Queueing Syst @ CrossMark
DOI 10.1007/s11134-016-9507-9

Optimal control of a single server in a finite-population
queueing network

Nilay Tanik Argon!® - Chao Deng! -
Vidyadhar G. Kulkarni!

Received: 4 September 2015 / Revised: 17 October 2016
© Springer Science+Business Media New York 2016

Abstract We study the optimal dynamic assignment of a single server to multiple
stations in a finite-population queueing network. The objective is to maximize the
long-run average reward/throughput. We use sample-path comparisons to identify
conditions on the network structure and service time distributions under which the
optimal policy is an index policy. This index policy assigns the server to the non-
empty station where it takes the shortest amount of time (in some stochastic sense) to
complete a job. For example, in a network of multiple parallel stations, the optimal
policy assigns the highest priority to the fastest station if service times can be ordered in
likelihood ratios. Finally, by means of a numerical study, we test the shortest-expected-
remaining-service-time policy on parallel-series networks with three stations and find
that this index policy either coincides with the optimal policy or provides a near-
optimal performance.

Keywords Scheduling - Queueing networks - Likelihood ratio ordering - SEPT

Mathematics Subject Classification 68M20 - 60K25 - 90B22 - 90B36

B Nilay Tanik Argon
nilay @unc.edu

Chao Deng
chaodeng @live.unc.edu

Vidyadhar G. Kulkarni
vkulkarn @email.unc.edu

Department of Statistics and Operations Research, University of North Carolina, Chapel Hill,
NC 27599, USA

Published online: 16 November 2016 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11134-016-9507-9&domain=pdf
http://orcid.org/0000-0002-6814-0849

Queueing Syst

1 Introduction

This paper is concerned with queueing systems with a finite source of customers that
cannot be approximated by infinite-population queueing models. For such a system,
we are particularly interested in dynamic prioritization of customers for service based
on information on their service requirements. Such finite-population systems emerge
in various applications. One of the most important applications is the machine inter-
ference/repair problem. In this problem, machines (customers) operate for a random
period of time, then break down and request service from a repair person (server).
Because the repair persons are limited in numbers, the service manager may face two
operational decisions during the repair process: which repair person should serve a
machine and in what order the machines should be served. There is a rich literature that
studies the machine interference problem that is summarized in two survey articles by
Stecke and Aronson [18] and Haque and Armstrong [4].

Another application area for finite-population queueing systems is computer com-
munication. In a computer-communication system, multiple terminals (customers)
request service from a computer or a peripheral unit (server). Each terminal generates
requests after a random amount of time and the server works on each request based
on a queueing policy. This queueing policy determines the throughput rate, i.e., the
number of requests completed per unit time, which is one of the most important per-
formance measures showing the system’s processing power. For examples of work
on improving computer systems performance, see Dshalalow [3], Haverkort [5], King
[9], and Takagi [20].

Finite-population queueing models can be also useful in other applications such
as healthcare, where the utilization of certain resources such as intensive care unit
beds is high. For example, in a hospital unit, nurses have many tasks that require
their attention and it is not clear which one of these tasks they should prioritize. More
specifically, during a patient’s stay at the hospital, he/she may have nursing requests
such as pain management in addition to admission and discharge procedures that all
require attention from a nurse. Modeling such a system as a finite-population queueing
system where customers and servers represent patients and nurses, respectively, could
help identify effective nurse assignment policies that maximize the throughput of the
hospital unit. See de Véricourt and Jennings [2] for an example of a finite-population
queueing model that is used to determine optimal nurse-to-patient ratios.

In this work, we consider a queueing system in which requests for service are
generated by a finite number of customers and are handled by a single server. A
customer can be in three states: inactive, waiting for service, or in service. An inactive
customer generates a request for service after a random amount of time independently
from the other customers. If the server is busy at the time of this request, the customer
needs to join a queue and wait for its turn for service. Once the service is completed,
the customer becomes inactive again, and the process repeats. Each time the service of
a customer is completed, a reward is earned. The server can handle only one request
at a time, and when there are multiple requests, the question is which customer should
be prioritized for service so that the long-run average reward is maximized.

Note that such a finite-population service system can be modeled as a closed queue-
ing network with a constant number of customers and two stages of service; see Fig. 1.

@ Springer

Queueing Syst

Fig. 1 A closed queueing
system with two stages of
stations
Service
Stations
Station 0
» 0 »
\ \ [
\ \ [
\ \ [
\ [[
\ \ [
\ \ [
} Stage 1 } Stage 2 }

The first stage, which is labeled as station O in the network, represents the place where
the customers spend their inactive time. The customers do not need any servers during
their sojourn at station O and hence there is no queue at this station. The second stage
consists of multiple “service” stations and a single flexible server who is able to work
at any one of the service stations. After completion of service at the second stage,
customers are rerouted to the first stage and the process repeats in this manner. We are
interested in dynamically allocating the single server to each of the service stations
so that the long-run average reward (or the weighted throughput) of the system is
maximized.

In the remainder of the paper, we first provide a literature review of the relevant
work in Sect. 2, followed by the model description and problem formulation pre-
sented in Sect. 3. Using sample-path arguments, we provide sufficient conditions on
the network structure and service time distributions for the optimality of some form
of the shortest-remaining-service-time policy within the set of preemptive and non-
preemptive policies in Sects. 4 and 5, respectively. In Sect. 6, by means of a numerical
study, we test the performance of the shortest-expected-remaining-service-time heuris-
tic for finite-population queueing systems that do not satisfy the conditions identified
by our analytic results. Finally, in Sect. 7, we provide our concluding remarks. Proofs
of our theoretical results are provided in the Appendix.

2 Literature review

We start by reviewing the most relevant work on finite-population queueing systems
and refer the interested reader to Sztrik [19] for an excellent bibliography of articles
on these queueing systems and their applications. Palesano and Chandra [13] study a
machine interference problem with multiple types of failures. The authors conduct a
numerical study to compare the system performance under different server assignment
policies. One of their main findings is that the mean number of machines waiting for
repair increases when the machines that require the longest mean service time are
prioritized. Consistent with this numerical observation, we prove a result that shows
that the optimal policy that maximizes the long-run average throughput gives priority to

@ Springer

Queueing Syst

the customers with the shortest service times in some stochastic sense. Another relevant
line of work that studies machine interference problem is by Iravani and Kolfal [7]
and Iravani et al. [8]. Both papers study the problem with heterogenous machines that
have distinct up and repair time distributions as well as different downtime costs. Their
objective is to find dynamic server allocation policies to these heterogenous machines
so as to minimize the long-run average cost. Iravani and Kolfal [7] find the conditions
under which certain static priority rules are optimal within the class of preemptive
policies. Iravani et al. [8] show that the optimal policy may never serve some classes
of machines if preemption is not allowed; for those classes that are served, a static
priority policy is optimal. Note that the queueing model studied in these two papers
differs from our model, in that their model allows for heterogenous jobs (leading to
multiple closed classes of jobs in the network that cannot change class) but each class
of job requesting only one type of service, whereas our model allows for multiple
types of services but for a single class of jobs.

There is also a vast literature on queueing networks with flexible servers where the
servers are capable of working at multiple stations. In the remainder of this section,
we review the most relevant work from this literature.

Both Righter and Shanthikumar [15] and Ahn and Righter [1] study the problem
of maximizing the job completion process in queueing networks with flexible servers.
[15] considers queueing networks that involve “controllable” stations each having a
single server and increasing likelihood ratio service distributions. The authors show
that any non-preemptive policy at the controllable stations with a single class of cus-
tomers stochastically maximizes the joint departure process. [1] considers a tandem
queueing network where servers are trained to do a subset of consecutive tasks. The
authors prove that the last-buffer-first-served policy for each server stochastically max-
imizes the job completion process in open or closed tandem networks under certain
conditions on service time distributions. These results in [1] and [15] have important
implications for certain specialized cases of our problem, and hence we discuss them
in more detail in Sects. 4 and 5.

