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Our design methodology is characterized by two underlying prin-

ciples. First, we do not assume as input a target motion that needs

to be reproduced (cf. [Skouras et al. 2013]). This decision removes

the need for hard-to-quantify perceptual similarity measures or

unintuitive Cartesian or strain-space error metrics. Instead, users

are presented with a familiar posing and keyframing system that

allows plush toy motions to be interactively created. The posing

system employs a novel inverse kinematics-like solver that operates

in the space of deformations induced by activations of cable-based

contractile elements. Consequently, all motions authored by the user

are guaranteed to be realizable using the type of actuation that our

plush robots will employ.

As a second deining characteristic of our work, a plush toy’s

actuation system is designed while the user is creating its motions.

Our approach is inspired by muscular hydrostats ś biological struc-

tures composed of muscles but lacking any rigid skeletal support. In

nature, these systems have proven to be extremely useful and versa-

tile. Elephant trunks, for example, are wonderfully dexterous; their

amazing motion repertoire is due to hundreds of thousands of mus-

cle iber bundles. Unfortunately, this actuation complexity is clearly

well beyond current fabrication capabilities. Simulations, however,

are not bound to fabrication constraints. A key insight is to therefore

begin by instrumenting the physically-simulated body of a plush toy

with a large number of virtual muscles, which we call muscle-ibers.

Mimicking biological systems, each muscle-iber is small and capa-

ble of contracting independently. While not physically realizable,

this dense arrangement of muscle-ibers gives rise to the richest

space of motions possible. During the motion authoring process,

our computational method analyzes the muscle-ibers’ co-activation

patterns; those with large activation levels contribute most to the

user-speciied motions are merged into ready-to-fabricate winch-

tendon networks. Winch-tendon networks are used to model the

motorized devices and cables which, when embedded in the soft

bodies of physical plush robots, will be driving their motions.

We demonstrate the versatility of our computational approach

by creating a variety of animated plush toys. Since the authoring

process is interactive, a key beneit of our method is that it enables

an intuitive exploration of the design space. Consequently, users can

ind a balance between the intricacies of their plush toy’s motions

and the complexity of its design. To validate our results, we employ

simulations and fabricate several physical prototypes.

2 RELATED WORK

Our work is inspired by the considerable attention the research

community has given to the development of computational tools

for designing physical surfaces. Recent investigations, for exam-

ple, represent surfaces using paper-craft models [Kilian et al. 2008;

Mitani and Suzuki 2004] and paper pop-ups [Li et al. 2011, 2010],

inlatable structures [Skouras et al. 2012, 2014], wire-mesh sculp-

tures [Garg et al. 2014], lexible rod and curve networks [Pérez et al.

2015; Zehnder et al. 2016], procedurally-generated iligrees [Chen

et al. 2016], tensegrities [Gauge et al. 2014], inextensible sheets with

cut patterns that lead to auxetic behavior [Konaković et al. 2016],

modular interlocking [Skouras et al. 2015] or self-supporting [Song

et al. 2013; Vouga et al. 2012] primitives, and, closest to our work,

plush toys [Igarashi and Igarashi 2008; Mori and Igarashi 2007].

While these eforts are aimed at creating static depictions of shape,

the goal of our work is to create physical models that are capable of

producing purposeful animations.

The challenge of creating physical objects that are speciically

designed to produce interesting motions is also fueling an active

area of research. Design methods for articulated characters [Bächer

et al. 2012; Cali et al. 2012], mechanical automata [Ceylan et al.

2013; Coros et al. 2013; Thomaszewski et al. 2014; Zhu et al. 2012],

and even walking [Megaro et al. 2015] and lying [Du et al. 2016]

robots have been recently proposed. While these works study me-

chanical structures composed primarily of rigid body parts, the

method we propose considers soft physical systems that undergo

large deformations. Consequently, our work is most closely related

to the methods introduced by Bickel et al. [2012] and Skouras et

al. [2013]. The former employs shape optimization techniques to

control the deformations of a silicone skin driven by an underlying

animatronic system. The latter optimizes a distribution of soft and

rigid materials, as well as external actuation forces, so that the defor-

mations of elastic characters match a set of input poses. In contrast

to these methods, our approach lets users author the motions of soft

characters through an intuitive posing interface that automatically

computes contractions for embedded muscle-like elements. While

the animation is being authored, our design system also creates an

internal actuation system that will drive the motions of real-life

plush toy prototypes.

The formulation we propose is inspired by control methods devel-

oped to animate soft virtual characters [Coros et al. 2012; Tan et al.

2012]. These methods develop optimization solutions that couple

implicit time stepping with computation of control inputs. However,

solving for deformed conigurations, control signals and contact

forces at the same time leads to challenging constrained optimiza-

tion programs. Our solution, in contrast, is speciically tailored for

soft and light plush toys driven by muscle-like actuators. Under the

assumption of quasi-static motions, an implicit relationship between

deformed conigurations and actuation inputs can be established.

