)

4.1 Simulation Model for Plushies

We model the elastic behavior of plush toys using linear finite el-
ements with a non-linear material model. For each element e of
the simulation mesh, we first compute the deformation gradient as
F = 9x¢/0X¢ = dD!, where d is a matrix whose columns store
edge vectors: d; = x{ — x; with xJ‘? denoting the world coordinates
of the j-th node of element e. The matrix D is similarly defined using

Fig. 4. The “puppy” example in simulation, performing a running motion.

rest configuration quantities. The energy density of the element is
then defined using a compressible Neo-Hookean material model:

¥, X) = ST F ~ 1) - pin] + S (in)?)

where p and k are material parameters, [is the identity matrix and
J = det(F). The elastic energy stored by the element is obtained by
integrating (5) over its domain, which is trivial given the assump-
tion that deformation gradients are constant across each element.
The energy term Epjygp is obtained by summing up the individual
contributions of all elements in the simulation mesh.

We note that the computational design method we propose is
material model-agnostic. As long as analytic formulations for the
deformation energy and its derivatives exist, any other simulation
model can be employed in a plug-and-play fashion.

4.2 Contractile elements

We model muscle-fibers and tendons using an abstraction we call
a contractile element. This abstraction is built around the concept
that we can model the contraction of a muscle-fiber or tendon by
changing the rest length of its underlying unilateral spring model.

We define a contractile element as a piecewise linear curve with
two endpoints Xs, X;, which we call attachment points and n interme-
diate vertices (1, ..., X), which we call via points. A muscle-fiber
has no via points, whereas a tendon may have many, shown in
Figure 5 (a) and (b). We use the word routing to refer to the choice
(and order) of attachment points and via points. In this work we
assume that attachment points and via points are bound to nodes
of the mesh.

In order to model cables free to slide through (frictionless) via
points, we consider the length ¢ = £(x) of the contractile element

Interactive Design of Animated Plushies « 80:5

e}
1

- /)_(t s Xt

s 2

kol

X3

(a) Muscle-fibers have two end
points and no via points.

(b) Tendons have two end points
and intermediate via points.

Xt3

(c) A winch-tendon network contains an arbitrary number of tendons,
sharing a common attachment point.

Fig. 5. Examples of the two contractile elements used in this work-muscle-
fibers and tendons—as well as an example of a winch-tendon network.

as the sum of distances between consecutive vertices.
n-1
Ux) = |I%s — %1l + lefi = Xiwall + [1%n — %l (6)
i=1
We model a winch-tendon network as a set of contractile elements
with a common endpoint X, shown in Figure 5 (c). This endpoint
specifies where we position the winch in a physical assembly.
Formally, a contractile element consists of the following compo-
nents.
(1) Attachment points xs, X;.
(2) Via points (x1, ..., Xp)-
(3) An initial rest length a®.
(4) A contraction a®.
(5) A rest length a := a® — a®, defined the difference of the
previous two quantities.
(6) A deformationT = T'(x), where I'(x) := {(x) — a.
(7) A strain energy U = U(T'), defined in the following section.
The derivative of strain energy with respect to deformation is the
element’s tension.

U

= ar (7)

4.3 Unilateral strain energy

Both muscle-fibers and tendons make use of a unilateral strain
energy defined to have the following properties.

(1) At least C? continuous so that second-order numerical
solvers are well-behaved.

(2) Zero for T < —¢ to model the behavior we would expect
from a physical muscle, cable, or tendon, which do not resist
compression.

(3) A monotonically increasing quadratic for I' > ¢, to model
resisting stretch according to Hooke’s law.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

80:6 « James M. Bern, Kai-Hung Chang, and Stelian Coros

u(r) The specific function we make
use of is a piece-wise C? poly-
nomial, which is zero below a
negative threshold, quadratic
above a positive threshold, and
cubic in between. The parame-
ter K determines the steepness
of the force response, and pa-
rameter ¢ defines the domain of the interpolating cubic piece of the
function. The coefficients of the cubic were chosen such that the
function value and derivatives at match at I" = +e.