Another relevant work is by Koole and Righter [10], who study open and closed
tandem networks, where the stations are divided into several non-overlapping sets
of adjacent stations and each server is able to work on only one set of stations. The
authors show that the optimal policy assigns each server to work at its last nonempty
station, which is consistent with one of the results proved in this paper. However, in
the network studied by Koole and Righter [10], there is no stage 1, where customers
can be in an inactive state, which is the case in our model.

Van Oyen et al. [21] study a serial production system with multiple flexible servers.
When servers are collaborative, i.e., when servers are able to work together on the
same job at the same time, the authors show that the expedite policy is optimal to
minimize the cycle time for each job. (The expedite policy pools all servers into a
team and assigns the team to a job to work it through from the first station to the
last station without any interruptions.) The authors also extend the optimality of the
expedite policy to a closed queueing network and prove that the policy is optimal with
respect to throughput.

Finally, Hopp et al. [6] study a closed tandem queueing network with a single server
and a mix of manual and automated stations. The first station is an automated station,

@ Springer

Queueing Syst

which processes jobs automatically without the need for a server but requires the
server for loading. The other stations are manual stations that cannot process any jobs
unless attended by the server. For the case with three stations, the authors show that
the optimal control policy that maximizes the long-run average throughput is a static
policy that gives priority to keep the automated station busy for as long as possible.
This structure for the optimal policy is in line with the structure that we identify in
this paper but under different modeling assumptions.

3 Problem formulation

In this paper we focus on a special class of finite-population queueing systems with B
customers (1 < B < 00), which we call a parallel-series system, as shown in Fig. 2.
(We interchangeably use the words “customer” and “job” throughout this paper.) The
second stage of such a system consists of J > 1 parallel branches, where the jth
branch (j = 1,2, ..., J) consists of i; > 1 service stations in series. We label the ith
station in the jth branch as station (7, j). A customer stays in station O for a random
amount of time and then moves to station (1, j) with probability p; > 0(1 < j < J),
where Z,J-=1 pj = 1. A customer stays in station (7, j) until the server completes the
associated task, then moves to station (i + 1, j) if i < i}, and to station 0 if i = i;.
This process repeats in the same manner forever. We let S; ; be the generic random
variable that represents the service time in station (i, j) (1 <i <i;,1 < j < J). We
assume that all service times at the service stations and sojourn times at station O are
independent of each other.

A parallel-series system generalizes several special systems that arise in real-life
applications. For example, a system with J = 1 represents a tandem queueing network
that is observed commonly in manufacturing systems. On the other hand, a system with
ij=1forall j =1,2,...,J represents a parallel queueing network with J service
stations. Such a parallel system arises where the service needs can be classified into
J types as in the case of the machine repair problem with multiple types of failures.

%72,/»1,2 22— . —»i2

s o L— >
\\
AN

Prody g D SN Y

Fig. 2 A finite-population queuing system with parallel-series structure

@ Springer

Queueing Syst

We next define further notation to formally state our optimization problem and also
simplify exposition in the rest of the paper. Let K be the total number of stations in
the second stage of a parallel-series system, i.e., K = le‘:l ij. Let also Dy (¢) and
Dl’.f j (t) denote the number of service completions in station O and in station (i, j)
(I =i <ij,1 < j < J),respectively, during [0, 7] under policy 7. (A policy
determines the priority decisions that the server should make, possibly dynamically
with time and state.) Suppose that a positive and finite reward r; ; is gained when
service is completed in station (i, j) (1 <i <i;,1 < j < J). We define

T = liminf E E ri [Dn ()] (1)
t—0o0 lj
j=1i=I

to be the long-run average reward of the system under policy & when the limit exists.

Let ITp and IInp denote the set of preemptive-resume and non-preemptive policies,
respectively. For preemptive-resume policies, the server is allowed to make decisions
at any given point in time and the service of a job that is preempted will resume
from where it was left off the next time the server works on it. Under non-preemptive
policies, the server is allowed to switch to work at other stations only when it completes
service at the current station. In this paper we consider both preemptive-resume and
non-preemptive policies.

Let T™ denote the long-run average throughput at station 0 under policy 7, i.e.,

E|[D] (t
77 = liming L2 O])
t—00 t
Throughout the paper, we will refer to 7™ as the system throughput. Our first result
establishes a relation between (1) and (2).

Proposition 1 Under a given policy m € Ilp U IInp, we have

J o
”:T”Zijri,j. 3)

j=1i=1

Based on Proposition 1 and the fact that the double sum in Eq. (3) is a finite constant
independent of 7, our objective reduces to maximizing 77 within ITp and Inp.
Before we continue with our analysis, we provide some definitions that we use
frequently in this paper. Let X and Y be two continuous [or discrete] random variables
with densities [or probability mass functions] 4 (¢) and g(¢), respectively. If Pr{X >
x} < Pr{Y > x}forallreal x, then X is said to be smaller than Y in the usual stochastic
order (denoted by X < Y).If h(x)g(y) > h(y)g(x) for all x < y, then X is said to
be smaller than Y in the likelihood ratio order (denoted by X <j; Y). Also, a random
variable X is said to be increasing in likelihood ratio (ILR) if [X — #|X > ¢] <y
[X — s|X > s] for s <. Finally, we define an ILR family of distributions as a set of
distributions that are all ILR and that have non-overlapping hazard rates, i.e., if r; and

@ Springer

Queueing Syst

r; are the hazard rate functions of two different distributions of the family, it must be
that ri(s) > r;(¢) for all s, ¢ > 0, or vice versa. For more on these stochastic orders
and the ILR family of distributions, see, for example, Shaked and Shanthikumar [17]
and Righter [14], respectively.

In Sects. 4 and 5 we present analytic results on the optimal policies within the sets of
preemptive and non-preemptive policies, respectively. More specifically, we provide
sufficient conditions under which certain state-independent policies maximize D (¢)
in the usual stochastic order for all # > 0, and hence the long-run average throughput
whenever the limit in (2) exists.

4 Preemptive policies

In this section we study the dynamic control problem under preemptive-resume poli-
cies. By definition, in a preemptive policy, the server can change its decision at any
point in time. These decisions are either to idle or to work on a job at one of the service
stations. For this problem, the state of the system can be defined by the current station
for each job and the amount of service (in time) attained by that job at its current
station.

We first present results that are already proved in the literature for two special
network structures. First, consider a series system as shown in Fig. 3, where J = 1.
For notational convenience, we relabel the service station (k, 1) as station k, for k =
..., K.

Proposition 2 (Ahn and Righter [1]) For a series system with ILR service times at
each service station, the non-idling policy that gives priority to the job with the most
service attained at the non-empty station with the largest index maximizes D (t) in
the usual stochastic order for all t > 0 within the set of all preemptive-resume policies
IIp.

Proposition 2 implies that the server should prioritize the job that is closest to the
entry into station O in order to maximize the number of departures from station 0, and
hence the throughput. The intuition is that the earlier a job goes back to station 0,
the earlier this job leaves station O to request service, which increases the utilization
of the server and hence the throughput of the system. Note that, after clearing any
partially completed jobs that are present at the service stations initially, the optimal
policy turns into a policy under which the server picks a job from the queue in front
of station 1 and completes the service of this job at all service stations 1,2, ..., K
sequentially before it starts working on another job waiting in front of station 1. Such

Fig. 3 A finite-population queueing system with K service stations in series

@ Springer

Queueing Syst

Fig. 4 A finite-population
queueing system with K parallel
service stations

a policy is sometimes referred to as a sequential policy or a pick-and-run policy. It is
also important to notice that the optimal policy is a non-preemptive one even though
preemption is allowed.