By exploiting this relationship, we develop an eicient numerical

solver to compute muscle activations that lead to desirable plush

toy motions. It is worth noting that while the method developed

by Tan et al. [2012] also uses strand-based actuation, physical con-

straints require us to make diferent modeling choices. In particular,

our actuating elements can be of arbitrary length, they generate

pull-only forces, and slide freely through a series of waypoints in

order to model the behavior of cables routed through the soft bodies

of plush toys [Yamashita et al. 2012]. As another key diference, our

approach is used to co-design motions along with the actuation

systems necessary to recreate them in a physical prototype. The

output of our computational design system consists of fabrication

blueprints for customized plush robots.

3 DESIGN PROCESS OVERVIEW

In this section we describe the computational approach we use to

create animated plush robots, and introduce the technical concepts

that form the core of our design methodology.

Input. Our design system takes as input a geometric mesh depict-

ing the shape of the desired plush robot. For this work, we restrict
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The speciic function we make

use of is a piece-wise C2 poly-

nomial, which is zero below a

negative threshold, quadratic

above a positive threshold, and

cubic in between. The parame-

ter K determines the steepness

of the force response, and pa-

rameter ε deines the domain of the interpolating cubic piece of the

function. The coeicients of the cubic were chosen such that the

function value and derivatives at match at Γ = ±ε .

U (Γ) :=





0 Γ ≤ −ε
K
6ε Γ

3
+

K
2 Γ

2
+

Kε
2 Γ

x
+

Kε2

6 −ε ≤ Γ < ε

KΓ2 + Kε2

3 otherwise

(8)

4.4 Pins

To anchor the plushie in space, we allow users to attach pins to

nodes, which we model as zero-length springs. The pins speciied

by the user can correspond in a physical prototype to e.g. hook and

loop attachments to a base, or the users hand gripping the plushie.

Each pin contributes 1
2Kpin(xpin −xi )

T (xpin −xi ) to the pin energy

term Epin , where xpin is the position of the pin in world coordinates,

xi is the position of the pinned vertex the deformed coniguration,

and Kpin is a large spring constant.

5 SOFT IK

The goal of the Soft IK procedure is to ind a set of activations for

each contractile element that deform the inite element mesh as

close as possible to a target position x ′. The target position x ′
i of

any node in the mesh can be speciied by the user via drag-and-drop.

If no position is speciied, the target position defaults to the position

of node in the undeformed mesh, and that node’s contribution to

the objective greatly reduced.

5.1 Preliminaries

We stack the tensions of all contractile elements into a vector τ , and

deine the matrix A = A(x) to satisfy the equation

Fcontractile = Aτ (9)

as in [Tan et al. 2012]. The matrix A encodes the routing of each

contractile element. This lets us write the partial derivative

∂F

∂τ
= A (10)

since no other force terms depend explicitly on τ .

5.2 Objective function

Our main objective function is a weighted 2-norm penalizing dis-

tance from the target position as

O =
1

2
(x − x ′)TQ(x − x ′) (11)

where the diagonal matrixQ masks out the contributions of nodes

for which the user has not speciied a target position.

5.3 Gradient

Our goal is to minimize the objective O, a function of the force

equilibrium coniguration x that is afected by contractions αc . In

this section we will establish the relationship between x and αc ,

and compute the gradient ∂O
∂α c . To begin with, we expand ∂O

∂α c by

considering how O changes with x .

∂O

∂αc
=

∂O

∂x

∂x

∂αc
(12)

The Jacobian ∂O
∂x

is readily computed.

∂O

∂x
= Q(x − x ′) (13)

The Jacobian ∂x
∂α c captures changes in the force equilibrium

coniguration induced by changes in the contractions of actuating

elements. Since these contractile elements contribute to the net

nodal forces F (x) through the tensions τ they generate, we expand

the Jacobian above by considering how x changes with τ :

∂x

∂αc
=

∂x

∂τ

∂τ

∂αc
(14)

The Jacobian ∂x
∂τ

relates changes in the plushie’s shape to changes

in the tensions generated by the contractile elements. Because an

analytic formula for the relationship x(τ ) does not exist, the Jaco-

bian we seek cannot be computed directly. However, due to the

quasi-static assumption we make, we know that a change in τ must

induce a change in x such that force equilibrium is maintained.

Mathematically, this means that the total derivative of the net nodal

forces with respect to tensions vanishes:

dF

dτ
=

∂F

∂τ
+

∂F

∂x

∂x

∂τ
= 0 (15)

We have already derived analytic expressions for the Jacobians ∂F
∂τ

and ∂F
∂x

in eqs. (3) and (10). Substituting those into eq. (15) gives:

A =
∂2E

∂2x

∂x

∂τ
(16)

which we can solve for ∂x
∂τ

. In our implementation this is accom-

plished with a sparse Cholesky solver.

The Jacobian ∂τ
∂α c can be expanded by recalling our expression

for tension in eq. (7) is written purely in terms of the deformation Γ.