T T T

-€ 0 €

0 .l

0 r<-e
2
U(r) = §r3+§zr?+%FX+KT“ —e<T'<e (8
KT? + KTS otherwise

4.4 Pins

To anchor the plushie in space, we allow users to attach pins to
nodes, which we model as zero-length springs. The pins specified
by the user can correspond in a physical prototype to e.g. hook and
loop attachments to a base, or the users hand gripping the plushie.
Each pin contributes %Kpin(xpin - xi)T(xpm — x;) to the pin energy
term Ep;n, where Xpiy is the position of the pin in world coordinates,
x; is the position of the pinned vertex the deformed configuration,
and Kpip is a large spring constant.

5 SOFTIK

The goal of the Soft IK procedure is to find a set of activations for
each contractile element that deform the finite element mesh as
close as possible to a target position x’. The target position x; of
any node in the mesh can be specified by the user via drag-and-drop.
If no position is specified, the target position defaults to the position
of node in the undeformed mesh, and that node’s contribution to
the objective greatly reduced.

5.1 Preliminaries

We stack the tensions of all contractile elements into a vector 7, and
define the matrix A = A(x) to satisfy the equation

Feontractile = AT ©

as in [Tan et al. 2012]. The matrix A encodes the routing of each
contractile element. This lets us write the partial derivative

(9_F
ot

since no other force terms depend explicitly on 7.

=A (10)

5.2 Objective function

Our main objective function is a weighted 2-norm penalizing dis-
tance from the target position as

0= (x—x)TQx~x") (11)

where the diagonal matrix Q masks out the contributions of nodes
for which the user has not specified a target position.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

5.3 Gradient

Our goal is to minimize the objective O, a function of the force
equilibrium configuration x that is affected by contractions €. In
this section we will establish the relationship between x and a€

and compute the gradient 90 To begin with, we expand ¥ ac by

considering how O changes with x.

80 90 ax

da® ~ 0x da® 12
The Jacoblan is readily computed.
(90
= Q(x —x") (13)

The Jacobian 66(;‘0 captures changes in the force equilibrium
configuration induced by changes in the contractions of actuating
elements. Since these contractile elements contribute to the net
nodal forces F(x) through the tensions 7 they generate, we expand
the Jacobian above by considering how x changes with 7:

Ox 0x Ot
dat ~ It da¢

(14)

The]acoblan X relates changes in the plushie’s shape to changes
in the tensmns generated by the contractile elements. Because an
analytic formula for the relationship x(z) does not exist, the Jaco-
bian we seek cannot be computed directly. However, due to the
quasi-static assumption we make, we know that a change in 7 must
induce a change in x such that force equilibrium is maintained.
Mathematically, this means that the total derivative of the net nodal
forces with respect to tensions vanishes:

dF _ BF OF 0x _ o (15)
dr ~ ot Bx ot

We have already derived analytic expressions for the Jacobians g—F

and 6F in egs. (3) and (10). Substituting those into eq. (15) gives:
0%E 0x

= 9 ot (16)

which we can solve for ax In our implementation this is accom-
plished with a sparse Cholesky solver.

The Jacobian 6(3; can be expanded by recalling our expression
for tension in eq. (7) is written purely in terms of the deformation T.

ot _ or or
da¢ ~ T dac

(17)

The Jacoblan T is a diagonal matrix storing the second derivative
of strain energy of each contractile element.

LR Y

or 9°r

The Jacobian % relates changes in deformation to changes in con-
traction. For any contractile element we can expand the definition
of contraction as T = £ — (a° — a€) implying that this term is just
the identity.

— =1 (19)

Putting everything together, we have the gradient expanded be-
low for reference.

00 00 0x gt OT

da® ~ Ox Ot OT dac

(20)

5.4 Incorporating actuation constraints

As written, the gradient in eq. (20) could be used as part of a con-
strained optimization, with two sets of constraints, once to enforce
an upper bound on contraction a¢ < @™?%, and the other to model
winch-tendon networks.

A winch-tendon network is considered to be a set of tendons
with a common endpoint. In fabrication, the winch is positioned at
the common endpoint. The activation of the winch contracts all the
tendons in a winch-tendon network, and tendons provide passive
coupling to the body of the plushie.

In order to say that tendon T; is a member of winch W; we write
T; € Wj. The winch constraint ensures that all tendons in a given
winch-tendon network share the same contraction.

aj = af forall Ty, T; € Wj (21)

In the following two sections we provide reparametrizations that
will take the place of these two sets of constraints, and enable the use
of an unconstrained optimization method (presented in section 5.7).