Next, consider a parallel system as shown in Fig. 4, where i; = 1 for each j =
1,..., J and hence K = J. For notational convenience, we relabel the service station
(1, k) as station k, fork =1, ..., K.

Proposition 3 (Righter and Shanthikumar [15]; Righter [14]) For a parallel system
with processing times at service stations belonging to an ILR family of distributions,
the policy that gives priority to the job with the shortest expected remaining service
time maximizes D{j (t) in the usual stochastic order for all t > 0O within the set of all
preemptive-resume policies T1p.

Proposition 3 follows the same intuition as for the series system, where the optimal
policy pushes jobs towards station 0 as soon as possible, but this time in a parallel
network. Also, unlike for the series system, the optimal policy for the parallel system
can be preemptive because the arrival of a “faster” job from station 0 may cause the
server to stop working on the current job and switch to serving this new arrival. Righter
[14] proves a similar result (Theorem 13.D.8) for a clearing system with no arrivals
but, as the author notes, the proof can be easily extended to the case with arrivals (in an
open or closed network setting) as is also shown by Righter and Shanthikumar [15].

We next provide a result for a general parallel-series system but with the condition
that service times at each station are independent and identically distributed (i.i.d.)
and ILR.

Proposition 4 For a parallel-series system with i.i.d. and ILR service times at all
service stations, the non-idling policy that always assigns the server to the job with
the fewest number of tasks remaining and, in case of a tie, to the job with the most
service attained at its current station, maximizes Dg (t) in the usual stochastic order
forall t > 0O within Ip.

Proposition 4 implies that if the total service required on each branch of the network
can be split into multiple tasks that take an i.i.d. time that is also ILR, then the job that
is closest to enter station 0 should be prioritized in order to maximize the total number
of departures and thus the long-run average throughput. For example, when the total
service time of a job at each branch of the network is deterministic, then Proposition
4 gives the classical result that the optimal policy prioritizes the job with the shortest
remaining service time at any point in time; see Schrage [16].

@ Springer

Queueing Syst

5 Non-preemptive policies

In this section we consider the optimal dynamic assignment of a single server to K
service stations under non-preemptive policies. Due to its non-preemptive nature, in
this control problem the decision epochs are completion time of service at a service
station and arrival time of a job from station 0 when the server is idle. Furthermore,
the state definition for the problem under preemptive policies needs to be expanded to
include the job that the server is currently working on.

As in Sect. 4, we next present several results that characterize the policy that sto-
chastically maximizes the total number of departures from station 0 at any point in
time. For convenience, we assume that no job present at a service station at time zero
has received earlier service at that station. Note that results in this section can be easily
extended to the case with more general initial conditions with partially completed jobs
at service stations under conditions such as service times having an ILR distribution.

We first provide a result that completely characterizes an optimal policy for a series
system.

Proposition 5 For a series system, the non-idling policy that gives priority to the
non-empty station with the largest index within TIxp maximizes D (t) in the usual
stochastic order for all t > 0.

Proposition 5 is consistent with what we observed in the case with preemptive
service: serving the job that is closest to joining station O is optimal for the series
system. Note that the optimal policy for the series system characterized in Proposi-
tion 2 within the set of preemptive-resume policies is actually non-preemptive. Hence,
Proposition 2 implies that the pick-and-run policy is optimal within ITyp if the ser-
vice times are ILR. Strengthening this result, Proposition 5 shows that pick-and-run
is also optimal within IInp for a series system even when service times are not ILR.
A similar result was provided by Ahn and Righter [1] under the condition that service
times at all stations are identically distributed but under the objective of stochastically
maximizing the joint task completion process from all stations, which is a stronger
performance measure.

Having characterized the optimal policy for the series system, in the remainder of
this section, we focus on parallel-series networks with at least two branches.

Proposition 6 Suppose that there exists a branch j* € {1,2, ..., J} in a parallel-
series system with J > 2 such that Sij*,j* <Ir S,-j,j,for all j € {1,2,..., IN\{J*}.
Within TInp, it suffices to consider policies that do not idle the server whenever there
is a job at station (i j«, j*) and give priority to that job in order to maximize D{ (t) in
the usual stochastic order for all t > 0.

Proposition 6 implies that whenever there is a job at the “end station” that has the
shortest service time in likelihood ratio ordering among all end stations, the server
should not idle but serve that job. We next use Proposition 6 to develop an algorithm
(Algorithm A-1) that yields a partial characterization for optimal policies when J > 2.
Corollary 1 proves that this algorithm works.

@ Springer

Queueing Syst

Algorithm A-1 Algorithm for obtaining a partial characterization of optimal policies
for J > 2.

S.1 Let ¢ be the iteration number and set it to zero. Let also H = 0. Refer to the original parallel-series

system as Network 0. Let S © be the random variable that denotes the i.i.d. service time at node
(i, j) in Network ¢ and let i; (6) be the number of stations in the jth branch of Network ¢, where
j=12,...,Jand ¢ =0,1,2,.... Lett_/(O) = z_/ forall j =1,2,...,J andSi(g.) = Sh.l for all
Jj=12.. . Jadi=12,...,i;.

S.2 In Network ¢, if there exists a branch j* such that S() forall j € {1,..., JN\{j*},

w0 S Sy (z>
then go to S.3; otherwise go to S.4.

S.3 (a) Ifi) >1, then obtain anew network, namely Network £+1, by pooling stations (i j+ (€)—1, i)
and (z +(£), j*) in Network ¢ and keeping all other stations intact. Let the pooled station in
Network {+1belabeledas (i j= (£)—1, j i*) and let the labels of all the remaining nodes be the same
as in Network £. Then, let i ; *((-i— D=ix@)—1ij+1)=ij)forjefl,2..., ING*

(L+1) _ () (&) (13+1) (0) ; :
D T l 01 + Sl (0. and S Si,j for all other stations in Network

£ + 1. Finally, 1ncrement ¢ by one, and go to S.2.
(b) Otherwise (if i j* (¢) = 1), increment £ by one, let H = j*, and go to S.4.
S.4 Stop.

Corollary 1 For J > 2, if Algorithm A-1 stops at iteration £ > 1, then in order to
maximize D{ (t) in the usual stochastic order for all t > 0, it is sufficient to consider
policies in the set I' C IINp, which is defined as follows: Under any policy y € T,

(a) if i 0) # 1;(0) for some branch j € {1_, 2,..., J}, then once the server starts
working on a job at one of stations (i;(€), j), ((;(£) + 1, j), ..., (i;(0), j), the
server keeps working on that job without any idling until the job enters station 0;
and

(b) if Algorithm A-1 stops with H > 0, then branch H receives the highest priority
for service.

In Sects. 5.1 and 5.2 we consider two special networks to demonstrate how Algo-
rithm A-1 can be employed to characterize optimal policies. In Sect. 5.3 we obtain
more characterizations for the optimal policy in a parallel-series network with i.i.d.
service times at all service stations.

5.1 Parallel system

Consider the parallel system shown in Fig. 4 under the non-preemptive service assump-
tion. For notational convenience, let X; be the random variable that denotes the i.i.d.
service time at station k (instead of Sy ;) fork =1, 2, ..., K. Corollary 1 leads to the
following partial characterization of the optimal policy for this system:

Corollary 2 Suppose that in a parallel system there exists a stationi € {1,2,..., K}
for which X; <y X, forall j € {1,2,..., K}\{i}. Then, within Ilnp, it is sufficient
to consider policies that do not idle the server whenever there is a job at station i and
that give priority to this job in order to maximize D (t) in the usual stochastic order
forallt > 0.