∂τ

∂αc
=

∂τ

∂Γ

∂Γ

∂αc
(17)

The Jacobian ∂τ
∂Γ

is a diagonal matrix storing the second derivative

of strain energy of each contractile element.

∂τ

∂Γ
=

∂2U

∂2Γ
(18)

The Jacobian ∂Γ

∂α c relates changes in deformation to changes in con-

traction. For any contractile element we can expand the deinition

of contraction as Γ = ℓ − (α0 − αc ) implying that this term is just

the identity.

∂Γ

∂αc
= I (19)
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Putting everything together, we have the gradient expanded be-

low for reference.

∂O

∂αc
=

∂O

∂x

∂x

∂τ

∂τ

∂Γ

∂Γ

∂αc
(20)

5.4 Incorporating actuation constraints

As written, the gradient in eq. (20) could be used as part of a con-

strained optimization, with two sets of constraints, once to enforce

an upper bound on contraction αc ≤ αmax, and the other to model

winch-tendon networks.

A winch-tendon network is considered to be a set of tendons

with a common endpoint. In fabrication, the winch is positioned at

the common endpoint. The activation of the winch contracts all the

tendons in a winch-tendon network, and tendons provide passive

coupling to the body of the plushie.

In order to say that tendon Ti is a member of winchWj we write

Ti ∈ Wj . The winch constraint ensures that all tendons in a given

winch-tendon network share the same contraction.

αc
h
= αci for all Th ,Ti ∈Wj (21)

In the following two sections we provide reparametrizations that

will take the place of these two sets of constraints, and enable the use

of an unconstrained optimization method (presented in section 5.7).

5.5 Winch synergy

In order to avoid having to explicitly enforce the winch constraint

from section 5.4, we introduce a new variable βj to be the acti-

vation of each winch-tendon network, and reparametrize tendon

contractions in terms of activations.

We stack activations into a vector β , and deine a matrix Z

Zi j =

{
1 if Ti ∈Wj

0 otherwise
(22)

to map from winch activations to tendon contractions.

αc
= Zβ (23)

With this deinition for Z , it follows that the contraction of every

tendon in a given winch-tendon network is equal to the activation

of the winch in that network. This models the action of a physical

winch, which takes in or lets out the same amount of cable for each

tendon connected to it.

We then have the Jacobian

∂αc

∂β
= Z (24)

and the overall gradient with respect to β .

∂O

∂β
=

∂O

∂αc

∂αc

∂β
(25)

To have a uniied treatment of both winch-tendon networks and

muscle-ibers, we consider each muscle-iber as having its own

activation β := αc , in which case Z is just the identity. In this way,

a muscle-iber can be seen as a winch-tendon network with exactly

one tendon.

5.6 Actuation limits

To avoid having to explicitly use constraints to enforce the upper

bound on contractions in section 5.4, we deine the maximum ac-

tivation βmax of each muscle-iber or winch-tendon network, and

reparametrize activations using new variables ξ .

The maximum activation is the largest activation that does not

violate the constraint αc ≤ αmax. The maximum activation of a

muscle-iber is equal to that iber’s maximum contraction (recall

in the previous section we deined the activation of a muscle iber

equal to its contraction).

βmax
i = αmax

i (26)

The maximum activation of a winch-tendon networkWj , is the

smallest maximum contraction of the network’s tendons.

βmax
j = min

Ti ∈Wj

αmax
i (27)

For each contractile element we can deine a function fi that

maps from the optimization domain (the real line) to the allowed

activation range.

fi : R→ (−∞, βmax
i ) (28)

We deine a corresponding vector function f such that β(ξ ) = f (ξ ).

f (ξ ) := (f1(ξ1), ...)
T (29)

We note that in our implementation, each fi is actually the same

function we use for unilateral strain energy in section 4.3, just

relected over the x-axis and translated up by βmax. While ξ is

unconstrained, f (ξ ) is bounded above by βmax.

We then immediately have the Jacobian

∂β

∂ξ
= f ′(ξ ) (30)

and gradient of the objective with respect to ξ .

∂O

∂ξ
=

∂O

∂β

∂β

∂ξ
(31)

It is worth noting that now that we have established a relationship

between deformed coniguration and the driving forces, it is trivial

to add a regularizer on tension to prevent slack from building up in

the system.

5.7 The Sot IK Solver

Recall that we began with our objective O which is deined in terms

of the deformed mesh position x . We introduced optimization vari-

ables ξ , any choice of which automatically adheres to the actuation

limits of all contractile elements, as well as the winch constraint.

Finally we established the gradient ∂O
∂ξ

, which describes how our

objective changes as we vary ξ . We are now ready to present the

details of our optimization procedure.

We can write a statically-stable coniguration of a plushie, which

we call a pose, as P = (x , ξ ). By this we mean that if we ind con-

tractions αc (ξ ), and propagate them into the rest lengths of the

corresponding contractile elements, we will ind that the statically

stable position of the mesh is x .

Our central algorithm, which we call Soft IK is based on gradient

descent. Pseudocode is provided in Algorithm 1. One iteration of
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