5.5 Winch synergy

In order to avoid having to explicitly enforce the winch constraint
from section 5.4, we introduce a new variable f; to be the acti-
vation of each winch-tendon network, and reparametrize tendon
contractions in terms of activations.

We stack activations into a vector 5, and define a matrix Z

1 if T; € Ww;
Zij = (22)

0 otherwise

to map from winch activations to tendon contractions.
a®=2Zp (23)

With this definition for Z, it follows that the contraction of every
tendon in a given winch-tendon network is equal to the activation
of the winch in that network. This models the action of a physical
winch, which takes in or lets out the same amount of cable for each
tendon connected to it.

We then have the Jacobian

da’
— =27 24
5% (24
and the overall gradient with respect to f.
00 00 da‘
— = (25)
ap dac OB

To have a unified treatment of both winch-tendon networks and
muscle-fibers, we consider each muscle-fiber as having its own
activation f := €, in which case Z is just the identity. In this way,
a muscle-fiber can be seen as a winch-tendon network with exactly
one tendon.

Interactive Design of Animated Plushies « 80:7

5.6 Actuation limits

To avoid having to explicitly use constraints to enforce the upper
bound on contractions in section 5.4, we define the maximum ac-
tivation ™ of each muscle-fiber or winch-tendon network, and
reparametrize activations using new variables £.

The maximum activation is the largest activation that does not
violate the constraint @¢ < a™**. The maximum activation of a
muscle-fiber is equal to that fiber’s maximum contraction (recall
in the previous section we defined the activation of a muscle fiber
equal to its contraction).

ﬁmax — amax (26)

1 1

The maximum activation of a winch-tendon network Wj, is the
smallest maximum contraction of the network’s tendons.
max : max
A = min «o; 27
pe = min c] @)
For each contractile element we can define a function f; that
maps from the optimization domain (the real line) to the allowed
activation range.

fi 1R = (—o0, fi"%) (28)
We define a corresponding vector function f such that B(&) = f(&).
f@ = (fittr).)" (29)

We note that in our implementation, each f; is actually the same
function we use for unilateral strain energy in section 4.3, just
reflected over the x-axis and translated up by ™. While £ is
unconstrained, f(&) is bounded above by g™,

We then immediately have the Jacobian

B _ .
Fr 5@ (30)
and gradient of the objective with respect to &.
00 00 0p
a5 " 9p ot ey

It is worth noting that now that we have established a relationship
between deformed configuration and the driving forces, it is trivial
to add a regularizer on tension to prevent slack from building up in
the system.

5.7 The Soft IK Solver

Recall that we began with our objective O which is defined in terms
of the deformed mesh position x. We introduced optimization vari-
ables £, any choice of which automatically adheres to the actuation
limits of all contractile elements, as well as the winch constraint.
Finally we established the gradient % which describes how our
objective changes as we vary €. We are now ready to present the
details of our optimization procedure.

We can write a statically-stable configuration of a plushie, which
we call a pose, as P = (x, £). By this we mean that if we find con-
tractions a€(£), and propagate them into the rest lengths of the
corresponding contractile elements, we will find that the statically
stable position of the mesh is x.

Our central algorithm, which we call Soft IK is based on gradient
descent. Pseudocode is provided in Algorithm 1. One iteration of

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

80:8 + James M. Bern, Kai-Hung Chang, and Stelian Coros

ALGORITHM 1: Soft IK

Input: Statically stable P,
Output: Statically stable Py,
compute g—?a according to eq. (31)

compute y via efficient line search
20
— + Y58
& Eaty & 4
By < f(&p)
(ZZ — Zﬁb
ap — oy — atlf
solve statics for xj,

Soft IK takes us from a statically stable pose P, to another statically
stable pose Py, which is closer to the user-specified target position.

We note that a naive line search would require a statics solve for
x every time we wanted to evaluate the objective function, which
would be computationally expensive. To avoid this we make use of
the fact that we can easily compute g—’g using the last four terms of
the gradient of our objective function, and linearly approximate x.

X(& + AE) ~ x(€) + g—’;Ag (32)
This yields a computationally efficient line search criterion to esti-
mate the step size y.

One final detail is that we have yet to define the initial rest lengths
of any contractile elements. In our implementation we make the
convenient choice to set the initial rest lengths of each contractile
element equal to its length measured in the mesh’s undeformed pose,
ie. @ := £X This means that in our physical prototypes all tendons
will be assembled with zero slack (though with extra cable wound
around the spool). Other choices for @€ are certainly possible, but
we leave a full exploration of this topic for future work.

o

R

(b) Thresholded fibers, with start-
ing component in red.