@ Springer

Queueing Syst

Fig. 5 A finite-population
queueing system with three
service stations on two parallel P,
branches

Corollary 2 says that whenever there is a job at the service station that has the
shortest service time in likelihood ratio ordering among all service stations, then the
server should not idle and take that job into service. For a parallel network with two
branches, this result completely characterizes the optimal policy if the service times at
the two service stations can be ordered according to the likelihood ratio ordering. For
networks with more than two branches, Corollary 2 only gives a partial characterization
of the optimal policy. For such a network, serving the job with a shorter service time
(in the likelihood ratio ordering) does not necessarily maximize the total number of
departures from station O in the usual stochastic ordering; see, for example, Example 1
in the Appendix. However, anumerical study (presented in Sect. 6) for a parallel system
with exponential service times and three service stations supports the conjecture that
the shortest-expected-service-time policy maximizes the long-run average throughput
among all non-preemptive and non-idling policies.

5.2 A network with two branches and three service stations

Consider a parallel-series system with two branches and three service stations, i.e.,
J =2,i1 = 1,and i» = 2, and hence K = 3. As shown in Fig. 5, we relabel
stations (1, 1), (1,2), and (2, 2) as stations 1, 2, and 3, respectively, for notational
convenience. This queueing system is motivated by the nurse assignment problem
discussed in Sect. 1. In particular, this closed queueing system can be used to model a
hospital ward where each patient can be in four different states: She seeks admission
service from a nurse (station 3); she stays at a bed not requiring any service from a
nurse (station 0); she requests nursing service (station 1), which may repeat several
times, and finally she seeks discharge service from a nurse (station 2). We assume
that a new patient is ready to be admitted to the ward immediately after a patient is
discharged. We define X} to be the random variable denoting the i.i.d. service time at
station k fork =1, 2, 3.
Corollary 1 yields the following characterizations for the optimal policy:

Corollary 3 When the objective is to maximize D (t) in the usual stochastic order
over w € Ilnp forallt > O for the parallel-series system with two branches and three
service stations shown in Fig. 5,

(a) it suffices to consider only policies that do not idle the server whenever there is a
Jjob at station 1[3] and that give priority to that job if X1[X3] <1 X3[X1];

@ Springer

Queueing Syst

(b) there exists a non-idling optimal policy that gives priority to stations 3, 1, and 2
in that order if X3 <i; X1 <ir X2 + X3, and

(c) there exists a non-idling optimal policy that gives priority to stations 3, 2, and 1
in that order if X3 <;; X1 and X»> + X3 <|r X1.

Corollary 3(a) provides partial characterizations of the optimal policy where either
one of the two end stations (stations 1 or 3) should be prioritized at all times. On the
other hand, parts (b) and (c) of Corollary 3 provide conditions under which the optimal
policy is completely characterized. More specifically, if the conditions in part (b) of
Corollary 3 are satisfied, then all jobs that are initially present at station 3 should be
given priority, and then the tasks at stations 2 and 3 should be pooled for all other
jobs, after which the priority is given to jobs at station 1 over the jobs at the pooled
station. If the conditions in part (c) of Corollary 3 are satisfied, then all jobs that are
initially present at station 3 should be given priority, and then the tasks at stations 2
and 3 should be pooled for all other jobs, after which the priority is given to jobs at
this pooled station over the jobs at station 1.

In the remainder of this section, we provide distributional examples where the
conditions given in Corollary 3 are satisfied. In Proposition 7, we consider the case
where the service times are uniformly distributed at each service station.

Proposition 7 Suppose that X; is uniformly distributed over [a;, b;] fori = 1,2,3,
and X, and X3 are independent.

(a) If a1 < az and by < b3, then X1 <|y X3.

®) Ifaz < ay < ay+ a3 and by < by < by + b3 — min{by — a», b3 — a3}, then
X3 <ir X1 <ir X2 + X3.

(¢) Ifa1 > a2 + a3 + min{br — az, b3 — a3} and by > by + b3, then X3 <| X| and
Xo + X3 <1 X1.

Proposition 7, which is proved in the Appendix, can be used together with Corollary
3 to obtain the optimal control policy when service times are uniformly distributed.
For example, when all service times at stations 1, 2, and 3 are i.i.d. uniform random
variables, then conditions in part (b) of Proposition 7 are satisfied, and hence Corol-
lary 3 implies that an optimal policy gives priority to stations 3, 1, and 2 in that order.
Similarly, when service times at stations 2 and 3 are independent and uniformly dis-
tributed over [0, 6], then the conditions in part (c) of Proposition 7 are satisfied if X is
uniformly distributed over [ay, b1], where a; > 6 and b; > 26, and hence Corollary
3 implies that an optimal policy gives priority to stations 3, 2, and 1 in that order.

One can also get conditions similar to those in Proposition 7 for service times that
have a gamma distribution. For example, when service times at stations 1, 2, and 3
are independent and gamma distributed with the same scale parameter but possibly
different shape parameters of o1, 2, and a3, respectively, then it can be shown that
X3 <ir X1 <ir Xo + X3if a3 < o1 < a + «3; see, for example, Table 1.1 in Miiller
and Stoyan [12]. Then, by part (b) of Corollary 3, there exists an optimal policy that
gives priority to stations 3, 1, and 2 in that order.

@ Springer

Queueing Syst

5.3 Independent and identically distributed service times at all service stations

In this section we study the control problem over the set of non-preemptive policies
for the general series-parallel network structure but under the assumption that service
times at all service stations are i.i.d. We first show that in this setting, any policy can
be improved (or at least its performance would not degrade) by replacing the service
of a job with the service of another with fewer tasks remaining. We then show that it
is sufficient to consider only those policies within [Inp under which the server never
idles whenever there is a job with fewer tasks remaining than the number of stations
on the shortest branch of the network.

Proposition 8 Suppose that the service times at all service stations are i.i.d. Then, a
non-preemptive policy that serves a job with k tasks is at least as good as one that
serves a job with j tasks remaining, where k < j, at any decision epoch in terms of
maximizing the total number of departures from station 0 by time t > 0.

Proposition 9 Suppose that the service times at all service stations are i.i.d. If at a
decision epoch there exists at least one job that has fewer tasks remaining than the
total number of tasks in the shortest branch of the network, then idling is suboptimal
in terms of maximizing D(’)Z (t) in the usual stochastic order for all t > 0 within TInp.

Corollary 4 Suppose that the service times at all service stations are i.i.d. If at
a decision epoch there exists at least one job with k tasks remaining, where k <
minj—, ..y ij, then serving the job with the fewest number of tasks remaining maxi-
mizes D{ (t) in the usual stochastic order for all t > 0 within TIxp.

Corollary 4 partially characterizes the optimal policy for networks with i.i.d. service
times at all service stations and that have at least one branch that has a different number
of stations than the others. On the other hand, it completely characterizes the optimal
policy for networks with i.i.d. service times at all service stations and that have the
same number of stations on each branch: The non-idling policy that gives priority
to the job with the fewest number of tasks remaining maximizes D{ (¢) in the usual
stochastic order for all ¢+ > 0 within ITnp.

6 Numerical results

Our analytical results presented in Sects. 4 and 5 suggest that giving priority to the jobs
that have the shortest remaining service time in some stochastic sense could be a good
policy. Hence, in this section, we evaluate the shortest-expected-remaining-service-
time policy when preemption is not permitted. (In accordance with the scheduling-
theory nomenclature, we call this policy SEPT, which stands for “shortest expected
processing time.”) In particular, we compare the throughput under SEPT with the
optimal throughput by means of a numerical study.

We first formally define SEPT as a server assignment policy for a general parallel-
series system. Suppose at some decision epoch ¢, N(¢) jobs are in need of attention
from the server. Let S(n) be the total service time required for the nth job before it
enters station 0, forn = 1,2, ..., N(¢). SEPT ranks these N(¢) jobs in an ascending

@ Springer

Queueing Syst

order of their E[S(n)] and prioritizes the one that ranks the first, and follows the same
rule at each decision epoch then on.