(a) Activation graph, with active
fibers highlighted in red.

(d) Output network, with winch in
yellow and tendons in green.

(c) Winch tree, with joining paths
in blue.

Fig. 6. Overview of network discovery.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

6 NETWORK DISCOVERY

Posing the idealized plushie using Soft IK yields activations for its
many virtual muscle-fibers. The job of network discovery is to find
winch-tendon networks that enable the realizable plushie to approx-
imate the poses specified by the user. We explain the algorithm here,
and provide pseudocode with full details in Algorithm 2.

To formalize network discovery, it is convenient to consider the
muscle-fibers of the idealized plushie as an edge-weighted undi-
rected graph G, which we call the activation graph, illustrated in
Figure 6 (a). The vertex set V(G) has one vertex corresponding to
each node in the plushie’s underlying finite element mesh, and the
edge set E has one edge corresponding to each muscle-fiber (recall
that muscle-fibers connect exactly two nodes in the finite element
mesh). For each edge e € E(G) we associate a weight w(e) equal to
the contraction of the corresponding muscle fiber. These weights
will form the basis of the subsequent thresholding procedure, winch
placement, and tendon selection.

The thresholding procedure simply selects the most active muscle-
fibers in the idealized plushie. The number of fibers to threshold is
set by a parameter SEED_NUM. The result of this thresholding is
a set of connected components in the winch graph, illustrated in
Figure 6 (b). We will designate the connected component with largest
total tension as the starting component, or S in the pseudocode.

We then join the starting component to other, nearby connected
components in the winch graph. This will form a structure we call
the winch tree, illustrated in Figure 6 (c). The joining procedure is
done iteratively. Connected components sufficiently close to the
winch tree are added to it (along with a connecting path for each
component), and then the procedure is repeated. The maximum
allowed distance for a component to be added is set by a param-
eter JOIN_LEN, and the number of times the overall procedure is
repeated is set by a parameter JOIN_DEPTH.

Finally, network discovery chooses both which vertex in the
winch tree will correspond to the position of the winch, as well as
which set of candidate tendons to include in the final network, as
shown in Figure 6 (d). The number of tendons in the final network is
set by a parameter TENDON_NUM. These selections are made ac-
cording to a simple heuristic. This heuristic makes use of a quantity
which we call the net contraction. For a candidate tendon, the net
contraction is defined to be the sum of contractions over all muscle-
fibers the tendon passes through. The net contraction estimates the
candidate tendon’s contraction if it were to be incorporated into the
realizable plushie. Intuitively, the heuristic we developed rewards
large net contractions for each tendon. However, it also penalizes
large variance in net contraction between candidate tendons, thus
discouraging the emergence of winch-tendon networks that poorly
capture co-activation patterns (recall that contraction is shared for
all tendons in a given winch-tendon network). The trade-off be-
tween these two sub-goals is determined through a user-tunable
parameter ¢ € [0, 1].

7 FABRICATION

It is worth noting that the physical prototypes are surprisingly easy
to create. Each prototype can be completely fabricated and assem-
bled in the span of a few hours, not counting the 3D printing of the

ALGORITHM 2: Network discovery

Input: Activation graph G

Output: Winch position r* and tendon paths Qx

Parameters: SEED_NUM, JOIN_DEPTH, JOIN_LEN, TENDON_NUM, ¢
/* @: Preliminary computation. */
E’ « SEED_NUM heaviest edges in E

identify connected components of E’

for each connected component, break cycles by deleting lightest edges
S « connected component with largest total contraction
T = {Ti, ...} « other connected components
/* 1: Build the winch tree Gw . */
Gy <« S
ford =1, ..., JOIN_DEPTH do
Gtemp < null graph
for T; € 7 do
find shortest path p; from V(Gw) to V(T;) in G
if number edges in p; no more than JOIN_LEN then
add (graph union) T;, p; to Giemp
remove T; from 7~
end
end

add (graph union) Giemp to Gy

end

/* 2: Select winch position r* and tendon set QF. */

initialize table rootScore[] // Best score for each candidate root.

initialize table Q’[] // Tendon sets corresp. to that best score.

for each candidate root r € V(Gy) do

initialize table winchScore[]

find candidate tendons by traversing back from leaves of Gy to r

for each candidate tendon q do

| netContraction[q] ¢ Y ccq w(e)

end

for each set Q of TENDON_NUM non-overlapping candidate tendons do
W « {netContraction[q] | g € Q}
winchScore[Q] = pMeanW — (1 — ¢p)VarW

end

Q’[r] « argmaxg winchScore[Q]

rootScore[r]| « winchScore[Q’[r]]

end
*
r* « arg max, rootScore|[r]

Q" < Q1]

winch. We laser cut low-cost acrylic felt sheets that are then sewn
together. We use standard polyester to fill the resulting structures,
and employ monofilament cables for actuation. To create the plush
toy’s motions, the cables can either be pulled by hand (for simple
motions), or contracted by a motorized winch. We tape or hold down
part of the plushie to reproduce the effect of the simulated pins.

7.1 Materials

Skin. We generate cut pattens which include small holes for ten-
don attachment points and via points. Using a later cutter, we cut
out these patterns from acrylic craft felt. The resulting pieces of felt
are sewn together on a standard sewing machine to serve as the
skin of our plushie.

Interactive Design of Animated Plushies « 80:9

Fig. 7. The “E” example shown in simulation and fabricated.

Tendons. For tendons we use 0.50mm braided or monofilmanet
fishing line. Either choice will work, and braided line was found to
be easier to route. To route the tendon through the skin we use of
large-eyed blunt needles.

Stuffing. We invert the sewn skin to ensure a smooth visual ap-
pearance, and stuff it with standard polyester fiber filling.

7.2 Winch design

Each winch is actuated by a FAULHABER® brushed DC gearmotor,
driven by a corresponding motion controller. The motion controllers
and power supply are external to the animated plushie.

We design a custom 3D-printed spool and housing that can handle
a large number of cables. For the 2D plushies we fabricate, we rig
two copies of the tendon routing discovered by our system, one on
the front face of the plushie, and one on the back.

8 RESULTS

We used our design system to create six animated plushies, shown
in Figures 1, 3, 4, 7, 10 and 11. We validated four of these designs
through physically fabricated prototypes. Table 1 summarizes sta-
tistics for our designs, and the animated plushies are presented in
the accompanying video. For all the examples presented in this pa-
per, the Soft IK and network discovery algorithms ran in realtime,
enabling an intuitive interactive design process.

Table 1. Examples, with statistics on the number of muscle-fibers in the
idealized plushie, the number of target nodes used in the posing session
(presented as a range for examples with multiple poses), the total number of
winch-tendon networks and tendons in the realizable plushie, and whether
or not it was fabricated.

fibers targets | winches | tendons | fabricated
robot 414 8-11 2 6 v
pig 571 2 1 2 v
E 442 6 1 3 v
S 276 4 1 2 v
puppy 307 3-6 3 3
squid 429 4-8 8 11

8.1 Comparing fabricated results against simulation

The large-scale deformations of our fabricated prototypes match
those of the corresponding simulated plushies, as shown in Figures 1,

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

80:10 « James M. Bern, Kai-Hung Chang, and Stelian Coros

3, 7 and 10. Nevertheless, differences between our simulations and
the fabricated results do exist. For example, the physical plushies do
not always perfectly return to the rest pose when tension is released.
Several factors contribute to this mismatch in deformation behavior.
First, we do not model friction between cables and the skin of the
plushies, nor friction between the plushies and the surfaces they
lie on. Second, polyester filling can clump if compressed too much.
These problems can be alleviated by having the design process be
informed by higher fidelity simulation models. As another avenue
for circumventing problems due to modeling approximations, we are
interested in exploring different materials (low-friction cables and
fabric skins, foam-based stuffing, etc.) for our physical prototypes.

8.2 Scalability

For all our designs, the idealized plushies have one muscle fiber
for every edge in the simulation mesh. On a standard laptop, the
SoftIK posing system runs in real time for plushies with up to 500
muscle fibers. As the number of muscle fibers nears 1000, the posing
system is still usable, though it becomes less responsive. Neverthe-
less, we note that our model formulation supports high-resolution
simulation meshes rigged with a coarser set of muscle fibers.