We conducted a numerical study for the parallel system with three service stations
and the two-branch-three-station system that are shown in Figs. 4 and 5, respectively.
In all our experiments, service times at station i were independent and exponentially
distributed with rate u; for i = 0,1, 2, 3. We fixed the service rate of station O at
o = 1, and varied the service rates of other stations. We considered two subsets of
experiments depending on the number of jobs circulating in the system, specifically,
one subset with B = 5 and another with B = 10. We used the method of policy
iteration to obtain the optimal policy for each scenario where the margin of error was
set to 10712,

For the parallel system with three service stations, we let the service rate u; (i =
1,2, 3) take values from the set {0.5,0.75, 1, 2, 5}. We considered four cases for
[p1, p2, p3], namely [0.2, 0.4, 0.4], [0.4, 0.3, 0.3], [0.6, 0.2, 0.2], and [0.8, 0.1, 0.1].
This resulted in 1,000 scenarios in total. The numerical results, which we do not present
here, showed that SEPT is optimal for all 1,000 scenarios within the set of non-idling
and non-preemptive policies.

For the two-branch-three-station system, we let ;1 and pu, take values from the
sets {0.5,0.75, 1,2, 5} and {0.5u1, 1.511, 311}, respectively, and set w3 = wa. We
consider three levels for py, namely 0.25, 0.5, and 0.75. This resulted in 90 scenarios
in total, for none of which our analytical results presented in earlier sections yield
the optimal policy. For each scenario, we computed the throughput under SEPT, the
optimal throughput (TH*), and the percentage deviation (PD) of the SEPT throughput
from TH*. These results are presented in Table 1.

From Table 1, it can be seen that SEPT is optimal in 69 out of 90 scenarios and
provides a performance that is very close to the optimal in others. A closer look also
reveals that SEPT is suboptimal in scenarios where the expected service time of the
single-station branch (E[X]) is greater than the total expected service time for the
branch with two service stations (E[X>]+E[X3]), and hence SEPT pools stations 2 and
3, and gives priority to the pooled station over station 1. Note that in these scenarios,
the likelihood ratio order on total remaining service times does not hold, i.e., X7 + X3
is not smaller than X in the likelihood ratio ordering. For example, consider the case
where (i1, w2, #3) = (1, 3, 3); even though E[X»>]+E[X3] < E[X], it can be shown
that X, + X3 is not smaller than X in the likelihood ratio ordering. This shows that
the likelihood ratio ordering conditions given in Corollary 3(c) cannot be replaced
by orderings in expected values even when the objective is to maximize the long-run
average throughput. Nevertheless, this numerical study also supports the use of SEPT
by showing that it is optimal in the majority of the cases considered and near optimal
in others. Over all 90 scenarios, the average and maximum percentage deviations from
the optimal are only 0.00072 and 0.0127%, respectively.

7 Conclusion

In this paper, we studied the problem of dynamically assigning a single server to
multiple stations in a finite-population parallel-series network of queues to maximize

@ Springer

Queueing Syst

LIE'S 0 LSLS 0 0T€9 0 LILE 0 198°€ 0 LOOY 0 Mo¢ S
S8Sy 0 1TV 0 €o6€ 0 IsF€ 0 6LEE 0 Te 0 gy S
LS8'T 0 000C 0 6£S'1 0 €09C 0 1561 0 LTSl 0 g0 S
81T 09z€ 00¥'C 016v $99°C 0'9LS $80C 0 0LTT 0 ¥8Y'T 0 o¢ [/
98’1 0 ¥ILI 0 0091 0 8081 0 T69'1 0 981 0 gy T
€v1T 0 0080 0 SI190 0 IvI'l 0 0080 0 190 0 g0 4
160°1 S9L 00T1 Y98 €] 686 L8O'1 €€ S6l'l vLE LT 657 Moe I
€26'0 0 LS80 0 0080 0 760 0 LS80 0 0080 0 gy I
1LS°0 0 00¥0 0 80€0 0 1L50 0 00v0 0 80€0 0 rgo I
818°0 0890 0060 6TL'0 0001 98L°0 LI80 86’8 6680 €11 6660 Lel oe §L0
7690 0 €790 0 0090 0 7690 0 €¥9°0 0 0090 0 g1 sLo
6770 0 00€0 0 1€20 0 6TF0 0 00€0 0 1€20 0 g0 §L0
9¥$°0 9100 0090 LI00 L99°0 L100 S¥S0 9L'S 0090 659 $99°0 L6'9 Moe <0
970 0 6Tr0 0 00¥0 0 90 0 6T¥0 0 00v'0 0 g1 <0
987°0 0 00T0 0 ¥S10 0 98C0 0 00T0 0 ¥S10 0 Mg <0
«HL (g-01x)ad «HL (4-01x)dd +HL (o-01X)Add HL (01x)dd «HL (0I1xX)dd +HL (¢-01x)dd
sLo=1d go=1d sco=1d sLo=1d go=1d sco=1d
ol=g c=g =1t 127]

(4H.L) ndysnory rewndo sy
wolj ((Id) uoneraap a3ejuadrad oy Jo swiid) ur sarorjod aanduosid-uou Iopun sUONE)S 991y} PUB SAYIURIG 0M) YIIM WA)SAS URTAONIRIA 94} 10] [JHS JO 9oueULIO}dd [d[qe],

pringer

As

Queueing Syst

the long-run average reward/throughput. Under several scenarios, we were able to
analytically show that assigning the server to a job that has the shortest remaining
service (in some stochastic sense) is optimal. The intuitive explanation for such an
optimal policy is that by pushing jobs out of service as fast as possible, this policy
increases the rate of arrival of new jobs, and hence, reduces the idle time of the server.
For example, in a series network with a single branch, the optimal policy gives priority
to stations that are closest to the end of the line. For networks with parallel branches of
stations, we identified stochastic ordering conditions among service times at different
stations so that the optimal policy could be (partially) characterized as one that gives
priority to jobs that are faster to complete. For example, for a network of two stations
that are parallel, we showed that the faster station should receive priority over the other
if the service times at these two stations are likelihood ratio ordered.

Based on this theoretical support for policies that give priority to jobs with shortest
remaining service times, we conducted a numerical study to test the performance
of the shortest-expected-remaining-service-time policy, which is commonly called
SEPT in scheduling literature. Our numerical results for parallel-series networks of
three stations (with either two or three branches) show that SEPT is optimal in the
majority of the cases considered, and when it is not optimal, its performance is very
close to the optimal.

Acknowledgements The authors thank the associate editor and an anonymous referee for their comments
on an earlier version of this article, which significantly improved it. The work of the first author was partially
supported by the National Science Foundation under grants CMMI-1234212 and CMMI-1635574.

Appendix

In this appendix, we prove the analytical results presented in the main paper and
provide supplemental material.

Proof of Proposition 1 Let D” (t) be the number of customers who request service
from the]th branch after leavmg station O during [0,] under policy 7. This means that
z =1 D¢, j(t) = Dg(t). Let also C l” i (t) denote the number of customers in station
(i, j)attimer (1 <i <ijand1 < j <J). Then,forl <i <ijand1<j <J,we
have

CT (1) =C[;(0) + D"y ;(1) = D} (1),
which implies
D7 ;(0)=Df ;) + (C}f,,»(O) - C,Zj(t)) :)
k=1

@ Springer

Queueing Syst

Hence, we have

s i B[Df 0] FE[cf ;0 - C”-(t)]
T : J . J k,j
R _htrg})gf Z—t +11tr2£fZZr,jz .
j=li=1 j=li=1
SinceOgC,fj(t)SB<ooforalltzO,j:1,...,J,andk:1,...,ij,thelast

term in the above equation is zero, which leads to

o — i ing S B[P80
s t
j=li=l1

Joij b

o rijpjE[DF ()]

=limin 330 S
j=li=

J o
=T" Zzpjri’j’

j=li=1

where the second equation follows from the independent Bernoulli splitting of cus-
tomers departing from station 0. O

Proof of Proposition 4 We will prove the result by means of a sample-path argument.
As is commonly used in proofs for characterizing optimal policies within a set of
preemptive policies, we consider a discrete-time version of the problem, where the
discretization can be arbitrarily small. Let 7 be the number of periods left in this
discrete-time problem. We will use induction on T to prove the result. When 7' = 1,
all policies will result in the same number of departures from station 0, and hence the
policy given in the statement of the proposition is trivially optimal. Now, suppose that
the same policy is optimal for a finite-horizon problem with 7" — 1 periods. We will
next show that it is also optimal for a problem with 7" periods.