To analyze the effect of the input discretization on the resulting
designs, we tested the ability of our system to reproduce the same
pose starting from different resolutions of the simulation mesh. As
shown in Figure 8, these designs are rigged with 177, 414, and 1055
muscle-fibers, respectively. We found that the output winch-tendon
networks and poses are largely similar, though we observed some ar-
tifacts arising due to the tessellation of the simulation mesh. For the
coarser discretization, the muscle-fibers to choose from are relatively
long, and lead to a noticeable kink in the tendons of the output net-
work. For the finer discretization, multiple, largely parallel groups of
muscle fibers activate at similar levels, as illustrated in Figure 9. This
behavior stresses our simple winch discovery algorithm, leading to
non-smooth tendon routings that attempt to connect the muscle
fibers that operate in parallel. To address these artifacts, we plan to
develop regularizing terms that explicitly promote the emergence
of smoother tendons.

£La %

(a) 177 muscle-fibers (b) 414 muscle-fibers (c) 1055 muscle-fibers

Fig. 8. Comparison of winch-tendon varying fineness of triangulation for

the “robot” example.

8.3 Advantages of networks

The use of winch-tendon networks (as opposed to winches driving
just one tendon) enables the creation of complex motions with a

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

(a) Activation graph.

(b) Thresholded fibers.

Fig. 9. Detail of the legs of the finely-triangulated robot example. The overall
motion of “bending to the left” is accomplished in parallel by multiple groups
of active muscle-fibers. Note: SEED_NUM lowered for visualization.

low number of actuators. This is illustrated in Figure 7, where a
single winch-tendon network successfully deforms each leg of our
“E” example in a different way, as specified by the user. The top leg
curves up, the bottom leg curves down, and the middle leg curves
into an S-like shape.

9 LIMITATIONS AND FUTURE WORK
9.1 Network reusability

While complex networks can be very useful for creating single poses,
in practice we find that the more complex a network is, the less
likely it is be reused for other motions. Simpler winch-tendon net-
works tend to be more reusable in this sense, and so are excellent
for creating animation sequences (which are just a series of poses).
This is illustrated by Figure 4, in which a fairly complex animation
sequence was created using a set of simple winch-tendon networks.
An interesting avenue of future work would be to automatically de-
compose a complex network (created to match one particular pose)
into simpler constituent networks, which could be more readily
reused to create a richer space of poses.

9.2 Slack and exotic winches

In this work we assumed that there is no slack in any of the cables
when the plushie is assembled. We also assumed a basic type of
physical winch, one that has the same rate of contraction for all of
its cables. These were convenient assumptions for fabrication and
assembly, but removing them would increase design freedom.

If we had some cables slack at assembly, for example, we could
control the relative timing of cable contractions. If we used a winch
with multiple spools of different radii, we could control rates of cable
contraction. Timing and rates of motion are important concepts in
traditional animation, and their role in animating physical plushies
would be interesting to explore further.

\ \d_,\

oly
-
{

-

Fig. 10. The “S” example shown in simulation and fabricated.

9.3 Outlook

Although the design concepts we introduce are general, we have yet
to apply our method to plushies that can create desired 3D motions
in the presence of external forces due to gravity, user interactions, or
manipulation of other objects. Furthermore, while this work focused
on the design of animated plush toys, we believe it also represents a
very promising step towards creating soft robots that are specifically
designed to be safe, affordable, and personalized to specific needs
and preferences.

ACKNOWLEDGEMENTS

We thank Timothy Mueller-Sim, Frances Tso, and Merritt Jenkins for
helping out with physical prototypes, and we thank the anonymous
reviewers for their insightful suggestions. This work was supported
in part by NSF awards CHS-1566244 and NRI-1637853.

REFERENCES

Moritz Bécher, Bernd Bickel, Doug L. James, and Hanspeter Pfister. 2012. Fabricating
articulated characters from skinned meshes. ACM Transactions on Graphics 31, 4
(2012), 1-9. DOI:https://doi.org/10.1145/2185520.2335398

Bernd Bickel, Peter Kaufmann, Mélina Skouras, Bernhard Thomaszewski, Derek Bradley,
Thabo Beeler, Phil Jackson, Steve Marschner, Wojciech Matusik, and Markus Gross.
2012. Physical Face Cloning. ACM Trans. Graph. 31, 4, Article 118 (July 2012),
10 pages. DOI:https://doi.org/10.1145/2185520.2185614