Let 7 be a policy that does not follow the optimal policy defined in the proposition
at time zero under the problem with T periods. From the inductive hypothesis, we
can assume that 7 follows the optimal policy from time 1 on. We next construct a
new policy y that follows the optimal policy at time 0 and generates at least the same
number of departures from station 0 as policy along the entire sample path.

Let C; be the job that policy 7 takes into service at time 0 and C, be the job that
policy y takes at time 0. (We here consider only the case where policy 7 serves a job
at time O; a similar argument can be used when 7 idles at time 0.) Suppose that job C;
has k; tasks remaining (including the task at the current station at time 0) and #; units
of service time attained at the current station for i = 1, 2. We need to consider two
cases:

Case (i) We first consider the case with ki = k and #; < 1. (The case with
k1 = ko and 11 = 1 will trivially hold.) Since 7 follows the optimal policy at time
1 and on, it will not serve C; again until C, is served. Let t be the first time 7w
takes C, into service. (We assume that ¢ < T but the results would trivially hold

@ Springer

Queueing Syst

if the server never takes C; into service within the horizon.) We now construct y
such that it agrees with 7 at all decisions except that it serves C» at time 0 and C;
at time 7, and thereafter serves Cy or C, with priority to C» whenever serves Ci
or Cy. Let S; be the remaining service time of job C; at the current station at time
0 under policy 7 and S be the corresponding service time under policy y. Suppose
that we directly couple the service times of all jobs other than C; and C, under
both policies, and couple service time of job C{[C>] at station O under policy 7= and
service time of job C2[C1] under policy y. Since service times are i.i.d. and ILR, and
1 < 1, we have S» <|; Sy and S} <j; S|. Hence, we generate m = min{S;, S>}
and M = max{S;, $»} from the appropriate distribution and use them for sample
paths of both policies. If m = M = 1, then we have S| = §] = S, = §) = 1,
and the two sample paths will couple at time t + 1, i.e., both sample paths will
reach the same state at this time. Furthermore, we will have Dg (1) = Dg (1) for all
t=0,1,....,T.If1 <m < M, thenwelet S = S] = M and S, = S§; = m with
probability p = Pr{S| = M, S = m|min{Sy, S2} = m, max{S, $2} = M} and we
let S| = S} =m and S, = S, = M with probability 1 — p. In each case, the sample
paths will couple at 7 + 1. Furthermore, we will again have D (1) = D())/ () for all
t=0,1,....,T.Ifl =m < M, thenwelet S| = S, = M and S, = S| = 1 with
probability 1 — p, welet S; = §; = 1 and S, = S| = M with probability 1 — p, and
welet S = §] = M and S, = S, = 1 with probability 2p — 1. This generation works
because p > 1 — p by Theorem 1.C.24 of Shaked and Shanthikumar [17] and the
likelihood ratio ordering between S and S,, and it will yield the correct probabilities,
ie, Pr{S; = M, S = 1|min{S;, $2} = 1, max{S;, $2} = M} =Pr{S| =M, S =
1/ min{S], S5} = 1, max{S], S5} = M} = p.Inthe first two subcases, the interchange
has no effect and the sample paths again couple at 7 + 1 with Dj (1) = Dg (t) for
allr =0,1,...,T. In the third subcase, if k; > 1, then the sample paths under both
policies will again couple at T + 1 with no differences in the number of departures
from station 0. However, if k1 = 1, then job C, will enter station O at time 1 under
policy y and at time T + 1 under policy 7. Let Sp be the service time of C; at station
0 at this entrance to that station under both policies. Then, the two sample paths will
couple at time 7 + 1 + Sp and we will have

D (1), 0<t<So+1,
Dit)y=1Df)+1, So+1=<t<t+1+S,
DI (1), t>7+1+5.

Case (ii) We now consider the case with k; > k». Let S; be the total service time
remaining at time O for job C; until it enters station O for i = 1, 2 under policy .
Thus, we can write S; = 217:1 S; (i), where S; (i) is the service time of job C;’s jth
task remaining for i = 1, 2. Note that the S; (i) are i.i.d. except for S1(1) and S1(2).
Furthermore, since service times at all stations are ILR, by Theorem 1.C.9 in Shaked
and Shanthikumar [17] (with the discussion that follows the theorem) and the facts
that k; > k> and the S (i) are non-negative, we have S <ir S1. Now, in the proof of
Case (i), setting k; = k = 1 and replacing S; with S; completes the proof. O

@ Springer

Queueing Syst

We defer the proof of Proposition 5 as it is based on an argument used in the proof
of Proposition 6.

Proof of Proposition 6 We will use an inductive sample-path argument to prove the
result. Suppose at time zero the server can only perform a total of v > 1 more tasks,
at which point the server is shut off and the problem stops. Applying induction on v
and letting v — oo will complete the proof.

Suppose 7 is a policy under which the server takes a job into service in station k
with k # (i;+, j*) at a decision epoch where v = 1 and there exists a job available
in station (i j+, j*). (For convenience, we here abuse the notation and instead of using
a 2-tuple to refer to a station we simply call it station k.) Since v = 1, such an event
could only happen once in a sample path. Without loss of generality, we assume that
this event takes place at time zero. Now, consider another policy y that serves a job
in station (=, j*) at time zero. Note that once 7 and y complete the respective tasks,
there will be no other decisions left under either policy since v = 1. To generate
the sample paths under policies & and y, we directly couple the sojourn times of all
jobs at station 0. If k is an intermediate station, i.e., it is not an end station that will
immediately lead to an arrival to station 0, then it is easy to see that Dg (1) > Dg (1)
forall+ > O as (ij+, j*) is an end station. Now consider the case where k is another
end station. Let S} and S, be the service time of the job taken into service at time
zero under policies y and 7, respectively. Since (i j+, j*) is the fastest end station in
likelihood ratio ordering (and thus in usual stochastic ordering), we can couple the
service times such that S| < S with probability one. This means that policy y will
have an earlier arrival at station O than policy 7, and directly coupling the sojourn
times of these two arrivals at station 0 will yield D())’ (t) = D§ (¢) for all t > 0. This
concludes the proof that at a decision epoch where v = 1 and there exists a job at
station (i;+, j*), it is better to take this job into service than to take any other job.
Having this result, a simple sample-path argument would also immediately lead to
the suboptimality of idling at such a decision epoch. This completes the proof of the
proposition for v = 1.

Now, suppose that the proposition holds when the server can serve at most v — 1
more tasks. We will next show that a policy, say policy &, which assigns the server to
a station other than station (i j+, j*) at a decision epoch where there is a job at station
(ij+, j*) and the maximum number of tasks that could be served is v, can be improved
by serving the job in station (i;+, j*) at that decision epoch. Again, without loss of
generality, assume that time zero is the first time policy 7 starts working in station
k, where k # (i;+, j*), despite the fact that there is a job in station (i j+, j*). At the
time of completion of service of this job in station k, the total number of tasks that
the server can take on will drop to v — 1, and hence, by the inductive argument, we
assume that policy 7 starts serving a job in station (i;+, j*) at this time. Let S, be
the service time of the job that the server picks from station k right before the server
moves to station (i j+, j*) to serve a job there with service time S under policy . We
construct an alternative policy y as follows: y serves a job in station (ij«, j*) with
service time § { at time zero, switches to station k, and serves a job there with service
time).

@ Springer

Queueing Syst

S S
T 2 1 : .
I v ! ! i
y S, ‘ S, 3 N
0 M m+M
S S
T z 1 >
ii !
! Sl ! S2 !
/4 >
0 m m+M
S S
/4 : 2 : L >
! M
i | ' '
i S h :
P ! 1 , 2) .
0 m m+M

Fig. 6 Visual depiction of sample-path couplings used in the proof of Proposition 6

Case 1 (k is an intermediate station) We directly couple the service times of all
jobs taken into service during [0, 0o) under both policies, which yields S| = S and
S5 = 8. Let Sp be the service time at station 0 for the job entering station 0 at time
S2 + S under policy 7 and at time S| under policy y. We then let y follow 7 during
[S1 + S2, 00). This is possible because at least the same number of jobs are available
to policy y compared to policy 7 and idling is allowed. The system states for the two
policies will become identical after time S + S1 + Sp. With this construction, it is
then easy to see that Dg (t) = Dy (1) forall t > 0.

Case 2 (k is an end station) We cross couple S, S2, Si, and Sé as follows. We
first generate the minimum and maximum of S; and S», namely m and M, respec-
tively, condition on their values, and use these values in both sample paths. Let
p = Pr{S; = M|m, M} = Pr{Sy = m|m, M} and ¢ = Pr{S; = m|m, M} =
Pr{S> = M|m, M} = 1 — p. By Lemma 13.D.1(i) of Righter [14] (or Theorem 1.C.24
of Shaked and Shanthikumar [17]) and the likelihood ratio ordering between S; and
S2, we have p < ¢g. Thus, we can let

(i) Sy =m, S =M,S; =M,S, =m, with probability p,
(i) S1 =M, S, =m, S| =m, S, = M, with probability p,
(iii) Sy =m, S =M, S| =m, S, = M, with probability 1 —2p.

The coupling yields S| < S (and Sy < S}) in all three cases. See Fig. 6 for a visual
depiction of this coupling. In the first two cases all arrival times to station 0 under
policies w and y are identical. Furthermore, the system states for the two policies
become identical after time m + M. Hence, policy y can follow policy 7 thereafter.
By directly coupling the service times of all jobs taken into service after time m + M,
we have Dg (t) = D (¢) for all ¢ > 0 under cases (i) and (ii).

In case (iii), let So be the service time at station O for the job entering station 0 at
time S, under policy 7 and at time S} under policy y. We directly couple the service

@ Springer

Queueing Syst

times of all jobs taken into service after m + M. Note that the system states for the
two policies will become identical after time M + max{m, Sp}. However, policy y
can follow 7 after m + M because the same jobs or more will be available to policy
y compared to policy 7 and idling is allowed. We then have Dg (t) = D (1) for all
t > 0. This completes the proof that it is better to take a job in station (i j+, j*) into
service than to take any other job at a decision epoch where the maximum number of
tasks that can be served is v.

We finally prove that idling is suboptimal at a decision epoch (say, at time zero,
without loss of generality), where the maximum number of tasks that can be served is
v and there exists a job in station (i j«, j*). Consider policy 7 that idles the server for
[units of time at time zero. We already proved that if the server would be assigned to
a job, then it is best to assign to one in station (i j+, j*) (whenever there exists one) at
a decision epoch where the maximum number of tasks that can be served is v. Hence,
we assume that 7w assigns the server to a job at station (i j«, j*) with service time S}
at time /. Consider an alternative policy y that serves a job in station (i =, j*) with
service time S| at time zero and then starts idling for / units of time. We directly
couple the service times of all jobs taken into service and sojourn times of all jobs
at station 0 during [0, co), which means that Si = 8. Let Sy be the service time at
station O for the job entering station O at time S under policy y and at time I 4 §;
under policy 7. The system states under 7 and y will become identical at I 4 S1 + Sp.
However, policy y can follow m after I + S; because the same jobs or more will be
available to policy y compared to policy 7 and idling is allowed. This construction
will yield D(’)’ (t) = D (¢) for all t > 0, which completes the proof. m|

We need the following lemma to prove Proposition 5 and Corollary 1.

Lemma 1 Suppose that station (ij«, j*) has the highest priority under an optimal
policy in Tinp where j* € {1,2,...,J}. If ij« > 1, then, within IINp, it suffices to
consider policies that pool the two tasks at stations (ij= — 1, j*) and (i j«, j*) for all
Jjobs that enter station (i j» — 1, j*) in order to maximize D{ (t) in the usual stochastic
order forall t > 0.

Proof of Lemma 1 Note that the only source of jobs for station (i;«, j*) is station
(ij~ —1, j*) when i+ > 1. Hence, when seeking an optimal policy, it is sufficient to
only consider policies that sequentially serve stations (i j+ — 1, j*) and (i =, j*), i.e.,
policies under which the tasks at these two stations are essentially pooled, given that
station (i j+, j*) has the highest priority under an optimal policy in ITnp. O

Proof of Proposition 5 When J = 1, using the arguments for the case where k is an
intermediate station in the proof of Proposition 6, we can prove that the end station
(i1, 1) should receive the highest priority. Then, by Lemma 1, we can consider only
policies that pool the two stations at the end of the branch. Repeating this argument
several times proves Proposition 5. O

Proof of Corollary 1 Applying Lemma 1 and Proposition 6 in Steps S.3a and S.3b of
Algorithm A-1 proves Corollary 1. O

We need Definition 1 and Lemma 2 to prove Proposition 7.

@ Springer

Queueing Syst

Definition 1 Y has a trapezoidal distribution with parameters a < b < ¢ < d if its
probability density function f(x) is given by

2(x—a) .
b-a)etd—a=b)’ ifa<x=<b,
f(x) = c+d—ab’ ifb=x=<c,
2@ fe<x<d
@=o)(c+d—a—b)’ =X z=d,
0, otherwise.

Lemma 2 Let X and Y be two continuous random variables, where X is uniformly
distributed over (a1, b1] and Y has a trapezoidal distribution with parameters a <
b<c<d.

(1) Ifa1 <aandby <c, then X < Y.
(i) Ifay = band by > d, then Y <y X.

Proof of Lemma 2 (i) Let f and g be the probability density functions for X and
Y, respectively. We will show that f(x)g(y) > f(y)g(x) for all x < y, where
x,y € [ay,d]. When x € [a;, a), we have g(x) = 0, which implies that f(x)g(y) >
f(y)g(x) for all y € [ay, d]. The proof will be then complete once we show that
f(x)/g(x) is non-increasing for x € [a,d]. For x € [a, b1] (when a < by), g(x)
is non-decreasing by the condition that b1 < ¢ and f(x) is a constant, and hence,
f(x)/g(x) is non-increasing. For x € [by, d], f(x)/g(x) is trivially non-increasing
as f(x) is zero, which completes the proof.

(ii) Follows directly from part (i), by noting that —X is uniformly distributed on
[—b1, —aj] and —Y has a trapezoidal distribution with parameters —d < —c < —b <
—da. O

Proof of Proposition 7 (a) In Lemma 2, if a = b and ¢ = d, then Y has a uniform
distribution on [a, c], from which the result follows immediately.

(b) The first stochastic inequality is already proved in part (a). For the ordering between
X1 and X7 4 X3, first note that X, 4+ X3 has a trapezoidal distribution with parameters
a <b <c¢ <d,wherea = a+ a3, b = a» + a3z + min{by, — a, b3 — as},
¢ = by + bz —min{by — az, b3 — a3}, and d = by + b3 by Proposition 2.1 in Korwar
[11]. Since a; < ap +a3 and by < by + bz —min{by —az, b3 — az}, part (i) of Lemma
2 yields that X1 < X7 + X3.