J Cali, D A Calian, C Amati, R Kleinberger, A Steed, J Kautz, and T Weyrich. 2012.
3D-Printing of Non-Assembly, Articulated Models. Acm Transactions on Graphics
31, 6 (2012). DOI:https://doi.org/Artn13010.1145/2366145.2366149

Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013.
Designing and fabricating mechanical automata from mocap sequences. ACM
Transactions on Graphics (2013). DOI :https://doi.org/10.1145/2508363.2508400

Weikai Chen, Xiaolong Zhang, Shiging Xin, Yang Xia, Sylvain Lefebvre, and Wenping
Wang. 2016. Synthesis of Filigrees for Digital Fabrication. ACM Trans. Graph. 35, 4,
Article 98 (July 2016), 13 pages. DOI:https://doi.org/10.1145/2897824.2925911

Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher,
Robert Sumner, and Markus Gross. 2012. Deformable Objects Alive! ACM Trans.
Graph. 31, 4, Article 69 (July 2012), 9 pages. DOI:https://doi.org/10.1145/2185520.
2185565

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira For-
berg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational
design of mechanical characters. ACM Transactions on Graphics 32, 4 (2013), 1. DOI:
https://doi.org/10.1145/2461912.2461953

Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel, and Wojciech Matusik. 2016. Computa-
tional Multicopter Design. ACM Transactions on Graphics 35 (2016).

Yohsuke Furuta, Nobuyuki Umetani, Jun Mitani, Takeo Igarashi, and Yukio Fukui.
2010. A Film Balloon Design System Integrated with Shell Element Simulation.. In
Eurographics (Short Papers), Hendrik P. A. Lensch and Stefan Seipel (Eds.). Eurograph-
ics Association, 33-36. http://dblp.uni-trier.de/db/conf/eurographics/eg-short2010.
html#FurutaUMIF10

Akash Garg, Andrew O. Sageman-Furnas, Bailin Deng, Yonghao Yue, Eitan Grinspun,
Mark Pauly, and Max Wardetzky. 2014. Wire Mesh Design. ACM Trans. Graph. 33,
4, Article 66 (July 2014), 12 pages. DOI :https://doi.org/10.1145/2601097.2601106

Damien Gauge, Stelian Coros, Sandro Mani, and Bernhard Thomaszewski. 2014. In-
teractive Design of Modular Tensegrity Characters. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’14). Eurograph-
ics Association, Aire-la-Ville, Switzerland, Switzerland, 131-138. http://dlLacm.org/
citation.cfm?id=2849517.2849539

Yuki Igarashi and Takeo Igarashi. 2008. Pillow: Interactive Flattening of a 3D Model
for Plush Toy Design. In Proceedings of the 9th International Symposium on Smart
Graphics (SG "08). Springer-Verlag, Berlin, Heidelberg, 1-7. DOI:https://doi.org/10.
1007/978-3-540-85412-8_1

Martin Kilian, Simon Fléry, Zhonggui Chen, Niloy J. Mitra, Alla Sheffer, and Helmut
Pottmann. 2008. Curved Folding. ACM Trans. Graph. 27, 3, Article 75 (Aug. 2008),
9 pages. DOI:https://doi.org/10.1145/1360612.1360674

Mina Konakovi¢, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark
Pauly. 2016. Beyond Developable: Computational Design and Fabrication with
Auxetic Materials. ACM Trans. Graph. 35, 4, Article 89 (July 2016), 11 pages. DOIL:
https://doi.org/10.1145/2897824.2925944

Xian-Ying Li, Tao Ju, Yan Gu, and Shi-Min Hu. 2011. A Geometric Study of V-style
Pop-ups: Theories and Algorithms. In ACM SIGGRAPH 2011 Papers (SSGGRAPH

Interactive Design of Animated Plushies « 80:11

Fig. 11. The “squid” example in simulation, performing a swimming motion.

’11). ACM, New York, NY, USA, Article 98, 10 pages. DOI:https://doi.org/10.1145/
1964921.1964993

Xian-Ying Li, Chao-Hui Shen, Shi-Sheng Huang, Tao Ju, and Shi-Min Hu. 2010. Popup:
Automatic Paper Architectures from 3D Models. In ACM SIGGRAPH 2010 Papers
(SIGGRAPH ’10). ACM, New York, NY, USA, Article 111, 9 pages. DOI :https://doi.
org/10.1145/1833349.1778848

Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar Hilliges, Markus
Gross, and Stelian Coros. 2015. Interactive Design of 3D-Printable Robotic Creatures.
ACM Transactions on Graphics (2015).

Jun Mitani and Hiromasa Suzuki. 2004. Making Papercraft Toys from Meshes Using
Strip-based Approximate Unfolding. In ACM SIGGRAPH 2004 Papers (SSIGGRAPH *04).
ACM, New York, NY, USA, 259-263. DOI : https://doi.org/10.1145/1186562.1015711

Yuki Mori and Takeo Igarashi. 2007. Plushie: An Interactive Design System for Plush
Toys. In ACM SIGGRAPH 2007 Papers (SIGGRAPH °07). ACM, New York, NY, USA,
Article 45. DOI : https://doi.org/10.1145/1275808.1276433

Jesus Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal,
Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible
Rod Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages. DOI:
https://doi.org/10.1145/2766998

Mélina Skouras, Stelian Coros, Eitan Grinspun, and Bernhard Thomaszewski. 2015.
Interactive Surface Design with Interlocking Elements. ACM Trans. Graph. 34, 6,
Article 224 (Oct. 2015), 7 pages. DOI:https://doi.org/10.1145/2816795.2818128

Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Com-
putational Design of Rubber Balloons. Comput. Graphics Forum (Proc. Eurographics)
(2012).

Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus
Gross. 2013. Computational Design of Actuated Deformable Characters. ACM Trans.
Graph. 32, 4, Article 82 (July 2013), 10 pages. DOI:https://doi.org/10.1145/2461912.
2461979

Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel,
Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM
Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. DOI :https://doi.org/10.1145/
2601097.2601166

Peng Song, Chi-Wing Fu, Prashant Goswami, Jianmin Zheng, Niloy]. Mitra, and Daniel
Cohen-Or. 2013. Reciprocal Frame Structures Made Easy. ACM Trans. Graph. 32, 4,
Article 94 (July 2013), 13 pages. DOI:https://doi.org/10.1145/2461912.2461915

Jie Tan, Greg Turk, and C. Karen Liu. 2012. Soft Body Locomotion. ACM Trans. Graph.
31, 4, Article 26 (July 2012), 11 pages. DOI :https://doi.org/10.1145/2185520.2185522

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grin-
spun, and Markus Gross. 2014. Computational Design of Linkage-Based Characters.
ACM Transactions on Graphics 33 (2014).

Etienne Vouga, Mathias Hébinger, Johannes Wallner, and Helmut Pottmann. 2012.
Design of Self-supporting Surfaces. ACM Trans. Graph. 31, 4, Article 87 (July 2012),
11 pages. DOI:https://doi.org/10.1145/2185520.2185583

Yohei Yamashita, Tatsuya Ishikawa, Hironori Mitake, Yutaka Takase, Fumihiro Kato,
Tkumi Susa, Shoichi Hasegawa, and Makoto Sato. 2012. Stuffed toys alive!: cuddly
robots from fantasy world. In ACM SIGGRAPH 2012 Emerging Technologies. ACM,
20.

Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing
Structurally-sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Ar-
ticle 99 (July 2016), 10 pages. DOI :https://doi.org/10.1145/2897824.2925888

Lifeng Zhu, Weiwei Xu, John Snyder, Yang Liu, Guoping Wang, and Baining Guo. 2012.
Motion-guided Mechanical Toy Modeling. ACM Transactions on Graphics 31, 6
(2012), 127:1-127:10. DOI:https://doi.org/10.1145/2366145.2366146

ACM Transactions on Graphics, Vol. 36, No. 4, Article 80. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related work
	3 Design process overview
	4 System model
	4.1 Simulation Model for Plushies
	4.2 Contractile elements
	4.3 Unilateral strain energy
	4.4 Pins

	5 Soft IK
	5.1 Preliminaries
	5.2 Objective function
	5.3 Gradient
	5.4 Incorporating actuation constraints
	5.5 Winch synergy
	5.6 Actuation limits
	5.7 The Soft IK Solver

	6 Network Discovery
	7 Fabrication
	7.1 Materials
	7.2 Winch design

	8 Results
	8.1 Comparing fabricated results against simulation
	8.2 Scalability
	8.3 Advantages of networks

	9 Limitations and Future Work
	9.1 Network reusability
	9.2 Slack and exotic winches
	9.3 Outlook

	References