(c) Conditions imply that a; > a3 and by > b3, and hence by part (a), X3 <) Xi.
For the ordering between X and X, 4+ X3, we know from the proof of part (b) that
X» + X3 has a trapezoidal distribution. Since a; > a> 4+ a3 + min{b, — a», b3 — az}
and by > by + b3, part (ii) of Lemma 2 yields that X» + X3 <| X;. O

Proof of Proposition 8 We prove the result by a sample-path argument. Suppose that
7 is a policy that chooses to serve a customer that has j tasks remaining (say, customer
Cp) attime 71 > 0, although there exists a customer (say, customer C;) thathas k < j
tasks remaining. We will next construct a new policy y that follows 7 during [0, 7).

Let #; be the first time that job C; enters station O after 71 for i = 1, 2. Let also
7 = min{t, rr} and T = max{ty, r,}, where 11 < T < 7. During[71, T), let y follow
exactly except that y works on C; or C with preference for C; whenever = works on

@ Springer

Queueing Syst

C1 or Cy. We directly couple all service times at the service stations and station 0 that
start at the same decision epoch under both policies during [71, T]. Such a coupling
would work because service times at all service stations are i.i.d. Let S, be the service
time (at station 0) of C; or C, that starts at time 7 and So be the service time (at
station 0) of the other one that starts at time T under policy . By the construction
of policy y, C» will enter station 0 earlier than C; under policy y; denote this time
by z’. Note that we must have t/ < 7 due to the construction of policy y and the
fact that k < j. We couple the two sample paths such that S, and S are the service
times of C2 and C at station 0 under policy y, respectively. (The service times of all
other jobs at station O are directly coupled under 7 and y.) At time T, the same jobs
or more will be available to the server under policy y when compared with policy
7. Hence, policy y can follow policy 7 after T given that idling is allowed. The two
sample paths will eventually couple at time max{t + S, T}. For such a coupling, we
have D (t) > D (1), forall > 0. o

Proof of Proposition 9 Suppose policy 7 is a policy that idles at time t; > 0, when
there exists at least one job that has fewer tasks remaining than the total number of
tasks in the shortest branch of the network. Without loss of generality, assume that
71 is the first such decision epoch. Let C; be the job that has the fewest number
of tasks remaining at time 71 and k be the number of tasks it has remaining, where
k <minj— . ji;.Let 1, be the first time after 7; at which the server starts working
on a job. Based on Proposition 8, we need to only consider the case where policy
starts working on job C7 at time 7,. Note that job C1 will still be the job with the fewest
number of tasks remaining at time 7, because any job that might have arrived during
[71, T2) will have at least minj—;, s i; tasks remaining. Using similar arguments as
in our earlier sample-path results, we can construct a new policy y that follows
during [0, 1) but serves job C at time 71 such that Dg (1) > Dg (t) forallt > 0. O

We finally provide a counter example to the conjecture that serving the job with
the shortest service time in the likelihood ratio ordering maximizes the number of
departures in a parallel network of more than two stations under non-preemptive and
non-idling policies.

Example 1 Consider a parallel network of three service stations with deterministic
service times of 7 units of time at service station i, fori = 1, 2, 3, and B > 3. Suppose
that at a decision epoch, say at time zero, there are no jobs at station 1 but a single
job at each of stations 2 and 3, and the rest of the B — 2 jobs are at station 0. Suppose
also that under this sample path the first departure from station 0 among the B — 2
jobs initially there takes place at time 3 and enters station 1. Under the non-idling and
non-preemptive shortest-expected-service-time policy, the server will start serving at
station 2 at time zero and then at station 3 at time 2. Hence, by time 4, only a single
job would have entered station 0. Now consider another policy that serves the job at
station 3 at time zero, and then takes the job at station 1 into service at time 3 right
after it arrives. Under this alternative policy, two jobs enter station 0 by time 4, which
implies that this policy could have a larger number of departures from station O than
the shortest-expected-service-time policy for some ¢t > 4.

@ Springer

Queueing Syst

References
1. Ahn, H.-S., Righter, R.: Dynamic load balancing with flexible workers. Adv. Appl. Probab. 38(3),
621-642 (2006)
2. de Véricourt, F., Jennings, O.B.: Nurse staffing in medical units: a queueing perspective. Oper. Res.
59(6), 1320-1331 (2011)
3. Dshalalow, H.J.: Frontiers in Queueing: Models and Applications in Science and Engineering. CRC

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

Press, Boca Raton (1997)
Haque, L., Armstrong, M.J.: A survey of the machine interference problem. Eur. J. Oper. Res. 179(2),
469-482 (2007)

. Haverkort, R.B.: Performance of Computer Communication Systems: A Model-Based Approach.

Wiley, New York (1998)

Hopp, W.J., Iravani, S.M.R., Shou, B.Y., Lien, R.: Design and control of agile automated conwip
production lines. Nav. Res. Logist. 56(1), 42-56 (2009)

Iravani, S.M.R., Kolfal, B.: When does the cj rule apply to finite-population queueing systems? Oper.
Res. Lett. 33(3), 301-304 (2005)

Iravani, S.M.R., Krishnamurthy, V., Chao, G.H.: Optimal server scheduling in nonpreemptive finite-
population queueing systems. Queueing Syst. 55(2), 95-105 (2007)

King, J.B.P.: Computer and Communication System Performance Modelling. Prentice-Hall, Upper
Saddle River (1990)

Koole, G., Righter, R.: Optimal control of tandem reentrant queues. Queueing Syst. 28(4), 337-347
(1998)

Korwar, R.M.: On stochastic orders for sums of independent random variables. J. Multivar. Anal. 80,
344-357 (2002)

Miiller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, Chichester
(2002)

Palesano, J., Chandra, J.: A machine interference problem with multiple types of failures. Int. J. Prod.
Res. 24(3), 567-582 (1986)

Righter, R.: Scheduling. In: Shaked, M., Shanthikumar, J.G. (eds.) Stochastic Orders and Their Appli-
cations, Chapter 13, pp. 381-432. Academic Press, New York (1994)

Righter, R., Shanthikumar, J.G.: Extremal properties of the fifo discipline in queueing networks. J.
Appl. Probab. 29(4), 967-978 (1992)

Schrage, L.: A proof of the optimality of the shortest remaining processing time discipline. Oper. Res.
16(3), 687-690 (1968)

Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)

Stecke, K.E., Aronson, J.E.: Review of operator/machine interference models. Int. J. Prod. Res. 23(1),
129-151 (1985)

Sztrik, J.: Finite source queuing systems and their applications: A bibliography. http://irh.inf.unideb.
hu/user/jsztrik/research/fsqreview.pdf (2001)

Takagi, H.: Stochastic Analysis of Computer and Communication Systems. North-Holland, Amsterdam
(1990)

Van Oyen, M.P,, Gel, E.G.S., Hopp, W.J.: Performance opportunity for workforce agility in collabo-
rative and noncollaborative work systems. IIE Trans. 33(9), 761-777 (2001)

@ Springer

http://irh.inf.unideb.hu/user/jsztrik/research/fsqreview.pdf
http://irh.inf.unideb.hu/user/jsztrik/research/fsqreview.pdf

	Optimal control of a single server in a finite-population queueing network
	Abstract
	1 Introduction
	2 Literature review
	3 Problem formulation
	4 Preemptive policies
	5 Non-preemptive policies
	5.1 Parallel system
	5.2 A network with two branches and three service stations
	5.3 Independent and identically distributed service times at all service stations

	6 Numerical results
	7 Conclusion
	Acknowledgements
	Appendix
	References

